Skip to main content
Log in

Absorbers in the Transactional Interpretation of Quantum Mechanics

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

The transactional interpretation of quantum mechanics, following the time-symmetric formulation of electrodynamics, uses retarded and advanced solutions of the Schrödinger equation and its complex conjugate to understand quantum phenomena by means of transactions. A transaction occurs between an emitter and a specific absorber when the emitter has received advanced waves from all possible absorbers. Advanced causation always raises the specter of paradoxes, and it must be addressed carefully. In particular, different devices involving contingent absorbers or various types of interaction-free measurements have been proposed as threatening the original version of the transactional interpretation. These proposals will be analyzed by examining in each case the configuration of absorbers and, in the special case of the so-called quantum liar experiment, by carefully following the development of retarded and advanced waves through the Mach-Zehnder interferometer. We will show that there is no need to resort to the hierarchy of transactions that some have proposed, and will argue that the transactional interpretation is consistent with the block-universe picture of time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. It is argued in [20] that delayed-choice experiments present a very similar difficulty for standard quantum mechanics as do contingent absorber experiments for TI.

  2. A related setup was proposed by D.J. Miller (private communication).

  3. In [13, 14] the right-hand side of (1) is called an x + spin state, but it is really an eigenstate of the Pauli matrix σ y , not of σ x .

  4. The setup of Fig. 4 was originally called “inverse EPR” or “time-reversed EPR” while the one of Fig. 3 was called “hybrid MZI-EPR experiment”. We follow [19] in referring to both as the QLE.

  5. See [38]. The QLE has also been analyzed within the block-universe picture in [15, 36] which, like the present paper, avoid particle paths. These references, however, do not introduce real offer and confirmation waves, and claim that relations between the experimental equipment are the fundamental ontological constituents.

References

  1. Heisenberg, W.: Physics and Philosophy. The Revolution in Modern Science. HarperCollins, New York (2007)

    Google Scholar 

  2. Jammer, M.: The Conceptual Development of Quantum Mechanics, 2nd edn. Tomash/American Institute of Physics, Woodbury (1989)

    Google Scholar 

  3. Audi, M.: The Interpretation of Quantum Mechanics. University of Chicago Press, Chicago (1973)

    Google Scholar 

  4. De Broglie, L.: La mécanique ondulatoire et la structure atomique de la matière et du rayonnement. J. Phys. Radium 8, 225–241 (1927)

    Article  MATH  Google Scholar 

  5. Bohm, D.: A suggested interpretation of the quantum theory in terms of ‘hidden’ variables (I and II). Phys. Rev. 85, 166–193 (1952)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  6. Everett, H.: ‘Relative state’ formulation of quantum mechanics. Rev. Modern Phys. 29, 454–462 (1957)

    Article  MathSciNet  ADS  Google Scholar 

  7. Saunders, S., Barrett, J., Kent, A., Wallace, D. (eds.): Many Worlds? Everett, Quantum Theory, and Reality. Oxford University Press, Oxford (2010)

    MATH  Google Scholar 

  8. Cramer, J.G.: Generalized absorber theory and the Einstein-Podolsky-Rosen paradox. Phys. Rev. D 22, 362–376 (1980)

    Article  MathSciNet  ADS  Google Scholar 

  9. Cramer, J.G.: The transactional interpretation of quantum mechanics. Rev. Modern Phys. 58, 647–687 (1986)

    Article  MathSciNet  ADS  Google Scholar 

  10. Cramer, J.G.: An overview of the transactional interpretation of quantum mechanics. Internat. J. Theoret. Phys. 27, 227–250 (1988)

    Article  MathSciNet  ADS  Google Scholar 

  11. Maudlin, T.: Quantum Non-locality and Relativity, 2nd edn. Blackwell, Oxford (2002)

    Book  Google Scholar 

  12. Elitzur, A.C., Vaidman, L.: Quantum mechanical interaction-free measurements. Found. Phys. 23, 987–997 (1993)

    Article  ADS  Google Scholar 

  13. Elitzur, A.C., Dolev, S., Zeilinger, A.: Time-reversed EPR and the choice of histories in quantum mechanics. In: Antoniou, I., Sadovnichy, V.A., Walther, H. (eds.) Proceedings of the XXII Solvay Conference on Physics, pp. 452–461. World Scientific, Singapore (2003)

    Chapter  Google Scholar 

  14. Elitzur, A.C., Dolev, S.: Multiple interaction-free measurement as a challenge to the transactional interpretation of quantum mechanics. In: Sheehan, D.P. (ed.) Frontiers of Time: Retrocausation—Experiment and Theory. AIP Conference Proceedings, vol. 863, pp. 27–43 (2006)

    Google Scholar 

  15. Stuckey, W.M., Silberstein, M., Cifone, M.: Reconciling spacetime and the quantum: relational blockworld and the quantum liar paradox. Found. Phys. 38, 348–383 (2008)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  16. Cramer, J.G.: The quantum handshake: a review of the transactional interpretation of quantum mechanics. http://faculty.washington.edu/jcramer/talks.html (2005)

  17. Elitzur, A.C., Dolev, S.: Quantum phenomena within a new theory of time. In: Elitzur, A.C., Dolev, S., Kolenda, N. (eds.) Quo Vadis Quantum Mechanics? pp. 325–349. Springer, Berlin (2005)

    Chapter  Google Scholar 

  18. Elitzur, A.C., Dolev, S.: Undoing quantum measurements: novel twists to the physical account of time. In: Licata, I., Sakaji, A. (eds.) Physics of Emergence and Organization, pp. 61–75. World Scientific, Singapore (2008)

    Chapter  Google Scholar 

  19. Kastner, R.E.: The quantum liar experiment in Cramer’s transactional interpretation. Stud. Hist. Philos. Sci. B Stud. Hist. Philos. Modern Phys. 41, 86–92 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  20. Kastner, R.E.: On delayed choice and contingent absorber experiments. ISRN Math. Phys. 2012, 617291 (2012)

    ADS  Google Scholar 

  21. Bacciagaluppi, G., Valentini, A.: Quantum Theory at the Crossroads: Reconsidering the 1927 Solvay Conference. Cambridge University Press, Cambridge (2009)

    MATH  Google Scholar 

  22. Lewis, G.N.: The nature of light. Proc. Natl. Acad. Sci. USA 12, 22–29 (1926)

    Article  ADS  Google Scholar 

  23. Dirac, P.A.M.: Classical theory of radiating electrons. Proc. R. Soc. Lond. Ser. A 167, 148–169 (1938)

    Article  ADS  Google Scholar 

  24. Wheeler, J.A., Feynman, R.P.: Interaction with the absorber as the mechanism of radiation. Rev. Modern Phys. 17, 157–181 (1945)

    Article  ADS  Google Scholar 

  25. Wheeler, J.A., Feynman, R.P.: Classical electrodynamics in terms of direct interparticle action. Rev. Modern Phys. 21, 425–433 (1949)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  26. Wheeler, J.A.: The ‘past’ and the ‘delayed-choice’ double-slit experiment. In: Marlow, A.R. (ed.) Mathematical Foundations of Quantum Theory, pp. 9–48. Academic Press, New York (1978)

    Chapter  Google Scholar 

  27. Berkovitz, J.: On causal loops in the quantum realm. In: Placek, T., Butterfield, J. (eds.) Non-locality and Modality, pp. 235–257. Kluwer Academic, Dordrecht (2002)

    Chapter  Google Scholar 

  28. Kastner, R.E.: Cramer’s transactional interpretation and causal loops problems. Synthese 150, 1–14 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  29. Evans, P.W.: Causal symmetry and the transactional interpretation, arXiv:1011.2287v2 (2012)

  30. Marchildon, L.: Causal loops and collapse in the transactional interpretation of quantum mechanics. Phys. Essays 19, 422–429 (2006)

    Article  ADS  Google Scholar 

  31. Renninger, M.: On wave-particle duality. Z. Phys. 136, 251–261 (1953). English translation available in arXiv:physics/0504043v1

    Article  ADS  MATH  Google Scholar 

  32. Cramer, J.G.: A transactional analysis of interaction-free measurements. Found. Phys. Lett. 19, 63–73 (2006)

    Article  Google Scholar 

  33. Hardy, L.: On the existence of empty waves in quantum theory. Phys. Lett. A 167, 11–16 (1992)

    Article  ADS  Google Scholar 

  34. Marchildon, L.: Quantum Mechanics: From Basic Principles to Numerical Methods and Applications. Springer, Berlin (2002)

    MATH  Google Scholar 

  35. Hanbury Brown, R., Twiss, R.Q.: Interferometry of the intensity fluctuations in light. I. Basic theory: the correlation between photons in coherent beams of radiation. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 242, 300–324 (1957)

    Article  ADS  MATH  Google Scholar 

  36. Silberstein, M., Cifone, M., Stuckey, W.M.: Why quantum mechanics favors adynamical and acausal interpretations such as relational blockworld over backwardly causal and time-symmetric rivals. Stud. Hist. Philos. Sci. B Stud. Hist. Philos. Modern Phys. 39, 736–751 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  37. Kastner, R.E.: The possibilist transactional interpretation and relativity. Found. Phys. 42, 1094–1113 (2012)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  38. Compatibilism: Stanford Encyclopedia of Philosophy. http://plato.stanford.edu/entries/compatibilism/

Download references

Acknowledgements

L.M. is grateful to the Natural Sciences and Engineering Research Council of Canada for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Louis Marchildon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boisvert, JS., Marchildon, L. Absorbers in the Transactional Interpretation of Quantum Mechanics. Found Phys 43, 294–309 (2013). https://doi.org/10.1007/s10701-012-9695-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10701-012-9695-z

Keywords

Navigation