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Abstract

A T -indistinguishability operator (or fuzzy similarity relation) E is called
unidimensional when it may be obtained from one single fuzzy subset (or
fuzzy criterion). In this paper, we study when a T -indistinguishability op-
erator that has been obtained as an average of many unidimensional ones is
unidimensional too. In this case, the single fuzzy subset used to generate E
is explicitly obtained as the quasi-arithmetic mean of all the fuzzy criteria
primarily involved in the construction of E.

Keywords: Indistinguishability operator, generator, quasi-arithmetic mean,
Representation Theorem

1. Introduction

Indistinguishability operators with respect to a given t-norm T , or sim-
ply T -indistinguishability operators, are the natural fuzzification of classical
equivalence relations. They are found under many names in the literature,
depending on the author and on the chosen t-norm. Similarity is perhaps
the most common name applied to such fuzzy relations (Zadeh [7]), although
it is sometimes associated with the particular t-norm T = MIN . Other
names are Likeness, Fuzzy Equality or Fuzzy Equivalence Relation. We
will use T -indistinguishability operator (following Trillas and Valverde [6]),
and also the term similarity in an informal way.

Crisp equivalence relations are generally regarded as the mathematical
construct for dealing with classifications. They are defined as those relations
being reflexive, symmetric and transitive. If E is such a relation on a set X,
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for each element x ∈ X we may consider all the elements y ∈ Y that are
related to x, that is, all y ∈ Y such that E(x, y) = 1. These these elements
are the class of x. Here x acts as a prototype, and all the objects y in its
class as its likes. As a result, the set X becomes partitioned into classes.

Often, equivalence relations are induced by attributes. For example, a
given set X of plane closed polygonal lines becomes naturally partitioned
into classes according to their number of sides. In addition to that, if the
polygonal are real (drawn) lines, we may consider also color as an attribute,
and the set becomes furtherly partitioned into, say, black and white lines.
Each attribute is responsible for a partition of X and, therefore, for an equiv-
alence relation E. The final partition or equivalence relation is the intersec-
tion of the two, meaning with this that every two elements x and y ∈ X
are E-related if they have the same number of sides and the same color,
but they are not if they fail to meet one of the two criteria, or both of
them. Formally, if Es stands for number of sides and Ec means color then
E(x, y) = MIN (Es(x, y), Ec(x, y)).

Attributes, though, may be of a graded nature. We may consider the
attribute perimeter of a polygonal, whose range is the positive real numbers,
or lines may be drawn in a variety of shades of gray which can be expressed
as real numbers between 0 and 1. Attributes that take values on continu-
ous universes are generally regarded as vague, and they are represented by
fuzzy sets. Instead of considering a rectangle whose perimeter equals 5 as
entirely different from another one of perimeter 5.15, and therefore belonging
to two different classes, we can regard them as very similar objects whenever
perimeter is the only attribute considered. They could share the same class,
provided that classes are fuzzy sets and belonging to a class is a matter of
degree.

The definition of T -indistinguishability operator axiomatically captures
the intuitive idea of fuzzy equivalence relation.

Definition 1.1. Let X be a universe and T a t-norm. A T -indistinguisha-
bility operator E on X is a fuzzy relation E : X ×X → [0, 1] satisfying, for
all x, y, z ∈ X,

1. E(x, x) = 1 (Reflexivity)

2. E(x, y) = E(y, x) (Symmetry)

3. T (E(x, y), E(y, z)) ≤ E(x, z) (T -Transitivity)
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A t-norm T is an operation on the unit interval which is associative,
commutative, non decreasing in both variables, and satisfies the boundary
condition T (x, 1) = x for all x, y ∈ [0, 1]. It is generally accepted that t-norms
are the AND connectives of Fuzzy Logic [2].

We will assume within this paper that the t-norm T is continuous and
Archimedean [3], or else T = MIN . Every continuous Archimedean t-norm
is isomorphic to the sum of positive real numbers, bounded or unbounded,
according to Ling’s theorem [3]. The order reversing isomorphism t : [0, 1]→
[0,+∞] is called an additive generator of T, and T (a, b) = t[−1](t(a) + t(b))
for all a, b ∈ [0, 1] where t[−1] is the pseudoinverse of t.

In practice, this means that T -transitivity (Definition 1.1.3) is simply a
version of the triangle inequality for metrics, since T (E (x, y) , E (y, z)) ≤
E (x, z) can be rewritten as t (E (x, y)) + t (E (y, z)) ≥ t (E (x, z)) or, in a
more convenient notation for the purposes of this paper,

t ◦ E (x, y) + t ◦ E (y, z) ≥ t ◦ E (x, z) .

Thus, the underlying semantics of T -indistinguishability operators is en-
hanced to include proximity in a metric sense in addition to fuzzy equiv-
alence.

T -indistinguishability operators may be induced by fuzzy attributes. These
fuzzy attributes may be represented as fuzzy sets h : X → [0, 1], and then
some procedure is needed to obtain the fuzzy relation E from the fuzzy sub-
sets h. Such procedure is provided by the Representation Theorem ([6])

For a given continuous t-norm T , we consider the natural indistinguishab-
ility on [0, 1], ET . Since in this paper only the most used t-norms, namely
Archimedean t-norms and the MIN t-norm are considered, we will provide
separate definitions for each of the two, thus avoiding the general case ([6]).

Definition 1.2. Given an Archimedean t-norm T, the natural indistinguisha-
bility ET associated with T is the indistinguishability on the unit interval
ET (x, y) = t[−1] (|t (x)− t (y)|)

Definition 1.3. The natural indistinguishability EMIN associated with the t-
norm T = MIN is the indistinguishability on the unit interval EMIN (x, y) =
MIN (x, y) if x 6= y. Otherwise, EMIN (x, y) = 1.

The natural indistinguishability ET is a proper T -indistinguishability op-
erator in the sense of Definition 1.1.
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Any arbitrary fuzzy subset h : X → [0, 1] induces an indistinguishability
on X via Eh (x, y) = ET (h (x) , h (y)). The Representation Theorem states
that every indistinguishability E can be obtained from indistinguishabilities
Eh induced by single fuzzy attributes h.

Theorem 1.4. [6] Representation Theorem. Let E be a fuzzy relation on
a set X and T a t-norm. E is a T -indistinguishability operator if and only
if there exists a family H = (hi)i∈I of fuzzy subsets of X such that for all
x, y ∈ X

E(x, y) = inf
i∈I

Ehi(x, y).

We say that E is generated by H, or that H is a generating family of
E. T -indistinguishability operators E that are generated by a single fuzzy
subset h are called unidimensional.

Intuitively, H is a set of attributes relevant to the classification induced
by E. Each attribute hi : X → [0, 1] is responsible for a singly generated
T -indistinguishability Ehi which is computed by

Ehi (x, y) = ET (hi (x) , hi (y)) = t[−1] (|t ◦ hi (x)− t ◦ hi (y)|)

The metric interpretation becomes clear when we write the previous equation
as

t ◦ Ehi (x, y) = |t ◦ hi (x)− t ◦ hi (y)|

since the right hand side is the real line distance between images of hi via
the isomorphism t.

The Representation Theorem is central to many theoretical developments
in the field of fuzzy relations. Also, it provides a straight translation into
the fuzzy framework of the crisp procedure described above to obtain an
equivalence relation starting from a set of criteria. It first generates the
equivalence relations for each attribute, and then combines all of them by
taking infima.

However, from an applied perspective this way of combining information
is far from satisfactory. The notion of error is essential to applied domains,
and a common way to deal with errors is by averaging information. If,
for example, we perceive two different objects as somehow similar under
a sequence of observations, we are not likely to thing of them as entirely
different just because one particular observation indicates so. We may discard
the conflicting piece of information or, more likely, we may aggregate all the
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evidence gathered throughout the sampling process by using some averaging
operator.

Quasi-arithmetic means [1] are a family of averaging operators which are
widely used. Quasi-arithmetic means, or q-a means for short, may also be ob-
tained from additive generators, in a very similar way to that of Archimedean
t-norms.

Definition 1.5. [1] The quasi-arithmetic mean M in [0,1] generated by a
continuous monotonic map t : [0, 1]→ [−∞,∞] is defined for all n ∈ N and
x1, ..., xn ∈ [0, 1] by

M(x1, ...xn) = t−1

(
t(x1) + ...+ t(xn)

n

)
.

M is continuous if and only if Ran t 6= [−∞,∞].

Proposition 1.6. [5] The map assigning to every continuous Archimedean t-
norm T with additive generator t the quasi-arithmetic mean mt generated by
t is a canonical bijection between the set of continuous Archimedean t-norms
and continuous quasi-arithmetic means with t(1) 6= ±∞.

Similarly weighted quasi-arithmetic means can be defined in the following
way.

Definition 1.7. Consider α1, α2, ..., αn ∈ [0, 1] such that
∑n

i=1 αi = 1.
The weighted quasi-arithmetic mean Mα1,α2,...,αn of x1, x2, ..., xn ∈ [0, 1] with
weights α1, α2, ..., αn generated by a continuous strict monotonic map t :
[0, 1]→ [−∞,∞] is

Mα1,α2,...,αn(x1, x2, ..., xn) = t−1

(
n∑
i=1

αi · t(xi)

)
.

Mα1,α2,...,αn is continuous if and only if Ran t 6= [−∞,∞].

Proposition 1.8. [5] The map assigning to every continuous Archimedean
t-norm T with additive generator t the quasi-arithmetic mean Mα1,...,αn gener-
ated by t is a canonical bijection between the set of continuous Archimedean t-
norms and continuous weighted quasi-arithmetic means with weights α1, ..., αn
and with t(1) 6= ±∞.

For simplicity, we will write M(αi, xi) instead of Mα1,...,αn(x1, x2, ..., xn).
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2. Quasi-arithmetic means of attributes and their relationship with
quasi-arithmetic means of indistinguishabilities

In this section we deal with a family of fuzzy sets H = (hi)i∈I which we
assume to represent a set of attributes or criteria applicable to all x ∈ X.
Examples of such attributes are perimeter, gray level, weight, suitability,
smoothness etc. and, since they are obtained through empirical measuring
or subjective assessment, they are bound to errors and uncertainty.

Each fuzzy set h ∈ H allows for any pair of elements x, y ∈ X to be
regarded as similar up to a degree Eh(x, y) and, since h is only an approximate
instantiation of some theoretical graded variable, so is Eh(x, y). Standard
proceedings in such situations include averaging the empirically measured
features or the subjectively assessed criteria in order to obtain a more reliable
fuzzy set h̄ and, therefore, a more accurate relation Eh̄(x, y).

Let M be a quasi-arithmetic mean with weights (αi)i∈I and additive gen-
erator t, the same additive generator as that of a given Archimedean t-norm
T .

In order to average the information via M there are two possible courses of
action. We may first compute the quasi-arithmetic mean of all the fuzzy sets
in the generating family H, h̄ = M(αi, hi) and use this single fuzzy set h̄ to
generate the indistinguishability operator Eh̄(x, y) afterwards. Or, we may
start by generating a family of indistinguishability operators (Ehi)i∈I and
then averaging all the indistinguishabilities in the family as ĒH = M(αi, Ehi).
We will show that the two procedures may throw different results, depending
on how different are the orders induced by the fuzzy sets h on X.

Proposition 2.1. Eh̄ is an indistinguishability operator with respect to T .

Proof. Obvious, since Eh̄ is the T -indistinguishability generated by the fuzzy
set h̄.

Proposition 2.2. [5][4] ĒH is an indistinguishability operator with respect
to T .

Proposition 2.3. [4] ĒH ≤ Eh̄

Each fuzzy set hi ∈ H induces a preorder ≤i on X as follows.

Definition 2.4. x ≤i y if and only if hi(x) ≤ hi(y) for all x, y ∈ X.
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Note that the induced preorders ≤i are total preorders because hi : X →
[0, 1] and [0, 1] is a totally ordered set.

Definition 2.5. Two preorders ≤i and ≤j on X are compatible if and only
if x <i y ⇒ x ≤j y and x <j y ⇒ x ≤i y for all x, y ∈ X

Lemma 2.6. For any discrete family of real numbers {ai}i∈I ,
∣∣∣∣∑
i∈I
ai

∣∣∣∣ =∑
i∈I
|ai| if, and only if, ai ≥ 0 for all i ∈ I, or else ai ≤ 0 for all i ∈ I.

Note that, in general, only

∣∣∣∣∑
i∈I
ai

∣∣∣∣ ≤∑
i∈I
|ai| holds.

Proposition 2.7. ĒH = Eh̄ if, and only if, ≤i and ≤j are compatible orders
for all i, j ∈ I.

Proof. Let t be the additive generator of both the quasi-arithmetic mean M
and the Archimedean t-norm T . Let us take ai = αi(t ◦ hi(x))−αi(t ◦ hi(y))
for all i ∈ I.

Since t is monotonous, ≤i and ≤j being compatible is both a necessary
and sufficient condition for all the ai to have the same sign, which in turn is
necessary and sufficient for the equality (*) to hold in the following equations,
according to the previous lemma:
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Eh̄(x, y) = ET (h̄(x), h̄(y))
= t[−1] ◦ (

∣∣t ◦ h̄(x)− t ◦ h̄(y)
∣∣)

= t[−1] ◦
(∣∣∣∣t ◦ t[−1]

(∑
i∈I
αit ◦ hi(x)

)
− t ◦ t[−1]

(∑
i∈I
αit ◦ hi(y)

)∣∣∣∣)
= t[−1] ◦

(∣∣∣∣∑
i∈I
αit ◦ hi(x)−

∑
i∈I
αit ◦ hi(y)

∣∣∣∣)
= t[−1] ◦

(∣∣∣∣∑
i∈I
αi(t ◦ hi(x)− t ◦ hi(y))

∣∣∣∣)
=
(∗)
t[−1] ◦

(∑
i∈I
αi |t ◦ hi(x)− t ◦ hi(y)|

)
= t[−1] ◦

(∑
i∈I
αit ◦ t[−1] |t ◦ hi(x)− t ◦ hi(y)|

)
= t[−1] ◦

(∑
i∈I
αit ◦ ET (hi(x), hi(y))

)
= t[−1] ◦

(∑
i∈I
αit ◦ Ehi(x, y)

)
= M (αi, Ehi(x, y))

= EH (x, y)

Next, we are going to compute how different Eh̄(x, y) and EH (x, y) are,
provided that the orders induced by the fuzzy sets hi ∈ H are not compatible
orders on X. The natural choice for measuring this difference or dissimilarity
is ET , so that we define:

CH(x, y) = ET (Eh̄(x, y), EH(x, y))

for every pair (x, y) ∈ X ×X.
CH(x, y) = 1 if all the fuzzy sets h induce compatible orders on {x, y},

that is, if hi(x) ≤ hi(y) or either hi(x) ≥ hi(y) for all h ∈ H. When this does
not happen CH(x, y) provides a measure of how compatible these orders are.

Given (x, y) ∈ X, we split the set H = (hi)i∈I of all generators into
two subsets, I = P ∪ N , where P = {j ∈ I/hj(x) ≥ hj(y)} and N =
{k ∈ I/hk(x) < hk(y)}. Note that both P and N may be empty, P ∩N = ∅,
P ∪N = I and H = (hj)j∈P ∪ (hk)k∈N .
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We may then split the sum t ◦ EH(x, y) =
∑
i∈I
αit ◦ Ehi(x, y) accordingly,

t ◦ EH(x, y) =
∑
j∈P

αjt ◦ Ehj(x, y) +
∑
k∈N

αkt ◦ Ehk(x, y)

and rename
A(x, y) =

∑
j∈P

αjt ◦ Ehj(x, y)

B(x, y) =
∑
k∈N

αkt ◦ Ehk(x, y)

We are now in condition to compute the error made when we replace
the T -indistinguishability EH by Eh̄ , which is a lot simpler since it is gen-
erated by one single fuzzy set. Also, this error provides a measure of the
compatibility CH of the orders induced by H on (x, y).

Proposition 2.8. CH(x, y) = t[−1](min(2A(x, y), 2B(x, y)))

Proof. We will show that

CH (x, y) = t[−1] ◦ (A (x, y) +B (x, y)− |A (x, y)−B (x, y)|)

=

{
t[−1] (2B) if A ≥ B
t[−1] (2A) if A < B

From this, the result follows immediately.

9



CH (x, y) = ET
(
ĒH(x, y), E

h
(x, y)

)
=

→
T
(
Eh̄ (x, y) |ĒH(x, y)

)
= t[−1] ◦

(
t ◦ ĒH(x, y)− t ◦ Eh̄ (x, y)

)
= t[−1] ◦

(∑
i∈I

αit (Ehi (x, y))−
∣∣t ◦ h̄ (x)− t ◦ h̄ (y)

∣∣)

= t[−1] ◦

(∑
i∈I

αit (Ehi (x, y))−

∣∣∣∣∣∑
i∈I

αit ◦ hi (x)−
∑
i∈I

αit ◦ hi (y)

∣∣∣∣∣
)

= t[−1] ◦

(∑
i∈I

αit (Ehi (x, y))−

∣∣∣∣∣∑
i∈I

αi (t ◦ hi (x)− t ◦ hi (y))

∣∣∣∣∣
)

= t[−1] ◦

(∑
j∈P

αjt
(
Ehj (x, y)

)
+
∑
k∈N

αkt (Ehk (x, y))

−

∣∣∣∣∣∑
j∈P

αj (t ◦ hj (x)− t ◦ hj (y))−
∑
k∈N

αk (t ◦ hk (y)− t ◦ hk (x))

∣∣∣∣∣
)

= t[−1] ◦

(∑
j∈P

αjt
(
Ehj (x, y)

)
+
∑
k∈N

αkt (Ehk (x, y))

−

∣∣∣∣∣∑
j∈P

αjt ◦ t[−1] ◦ (t ◦ hj (x)− t ◦ hj (y))

−
∑
k∈N

αkt ◦ t[−1] ◦ (t ◦ hk (y)− t ◦ hk (x))

∣∣∣∣∣
)

= t[−1] ◦

(∑
j∈P

αjt
(
Ehj (x, y)

)
+
∑
k∈N

αkt (Ehk (x, y))

−

∣∣∣∣∣∑
j∈P

αjt
(
Ehj (x, y)

)
−
∑
k∈N

αkt (Ehk (y, x))

∣∣∣∣∣
)

= t[−1] ◦ (A (x, y) +B (x, y)− |A (x, y)−B (x, y)|)
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Example 2.9.

A specially simple case occurs when the additive generator t : [0, 1] →
[0, 1] defined by t (a) = 1− a is considered. Its quasi-inverse is

t[−1](b) =


0 if b > 1

1− b if 0 6 b < 1
1 if b < 0

The t-norm T (a, b) = t[−1] (t(a) + t(b)) is then the  Lukasiewicz t-norm,
 L(a, b) = MAX(a + b − 1, 0), and the associated quasi-arithmetic mean is

M(αi, ai) =
n∑
i=1

αiai =
n∑
i=1

1
n
ai, the standard arithmetic mean, provided that

αi = 1
n

for all i = 1, ..., n.
The next matrix displays three fuzzy sets h0, h1, h2 : X → [0, 1], with

X = {x0, x1, x2, x3, x4}

h0 h1 h2

x0

x1

x2

x3

x4


0 0 0

0.4 0.5 0
0.5 0.4 0
0.6 0.6 1
1 1 1


The fuzzy sets h0, h1 are quite similar, but their induced orders are not

compatible, since h0(x1) < h0(x2) and h1(x1) > h1(x2), while h0, h2 are
strikingly different fuzzy sets, but they induce compatible orders.

If we note the generators’ means by h̄01 = 1
2
h0 + 1

2
h1 , h̄02 = 1

2
h0 + 1

2
h2

and the means of the indistinguishabilies by Ē01 = 1
2
Eh0 + 1

2
Eh1 , Ē02 =

1
2
Eh0 + 1

2
Eh2 then it is easy to check that Ē01(x1, x2) 6= Eh̄01(x1, x2) but

Ē02(x1, x2) = Eh̄02(x1, x2).
The example also shows that generators cannot be grouped into classes

according to the orders they induce. In the present case, h0, h2 and h1, h2

can be grouped together, but not so h0, h1.

3. Quasi-arithmetic means of attributes and of indistinguishabil-
ities. The case T = MIN .

In the previous section we have considered an Archimedean t-norm T
with the same additive generator t as the quasi-arithmetic mean M . In this
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section, a quasi-arithmetic mean of generator t is still used for averaging
purposes, but the indistinguishabilities are generated with the t-norm T =
MIN , a non-Archimedean t-norm and therefore, one lacking an additive
generator.

If T = MIN , the indistinguishability operator generated by a fuzzy set
hi : X → [0, 1] is given by

Ehi (x, y) = EMIN (hi(x), hi(y))

=

{
1 if hi(x) = hi(y)

MIN (hi(x), hi(y)) otherwise.

We want to compare the quasi-arithmetic mean of the indistinguishabili-
ties generated by a family H = (hi)i∈I of fuzzy sets,

ĒH = M (αi, Ehi)

with the indistinguishability generated by the fuzzy set

h̄ = M (αi, hi)

the quasi-arithmetic mean of the fuzzy sets of H, that is

Eh̄ (x, y) = EMIN

(
h̄(x), h̄(y)

)
=

{
1 if h̄(x) = h̄(y)

MIN
(
h̄(x), h̄(y)

)
otherwise.

Note that ĒH is not, in general, a MIN -transitive relation, but a T -
transitive one with respect to the t-norm T generated by t, the generator of
the quasi-arithmetic mean.

The results differ substantially from those in the Archimedean case.
In the following propositions x, y will represent a pair of elements of X

such that x 6= y, and T = MIN .

Lemma 3.1. If hi(x) 6= hi(y) for all hi ∈ H then ĒH (x, y) 6 Eh̄ (x, y)
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Proof. Given a pair x, y of elements such that x 6= y we have that

Eh̄ (x, y) = EMIN

(
h̄(x), h̄(y)

)
=

{
1 if h̄(x) = h̄(y)

MIN
(
h̄(x), h̄(y)

)
otherwise.

}
>MIN

(
h̄(x), h̄(y)

)
= MIN

(
t[−1] ◦

(∑
i∈I

αit ◦ hi(x)

)
, t[−1] ◦

(∑
i∈I

αit ◦ hi(y)

))

= t[−1] ◦MAX

(∑
i∈I

αit ◦ hi(x),
∑
i∈I

αit ◦ hi(y)

)

> t[−1] ◦

(∑
i∈I

αiMAX (t ◦ hi(x), t ◦ hi(y))

)

= t[−1] ◦

(∑
i∈I

αit ◦MIN (hi(x), hi(y))

)

=
(∗)
t[−1] ◦

(∑
i∈I

αit ◦ EMIN (hi(x), hi(y))

)

= t[−1] ◦

(∑
i∈I

αit ◦ Ehi (x, y)

)
= M (αi, Ehi (x, y)) = ĒH (x, y)

(*) follows from the hypothesis h(x) 6= h(y). The rest of equalities and
inequalites are straightforward since t is a decreasing function.

Proposition 3.2. If hi(x) < hi(y) for all hi ∈ H then ĒH (x, y) = Eh̄ (x, y)

Proof. If we assume that hi(x) < hi(y) for all hi ∈ H then we may rewrite
the proof of Lemma 3.1 , with the only difference that the two inequalities
become equalities.

Indeed, h̄(x) < h̄(x) follows from h(x) < h(y) for all h ∈ H, and therefore
EMIN

(
h̄(x), h̄(y)

)
6= 1, and EMIN

(
h̄(x), h̄(y)

)
= MIN

(
h̄(x), h̄(y)

)
.
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Also,

MAX

(∑
i∈I

αit ◦ hi(x),
∑
i∈I

αit ◦ hi(y)

)
=

=
∑
i∈I

αit ◦ hi(x) =

(∑
i∈I

αiMAX (t ◦ hi(x), t ◦ hi(y))

)
which accounts for the second inequality turning into an equality.

Proposition 3.3. If hi(x) 6 hi(y) for all hi ∈ H and x, y ∈ X, then
ĒH (x, y) > Eh̄ (x, y)

Proof. If hi(x) = hi(y) for all i ∈ I, then Ehi (x, y) = 1 and h̄(x) = h̄(y) and
thus

ĒH (x, y) = M (αi, Ehi (x, y)) = 1 = EMIN

(
h̄(x), h̄(y)

)
= Eh̄ (x, y)

Let us suppose hi(x) 6= hi(y) for some i ∈ I. Then we may split I =
Q ∪ L with Q = {j ∈ I/hj(x) = hj(y)}, L = {k ∈ I/hk(x) < hk(y)}, and L
is non-empty. If Q is empty, then we may apply Proposition 3.2 to conclude
ĒH (x, y) = Eh̄ (x, y). So let us suppose that both Q and L are non-empty,
since all the other cases are already dealt with. This allows us to write:

h̄(x) = t[−1] ◦

(∑
i∈I

αit ◦ hi(x)

)

= t[−1] ◦

(∑
j∈Q

αjt ◦ hj(x) +
∑
k∈L

αkt ◦ hk(x)

)

< t[−1] ◦

(∑
j∈Q

αjt ◦ hj(y) +
∑
k∈L

αkt ◦ hk(y)

)

= t[−1] ◦

(∑
i∈I

αit ◦ hi(y)

)
= h̄(y)

We are only interested in the fact that hi(x) < hi(y), because it excludes
the possibility that EMIN

(
h̄(x), h̄(y)

)
= 1, and thus

Eh̄ (x, y) = EMIN

(
h̄(x), h̄(y)

)
= MIN

(
h̄(x), h̄(y)

)
= h̄(x)
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To end the proof, we only have to show that ĒH (x, y) > h̄(x), which
follows from:

ĒH (x, y) = M (αi, Ehi (x, y)) = t[−1] ◦

(∑
i∈I

αit ◦ Ehi (x, y)

)

= t[−1] ◦

(∑
j∈Q

αit ◦ Ehj (x, y) +
∑
k∈L

αkt ◦ Ehk (x, y)

)

= t[−1] ◦

(∑
k∈L

αkt ◦ Ehk (x, y)

)

= t[−1] ◦

(∑
k∈L

αkt ◦MIN (hk(x), hk(y))

)
= t[−1] ◦

(∑
k∈L

αkt ◦ hk(x)

)

> t[−1] ◦

(∑
i∈I

αit ◦ hi(x)

)
= h̄(x)

4. Conclusions

Starting with a family of fuzzy sets, which we regard as fuzzy attributes,
the Representation Theorem (Th. 1.4) provides an indistinguishability oper-
ator by taking infima of the simple indistinguishability operators associated
with every single fuzzy set. When the same procedure is carried out with
crisp attributes, we obtain a crisp equivalence relation in the standard way.
This theorem is an important result for the theoretical study of indistin-
guishability operators.

However, form an applied point of view, the averaging of information is
often the most advisable course of action, since noise and errors are intrinsic
to empirical data. Averaging is then seen as a way of filtering, and quasi-
arithmetic means are a simple way of smoothen data.

Quasi-arithmetic means can be applied in two different ways in our case.
Either we average the fuzzy attributes, and then we generate the similarities
with the filtered fuzzy sets, or we generate the similarities with the original
fuzzy attributes and average them afterwards. The two proceedings are not
equivalent.
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We have given the key results that allow for comparing the two proceed-
ings. Also, the necessary and sufficient conditions for the two of them to be
equivalent, only for Archimedean t-norms.

These results suggest that, sometimes, the set of attributes used to gen-
erate an indistinguishability operator via quasi-arithmetic means, can be
reduced to a much smaller set with exactly the same generating capabilities.
The search for these smaller sets we regard as a key, non-trivial issue to be
dealt with in the future.
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