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Preface
Johan van Benthem

Research lines are like those enticing hiking trails that lure us far and wide into
Nature, always across the next ridge into the next valley. Often they do not
run in the direction that we had planned, and often also, they present us with
surprising encounters. Every year, the Dynamics Yearbook shows where the
trails in our community have taken us, and whom we met on the way. In this
volume, you will find a variety of fresh perspectives when walking along major
map lines in logical information dynamics for rational agents. Topics including
the nature of explicit non-omniscient beliefs, the creation of strategies in parallel
games, general patterns in interactive rationality, agents’ attention horizons in
games, information-based coalitional influence in epistemic models, and richer
views of choice, preference, obligation in social scenarios all the way up to the
cathartic finale of voting. But you also get to read about new developments
of a more fundamental nature. Logical tools do not get blunt in the course of
applications, they often get shinier and even sharper with new edges. Exam-
ples of such new gloss and cutting edge show in this Yearbook with papers on
new substitution-closed versions of public announcement logic, frame corre-
spondence analysis of update postulates, generalized algebraic views of logical
dynamics, and new interfaces with categorial and linear logics as a resource-
conscious paradigm of information. So much for the trails. Which strangers
did we meet on the way? This Yearbook contains several interesting encoun-
ters with colleagues in the empirical domain of natural language, with papers
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ranging from categorial grammar to the semantics of quantifiers and speech
act theory. And also, we find contributions from the computational worlds of
epistemic planning and the situation calculus in AI, drawing attention to the
congenial research in communities a few valleys further down the trail.

It is a pleasure to see the wide range of contributions to this Yearbook, which
is fast becoming a document linking various active research sites in Europe,
the US and Asia. Currently, discussions are underway to turn the next edi-
tion of the Yearbook into a truly international venture, with an editorial team
spanning three continents. The websites loriweb.org, www.illc.uva.nl/dg and
stanford.edu/~thoshi/ldl/Home.html give further information about the topog-
raphy, the events, and the inhabitants that make this landscape such an enticing
destination.

Johan van Benthem

July 2012

http://loriweb.org/
http://www.illc.uva.nl/dg
http://stanford.edu/~thoshi/ldl/Home.html


On the Power of Knowledge

Thomas Ågotnes, Wiebe van der Hoek and Michael
Wooldridge
University of Bergen, University of Liverpool, Oxford University
thomas.agotnes@infomedia.uib.no, Wiebe.Van-Der-Hoek@liverpool.ac.uk,
mjw@cs.ox.ac.uk

Abstract

In epistemic logic, Kripke structures are used to model the distribution of
information in a multi-agent system. In this paper, we present an approach
to quantifying how much information each particular agent in a system has,
or how important the agent is, with respect to some fact represented as a
goal formula. It is typically the case that the goal formula is distributed
knowledge in the system, but that no individual agent alone knows it.
It might be that several different groups of agents can get to know the
goal formula together by combining their individual knowledge. By using
power indices developed in voting theory, such as the Banzhaf index, we
get a measure of how important an agent is in such groups. We analyse
the properties of this notion of information-based power in detail, and
characterise the corresponding class of voting games. Although we mainly
focus on distributed knowledge, we also look at variants of this analysis
using other notions of group knowledge. An advantage of our framework is
that power indices and other power properties can be expressed in standard
epistemic logic. This allows, e.g., standard model checkers to be used to
quantitatively analyse the distribution of information in a given Kripke
structure.
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1 Introduction

Epistemic logic is widely used in the multi-agent systems community to reason
about the knowledge and ignorance of agents in terms of the information they
possess Fagin et al. (1995). In many situations, it would be useful to be able
to quantify how information is distributed in a system, or to reason about the
relative importance of the information that different agents have. In general, it
is difficult to answer the question of whether an agent has more information
than another agent except for in special cases, such as when one agent knows
everything another agent knows Van Ditmarsch et al. (2009). In this paper,
we quantify the distribution of information in a system in a specific sense
satisfying two assumptions. The first is that we are interested in who knows
more about some given fact. The second is that we are interested in situations
where information can be communicated between agents, and it is not always
possible or desirable to communicate with every other agent in the system.

Consider the following situation. M knows that if sales are up this quarter, the
stock price will increase (p =⇒ q). T knows that if the new CEO has signed
the contract, the stock price will increase (r =⇒ q). W knows that sales are
up this quarter and that the new CEO has signed the contract (p ∧ r). Assume
that this describes all (relevant) facts that the three agents know. Who knows
more? We are here interested in a more specific type of question: who has the
most important or valuable information about whether or not the stock price will
increase (q), in a social setting where communication is possible? None of the
agents alone knows q, but they can combine their knowledge to find out that q
is in fact true. And here the importance of the knowledge of the three agents
differ: M and W can together find out q, as can T and W. M and T cannot. It can
thus be argued that W knows more about q in this social setting, since he can
combine his knowledge in several different ways with others’ knowledge – and,
indeed, it is not hard to see that W’s knowledge is necessary for any group to be
able to find out q, unlike that of M or T. If it is important for each individual
agent to find out q, and since no agent already knows q, the only possibility is to
communicate with someone else; in which case clearly W would be considered
the most important agent.

In this paper we analyse the relative importance of the knowledge each agent
has in a system where information about some fact or objective (q in our example
above) is distributed throughout the system. To this end, we employ power
indices such as the Banzhaf index, known from voting theory. The starting
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point is a pointed Kripke structure. It is typically the case that the objective is
distributed knowledge in the system, but that no individual agent knows it. It
might be that several different groups of agents can get to know the objective
by combining their knowledge. Our approach measures the importance of an
agent in an arbitrary group of agents wrt. deriving the objective. We consider
an agent to be powerful, or to have important information, if the probability of
changing the distributed knowledge in the group from ignorance to knowledge
about the objective by joining some arbitrary group, is high. This concept of
information based power can, e.g., be used to identify agents that are crucial to
the functioning of the multi-agent system.

The question of “who knows more” in epistemic logic has recently been stud-
ied in Van Ditmarsch et al. (2009). The notion of information based power we
introduce in this paper is a more fine-grained generalisation: if an agent knows
more in the sense of Van Ditmarsch et al. (2009) then she has a higher power
index, but not necessarily the other way around. Solution concepts for coali-
tional games have recently been used to measure the degree of inconsistency
in databases Hunter and Konieczny (2010). In Ågotnes et al. (2009) power
indices are used to analyse the relative importance of agents when in terms of
complying or not complying with a normative system defined over a Kripke-like
structure Shoham and Tennenholtz (1992), Ågotnes et al. (2007). However, we
are not aware of any approaches using power indices to measure relative im-
portance of agents in terms of their knowledge/information as described by a
Kripke structure.

The paper is organised as follows. In the two next sections we briefly review
some background material about epistemic logic and power indices that we will
use. In Section 4 we define power indices for agents, given a pointed Kripke
structure and a goal formula. We give a complete characterisation of the power
indices that can be obtained in this way, study their properties in detail, and
show how standard epistemic logic can be used to express power properties.
Since these power properties can be expressed in epistemic logic, we can also
use epistemic logic to reason about agents’ knowledge about such properties. In
Section 5 we study what agents know about the distribution of information-
based power in the system. In most of the paper we use distributed knowledge
to define power, but in Section 6 we discuss other types of group knowledge as
well. We conclude in Section 7.



6 On the Power of Knowledge

2 Epistemic Logic

Assume a finite set of agents Ag = {1, . . . ,n} and a countably infinite set of
atomic propositions Θ. The language LK of the epistemic logic S5n is defined
by the following grammar:

φ ::= > | p | Kiφ | ¬φ | φ1 ∧ φ2

where p ∈ Θ and i ∈ Ag. An epistemic (Kripke) structure, M, (over Ag, Θ) is an
(n + 2)-tuple Fagin et al. (1995):

M = 〈W,∼1, . . . ,∼n, π〉, where

• W is a finite, non-empty set of states;

• ∼i ⊆ W ×W is an epistemic accessibility relation for each agent i ∈ Ag,
where each ∼i is an equivalence relation; and

• π : W → 2Θ is a Kripke valuation function, which gives the set of primitive
propositions satisfied in each state.

Formulae are interpreted in a pointed structure, a pair M, s, where M is a model
and s is a state in M, as follows.

• M, s |= >

• M, s |= p iff p ∈ π(s) (where p ∈ Θ)

• M, s |= ¬φ iff M, s 6|= φ

• M, s |= φ & ψ iff M, s |= φ and M, s |= ψ

• M, s |= Kiφ iff for all t such that s ∼i t, M, t |= φ.

We will make use of extensions of S5n with group knowledge. To this end,
when G ⊆ Ag, we denote the union of G’s accessibility relations by ∼E

G, so
∼

E
G= (

⋃
i∈G ∼i). We use ∼C

G to denote the transitive closure of ∼E
G. Finally, ∼D

G
denotes the intersection of G’s accessibility relations (cf. (Fagin et al. 1995, p.66–
70)). The logics S5D

n , S5C
n and S5CD

n are obtained as follows. The respective
languages, LD, LC, andLCD, are obtained by adding the clause DGφ, CGφ, and
both, respectively, where G ⊆ Ag, to the definition of LK. The interpretation of
the two group operators:
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• M, s |= DGφ iff for all t such that s ∼D
G t, M, t |= φ

• M, s |= CGφ iff for all t such that s ∼C
G t, M, t |= φ

We use the same notation for the satisfaction relation for all these logics; it will
be clear from context which logic we are working in. As usual, we write M |= φ
if M, s |= φ for all s in M, and |= φ if M |= φ for all M; in this latter case, we say
that φ is valid. A formula is satisfied in a pointed model if it is true. When Φ is a
set of formulae, Φ |= φ, Φ entails φ, means that any pointed model that satisfies
Φ also satisfies φ. A formula is satisfiable if there exists a pointed model that
satisfies it. A formula or set of formulae is satisfiable in a set of pointed models
if it is satisfied by at least one pointed model in that set. The usual propositional
abbreviations are used, in addition to EGφ (G ⊆ Ag) for

∧
i∈G Kiφ; K̂iφ for¬Ki¬φ;

D̂Gφ for ¬DG¬φ and ĈGφ for ¬CG¬φ. We will often abuse notation and write
singleton sets of agents {i} as i.

EGϕ means that all individuals in the group G know ϕ. DGϕ means that ϕ is
distributed knowledge among G. Roughly speaking, this knowledge would
come about if all members of G were to share their information (but see also
Section 4.2). CGϕ, thatϕ is common knowledge in G, means that EGϕ∧EGEGϕ∧
EGEGEGϕ∧ . . . . These concepts of group and individual knowledge are related
as follows (with i ∈ G):

|= (CGϕ→ EGϕ) ∧ (EGϕ→ Kiϕ) ∧ (Kiϕ→ DGϕ) ∧ (DGϕ→ ϕ)

The above implications express that common knowledge is the strongest prop-
erty, and truth the weakest. However, since CGϕ is such a strong notion, this
often means it will only be obtained for ‘weak’ ϕ. Or Fagin et al. (1995), com-
mon knowledge can be paraphrased as what ‘any fool knows’, while distributed
knowledge corresponds to what ‘a wise man knows’.

Finally, the knowledge set of G ⊆ Ag in M, s is:

KG(M, s) = {φ ∈ LK : M, s |= Kiφ for some i ∈ G}

3 Coalitional Games and Power

We briefly review some key concepts from the area of cooperative game the-
ory Osborne and Rubinstein (1994) and the theory of voting power Felsenthal
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and Machover (1998) that we will use in the following. A cooperative (or coali-
tional) game is a pair Γ = 〈Ag, ν〉, where Ag = {1, . . . ,n} is a set of players, or
agents, and ν : 2Ag

→ R is the characteristic function of the game, which assigns
to every set of agents a numeric value, which is conventionally interpreted as
the value that this group of agents could obtain if they chose to cooperate. A
cooperative game is said to be simple if the range of ν is {0, 1}; in simple games
we say that G are winning if ν(G) = 1, while if ν(G) = 0, we say G are losing.
A simple cooperative game is said to be monotonic if ν(G) = 1 implies that
ν(H) = 1, whenever G ⊆ H. A monotonic simple cooperative game is some-
times called a simple voting game Felsenthal and Machover (1998). For simple
games, a number of power indices attempt to characterise in a systematic way
the influence that a given agent has, by measuring how effective this agent is
at turning a losing coalition into a winning coalition Felsenthal and Machover
(1998). The best-known of these is perhaps the Banzhaf index and its relatives,
the Banzhaf score and Banzhaf measure Banzhaf III (1965).

Agent i is said to be a swing player for G if G is not winning but G ∪ {i} is. We
define a function swing(G, i) so that this function returns 1 if i is a swing player
for G, and 0 otherwise, i.e.,

swing(G, i) =

{
1 if ν(G) = 0 and ν(G ∪ {i}) = 1
0 otherwise.

Now, we define the Banzhaf score for agent i, denoted σi, to be the number of
coalitions for which i is a swing player:

σi =
∑

G⊆Ag\{i}

swing(G, i). (1)

The Banzhaf measure µi, is the probability that i would be a swing player for a
coalition chosen at random from 2Ag\{i}:

µi =
σi

2n−1 (2)

The Banzhaf index for a player i ∈ Ag, denoted by βi, is the proportion of
coalitions for which i is a swing to the total number of swings in the game –
thus the Banzhaf index is a measure of relative power, since it takes into account
the Banzhaf score of other agents:

βi =
σi∑

j∈Ag σ j
(3)
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Finally, we define the Shapley-Shubik index; here the order in which agents join a
coalition plays a role. Let P(Ag) denote the set of all permutations of Ag, with
typical members $,$′, etc. If $ ∈ P(Ag) and i ∈ Ag, then let prec(i, $) denote
the members of Ag that precede i in the ordering $. Given this, let ςi denote
the Shapley-Shubik index of i, defined as follows:

ςi =
1
|Ag|!

∑
$∈P(Ag)

swing(prec(i, $), i) (4)

Thus the Shapley-Shubik index is essentially the Shapley value (Osborne and
Rubinstein 1994, p.291) applied to simple ({0, 1}-valued) cooperative games.

We say that a player is a veto player if it is included in all winning coalitions, a
dictator if µi = 1, and a dummy if µi = 0.

4 Power of Distributed Knowledge

We define the power of agents given a pointed Kripke structure, and an objective
specified as a goal formula. Intuitively, an agent is maximally powerful if she
already knows the goal formula, and is completely powerless if she does not
know anything needed in combination with others’ knowledge to be able to
conclude that the goal formula is true. In between these two extremes are
potentially many intermediate levels of power: the more sub-groups the agent
can join in order for the group to have shared knowledge of the objective, the
more powerful the agent is.

In order to formalise the fact that information about the goal formula is shared
in a group, we use the concept of distributed knowledge. We define a simple
coalitional game where a coalition is winning iff it has distributed knowledge
about the goal formula.

Formally, a goal structure is a tuple S = 〈M, s, χ〉, where M, s is a pointed model
over agents Ag and χ ∈ LD is a goal formula. Given a goal structure we define
the simple game 〈Ag, νD

S 〉:

νD
S (G) =

{
1 M, s |= DGχ
0 otherwise.

Example 1. Figure 1 shows a model MMTW of the situation described in the
introduction. Observe that MMTW , s |= KM(p→ q) ∧ KT(r→ q) ∧ KW(p ∧ r), and
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•
p,¬q,¬r

T T

•
¬p,¬q,¬r
t

M,T

M

•
p,q,r
s

M

W
•

p,¬q,r

•
¬p,¬q,r

Figure 1: The model MMTW . Reflexive loops are omitted.

also that these formulae represent “private” knowledge of the respective agents;
i.e., we have that MMTW , s |= ¬KM(r→ q) ∧ ¬KM(p ∧ r) ∧ ¬KT(p→ q) ∧ ¬KT(p ∧
r) ∧ ¬KW(p→ q) ∧ ¬KW(r→ q). Furthermore observe that MMTW , s |= ¬Dxq for
all x ∈ {M,T,W}, and that MMTW , s |= ¬D{M,T}q ∧D{M,W}q ∧D{T,W}q. We thus get
that M is swing for exactly {W}, that T is swing for exactly {W}, that W is swing
for exactly {M}, {T} and {M,T}, and thus that:

σM = σT = 1, σW = 3 µM = µT = 1
4 , µW = 3

4
βM = βT = 1

5 , βW = 3
5 ςM = ςT = 1

6 , ςW = 2
3 .

What are the properties of νD
S ? From the fact that DGχ implies DHχ when

G ⊆ H it follows that νD
S is always monotonic. In fact, monotonicity completely

characterise the (simple) games induced in this way: every monotonic (voting)
game is induced by some Kripke structure and goal formula via the definition
above.

Theorem 1. For any simple cooperative game Γ = 〈Ag, ν〉, there exists a goal structure
S such that νD

S = ν iff Γ is monotonic.

Proof. The implication to the right is immediate (as already mentioned), so
assume that ν is monotonic. Let p ∈ Θ. We construct a goal structure S =
〈M, s, χ〉 such that νD

S = ν as follows: W = {s0} ∪ {sH : ν(H) = 0}; s = s0;
V(p) = {s0}; χ = p. ∼i is defined by the following equivalence classes: [s0]∼i =
{s0} ∪ {sH : i ∈ H} and for every H′ such that i < H′, [sH′ ]∼i = {sH′ }. Informally:
for each H such that ν(H) = 0 there is a designated state sH where p is false,
which no agent in H can discern from s0.

Let ν(G) = 1. We must show that M, s0 |= DGp, so let t be such that (s0, t) ∈⋂
i∈G ∼i. It suffices to show that t = s0. Assume otherwise: that t = sH for
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some H such that ν(H) = 0. For every i ∈ G, s0 ∼i sH, and by the definition of
∼i it follows that i ∈ H. Thus, G ⊆ H. But since ν(G) = 1 and ν(H) = 0, that
contradicts monotonicity.

Conversely, let ν(G) = 0. We have that s0 ∼i sG for every i ∈ G and M, sG |= ¬p.
Thus M, s0 6|= DGp. �

4.1 Expressing Power

Epistemic logic can be used to express and reason about power in Kripke
structures. The following expressions can, e.g., be used together with a standard
model checker, to determine the power distribution in a given structure.

• i is swing for G when the goal is χ:

Swing(G, i, χ) ≡ ¬DGχ ∧DG∪{i}χ

• The Banzhaf score of i wrt. goal χ is at least k:

BAL(i, k, χ) ≡
∨

G1,···,Gk⊆Ag\{i}

∧
G∈{G1,...,Gk}

Swing(G, i, χ)

• The Banzhaf score of i wrt. goal χ is k:

B(i, k, χ) ≡ BAL(i, k, χ) ∧ ¬BAL(i, k + 1, χ)

• Of potential interest is checking whether or not one agent has more in-
formation/power than another. Note that the maximal Banzhaf score is
determined by the maximum number of coalitions not containing the
agent; 2n−1. The Banzhaf score of agent i is at least as high as that of agent
j:

BNoLower(i, j, χ) ≡
∨

k∈[0,2n−1]

BAL(i, k, χ) ∧ ¬BAL( j, k, χ)

• i is a veto player wrt. goal χ:

Veto(i, χ) ≡ ¬DAg\{i}χ

i is a veto player iff it is included in all winning coalitions, iff all coalitions
without i are losing, iff ¬DGχ holds for all G without i. By monotonicity
this holds iff Veto(i, χ) holds.
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• i is a dictator wrt. goal χ:

Dictator(i, χ) ≡ Veto(i, χ) ∧ Kiχ

i is a dictator iff all coalitions containing i are winning, and no coalition
without i is winning. This holds iff Dictator(i, χ) holds, by monotonicity.

• i is a dummy wrt. goal χ:

Dummy(i, χ) ≡
∧

G∈2Ag

DG∪{i}χ→ DGχ

i is a dummy iff ∀G : M, s |= ¬(¬DGχ ∧ DG∪{i}χ) which is equivalent to
∀G : M, s |= DG∪{i}χ→ DGχ.

4.2 Full Communication

Implicit in the idea of information-based power is that groups of agents should
somehow be able to realise the knowledge distributed among them in order
to jointly find out that the goal formula is true. However, while distributed
knowledge is the most popular concept in the literature aiming to capture the
“sum” of the knowledge in a group, it has the following property, as first
pointed out in van der Hoek et al. (1999). It might be that G has distributed
knowledge of the goal, but it is still not possible for the group to establish
χ through communication in the following sense: it might not be the case
that there exists a formula φi for each i ∈ G such that M, s |=

∧
i∈G Kiφi and

|=
∧
φi → χ. This (possibly lacking) communication property is equivalent

van der Hoek et al. (1999) to:

M, s |= DGχ ⇒

⋃
i∈G

Ki(M, s) |= χ (5)

and van der Hoek et al. (1999) calls this the principle of full communication
(the other direction of (5),

⋃
i∈GKi(M, s) |= χ ⇒ M, s |= DGχ, holds on any

model). As an example, consider the model M1 in Figure 2. In this model p
is distributed knowledge among agents 1 and 2 in state s, but p is not entailed
from the individual knowledge of 1 and 2 in s and the model does not satisfy
the principle of full communication.

So, if we take the p as the goal formula, agent 1 is swing for {2} in state s in
the model M1 above, but it is not possible for agents 1 and 2 to actually infer



T. Ågotnes et al. 13

•
p
s

1 2

•
p
s

1,2

•
¬p

2

•
¬p

1

•
¬p

1,2

•
p

•
p

Figure 2: Models M1 (left) and M2 (right). Reflexive and transitive edges
omitted.

p together by communicating using the epistemic language. Our information-
based power measures make particular sense in models that satisfy the prin-
ciple of full communication, because in such models whatever is distributed
knowledge can be obtained by communication in the sense that it follows from
individual knowledge that the involved agents can specify and communicate as
logical formulas. So which models satisfy the principle of full communication?
There are two particularly relevant model properties here (generalisations of
propositions given in van der Hoek et al. (1999)). A model M = 〈W,∼1, . . . ,∼n, π〉
is a:

• full model Gerbrandy (1999) iff for all s ∈ W, G ⊆ Ag, and Φ ⊆ LD: if
Φ ∪KG(M, s) is satisfiable then Φ is satisfiable in {t : (s, t) ∈ ∼D

G }.
• full communication model Roelofsen (2007) iff for all s ∈ W, G ⊆ Ag, and
φ ∈ LK: if {φ}∪KG(M, s) is satisfiable thenφ is satisfiable in {t : (s, t) ∈ ∼D

G }.

Clearly, full models are full communication models. Gerbrandy (1999) shows
that fullness is sufficient for the principle of full communication to hold, while
Roelofsen (2007) shows that a model satisfies the principle of full communica-
tion if and only if the model is a full communication model.

While this definition of full communication models may seem somewhat tech-
nical, note that the principle of full communication is often violated by the
existence of bisimilar states in the model (such as in the model above). Indeed,
bisimulation contractions of finite models are full communication models (they
are distinguishing in the sense of van der Hoek et al. (1999), due to the existence
of characteristic formulae). Models that are finite and do not contain bisimilar
states (and thus are their own bisimulation contractions) are very common.



14 On the Power of Knowledge

Thus, on full communication models we get an alternative, equivalent, defini-
tion of power. We have that:

νD
S (G) = 1 ⇔

⋃
i∈G

Ki(M, s) |= χ (6)

when M is a full communication model.

4.3 Properties of Power

The relationship between power properties and epistemic properties is of nat-
ural interest, not the least in order to validate that our definition of power is
reasonable. The relationship properties in the following lemma are discussed
below.

Lemma 1. Let the goal structure S = 〈M, s, χ〉 be given.

1. If M, s |= ¬DAgχ, then xi = 0 for all i and x ∈ {σ, µ, β, ς}.

2. If M, s |= ¬χ, then xi = 0 for all i and x ∈ {σ, µ, β, ς}.

3. If M, s |= Kiχ, then xi ≥ x j for all j and x ∈ {σ, µ, β, ς}.

4. If M, s |= ¬DAg\{i}χ, xi ≥ x j for all j and x ∈ {σ, µ, β, ς}.

5. If M, s |= Kiχ ∧ ¬K jχ, then xi > x j for all x ∈ {σ, µ, β, ς}.

6. On full communication models, if Ki(M, s) ⊆ K j(M, s) then xi ≤ x j, for any
power measure x ∈ {σ, µ, β, ς}.

The first property says that if not enough information to infer the goal formula
is distributed throughout the complete system, then every agent has no power.
The second property is a special case of the first – the goal cannot be derived
because it is not true. The third and fourth properties represent the other
extreme: maximum power. The agent has maximum power (at least as much
power as anyone else) if she already knows the goal, or if the rest of the system
does not have enough information to derive the goal (i.e, if the agent is a veto
player). The fifth and sixth properties are about relative power. The fifth says
that an agent who already knows χ is always strictly more powerful than an
agent who does not know χ. The sixth property says that if one agent knows at
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least as much as another agent, then the first agent is at least as powerful. This
relates our definition of power to a more classical notion of “knowing more”
in a reasonable way. Our notion is more fine grained; the implication does not
hold in the other direction. The sixth property holds for full communication
models, which, again, is a natural class of models in which to interpret our
power measures since they come with a natural mechanism for distribution of
information.

Proof (of Lemma 1).
1. Follows immediately from monotonicity: if i is swing for G, then M, s |=
DG∪{i}χ.

2. Immediate from |= ¬χ→ DAg¬χ and the first item.

3. If suffices to show that i is swing for any coalition any agent j is swing
for. So assume that M, s |= ¬DGχ ∧ DG∪{ j}χ. From M, s |= Kiχ it follows that
M, s |= DG∪{i}χ, and thus i is also swing for G.

4. Assume that j is swing for G. From M, s |= DG∪{ j}χ, the assumption that
M, s |= ¬DAg\{i}χ and monotonicity, it follows that i ∈ G. Thus it also follows
that i is swing for (G \ {i}) ∪ { j}. Because i ∈ G and j < G for coalitions G for
which j is swing, (G1 \ {i}) ∪ { j} , (G2 \ {i}) ∪ { j} for any two different coalitions
G1,G2 for which j is swing, and thus there are at least as many swings for i.

5. If j is swing for G, M, s |= ¬DGφ so G cannot contain i and i is also swing for
G. In addition, i is swing for ∅, unlike j.

6. Let M be a full communication model and assume that i is swing for G, i.e.,
that M, s |= DGχ ∧DG∪{i}χ. From the fact that M is a full communication model
and eq. (6) above, we get that

⋃
l∈G∪{i}Kl(M, s) |= χ. From Ki(M, s) ⊂ K j(M, s) it

follows that
⋃

l∈G∪{ j}Kk(M, s) |= χwhich again means that M, s |= DG∪{ j}χ. Thus,
j is swing for G. �

In the following lemma we look at power measures in “similar” models. The
proper notion of bisimulation for distributed knowledge, and hence our power
measures, is given in the second point.

Lemma 2.

1. The power measures are not invariant under (standard) bisimulation. That is,
bisimilar pointed models may have different power measures.

2. The power measures are invariant under collective bisimulation Roelofsen
(2007).
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3. On full models, the power measures are invariant under (standard) bisimulation.

Proof. 1. A counter-example is found in Figure 2, which contains two bisimilar
models with two agents. It is easy to see that by taking χ = p, we get σ1 = 1 in
M1 but σ1 = 0 in M2.

2. follows immediately from the fact that satisfaction in LD is invariant under
collective bisimulation (Roelofsen 2007, Prop. 19).

3. For full models the notions of collective bisimulation and bisimulation
coincide (Roelofsen 2007, Prop. 20). �

Finally, let us look at the relationship between power properties and the struc-
ture of the goal formula. We will make use of the logical expressions of power
properties from Section 4.1.

Starting with tautologies and contradictions:

|= ¬Swing(G, i,>) |= ¬Swing(G, i,⊥)
|= Veto(i,⊥) |= ¬Veto(i,>)
|= ¬Dictator(i,⊥) |= ¬Dictator(i,>)

With such goal formulae, no agent can be swing for any coalition. Every agent
is a veto player for ⊥, while no agent is a veto player for >. No agent can be a
dictator for ⊥ nor >.

The case of conjunction:

|= (Swing(G, i, χ1) ∧ Swing(G, i, χ2))→ Swing(G, i, χ1 ∧ χ2)

Swings are closed under the operation of taking conjunction of goal formulae.
The converse does not hold, but this does:

|= Swing(G, i, χ1 ∧ χ2)→ (Swing(G, i, χ1) ∨ Swing(G, i, χ2))

– if i is swing wrt. a conjunction, she is swing wrt. at least one of the conjuncts
(but not necessarily both).

For negation we have that (but not the other way around):

|= Swing(G, i,¬χ)→ ¬Swing(G, i, χ)

Moving on to the case that the goal formula is epistemic, first observe the
following properties of distributed S5 knowledge: |= DGDG′φ → DGφ for any
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G,G′, and |= DGDG′φ ↔ DGφ when G ⊆ G′. From these properties it follows
that:

|= Swing(H, i,DGχ)→ Swing(H, i, χ) when H ⊆ G
|= Swing(H, i,DGχ)↔ Swing(H, i, χ) when H ∪ {i} ⊆ G

In particular, using a goal formula DGφ is equivalent to using φ when it comes
to counting swings within G.

If we take G = { j} in the expressions above, we get the case where the goal
formula describes individual knowledge. It follows that:

|= Swing(∅, i,K jχ)→ Swing(∅, i, χ) for any j
|= Swing({ j}, i,K jχ)→ Swing({ j}, i, χ) for any j
|= Swing(∅, i,Kiχ)↔ Swing(∅, i, χ)

5 Knowledge of Power

We have thus associated power indices with states of Kripke structures, by
assuming that they are defined by agents’ knowledge. But epistemic logic
allows us to reason about agents’ knowledge about state-properties – so we can
go from analysing the power of knowledge to analysing knowledge of power:
what do the agents in the system know about the distribution of power?

The formula K jSwing(G, i, χ), where Swing(G, i, χ) = ¬DGχ ∧ DG∪{i}χ, denotes
the fact that agent j knows that i is swing for G. If we look first at the more
general case of distributed knowledge of that fact, we have the following (we
formally prove this and the following validities in Theorem 2 below):

|= Swing(G, i, χ)→ DG∪{i}Swing(G, i, χ) (7)

– if i is swing for G, then this is distributed knowledge in G ∪ {i}.

However, this does not carry over to individual knowledge. It turns out that
Swing(G, i, χ) ∧ ¬K jSwing(G, i, χ) is satisfiable, for any j including j = i. Thus,
an agent can be swing for a coalition, without neither the agent nor the agents
in the coalition knowing it. When, then, does an agent know that she is swing?
The answer is: almost never. The following holds:

|= K j¬Dummy(i, χ)→ K jχ (8)

for any i, j (including i = j). In other words, an agent can only know that any
agent (including herself) is swing for any coalition if she (the first agent) already
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knows the goal formula! In the typical case that χ is distributed information
throughout the system, but no individual agent alone knows χ, no agent knows
that any agent can swing any coalition from ignorance to knowledge about χ.
It follows that

|= K j¬Dummy(i, χ)→ K j

∧
k∈Ag

BNoLower( j, k, χ) (9)

– only agents that are maximally powerful (at least as powerful as any other
agent), and know that they are, can know that anyone (including themselves)
are not a dummy player.

It also holds that

|= K jSwing(G, i, χ)→ K jSwing(G, j, χ) (10)

– if an agent knows that another agent is swing for some coalition, then the first
agent must be swing for the same coalition. In particular: |= K j¬Dummy(i, χ)→
K j¬Dummy( j, χ).

However, no agent in a coalition can know that someone is swing for that
coalition:

|=
∧
j∈G

¬K jSwing(G, i, χ) (11)

For veto players, we have that

|= KiVeto( j, χ)→ ¬Ki¬Dummy(i, χ) i , j (12)

– the only agents that can know that someone else is a veto player are agents
that consider it possible that they are dummies themselves.

For dictators, we have that

|= ¬K jDictator(i, χ) i , j (13)

– the only agent that can know who the dictator is, is the dictator.

Turning to knowledge about the values of power indices, we have

|= K jB(i, k, χ)→ BNoLower( j, i, χ) (14)

– no agent can know the Banzhaf score of any agent with a lower score than
herself.
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We can conclude that the distribution of power is generally not known in the
system. We emphasise that this does not pose any problem for our interpreta-
tion of the power indices as measures of the distribution of information in the
system, as we discuss further in Section 7.

Theorem 2. Properties (7)–(14) hold.

Proof. We make use of the fact that distributed knowledge satisfies the S5 prop-
erties Blackburn et al. (2001), which follows from the fact that the intersection
of equivalence relations is an equivalence relation, as well as the monotonicity
property (DGφ→ DHφ when G ⊆ H).

(7): from ¬DGχ it follows that DG¬DGχ by negative introspection, and
DG∪{i}¬DGχ follows by monotonicity. DG∪{i}DG∪{i}χ follows from DG∪{i}χ by
positive introspection. DG∪{i}Swing(G, i) follows by knowledge distribution.

(8): K j¬Dummy(i, χ) is equal to K j
∨

G(DG∪{i}χ ∧ ¬DGχ). By reflexivity DG∪{i}χ
implies χ, and thus

∨
G(DG∪{i}χ ∧ ¬DGχ) implies that χ. By knowledge distri-

bution, K jχ holds.

(9): let K j¬Dummy(i, χ) be true. By (8), K jχ and from positive introspection
K jK jχ. From Lemma 1.3 it follows that K jBNoLower( j, k, χ) for any k.

(10): from K jSwing(G, i, χ) it follows that K j¬DGχ. By (8) it also follows that K jχ.
By knowledge distribution, K j(¬DGχ∧K jχ), which by monotonicity implies that
K j(¬DGχ ∧DG∪{ j}χ).

(11): if K jSwing(G, i, χ) is true for some j ∈ G, then K jSwing(G, j, χ) by (10), and
Swing(G, j, χ) by reflexivity. But this is a contradiction.

(12): from KiVeto( j, χ) it follows that Ki¬Kiχ when i , j, from which it follows
that ¬Kiχ. If Ki¬Dummy(i, χ) is true, then Kiχ by (8); a contradiction.

(13): K jDictator(i, χ) is equivalent to K j(Veto(i, χ)∧Kiχ), which implies that K jχ
and Veto(i, χ). From the latter it follows that ¬DAg\{i}χ, and from monotonicity
it follows that ¬K jχ – a contradiction.

(14): if σi = 0, the formula holds trivially. If σi > 0, K jB(i, k, χ) implies that there
is a G such that K j(¬DGχ ∧DG∪{i}χ) is true. It follows that K jχ, and by Lemma
1.3 that σ j ≥ σi. �
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6 Other types of group knowledge

We have so far used the notion of distributed knowledge to measure power.
Can other notions of group knowledge be used? Note that both everybody-
knows and common knowledge are anti-monotonic, in the sense that CGφ
implies CG′φ when G′ ⊆ G, while distributed knowledge is monotonic (DG′φ
implies DGφ). This means that simply “replacing” distributed knowledge in
the definition of the game by any of these notions would not make sense (e.g.,
¬CGφ ∧ CG∪{i}φ is not satisfiable). However, there is another way in which
we can look at an agent’s power with respect to common knowledge (and
similarly with everybody-knows). An agent has “negative” power if he can
swing a coalition from having common knowledge of the goal, to not having it.
In other words, this would correspond to an agent’s power to spoil, rather than
to achieve, the goal. Using this definition of the power measures, a high value
means that the agent has little information, and including it in a group is likely
to, e.g., break common knowledge needed for coordination.

Let us start with everybody-knows. Given S = 〈M, s, χ〉, let:

νE
S(G) =

{
1 M, s |= ¬EGχ
0 otherwise

We say that a simple cooperative game is determined if there is a set of agents
Winners ⊆ Ag such that ν(G) = 1 iff G ∩Winners , ∅. Note that determined
games are monotonic.

Theorem 3. For any simple cooperative game Γ = 〈Ag, v〉, there exists a goal structure
S such that νE

S = ν iff Γ is determined.

Proof. For the implication to the right, given S let Winners = {i : M, s |= ¬Kiχ}.
It is easy to see that νE

S(G) = 1 iff G ∩Winners , ∅. For the implication to the
right, we define S = 〈M, s, χ〉 as follows. Let p ∈ Θ. Let W = {s, t}; s0 = s;
V(p) = {s}, V(q) = ∅ for q , p; s ∼i t ⇔ i ∈ Winners; χ = p. Let ν(G) = 1. That
means that there is an agent i such that i ∈ G ∩Winners. From i ∈ Winners it
follows that M, s0 |= ¬Kip, and since i ∈ G we get that M, s0 |= ¬EGχ. For the
other direction, let M, s0 |= ¬EGp. That means that M, s0 |= ¬Kip for some i ∈ G.
But the only possibility then is that also i ∈Winners. Thus, i ∈ G∩Winners, and
thus ν(G) = 1. �
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It is easy to see that for determined games, the Banzhaf score is the same for all
winners, as well as the same (0) for all non-winners:

Lemma 3. For any determined game and any agent i,

σi =

{
2|Ag\Winners| i ∈Winners
0 otherwise

It follows that it is easy to compute the power measures:

Theorem 4. Given a goal structure S = 〈M, s, χ〉 and an agent i in M, the Banzhaf
score σi for i in the game 〈Ag, νE

S〉 can be computed in polynomial time.

Proof. By Theorem 3 the game is determined. The winners can be computed in
polynomial time: for every state t, check whether M, t |= ¬χ, and if it does add
i to Winners if there is an i-transition from t to s. σi is computed from the size of
Winners according to Lemma 3. �

Moving on to common knowledge, given S = 〈M, s, χ〉, let:

νC
S (G) =

{
1 M, s |= ¬CGχ
0 otherwise

Example 2. The following two examples are inspired by (van Ditmarsch et al.
2007, Section 2.3). In the first setting, the set of agents Ag is the set of partic-
ipants of a conference, and a ∈ Ag represents our hero Alco. During one af-
ternoon, while all other participants are attending a joint session, Alco spends
his time in the bar of the conference hotel. The session chair announces χ:
‘tomorrow, sessions start at 9:00 rather than 10:00’. Everybody (i.e., Ag) at
the conference feels very responsible for the well-being of the participants,
and only if CAgχ holds, people will stop informing each other of χ. If s is
the situation immediately after the chair’s announcement, we obviously have
M, s |= Swing(Ag \ {a}, a, χ), where Swing is now defined for common knowl-
edge: Swing(G, i, χ) = CGχ ∧ ¬CG∪{i}χ. Now consider a new state s1, in which
Alco leaves the bar to get some fresh air, and which leads to a state s2 where
at the general session a friend f of Alco makes the chair (publicly) aware that
Alco was in the bar during the announcement χ. At this moment it is common
knowledge among Ag \ {a} that Swing(Ag \ {a}, a, χ), but then the chair replies
to f by saying that there is an intercom in the bar that is directly connected
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to the conference room. Note that a is now still a veto player wrt. Ag and χ,
since Alco does not know about the discussion regarding his absence during
the announcement of χ. In other words, although in s2 we have EAgχ, we also
have ¬KaK f Kaχ: Alco knows that his friend f may have concerns about Alco
not knowing χ (this concern is justified, since f notified the chair), and Alco
does not know that f has been properly informed (that Kaχ) by the chair, so
one may expect that a will make at some time an effort to make publicly known
that he knows χ, so people can stop worrying about a′s time-table tomorrow.

Swing players for common knowledge in a coalition G often come with delicate
protocols for the communication in G. An example here is the celebrations of
Santa Claus in certain cultures, where it is common knowledge among those
over a certain age that Santa Claus is in fact not responsible for the presents
at the evening (this is χ), while χ is not known among the participants under
a certain age. Now, even when everybody at the Christmas party knows that
χ, there may be several swing players for several coalitions, which explains
that conversations have to be participated in carefully. To be more precise,
suppose that EGEGχ∧¬KiK jKiχ (with i, j ∈ G). Since i knows that everybody in
G knows χ already, he might chose not to look childish to j and reveal to j that
Kiχ, indicating he is not a fool. But i might also chose to exploit ¬KiK jKiχ, and
challenge j into a ‘dangerous conversation’, where j may think he needs to be
careful not to reveal χ to i.

These examples also suggest that power is in fact an interesting issue in dynamic
contexts, after enough communication has taken place for instance, Alco may
seize to be a swing player. Dynamic Epistemic Logic (van Ditmarsch et al.
(2007)) paves the right formal framework to study these phenomena, like the
fact that some true formulas can never be known no matter how often they
are announced: they would always have a veto player (Moore sentences like
(p ∧ ¬Kap) being the most prominent examples).

Like for the case of distributed knowledge, the class of games obtained in this
way is exactly the monotonic games.

Theorem 5. For any simple cooperative game Γ = 〈Ag, ν〉, there exists a goal structure
S such that νC

S = ν iff Γ is monotonic.

Proof. It is easy to see that νC
S is monotonic.

For the other direction, let ν be monotonic. If there is no coalition G with
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ν(G) = 1, let M consist of only one state s with V(p) = {s} and ∼a= W ×W for
every a ∈ Ag. It is easily seen that νC

M,s,p(G) = 0 for all coalitions G.

Otherwise put first of all s ∈ W ∩ V(p) and add (s, s) to each ∼a. Let H1, . . .Hk
be the coalitions with the property that ν(Hi) = 1 and for no proper sub-
set of Hi, it holds that ν(H) = 1. For each such Hi, do the following. Let
Hi = {ai

1, a
i
2, . . . a

i
m(i)}. Add new states Wi = {si

1, s
i
2, . . . s

i
m(i)} to W in such a way

that (s, si
1) and (si

1, s) become members of ∼ai
1

and furthermore add (si
j, s

i
j+1),

(si
j+1, s

i
j) to ∼ai

j+1
with 1 ≤ j < m(i). Add (si

j, s
i
j) to each ∼a (1 ≤ m(i)). Finally, add

Wi \ {si
m(i)} to V(p). When this process has finished for all Hi, take the transitive

symmetric reflexive closure of every ∼a so far defined. The effect of this last
step is that for every agent a and every two states si

1 and s j
1 with (s, si

1) and
(s, s j

1) ∈ ∼a, we also add (si
1, s

j
1) and (s j

1, s
i
1) to ∼a.

A straight path π in the model is a sequence of state-agent alterations
〈x1, a1, x2, a2 . . . xn〉, with each xi ∈W, ai ∈ Ag, and (xi, xi+1) ∈ ∼ai such that xi , x j
if i , j. It is a straight s-path if x1 = s. Let Ag(π) be the set of agents occurring in
π. Note that a straight s-path that ends in state sn denotes a ‘shortest’ route in
the model from s to sn, since the states in a straight path are different. A straight
path x1, a1, x2, a2 . . . xn leads to ϕ if xn is the only-ϕ world in it. The following is
an important property of our model: there is a straight path π leading to ¬p iff
for some Hi, we have ν(Hi) = 1 and Ag(π) = Hi.

We now prove that ∀G ⊆ Ag (ν(G) = 1 iff M, s |= ¬CGp). First, if ν(G) = 1, there
is a smallest set Hi = {ai

1, . . . , a
i
m(i)} ⊆ G such that ν(Hi) = 1. For this Hi, we have

constructed a straight s-path π leading to ¬p and for which Ag(π) = Hi. So, we
have M, s |= ¬CHi p, and hence M, s |= ¬CGp, i.e., νC

S (G) = 1. Secondly, suppose
M, s |= ¬CGp, it means for our model that there is a straight s-path π leading to
¬p for which Ag(π) ⊆ G (indeed, there may be agents a ∈ G \ Ag(π)). But the
only such paths we have in M are paths that use a minimal set of agents Hi for
which ν(Hi) = 1, so ν(Ag(π)) = 1. By monotonicity, ν(G) = 1. �

7 Discussion

We have shown that our information-based notion of power has reasonable
properties, at least on full communication models – which come with a natural
mechanism for distribution of information. We have also shown that it is easy
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to compute such power indices using a standard model checker for epistemic
logic.

It is natural to define swings using distributed knowledge. A high power index
here means that the agent’s knowledge is important for an arbitrary group
jointly getting to know the goal formula by sharing their information. We also
gave alternative definitions of “negative” power in terms of swinging a group
from a situation where every member knows the goal, or the goal is common
knowledge. Here, a high power index means that the agent knows little: if it
is important to have common knowledge in a group (e.g., for coordination),
then it is likely that including a high-power agent will lead to failure. The
everybody-knows case is computationally tractable, but the price is a lower
“resolution”: the agents divide into only two classes, with agents in the same
class having the same power. It is interesting that the common knowledge case
and the distributed knowledge correspond to the same class of voting games
(Theorems 1 and 5). If this seems counter-intuitive, keep in mind that the two
theorems express that there is a connection between distributed knowledge
and lack of common knowledge: conceiving distributed knowledge as a game
where a coalition wins if it implicitly knows the goal formula, is structurally
similar to conceiving common knowledge as a game where a coalition wins if
it does not commonly know the goal.

Van Ditmarsch et al. (2009) studies a particular notion of “knowing more”.
Their concept “i knows at least what j knows” is defined by Ri(s) ⊆ R j(s) where
s is a state and Rx(s) = {t : (s, t) ∈ Rx} and Rx is an indistinguishability relation for
agent x. Our power measures for distributed knowledge agree: if Ri(s) ⊆ R j(s)
then Swing(G, j, χ) implies that Swing(G, i, χ) for any χ, and thus σi ≥ σ j. The
implication does not hold in the other direction; our notion of “knowing more”
is more fine grained. Van Ditmarsch et al. (2009) also introduces a modal
operator � where, for agents i and j, the formula i � j expresses that whatever
state is an alternative for j, is also an alternative for i. This provides a way
to locally express that Kiϕ → K jϕ for all ϕ. There is one sense in which such
an operator allows one also to express properties of the power of knowledge
in a compact way. For distributed knowledge for instance, the formula i �
j implies that (Swing(G, i, χ) → Swing(G, j, χ)) and ¬Swing(G ∪ {i}, j, χ) – for
any χ. When reasoning about the power in the context of everybody knows,
“opposite” properties derive: |= (i � j) → (Swing(G, j, χ) → Swing(G, i, χ))
and |= (i � j) → ¬Swing(G ∪ { j}, i, χ). Note that such properties cannot be
expressed in modal logic without such an operator: for instance in |= (Kiϕ →
K jϕ) → (Swing(G, i, χ) → Swing(G, j, χ)) the formula ϕ is a specific formula
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(not a scheme), and |= (Kiϕ → K jϕ) ⇒ |= (Swing(G, i, χ) → Swing(G, j, χ)) is
obviously true, but much weaker: the antecedent is false (if i , j).

In Section 5 we saw that agents in the system generally know very little about
the distribution of information-based power in the system. For example, an
agent with a high power index typically does not know which coalitions she
needs to join in order to derive the goal formula (or indeed that she is a high-
power agent). We emphasise that this is not in any way a problem for the
interpretation of our power indices. A high Banzhaf index means, in our
setting, that the probability of changing some arbitrary coalition from ignorance
to knowledge about the goal is high – in the same way that it is interpreted
as the probability of changing an outcome in voting theory. In fact, that an
agent does not know which coalitions it is swing for makes the probability
of being swing for an arbitrary coalition more interesting. Furthermore, in
many distributed and multi-agent systems, such as sensor networks, agents are
restricted to communication with some arbitrary sub-group of all agents at any
given time. We think of these power measures as a tool for external analysis of
the information distribution in a system, to find out, e.g., whether information
is evenly distributed or whether there are some agents that are particularly
crucial to the functioning of the system in the sense that the information they
have is difficult to obtain elsewhere in the system. The negative results about
knowledge of power properties can also be seen as a barrier against strategic
behaviour: it is almost never possible for an agent to know that it suffices to
share information with only some particular subgroup of the grand coalition.

An interesting direction for future work is to associate formulae of the form
DGDHφ with composite voting games (Felsenthal and Machover 1998, p. 27).
In this paper we have studied a semantic notion of power, associated with a
point in a Kripke structure. Another direction for future work is to develop
a syntactic notion of power, based on a set of epistemic formulae. For such
an approach it would be necessary to syntactically describe that agents know
“this and nothing more”, and extensions of epistemic logic with only knowing
Levesque (1990) seem like a promising starting point.
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Abstract
This piece proposes a style of thinking using modal frame correspon-
dence that puts Segerberg‘s dynamic doxastic logic and ‘Dutch’ dynamic-
epistemic logic for belief change in one setting. While our technical results
are elementary, they do suggest new lines of thought.1

1 Two modal logics for belief change

Belief revision theory is a small corner of the world of philosophy and com-
puter science, and modal logic is a small corner of the world of logic. When two
specialized topics come together, surely, there can be only one way of doing
that? The dynamic-doxastic logic DDL of Segerberg (1995; 1999)2 has abstract
modal operators describing transitions in abstract universes of models to de-
scribe changes in belief, and then encodes basic postulates on belief change
in modal axioms that can be studied by familiar techniques. But there is also
another line in the logical literature, started in van Benthem (2007), Baltag and
Smets (2008)3 that works differently. Here belief changes are modeled in the

1This paper will appear in a volume celebrating the work of Krister Segerberg.
2See also Leitgeb and Segerberg (2007) for extensive discussion of the research program.
3Relevant predecessors to this work are Aucher (2004), van Ditmarsch (2005).
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framework of dynamic-epistemic logic (DEL) as acts of changing a plausibility
ordering in a current model, and the update rule for doing that is made explicit,
while its properties are axiomatized completely in modal terms. The contrast
may be stated as follows. Segerberg follows AGM belief revision theory (Gär-
denfors 1988) in its postulational approach constraining spaces of all possible
belief changes, while the DEL approach is constructive, studying specific update
rules and the complete logics of their corresponding dynamic model-changing
modalities.

Stated this way, there need not be any conflict between the two approaches –
and in fact, there is not. Still, there are many differences in their subsequent
technical agenda.4 One could spend much time analyzing these differences,
but my aim in this paper is modest. I want to suggest that, for colleagues
from modal logic, DDL and DEL fit very well, if we use the method of frame
correspondence. This suggestion occurs in van Benthem (2011), but I will pursue
it more systematically here. My results are simple technically, but they sug-
gest new perspectives. I start with knowledge in Section 2, exploring frame
correspondences for ‘public announcement logic’ PAL. Many general method-
ological points can be made at this level, as they are not specific to belief. Next,
I give modal correspondence for logics of belief change in Section 3. In Section
4, I discuss two generalizations: full dynamic-epistemic logic with product
update over event models, and an extension of correspondence analysis to
neighborhood models, using the DEL treatment in van Benthem and Pacuit
(2011). Section 5 lists new general issues coming to light in my analysis, all of
them ‘to be explored’. Section 6 states the conclusion of this paper, though it
will already be clear right here at the start: the two existing styles of modal logic
for belief revision live well together, and analyzing their connections actually
reveals some interesting issues that will unfold in due course.

4DEL-style logics of belief revision depart from the AGM-format in a number of ways. (i)
The content of new beliefs need not be factual, but it can itself consist of complex statements
about beliefs. (ii) What changes in acts of revision is not just beliefs, but crucially also conditional
beliefs. (iii) Infinitely many types of triggering event can be analyzed structurally in the logic by
mechanisms like ‘event models’ or ‘model-change programs’. (iv) The setting is essentially multi-
agent, making, in principle, social acts of belief merge as crucial to the logical system as individual
acts of revision (cf. the logics for merging in Girard (2008), Liu (2011)).



30 Two Logical Faces of Belief Revision

2 Correspondence for information update
and knowledge

We start with a phenomenon that is not very interesting in the AGM style,
though it becomes wildly exciting when we study it in a constructive setting:
update with new hard information that shrinks agents’ current ranges of op-
tions for the actual situation.

2.1 Hard information, knowledge, and public announcement
logic

Basic epistemic logic We start by recalling some basics. Standard epistemic
logic EL describes semantic information encoded in agents’ ranges of uncer-
tainty. The language extends propositional logic with modal operators Kiφ (i
knows thatφ), for agents i, and CGφ (φ is common knowledge in group G). Epis-
temic models M = (W, {∼i}i∈I,V) have a set of worlds W, accessibility relations
∼i for agents i in some total group I, and a valuation V for proposition letters.
Pointed models (M, s) mark an actual world s.5 The key truth condition is that
M, s |= Kiφ iff for all worlds t with s ∼i t: M, t |= φ.67 Complete logics capturing
epistemic reasoning about oneself and others are known (Fagin et al. 1995). The
base system is a minimal modal logic. A restriction to equivalence relations
adds S5 axioms of positive and negative introspection, while the complete logic
of common knowledge can be axiomatized with PDL-techniques.

Information update by elimination Now for the logical dynamics of infor-
mation flow. An event !φ yielding the information that φ is true shrinks the
current model to just those worlds that satisfy φ. This is the well-known notion
of public hard information. More precisely, for any epistemic model M, world s,
and formulaφ true at s, the new (M|φ, s) (M relativized toφ at s) is the sub-model

5Further relational conditions on ∼i encode special assumptions about agents’ powers of obser-
vation and introspection: very common is the special case of equivalence relations.

6As for common knowledge, M, s |= CGφ iff for all worlds t that are reachable from s by some
finite sequence of arbitrary ∼i steps (i ∈ G): M, t |= φ.

7In what follows, for convenience, we mostly suppress agent indices, and use standard modal
notation for the epistemic modality of one accessibility relation R. Also for convenience, we will
work mostly with existential modalities ^ instead of universal boxes �.
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of M whose domain is the set {t ∈M |M, t |= φ}. This mechanism models pub-
lic communication, but also public observation. There is much more to this
dynamics than meets the eye in standard views of ‘mere update’ with factual
formulas. For instance, crucially, truth values of complex epistemic formulas
may change after update: agents who did not know that φ now do. Therefore,
it makes sense to get clear on the exact dynamic logic behind this.

Public announcement logic The language of public announcement logic PAL
adds action expressions to EL, plus matching modalities, defined by the syntax
rules:

Formulas F : p | ¬φ | φ ∨ φ | Kiφ | CGφ | 〈A〉φ
Action Expressions A : !F

The semantic clause for the dynamic action modality looks ahead between
models:

M, s |= 〈!φ〉ψ iff M, s |= φ and M|P, s |= ψ

PAL is axiomatized by any complete logic over static models plus the following
crucial recursion axioms:

〈!φ〉q ↔ (φ ∧ q) for proposition letters q
〈!φ〉(ψ ∨ χ) ↔ (〈!φ〉ψ ∨ 〈!φ〉χ)
〈!φ〉¬ψ ↔ (φ ∧ ¬〈!φ〉ψ)
〈!φ〉^ψ ↔ (φ ∧^〈!φ〉ψ)

Intuitively, the final recursion axiom for knowledge captures the essence of
getting hard information. We will see in just which sense this is true in our fur-
ther analysis. For further theory and applications of PAL and related systems,
cf. Baltag et al. (1998), van Ditmarsch et al. (2007), van Benthem (2011).

2.2 Switching directions: from valid axioms to constraints

PAL is about one constructive way of taking incoming hard information: elim-
ination of incompatible worlds. Now we reverse the perspective. Let us ask
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which postulates look plausible for hard update, of course, always keeping in
mind that our intuitions need to be valid for arbitrary propositions, bringing
the logic in harmony.8 Having done that, we can see which transformations of
models validate them. This sounds grand. In what follows, however, I take
a simple approach, investigating the recursion axioms of PAL themselves as
postulates, since they have a lot of general appeal. To make this work, we need
a suitably abstract setting – close to the models of DDL.9

Update universe and update relations Consider any family M of pointed
epistemic models (M, s), viewed as an ‘update universe’ where model changes
can take place. Possible changes are given as a family of update relations
RP(M, s)(N, t) relating pointed models, where the index set P is a subset of M:
intuitively, the proposition triggering the update. One can think of the R as
recording the action of some update operation ♥ occurring in the syntax of
our language that depends on the proposition P. Here different operations
can have different effects: from our hard updates !φ to the soft updates ⇑ φ
to be discussed below. As just said, this is essentially the semantic setting of
Krister Segerberg’s dynamic doxastic logic, where each transition relation has
a matching modality.10 Now, for each formula φ, let [[φ]] be the set of worlds
in M satisfying φ. We set, for the update modality matching R:

M, s |= 〈♥φ〉ψ

iff

there exists a model (N, t) in M with R[[φ]](M, s)(N, t) and (N, t) |= ψ

8It is a curiously overlooked mismatch that modal logics for philosophical notions are often
based on philosophers’ intuitions about factual statements only, whereas the logic itself also deals
with complex assertions that make good sense, for which the philosophers’ intuitions might have
to be different. Other imbalances of this sort occur in logics for non-standard consequence relations,
and accounts of knowledge proposed in formal epistemology.

9The setting chosen here is more abstract and flexible than that used in the correspondence
analaysis of van Benthem (2011), and it removes some infelicities in that earlier treatment.

10This is not the only possible format, and one can experiment with others. In particular, making
the relational transition depend on just an extensional set of worlds reflects the valid PAL rule of
Replacement of Provable Equivalents. Stated as one axiom in a language extended with a universal
modality U ranging over the whole universe, this is the following implication making announced
propositions ‘extensional’: U(φ↔ ψ)→ (〈!φ〉α↔ 〈!ψ〉α).
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Remark To be yet more precise, we are really interpreting our language in
a three-index format M,M, s, and for the accessibility relations R in this update
universe M, we have that (M, s)R(M, t) iff Rst in M, without any jumps out of
the model M. This precision can be ignored for most of what follows, but it
will come up occasionally.

2.3 A correspondence theorem for eliminative update

In what follows, the reader is supposed to know how modal frame correspon-
dence works: cf. the textbooks (Blackburn et al. 2000, van Benthem 2010). We
will analyze the PAL recursion axioms one by one in this style to see what they
say, as a way of determining their total content as a correspondence constraint
on update operations. But before doing so, we need to address a subtlety.

Substitution closure Correspondence arguments use frame truth of modal
formulas, i.e., truth under all possible valuations for the proposition letters.
Thus, if a formula is true, so are all its substitution instances: proposition
letters are schematic variables for arbitrary propositions. But this sits badly
with the system PAL, whose valid principles are not closed under substitution.
In particular, the base axiom 〈!φ〉q ↔ (φ ∧ q) is only valid for proposition
letters q. Substituting to the general form 〈!φ〉ψ ↔ (φ ∧ ψ) yields obviously
invalid instances for epistemic assertions ψ. Much can be said about this
phenomenon (Holliday et al. 2011), but in this paper, we take a simple line. We
will first analyze the substitution-closed principles of PAL, and then return to
the correspondence status of the base axiom. Thus, for the moment, we only
look at the following obviously substitution-closed special case:

〈!φ〉> ↔ φ

In our correspondence setting, substitution failures relate to the semantics of
atomic propositions p. Inside one epistemic model M, the obvious choice seems
to be sets of worlds. But in an update universe M as above, propositions range
over all pairs (M, s), and hence one p could have different truth values at pairs
(M, s), (N, s). We will view Greek letters in axioms as standing for such general
context-dependent propositions in what follows, returning to the original view
of PAL-atoms as sets of worlds later on. Finally, here is one more important
convention in what follows:
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Remark Throughout, we will fix announced formulas φ in contexts 〈!φ〉ψ,
refraining from varying these in correspondence. Think of distinguished fixed
propositions.

Now we are ready to go through the crucial axioms that make PAL tick:

Base axiom The axiom 〈!φ〉> ↔ φ says that, given any model M, the domain
of the transition relation R[[φ]] is the set of worlds satisfying φ in M. In other
words, our abstract update action has the truth ofφ as a necessary and sufficient
precondition.

Disjunction axiom There is no special constraint expressed by the modal
formula 〈!φ〉(ψ ∨ χ) ↔ 〈!φ〉ψ ∨ 〈!φ〉χ, since this law holds for any transition
relation.

Negation axiom One direction of this axiom expresses no constraint on the
update operation: (φ ∧ ¬〈!φ〉ψ) → 〈!φ〉¬ψ is valid, given that is equivalent to
〈!φ〉>. But the converse 〈!φ〉¬ψ → (φ ∧ ¬〈!φ〉ψ), even just 〈!φ〉¬ψ → ¬〈!φ〉ψ,
says by a standard correspondence argument that the transition relation is a
partial function:11

if (M, s)R[[φ]](N, t) and (M, s)R[[φ]](K,u), then (N, t) = (K,u).

Using this observation, we now simplify the original transition relations RP in
the update universe to partial functions FP on pointed models. In particular,
given any model M with a subset P, we can meaningfully talk about its image
FP[M].

Knowledge axiom So far, we were just doing preliminaries. The heart of the
matter is evidently the recursion axiom for knowledge: 〈!φ〉^ψ↔ (φ∧^〈!φ〉ψ).
The two directions of this clearly express two constraints on the update function
– and together, they enforce a well-known model-theoretic notion from modal
logic (Segerberg 1971):

11The above comment on interpreting propositions is crucial here: in the argument, we use the
singleton set of the pointed model (N, t) as the denotation of ψ in the update universe M.
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Fact. The update function satisfies frame truth of 〈!φ〉^ψ ↔ (φ ∧ ^〈!φ〉ψ) iff every
map FP is a p-morphism between M and FP[M].

Proof. We do this first proof in a bit of detail, mainly to show how simple
correspondence arguments for update functions are. Consider any model M,
with [[φ]] = P. First we show that FP is a homomorphism. Suppose that
Rst in M, with s, t both in the domain of FP. Now set V(ψ) = {FP(t)}. Then
(M, s) |= φ ∧ ^〈!φ〉ψ, and therefore also, (M, s) |= 〈!φ〉^ψ. By the definition
of V(ψ), this implies that RFP(s)FP(t). Next, for the backward clause of being
a p-morphism, suppose that RFP(s)u, and now set V(ψ) = {u}. Then we have
(M, s) |= 〈!φ〉^ψ. It follows from the truth of our axiom that (M, s) |= φ∧^〈!φ〉ψ,
and hence there exists a t in M with Rst and FP(t) = u. �

Collecting all our observations so far, we have the following result:

Theorem. An update universe satisfies the substitution-closed principles of PAL iff
its transition relations FP are partial p-morphisms defined on the sets P.

Discussion This is not quite the formation of submodels in standard elimina-
tion. Here is why. First, having a p-morphism is enough for validity of the PAL
axioms, so we found a generalization of the standard semantics that may be of
independent interest. Also, contracting several worlds into one during update
occurs naturally in the setting of PAL: cf. van Benthem (2011).12

The base axiom once more Still, the above outputs enforced by our update
mechanism are relational subframes, rather than submodels. What about the
atomic propositions? PAL update assumes that these stay the same when a
world does not change. Here is how we can think of this. Consider the usual
proposition letters of epistemic logic as distinguished atomic propositions. The
base axiom tells us that these special propositions have a special behavior: if
they hold for an pointed model (M, s), they also hold for any of its update
images under a map FP, and vice versa:

(M, s) |= p iff FP(M, s) |= p
12If one insists on making the maps one-to-one, this can be done by enriching the modal language,

and enforcing one more reduction axiom for public announcement, namely, for the difference modality
Dψ saying that ψ holds in a least one different world.
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This might be the only content to the base axiom: update maps respect distin-
guished atomic propositions. But we can say a bit more in correspondence style.
We assumed that proposition letters ranged over all sets of pointed models in
the update universe. Now introduce special ‘context-independent’ proposition
letters q ranging only over special sets of pointed models, with the property
that they only depend on worlds:

(M, s) |= q iff (N, s) |= q, for all models M, N in M

Fact. An update universe satisfies the base axiom 〈!φ〉q ↔ (φ ∧ q) for all context-
independent q iff the update maps are the identity on worlds: FP(M, s) = (N, s) for
some model N.

Proof. Consider a pointed model (M, s) in the domain of FP. Now set V(q) =
{(N, s) | (N, s) is in M}. This is clearly a context-independent predicate. Taking
this as V(q), the true implication (φ ∧ q) → 〈!φ〉q says that FP(M, s) = (N, s) for
some model N. �

Even so, models N occurring in FP-values for pointed models (M, t) with the
same M could still differ. We will soon see a further recursion law making this
uniform.13

This concludes our discussion of the correspondence content of the PAL ax-
ioms.14

2.4 Variations, extensions, and a provocation

Recursion axioms as general postulates We have determined the update
content of one specific axiom for update. But there is more to this. Dynamic-
epistemic recursion axioms are not just ‘any sort of principle’. They have
several features that make them candidates for general postulates on informa-

13For an analogy, think of correspondence theory for intuitionistic logic (Rodenburg 1986), where
axioms are only valid for all ‘hereditary propositions’.

14Readers who like open problems may ponder this: how should the above analysis be modified
to allow factual change, as in van Benthem et al. (2006)?
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tion update.15 In particular, our analysis says that the PAL recursion axiom for
knowledge expresses a sort of partial bisimulation between the original model
and the output of an update rule applied to it. I find abstract simulation be-
havior very appealing as a general semantic constraint on update functions,
though I am not sure how to define it in its proper generality.16

Protocols Update universes also suggest a different setting, that has been
proposed in dynamic-epistemic logic for independent reasons. So far, we had
that 〈!φ〉> ↔ φ. This says that executing an action !φ requires truth of the
preconditionφ, but also, wheneverφ is true, !φ can be executed. But in civilized
conversation or regimented inquiry, the latter assumption is often untenable.
To represent this, ‘protocol models’ make restrictions on propositions that can
be announced or observed. Hoshi (2009) shows how PAL changes in this
setting, since the earlier recursion axioms will now be valid only with 〈!φ〉>
in the place of φ on their right-hand sides. This move has many technical
repercussions, though the system remains axiomatizable and decidable. From
our correspondence perspective, nothing much changes: the only new thing
is that the domain of an update map FP will now be a subset of P, but not
necessarily all of P. Our analysis of the modified recursion axioms remains
essentially as before.

Language extensions We analyzed update axioms for the epistemic base lan-
guage. But PAL also has a complete version for the full epistemic language
with common knowledge. The recursion axiom then requires a new notion of
‘conditional common knowledge’ (van Benthem et al. 2006). Since the axiom
for single-agent knowledge already fixed the PAL update rule, as we have seen,
no further constraints arise. We will return later to what this ‘passive behavior’
of common knowledge vis-à-vis single-agent knowledge means in terms of de-
finability or derivability.17 A useful language extension whose recursion axiom

15The commutation of action and knowledge in the key PAL recursion axiom has an appealing
interpretation in terms of desirable features of logically well-endowed agents. It expresses notions
of Perfect Recall and No Miracles in the sense of Halpern and Vardi (1989).

16A relevant analogy here may be with the modal logic of a bisimulation Z itself, viewed as a
relation on a universe whose worlds are models. The key back-and-forth clause of bisimulation is
precisely a commutation axiom 〈Z〉^ψ↔ ^〈Z〉ψ.

17There is also the question whether the recursion axiom for conditional common knowledge
by itself fixes world elimination as the update rule – but we will consider this issue only with an
analogous case in the dynamic logic of belief change.
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does add to our correspondence analysis introduces an existential modality Eψ
saying that ψ is true in some world in the current model, accessible or not. In
update universes M, we interpret this as saying, at a pointed model (M, s), that
there is some t in M with ψ true at (M, t).

Fact. On update universes M satisfying the earlier PAL update conditions, the axiom
〈!φ〉Eψ ↔ (φ ∧ E〈!φ〉ψ) is frame-true iff, for every model M, the update images of
worlds in M have the same model N throughout.

Proof. First, the axiom is clearly valid in the intended update universes. Con-
versely, its right to left direction implies the stated property. Consider any
two worlds (N, t), (K,u) in the image FP(M). Set V(ψ) = {(K,u)}. Then the
FP-original of (N, t) in M satisfies φ∧E〈!φ〉ψ. It follows that 〈!φ〉Eψ, and by the
preceding definition, this only happens when (N, t) and (K,u) share the same
model component. �

Finally, update universes suggest yet further language extensions. For instance,
there is also a natural relation (M, s) ∼ (N, s) holding between different models
sharing the same distinguished world. Its modality would make sense, even
though it does not make sense inside single epistemic models, the way basic
epistemic logic works.

What is the right version of PAL? We conclude with a more provocative fea-
ture of our analysis. We started by analyzing what standard public announce-
ment says about update, and then determined its force in update universes. But
doing so involved a natural distinction between the substitution-closed princi-
ples of PAL and the more ‘accidental’ base axiom holding only for a restricted
class of valuations. So, what is ‘public announcement logic’ after all? Is its
base semantics perhaps the one on update universes with context-dependent
propositions and substitution-closed validities? And if so, is what we call the
‘standard version’ perhaps an accident of formulation?

2.5 Other natural operations: link cutting

Update with hard information that φ does show variety beyond the above
elimination. In a well-known link-cutting variant, the operation |φ performed
announces whether φ is the case. This means that the domain of worlds stays
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the same, but all epistemic links get cut between φ-worlds and ¬φ-worlds in
the current model – an operation used by many authors. The changes induced
in the PAL axioms are mainly these:

〈|φ〉q↔ q (this implies the substitution-closed instance 〈|φ〉>)
〈|φ〉^ψ↔ ((φ ∧^(φ ∧ 〈|φ〉ψ)) ∨ (¬φ ∧^(¬φ ∧ 〈|φ〉ψ)))

The following result can be proved in the same correspondence style as before:

Fact. Link cutting is the only model-changing operation that satisfies the reduction
axioms for the dynamic modality 〈|φ〉.

Proof. We merely give a sketch of the substitution-closed part. Start from any
pointed model M, s. The modified base axiom tells us that the update map is
now total on the whole domain of M. Next, the recursion axiom for knowledge,
read from left to right, says that the only links in the image come from already
existing links between either φ-worlds, or ¬φ-worlds. Finally, from right to
left, the axiom says that all links of the two mentioned types existing in M get
preserved into the image. �

3 Correspondence analysis of modal logics
for belief change

Now that we have seen how to analyze principles of knowledge update by
changing domains or accessibility relations, an extension to belief revision is
straightforward. We mainly need to decide what models we will be working
with.

3.1 Soft information and belief

Doxastic models are structures M = (W, {≤i}i∈I,V) where the ≤i are binary com-
parison relations ≤i xy saying that agent i considers x at least as plausible as y.
As before, for convenience, we drop agent indices henceforth. These plausibil-
ity relations are usually taken to be reflexive and transitive, making the modal
base logic S4 – or also connected, like the ‘Grove models’ of belief revision
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theory, making the logic S4.3. Such options are important in practice, but they
do not affect the analysis to follow.

These models encode varieties of information. While the whole domain rep-
resents our current hard information in the earlier sense, the most plausible
worlds in the ordering ≤ represent our soft information about the actual world.
This soft information is the basis of our beliefs and actions based on these, but
it is defeasible: the actual world may lie outside of the most plausible area,
and we may learn this as a scenario unfolds. In this setting, belief is commonly
interpreted as truth in all most plausible worlds:18

M, s |= Bφ iff M, t |= φ for all worlds t that are minimal in the ordering ≤

But absolute belief does not suffice for most purposes. We also need the notion
of conditional belief :19

M, s |= Bψφ iff M, t |= φfor all ≤-minimal worlds in {u |M,u |= ψ}

This point returns with recursion axioms for belief change. From a systematic
logical perspective, we should not analyze changes in beliefs only (the usual
practice in belief revision theory), but also changes in conditional belief.

Conditional logic Complete logics for conditional belief can be found in close
analogy with conditional logic based on similarity semantics (Lewis 1973). One
difference is that conditional models usually involve a ternary comparison or-
dering ≤ zxy: world x is closer to world z then world y. A generalization from
binary to ternary relation also makes sense for plausibility semantics of belief,
but we forego this here. 20

Safe belief While the preceding belief modalities are interesting, it has be-
come clear recently that the plain base modality of plausibility models has
independent interest.

M, s |= 〈≤〉φ iff there exists a t ≥ s with M, t |= φ

18We disregard some modifications of truth clauses needed with infinite models.
19Absolute belief can be retrieved as the special case of ψ = >.
20Another natural generalization are epistemic-doxastic models M = (W, {∼i}i∈I , {≤i}i∈I ,V) allowing

for both knowledge update and belief revision. Our methods also work there.
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The corresponding universal modality offers an interesting doxastic notion in
between knowledge and belief. Consider this picture with the actual world s
in the middle:

◦•◦
s

Kφ describes what we know: φ must be true in all three worlds in the range,
less or more plausible than the current one. Bφ describes beliefs, which have
to be true in the right-most world only. Now [≤]φ describes our safe beliefs,
referring to the actual s plus the right-most world. These cannot be refuted
by any future correct observations. Technically, safe belief can also define the
other kinds of belief (Boutilier 1994):

on finite pre-orders, Bψφ is defined by U(ψ→ 〈≤〉(ψ ∧ [≤](ψ→ φ)))

with U the universal modality, or in epistemic-doxastic models, a knowledge
modality. Thus, an analysis of belief change might focus on safe belief without
losing much.

3.2 Dynamic logics of belief change

Now we can write complete logics for belief change. Indeed, there are several
systems for this, depending on what kind of new information triggers the
relevant change in the structure of the current model.21

Hard information For hard information, the complete dynamic logic is as
follows:

Theorem. The logic of conditional belief under public announcements is axiomatized
completely by

• any complete static logic for the model class chosen,

• the PAL recursion axioms for atomic facts and Boolean operations,

21The results cited in this subsection and the next are from van Benthem (2007).
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• an axiom for conditional belief: 〈!φ〉Bαψ↔ (φ ∧ B〈!φ〉ψ〈!φ〉ψ).

A similar analysis can be given for safe belief, with a simpler key recursion
axiom

〈!φ〉〈≤〉ψ↔ (φ ∧ 〈≤〉〈!φ〉ψ)

Formally, this is just the earlier recursion axiom for a modality ^.

Soft information and plausibility change Now comes a major further step.
Triggers for belief change can be of many kinds, and we do not always expect
the same model changes. In particular, incoming new information may be soft
rather than hard, which means that it does not eliminate worlds, but merely
rearranges the current plausibility order. A common example is a radical
upgrade ⇑ φ changing the current ordering ≤ between worlds in a model (M, s)
to a new model (M ⇑ φ, s) as follows:

all φ-worlds in the current model become better than all¬φ-worlds,
while, within those two zones, the old plausibility ordering remains.

Like for public announcement, we introduce an upgrade modality into our
language:

M, s |= 〈⇑ φ〉ψ iff M ⇑ φ, s |= ψ

The earlier techniques extend. Again there is a complete set of recursion axioms:

Theorem. The dynamic logic of lexicographic upgrade is axiomatized by

• any complete static logic for the model class chosen,

• the following recursion axioms:

〈⇑ φ〉q ↔ q for all atomic proposition letters q
〈⇑ φ〉¬ψ ↔ ¬〈⇑ φ〉ψ

〈⇑ φ〉(ψ ∨ χ) ↔ 〈⇑ φ〉ψ ∨ 〈⇑ φ〉χ

〈⇑ φ〉Bαψ ↔ (E(φ ∧ 〈⇑ φ〉α) ∧ Bφ∧〈⇑φ〉α〈⇑ φ〉ψ)

∨ (¬(E(φ ∧ 〈⇑ φ〉α)) ∧ B〈⇑φ〉α〈⇑ φ〉ψ)
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Again, there is also an evident valid recursion axiom that governs the induced
changes in safe belief:

〈⇑ φ〉〈≤〉ψ↔ E(φ ∧ 〈⇑ φ〉ψ) ∨ (¬φ ∧ 〈≤〉〈⇑ φ〉ψ)

Given the earlier modal definition of absolute and conditional belief in terms of
safe belief, one can even derive the preceding recursion axioms from this one.
Other belief change policies can be treated in the same style, using the relation
transformers of van Benthem and Liu (2007) or the priority product update of
Baltag and Smets (2008).

3.3 Correspondence for axioms of belief change

As before with knowledge, we can now invert the preceding results and use
the key recursion axioms as constraints to determine the space of possible
update operations. For update operations transforming plausibility relations
only, leaving domains of models the same, a more complex correspondence
proof than earlier ones shows:

Theorem. The recursion axioms of the dynamic logic of radical upgrade hold uni-
versally for an update operation on a universe of pointed plausibility models iff that
operation is in fact radical upgrade.22

It is important to realize what is going on here. AGM-style postulates on
changes in beliefs will not fix the relational transformation: we need to constrain
the changes in conditional beliefs, since the new plausibility order encodes all of
these. A similar analysis works for other revision policies, such as ‘conservative’
belief change. But actually, there is an easier road to such results, closer to earlier
arguments.

Theorem. Radical upgrade is the only update operation validating the given recursion
axioms for atoms, Booleans plus safe belief.

Proof. Suppose that the axiom is valid on a universe of plausibility models.
The axiom for atoms tells us in particular that our update function is defined
everywhere. Now consider any model (M, s). From left to right, taking ψ to

22Here as before, we work with the substitution-closed version of the logic. In particular, the
atomic case simplifies to just 〈⇑ φ〉>: radical upgrade is defined everywhere.
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denote just one world (N, t) with FP(M, s) ≤ (N, t), it follows that (N, t) was
either the image of some φ-world in M, or s ≤ u in M for some world u mapped
to (N, t), i.e., the new ≤-link came from an old one originating in a ¬φ-world.
This means that each new relational link comes from the set defined by radical
upgrade. That in fact all such links occur in the FP-image of M follows by
similar unpacking of the reverse implication of the axiom. �

Given this last correspondence result, the earlier more complex ones seem less
urgent, since safe belief defines absolute and conditional belief. Indeed, AGM-
style postulates on ‘safe-belief change’ might be easier conceptually than those
for regular belief.23

3.4 Discussion: generality of the analysis

We have seen how recursion laws in constructive logics of belief change can
serve as general postulates to constrain, and almost uniquely fix, possible up-
dates. As before, this relates the DDL and DEL approaches to modal logics
of belief change, softening a contrast that we started out with. Also as before,
issues of generality arise. Are the recursion axioms too specific for belief change
postulates? Here we repeat our earlier intuition of ‘simulation’ between input
and output models of the transformation. One might add that a recursive pos-
tulate may itself be philosophically attractive as providing the core ‘dynamic
equation’ driving the process of update or revision. Finally, here is an issue
more specific to belief. Given the overwhelming variety of belief revision poli-
cies, what is the general thrust of correspondence results like ours? We will
return to this issue in Section 5, when discussing product update and other
general mechanisms replacing separate revision rules by one master rule plus
richer input.24

23Still, it is interesting that recursion axioms for conditional belief fix radical upgrade, too. This
might imply further definability and proof-theoretic connections between the various doxastic
notions mentioned. If one recursion axiom fixes update, it looks as if others should be derivable in
some way. We cannot explore this technical line here.

24Here is a more technical issue. We have only analyzed single update mechanisms so far. But
some AGM-postulates mix update and revision. Can we use modal versions of such postulates to
get correspondence results for axioms with two update modalities simultaneously?
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4 Richer formats as a test case

The style of analysis proposed here works on richer semantic formats for update
than modal relational models. In this brief digression, we sketch two examples.
These will also raise some issues about the scope and limitations of our earlier
analysis.

4.1 Event models and product update

While public announcement logic PAL is a good pilot system, its restriction
to public information makes it unsuitable for analyzing individual differences
in observation and communication. A much richer dynamic-epistemic logic
for the latter tasks is true DEL (Gerbrandy 1999, Baltag et al. 1998). It uses
action models E that collect events with attached ‘preconditions’, with epistemic
uncertainty links between events representing agents’ observational access to
what actually happens. Action models have been used to represent a wide
variety of triggers for information change. Next, by performing product update
of an action model E with the current epistemic or doxastic model M one obtains
a new updated information model M × E displaying the right information for
all agents involved after the event has taken place.

We assume that the reader knows how DEL update works, including its com-
plete set of recursion axioms. We display two of these for later reference –
suppressing agent indices as before, and using the letter R to denote the agent’s
accessibility relation:

〈E, e〉> ↔ Pree

〈E, e〉^ψ↔ (Pree ∧
∨

eR f in E

^〈E, f 〉ψ)

This mechanism changes epistemic or doxastic models much more drastically
than the earlier world elimination or relation change. In particular, the set
{(s, e) | s ∈M, e ∈ E,M, s |= Pree}, of worlds in M × E may grow beyond the size
of the initial model M.

Theorem. The recursion axioms for the dynamic modality 〈E, e〉φ of DEL determine
product update uniquely modulo p-morphism.
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The precise sense in which this fact is true will emerge from the following
discussion.

Proof. (Sketch) As in our study of PAL, we analyze the impact of the DEL re-
cursion axioms on an update universe of epistemic models with an abstract
transition relation for the update for the pointed event model (E, e). The nega-
tion axiom of DEL tells us that this is a partial function FE,e. This functionality
means that we can think of values FE,e(M, s) as pairs (s, e) without loss of infor-
mation. Next, the substitution-closed base axiom tells us that FE,e is defined on
those models (M, s) whose s satisfies the precondition of e in E. Finally, also as
before, the recursion axiom for individual knowledge puts constraints on the
function FE,e. First, if sRt in M, and eR f in E, while FE,e(M, s), FE,e(M, t) are both
defined, then (s, e)R(t, f ) holds by the direction from right to left in the axiom.
Vice versa, any link in the image of the model M must also arise in this way, if
we unpack the left-to-right direction of the axiom.25 �

One update logic to bind them all? The preceding analysis may still be
too piecemeal, ignoring a key innovation of DEL in the area of constructive
update logics. An earlier trend had been to define specific model changes
for particular kinds of informational event: ‘announcements that’, link cutting
‘announcements whether’, or more complex types of private information flow,
such as sending a bcc message over email. One gets different complete logics
for each case. But DEL changed the game. All relevant structure triggering
different updates is put in matching event models E, and the logic for the
special case is then a direct instance of the above ‘mother logic’ of 〈E, e〉φ. In
this light, characterizing specific update functions may have some value, but
the real logical insight is the general product update mechanism. Is this, then,
the best constructive counterpart to a postulational approach to update?

Belief and priority update Similar points can be made about belief revision.
One can capture complete logics for specific revision policies, as we have shown.
But one can also work at the level of product update with ‘plausibility event
models’, where agents now may think it more plausible that one event occurred
rather than another. Update works with the priority rule that strict event

25This argument still ignores some key features of product update, like its use of ordered pairs
(s, e) of worlds and events by themselves without marking the context s in M, e in E.
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plausibility overrides prior plausibility:26

(s, e) ≤ (t, f ) iff (s ≤ t ∧ e ≤ f ) ∨ e < f

The key recursion axiom for the ‘mother logic’ of priority update is given in
Baltag and Smets (2008):27

〈E, e〉〈≤〉φ↔ (Pree ∧ (
∨

e≤ f in E

〈≤〉〈E, f 〉φ ∨ (
∨

e< f in E

E〈E, f 〉φ))

We will not analyze this approach further, but this seems the most general
dynamic-epistemic counterpart to the postulational approach of dynamic dox-
astic logic.28

4.2 Updating neighborhood models for evidence

It is hard to roam for long in modal logic without finding Krister Segerberg’s
traces. Another long-standing interest of his are neighborhood models
(Segerberg 1971) that have been used recently as a model for the epistemo-
logical notion of evidence and its dynamics (cf. van Benthem and Pacuit (2011)
for technical details of what follows).

Static neighborhood logic An epistemic accessibility relation encodes an
agent’s current range of worlds after some history of informational events.
If we want to retain some of the latter ‘evidence’, a set of neighborhoods (sets of
worlds) does well – where we think of the current range as the intersection of all
evidence sets.29 The simplest neighborhood models, and all that we consider
here, have just one family N of sets on a domain of worlds. We then interpret
an evidence modality as follows:

26As an illustration, an event model with two signals !φ, !¬φ, with the first more plausible than
the second, generalizes the above radical upgrade ⇑ φ, that typically also had this over-ruling
character for worlds that satisfied the distinguished triggering proposition φ.

27Here E is the earlier existential modality over all worlds in the model, accessible or not.
28Other ways of achieving generality in constructive update logics include the PDL-style program

format of van Benthem and Liu (2007), specifying intended relation changes in models. Girard et al.
(2011) define a merge of action models and programs that represents realistic social scenarios. We
leave a correspondence analysis to another occasion.

29If not all given sets overlap, we need more subtle views of conflicting evidence.
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M, s |= �φ iff there is a set X in N with M, t |= φ for all t ∈ X

The base logic of this notion is that of a monotone modality that does not
necessarily distributive over either disjunction or conjunction. This generaliza-
tion of modal logic supports correspondence analysis.30 Neighborhood models
support many epistemic notions. At least in finite models, one can define (cau-
tious evidence-based) belief as what is true in all intersections of maximally
overlapping families of evidence.31

Evidence dynamics: two samples In this setting, our pilot system PAL for
information update can be seen as mixing different update actions into its public
announcements !φ. The first is evidence addition +φ, adding the denotation
[[φ]] in the current model as one more piece of evidence to the current evidence
family N. The dynamic logic of this action can be determined completely. Here
is one key recursion axiom:

〈+φ〉�ψ↔ (�〈+〉φ ∨U(φ→ ψ))

Again, the content of this principle can be determined by a straightforward
correspondence argument:

Fact. An abstract update function on a universe of neighborhood models satisfies the
recursion axiom for evidence addition iff each new evidence set is a superset of either
some old evidence set or of the set [[φ]].32

A second aspect of a public announcement !φ that now gets into its own is
removal of the evidence for ¬φ. The general new operation −ψ removes all
evidence sets from the current family N that are included in [[ψ]]. Complete
recursion axioms are known for removal and the evidence modality, as well
as belief, though a considerable extension of the standard static modal base

30For instance, the K-axiom �
∧

i ψi ↔
∧

i �ψi forces N to be generated from a binary accessibility
relation – provided we read it with an infinitary conjunction.

31There are links with modeling beliefs in relational plausibility models here that we ignore.
32Recursion axioms for new beliefs under evidence addition extend the base language for evi-

dence models to conditional belief in two basic varieties that had not surfaced so far.
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languages over evidence models is required. Here is one such principle, using
a notion of evidence conditional on ¬φ being true:33

〈−φ〉�ψ↔ (E¬φ→ �¬φ〈−φ〉ψ)

We leave a correspondence analysis of recursion axioms for removal to future
work. Clearly, we have only scratched the surface here, but hopefully, the
reader has seen that our analysis still makes sense when the semantic modeling
of dynamic epistemic logic undergoes a drastic neighborhood extension of a
sort that Krister Segerberg has long ago proposed for dynamic doxastic logic
(Segerberg 1995, Girard 2008).

5 Further directions

We have shown how modal correspondence brings together the postulational
format of AGM theory and dynamic doxastic logic with the constructive model
transformation style of dynamic-epistemic logic. Our technical illustrations
were very simple, and we opened up more new problems than closing old
ones. Several technical and conceptual issues were already raised in the text.
In this section we briefly mention a few more.

Extended semantic formats We have worked with binary accessibility rela-
tions for knowledge and belief. This analysis should be extended to ternary
relational models, where plausibility can be world-dependent. Likewise, the
analysis needs to be taken to the realm of neighborhood models, a natural finer
modeling for belief and evidence.

Group knowledge and belief At the start of this paper, we said that a multi-
agent perspective is crucial to DEL-style logics, but soon this social aspect
vanished. One should also analyze update postulates for common knowledge
or belief in our style.34

33This is remarkable, since dealing with operations of contraction or removal has long been
considered a stumbling block to constructive update logics. The reason why it works in the
neighborhood setting after all is the richer model structure one is working on.

34No complete dynamic logic has been given yet for changes in common belief produced by
radical upgrade. Technical difficulties here might require a redesign of the base language to an
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‘Dancing with the stars’: propositional dynamic logic Common knowledge
or belief go beyond the modal base language, being iterated modalities as
found in dynamic logic PDL: another lifelong interest of Krister Segerberg.
Iteration occurs naturally in dynamic-epistemic logic, also in the dynamic action
component, as with repeated announcement or measurement. The resulting
logical systems can be highly complex: cf. Miller and Moss (2005) on PAL
with iteration, and Baltag and Smets (2009) on limit phenomena with iterated
radical update. Still PDL is no obstacle to our analysis. There have been some
striking advances in the treatment of modal frame correspondence for non-first-
order principles like Löb’s Axiom for provability logic or Segerberg’s Axiom for
dynamic logic, making them fall under an extended Sahlqvist syntax matching
the system LFP+FO, first-order logic with added fixed-point operators. New
results and references are found in van Benthem et al. (to appear).

Temporal setting and procedural information Both dynamic doxastic logic
and DEL focus on single update steps. But equally essential is the temporal
horizon. We make sense of local event in terms of global scenarios: a conver-
sation, a process of inquiry, or a game. This ‘procedural information’ (Hoshi
2009) suggests interfacing dynamic logics with temporal logics of knowledge
and belief (Parikh and Ramanujam 2003, Belnap et al. 2001, Bonanno 2007).
Existing results at this interface take the form of representation theorems for
‘update evolution’: cf. van Benthem et al. (2009). One obvious question is
how our correspondence results relate to representation theorems in the area
of logics of belief (Dégrémont 2010).

General model theory The proofs in this paper were very simple. The recur-
sion axioms all had Sahlqvist syntax (Blackburn et al. 2000). One would like a
correspondence analysis of axioms for belief change at the latter level of gen-
erality. Moreover, correspondence is not the only abstract analysis of concrete
modal logics. The mechanism of model change behind the dynamic-epistemic
logics in this paper invites reflection on their general features as modal logics.
In an earlier book for Krister Segerberg, I gave a Lindström Theorem captur-
ing basic modal logic in terms of bisimulation invariance and compactness. It
would be of interest to take this further to capture the essentials of dynamic
modal logics of model change.

analogue of the ‘epistemic PDL’ of van Benthem et al. (2006), a system defined for the purpose of
stating recursion axioms for common knowledge with product update.
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Coda: have we really dealt with all logics of belief change? Do our two pro-
tagonists of dynamic-doxastic and dynamic-epistemic logic exhaust the field?
My first attempt at doing modal logic of belief revision in van Benthem (1987)
worked over a universe of information stages in the style of Beth or Kripke
models for intuitionistic logic. An update with hard information was defined
as a minimal upward move to a stage where the new information holds, while
revision involved backtracking to the past and then going forward again to
incorporate new information in conflict with what we thought so far. I am not
sure how this third view relates to either DDL or DEL, though it, too, offers
abstract spaces for a wide array of update actions.

6 Conclusion

We have shown how the two main logic approaches to belief change,
Segerberg’s dynamic doxastic logic and the DEL tradition, co-exist in the per-
spective of modal frame correspondence. Indeed, ‘modal logic of belief revi-
sion’ has two dual aspects that belong together. This much was our contribution
to translatability and interaction between frameworks. Our evidence was a set
of very simple technical observations – but around these, many new problems
came to light. To me, this agenda of unknowns seems a virtue of the proposed
analysis. Krister and I have our work cut out for us. Finally, a confession is in
order. In starting this study, I thought the main beneficiary would be DDL, as
it could now import new ideas from the pressure-cooker of DEL. But as will be
clear at various places in the paper, I now feel that a correspondence perspec-
tive also raises serious issues about best design for dynamic-epistemic logics,
rethinking their striking deviant feature of being non-substitution-closed. And
so, I submit that both sides benefit from the style of analysis presented here.
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Abstract

In this paper, we investigate the use of event models for automated plan-
ning. Event models are the action defining structures used to define a
semantics for dynamic epistemic logic. Using event models, two issues in
planning can be addressed: Partial observability of the environment and
knowledge. In planning, partial observability gives rise to an uncertainty
about the world. For single-agent domains, this uncertainty can come from
incomplete knowledge of the starting situation and from the nondetermin-
ism of actions. In multi-agent domains, an additional uncertainty arises
from the fact that other agents can act in the world, causing changes that
are not instigated by the agent itself. For an agent to successfully construct
and execute plans in an uncertain environment, the most widely used for-
malism in the literature on automated planning is “belief states”: sets of
different alternatives for the current state of the world. Epistemic logic is a
significantly more expressive and theoretically better founded method for
representing knowledge and ignorance about the world. Further, epistemic
logic allows for planning according to the knowledge (and iterated knowl-
edge) of other agents, allowing the specification of a more complex class
of planning domains, than those simply concerned with simple facts about
the world. We show how to model multi-agent planning problems using



56 Epistemic planning for single- and multi-agent systems

Kripke-models for representing world states, and event models for repre-
senting actions. Our mechanism makes use of slight modifications to these
concepts, in order to model the internal view of agents, rather than that
of an external observer. We define a type of planning domain called epis-
temic planning domains, a generalisation of classical planning domains,
and show how epistemic planning can successfully deal with partial ob-
servability, nondeterminism, knowledge and multiple agents. Finally, we
show epistemic planning to be decidable in the single-agent case, but only
semi-decidable in the multi-agent case.

1 Introduction

For most of its early life in the 60’s and 70’s, the field of automated planning
was concerned with ways in which the problem of creating long-term plans
for achieving goals could be formulated, such that solving problems of non-
trivial size, would be computationally feasible. The types of planning that arose
from this early work, is what is known today as Classical Planning. Classical
Planning, as defined by Ghallab et al. (2004), imposes a number simplifying
restrictions on the planning problem, namely that it be finite, fully observable,
deterministic and static.

While there certainly are computational benefits to the above restrictions, it is
also clear that such planning domains are much easier to construct theoretically
sound planning algorithms for. In other words, the reason that Classical Plan-
ning became so dominant was not only due to limited computational resources,
but also a limited understanding of the intricacies of how, for instance, to take
the actions of other agents into account when planning, or how to naturally
represent incomplete information about the world state – the complexity of
automated planning is not solely computational.

In this paper, we examine a new method of planning, with which the full ob-
servability and determinism requirement can be lifted. Getting partial observ-
ability comes from the use of epistemic Kripke-models to represent knowledge
about the world, recognising that partial observability and knowledge (or a
lack thereof) are two sides of the same coin. Event models, taken from dynamic
epistemic logic, are used in defining the ways in which actions change epis-
temic models, whether they are factual – changing propositional facts about
the world – or epistemic – changing knowledge of the facts, but not the facts
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themselves – or a combination thereof. In addition, event models provide a
natural way to handle nondeterminism. Epistemic planning, as we name this
new approach, will be considered in both single- and multi-agent versions.

Consider the similarities between belief states, the most widely used method in
the literature on automated planning for dealing with the incomplete knowl-
edge that arises from partial observability, and Kripke-models for epistemic
logic. Belief states are sets of propositions about the world, each of which
represents an alternative version of the world. In epistemic modal logic, each
world also represents an alternative, but with the addition of a notion of indis-
tinguishability of these alternatives by particular agents. Even without going
into details about models of epistemic logic, it is immediately obvious that
epistemic logic is at least as expressive as belief states when it comes to plan-
ning, and, as the reader will learn, they are actually much more so. With the
combination of epistemic logic and event models, we gain the ability to plan in
nondeterministic, partially observable, multi-agent domains with knowledge,
where belief states only affords us the ability to deal with the first two. Further,
epistemic planning, as we call this new paradigm, internalises nondeterminism
and observability in the planning language, rather than dealing with it at an
algorithmic level. We find this to be a much more satisfying approach.

The remainder of this paper is organised as follows. Section 2 introduces the
the well known notions of epistemic models from the literature on modal logic,
and shows how they, with rather elegant modifications, can be used to model
the internal view of an agent involved in the situation being modeled. Section
3 introduces our version of event models, which are largely similar to those
of dynamic epistemic logic, with minor modifications to facilitate the internal
view. In section 4 we show definitions of classical planning problems, epis-
temic planning domains and their correspondences. With epistemic planning
defined, section 5 examines properties of different types of actions based on
event models, and establishes a nomenclature for these. Finally, sections 6
and 7 deals with the single- and multi-agent versions of epistemic planning
domains respectively, and gives decidability results for both.

2 Epistemic logic and epistemic states

In this section we present the notions from (dynamic) epistemic logic required
for the remaining article. First of all, we define a language of epistemic logic.
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Let P be a finite set of atomic propositions (propositional symbols), and A
a finite set of agents. We will most often use symbols p, q, r, s, . . . for atomic
propositions and i, j, k, l, . . . for agents. The language LK(P,Ag), the language
of multi-agent epistemic logic on (P,A), is generated by the following BNF:

φ ::= > | ⊥ | p | ¬φ | φ ∧ φ | Kiφ,

where p ∈ P and i ∈ A. As usual, the intended interpretation of a formula Kiφ is
"agent i knows φ". We also consider an extended languageLKC(P,Ag) obtained
by adding formulas of the type Cφ intended to express common knowledge
of φ. The semantics of LK(P,Ag) and LKC(P,Ag) is defined as usual through
Kripke structures, here called epistemic models.

Definition 2.1 (Epistemic models). An epistemic model of the languages
LK(P,Ag) and LKC(P,Ag) is a triple M = (W,R,V), where

• W is the domain, a finite set of worlds (often called states in the literature,
but we will use the word “state” for a different purpose in this paper).

• R : A → 2W×W assigns an accessibility relation (or indistinguishability rela-
tion) Ri to each agent i ∈ A. All accessibility relations are equivalence
relations.

• V : P→ 2W assigns a set of worlds to each atomic proposition; this is the
valuation of that variable.

The domain W of an epistemic model M = (W,R,V) is often denoted D(M). The
requirement of the accessibility relations being equivalence relations ensures
that the modal operators Ki capture knowledge. Most of what we do in this
paper would work equally well with weaker or no conditions on the accessi-
bility relations, e.g.“belief” or even weaker notions, but for simplicity we stick
to knowledge in this paper.

Definition 2.2 (Truth in an epistemic model). Let an epistemic model M =
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(W,R,V) of LKC(P,Ag) be given. Let i ∈ A, w ∈W and φ,ψ ∈ LKC(P,Ag).

M,w |= > always
M,w |= ⊥ never
M,w |= p iff w ∈ V(p)
M,w |= ¬φ iff M,w 6|= φ
M,w |= φ ∧ ψ iff M,w |= φ and M,w |= ψ
M,w |= Kiφ iff for all v ∈W, if wRiv then M, v |= φ
M,w |= Cφ iff for all v ∈W, if w(∪ j∈AR j)∗v then M, v |= φ

where R∗ is the transitive closure of R.

If M, v |= φ holds for all epistemic models M = (W,R,V) and all w ∈ W,
the formula φ is said to be valid, denoted |= φ.

A pair (M,w) consisting of an epistemic model M and a world w ∈ D(M) is
often called an epistemic state (or pointed epistemic model). In an epistemic state
(M,w), w denotes the actual world. Epistemic states provide a model of the
world from an external point of view, where the modeler is assumed to be
an omniscient and external observer of the epistemic situation Aucher (2010).
Thus, the modeler knows which is the actual world. In this paper, we also wish
to be able to represent an internal point of view, where the modeler is one of the
agents represented in the epistemic model. For this purpose, we distinguish
between global (epistemic) states representing the external view of the world and
pointing out the actual state of affairs, and local (epistemic) states representing
individual agents’ view of the world. This is related to the distinction made in
e.g. Aucher (2010), Fagin et al. (1995).

Definition 2.3 (Local and global (epistemic) states). A pair (M,Wd) consisting
of an epistemic model M = (W,R,V) of LKC(P,Ag) and a non-empty set of
designated worlds Wd ⊆ W is called an epistemic state or simply a state (of
LKC(P,Ag)). If Wd is a singleton, the state is called global. If Wd is closed under
Ri, where i ∈ A, it is called a local state for agent i. In general, a local state is any
pair (M,Wd) which is the local state of some agent. Given a global state (M, {w}),
the associated local state of agent i is (M, {v | wRiv}). States (M,Wd) in which the
domain of M is a singleton are called atomic states.

Note that in a local state (M,Wd) for agent i, it is possible to have a pair of nodes
w, v ∈ Wd with (w, v) < Ri. We will later use this to model “plan-time indistin-
guishability” whereas if (w, v) ∈ Ri it models “run-time indistinguishability”.
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Consider a local state s = (M,Wd) containing only w and v, and that these are
plan-time indistinguishable. This means, that while the agent is planning, it
does not know whether the actual world is w or v. However, when the plan
is being executed and the agent actually achieves the state of the world repre-
sented by s, it will know which of w and v is the actual world. In other words,
the agent knows, that while it does not yet know the actual world, it will come
to know this once the plan is being carried out. If w and v are run-time indis-
tinguishable, then the agent is unable to distinguish them, both while planning
and when carrying out the plan. These concepts will be elaborated on later,
particularly in Section 6.

An alternative way to define (local) states would be to introduce an additional
accessibility relation Rd and an additional world w0 s.t. w0Rdw iff w belongs
to the set of designated worlds. In this way (local) states would become ordi-
nary pointed models of the form (M,w0). However, we stick to the definition
above, as it makes some of the following definitions and constructions sim-
pler. The only disadvantage is that one has to be a bit more careful in defining
bisimulations on states. Here is the definition.

Definition 2.4 (Bisimulations between (epistemic) states). A bisimulation be-
tween states ((W,R,V),Wd) and ((W′,R′,V′),W′

d) is a non-empty binary relation
B ⊆W×W′which is an ordinary bisimulation between (W,R,V) and (W′,R′,V′)
and which furthermore satisfies that the domain of B extends Wd and the image
of Wd under B is W′

d.

Note than when Wd and W′

d are singletons, this definition reduces to the or-
dinary definition of a bisimulation between pointed models. We can then, as
usual, define the bisimulation contraction of a state as the quotient structure of
the union of all autobisimulations (see e.g. Blackburn et al. (2001) for details).

Definition 2.5 (Truth in an (epistemic) state). Let (M,Wd) be an epistemic state
of LKC(P,Ag) and φ a formula of LKC(P,Ag). Then truth of φ in (M,Wd) is
defined as follows:

(M,Wd) |= φ iff M,w |= φ for all w ∈Wd

Note that for all local states (M,Wd) of some agent i and all formulas φ, the
following holds: (M,Wd) |= Kiφ ⇔ (M,Wd) |= φ, as Wd is closed under Ri,
and since Ri is reflexive. The property reflects the fact that a local state of
some agent gives that agent’s internal view of the world. When (M,Wd) |= φ
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– or, equivalently, (M,Wd) |= Kiφ – we say that agent i knows φ in (M,Wd). If
(M,Wd) |= Kiφ ∨ Ki¬φ, we say that agent i knows whether φ holds.

Example 1. Consider the following state:

s =

w1 : p ∧ q

w3 : ¬p ∧ q

j

w2 : p ∧ ¬q

w4 : ¬p ∧ ¬q

j

i

i

The reflexive loops at each of the worlds have been left out for visual simplicity,
which will be the case in the remainder of this paper. More generally, we will
always only the show the reflexive transitive reduction of a state, that is, the one in
which each accessibility relation Ri has been replaced by the minimal relation
R′i having the same reflexive transitive closure as Ri. The symbol marks
designated worlds. Here, the designated worlds are w1 and w2. As the set of
designated worlds is closed under Ri but not R j, the state is a local state of agent
i but not agent j, thus enabling its interpretation as i’s view of the world. That
both w1 and w2 are designated is due to agent i’s inability to recognise which
of these is the actual world. In the state, agent i knows that p holds, but doesn’t
know whether q holds. i does, however, know that j knows whether q holds.

3 Event models and epistemic actions

From Dynamic Epistemic Logic (DEL), we take the concept event model (or update
model or action model), see e.g. van Ditmarsch and Kooi (2008), for modeling
the changes to epistemic states, brought about by the execution of actions. The
exact relationship between event models and epistemic states in relation to
planning will be clarified later.

Definition 3.1 (Event models). An event model for LKC(P,Ag) is a quadruple
E = (E,Q, pre, post), where

• E, the domain, is a finite non-empty set of events.

• Q : A→ 2E×E assigns an accessibility relation (or indistinguishability relation)
to each agent i ∈ A. All accessibility relations are equivalence relations.
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• pre : E→ LKC(P,Ag) assigns to each event a precondition.

• post : E→ LKC(P,Ag) assigns to each event a postcondition. Postconditions
are conjunctions of propositional literals, that is, conjunctions of atomic
propositions and their negations (including > and ⊥).

The domain E of an event model E = (E,Q, pre, post) is denoted D(E). The
postcondition mapping is defined in a slightly non-standard way here. Usu-
ally, it is defined as a mapping post′ : E → (P → LKC(P,Ag)). As shown in
van Ditmarsch and Kooi (2008), one can without loss of generality restrict to
mappings of this type where post′(e)(p) is always either >, ⊥ or p itself. Any
such mapping gives rise to a mapping post : E→ LKC(P,Ag) of the type defined
above by letting:

post(e) =

 ∧
post′(e)(p)=>

p

 ∧
 ∧

post′(e)(p)=⊥

¬p

 .
One of the advantages of this formulation of the postcondition mapping is that
it links more naturally with classical planning, as will be seen further below.

Definition 3.2 (Local and global (epistemic) actions). A pair (E,Ed) consisting
of an event model E = (E,Q, pre, post) of LKC(P,Ag) and a non-empty set of
designated events Ed ⊆ E is called an epistemic action or simply an action (of
LKC(P,Ag)). If Ed is a singleton, the action is called global. If Ed is closed under
Ri, where i ∈ A, it is called a local action for agent i. In general, a local action is
any pair (E,Ed) which is the local state of some agent. Given a global action
(E, {e}), the associated local action of agent i is (E, { f | eQi f }. Actions (E,Ed) in
which the domain of E is a singleton are called atomic actions.

The literature sometimes refer to our global actions as pointed updates and our
non-global actions as multi-pointed updates, see e.g. Sadzik (2006). Beware that
even though we sometimes refer to our actions as epistemic actions, they also
allow the possibility of expressing factual (ontic) change via the postcondition
mapping.

Definition 3.3 (Product update of a state with an action). Given are a state
(M,Wd) and an action (E,Ed), where M = (W,R,V) and E = (E,Q, pre, post). The
product update of the state (M,Wd) with the action (E,Ed) is defined as the state
(M,Wd) ⊗ (E,Ed) = ((W′,R′,V′),W′

d), where
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• W′ = {(w, e) ∈W × E | M,w |= pre(e)}

• R′i = {((w, e), (v, f )) ∈W′
×W′

| wRiv and eQi f }

• V′(p) = ({(w, e) ∈ W′
| M,w |= p} − {(w, e) ∈ W′

| post(e) |= ¬p}) ∪ {(w, e) ∈
W′
| post(e) |= p}

• W′

d = {(w, e) ∈W′
| w ∈Wd and e ∈ Ed}

Definition 3.4 (Applicability of an action in a state). Given are a state (M,Wd)
and an action (E,Ed). The action (E,Ed) is said to be applicable in the local state
(M,Wd) if the following holds: For each world w ∈Wd there is a least one event
e ∈ Ed such that M,w |= pre(e).

The intuition behind this definition is the following. First, note that if both the
state and the action are global, that is of the form Wd = {w} and Ed = {e}, this
reduces to the condition that the precondition of the designated event e holds
in the designated world w (M,w |= pre(e)). This corresponds to the condition of
“possibility” introduced with a similar purpose in Löwe et al. (2010). The point
is, that the designated world w denotes the current world and the designated
event e denotes the event that actually takes place, so the condition simply
ensures that the precondition of the event that takes place is satisfied in the
current world. If not, the pointed set W′

d of the product update (M, {w})⊗ (E, {e})
would be empty.

Now consider the case of local states and actions. When we update a local state
(M,Wd) of agent i with a local action (E,Ed) of the same agent, the local action
is assumed to present agent i’s view on what the action will bring about (it
could be an action executed by i himself, but could also be an action executed
by some other agent, or a joint action of several agents). The condition of
Definition 3.4 then has the following meaning: For each of the worlds that
agent i considers possible, the action specifies at least one applicable event that
i considers possible.

Lemma 1. If a local action (E,Ed) of an agent i is applicable in a local state (M,Wd) of
the same agent, then the product update (M,Wd) ⊗ (E,Ed) is again a local state of i.

We leave the proof as an (easy) exercise for the reader.

Example 2. The following example is inspired by the Sally-Ann test used in
cognitive psychology to test whether children possess a so-called theory of mind
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Wimmer and Perner (1983). There are three agents, Sally (denoted by i), Ann
(denoted by j) and an observer, the child (denoted by k). Sally has a basket and
Ann has a box. There is a marble, which can either be in the basket or in the
box. We use b to denote the proposition "the marble is in the basket". In the
initial situation, the marble is in the basket, and this is common knowledge.
Thus the following local state s0 describes all three agents’ initial view of the
world:

s0 = w1 : b

Now Sally (i) leaves the room, and in the meantime Ann ( j) moves the marble
to the box. The observer sees this, but Sally doesn’t. However, it is common
knowledge that when Sally leaves the room, Ann has the possibility of moving
the marble to the box. The observer can represent the action taking place by
the following local action a1:

a1 =
e1 : 〈b,>〉 e2 : 〈b,¬b〉

i

Labeling events by the pair 〈φ1, φ2〉 means that the event has precondition
φ1 and postcondition φ2. In the action a1, event e1 represents the possibility
that Ann doesn’t move the marble, and event e2 represents the possibility
that she does. Since Sally (i) has left the room, she cannot distinguish these two
events, which is represented by the two events being connected by an i-relation.
There is, however, no j- or k-relation connecting the two, since both Ann and
the observer can distinguish between the marble being moved and not being
moved. The designated event is e2, since the observer sees the marble being
moved. Taking the product update of s0 with a1, we then obtain the observers
updated view of the world after the action has taken place:

s0 ⊗ a1 =
(w1, e1) : b (w1, e2) : ¬b

i

We can see that the observer now knows that Sally (i) doesn’t know where
the marble is (doesn’t know whether b or ¬b holds). It has been shown in
Wimmer and Perner (1983) that children under the age of 4, and autistic children
in general, will—when playing the role of the observer—conclude that Sally
knows that the marble is now in the box (¬b).

With epistemic actions and states defined, we now show how these are em-
ployed in a planning context.
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4 Epistemic planning domains and problems

Following Ghallab et al. (2004), any classical planning domain can be repre-
sented as a restricted state-transition system Σ = (S,A, γ), where

• S is a finite or recursively enumerable set of states.

• A is a finite set of actions.

• γ : S×A ↪→ S is a computable state-transition function. The state-transition
function is partial, that is, for any (s, a) ∈ S × A, either γ(s, a) is undefined
or γ(s, a) ∈ S.

A classical planning problem is then represented as a triple (Σ, s0,Sg), where

• Σ is a restricted state-transition system.

• s0 is the initial state, a member of S.

• Sg is the set of goal states, a subset of S.

A solution to a classical planning problem (Σ, s0,Sg) is a finite sequence of actions
(a plan) a1, a2, . . . , an such that

γ(γ(. . . γ(γ(s0, a1), a2), . . . , an−1), an) ∈ Sg.

Note that finding solutions to classical planning problems is always at least
semi-decidable: given a planning problem, we can compute its state space (the
space of states reachable by a sequence of actions applied to the initial state)
in a breadth-first manner, and if one of the goal states is reachable, we will
eventually find it. Next is the definition of epistemic planning domains, which
are special cases of classical planning domains.

Definition 4.1 (Epistemic planning domains). Given are a finite set P of atomic
propositions and a finite setA of agents. An epistemic planning domain on (P,A)
is a restricted state-transition system Σ = (S,A, γ), where

• S is a finite or recursively enumerable set of epistemic states ofLKC(P,Ag).

• A is a finite set of actions of LKC(P,Ag).
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• γ is defined by:

γ(s, a) =

s ⊗ a if a is applicable in s
undefined otherwise

If all states and actions are from LK(P,Ag) it is called an epistemic planning
domain without common knowledge. If |A| = 1 it is called a single-agent epistemic
planning domain.

Definition 4.2 (Epistemic planning problems). An epistemic planning problem is
a triple (Σ, s0, φg), where

• Σ = (S,A, γ) is an epistemic planning domain on (P,A).

• s0, the initial state, is a member of S.

• φg is a formula in LKC(P,Ag) called a goal formula. The set of goal states is
Sg = {s ∈ S | s |= φg}.

If all states, actions, and formulas are from LK(P,Ag) it is called an epistemic
planning problem without common knowledge. If |A| = 1 it is called a single-agent
epistemic planning problem.

Epistemic planning problems are special cases of classical planning problems.
A solution to an epistemic planning is thus, according to the definition above, a
sequence of actions a1, a2, . . . , an s.t. γ(γ(. . . γ(γ(s0, a1), a2), . . . , an−1), an) ∈ Sg, that
is, s.t. s0 ⊗ a1 ⊗ a2 ⊗ · · · ⊗ an |= φg. As noted, finding solutions is at least semi-
decidable. A further look at the complexity of epistemic planning is found in
later in the paper. Before examining (in the next section) some of the different
types of actions that can be defined in epistemic planning problems, we briefly
touch upon the relation between epistemic planning and Dynamic Epistemic
Logic (DEL).

Note that in our framework for epistemic planning, our only take away from
DEL is event models and product updates. We do not make use of the full
DEL language, that is, epistemic logic extended with action modalities. Action
modalities are used in DEL to express the logical consequences of performing
actions encoded as event models. This means that we have a logical language
in which it is possible to represent and reason about actions and their dynamics.
In classical planning, on the other hand, the underlying logical language only
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describes static states of affairs. The dynamics is instead captured in a meta-
language. This meta-language describes actions in terms of how they modify
state descriptions given as formulas of the object language (cf. e.g. STRIPS).
In other words, in classical planning the object language describing states is
completely separate from the meta-language describing actions. We have here
taken a similar approach, where the object language for describing states is
simply standard epistemic logic, and the meta-language for describing actions
is event models.

It would of course also be possible in our framework to include action modali-
ties in the object language, that is, make it the full language of DEL. This would
allow us to include formulas with action modalities in pre- and post-conditions
of actions as well as in goal formulas. It would thus allow us to, for instance,
express goals such as “achieve a state in which it is (im)possible for agent j to
perform an action that will result in φ.” If we were to allow goals to include
statements about actions and their consequences, we would also like to be able
to state goals such as: “achieve a state in which it is (im)possible for agent j
to perform any sequence of actions that will result in φ.” This is not possible in
standard DEL, but requires us to introduce iteration of modalities. We leave
this for future work.

5 Action types

An action (E,Ed) is called purely epistemic if for all events e in D(E), the post-
condition of e is implied by the precondition, that is, |= pre(e) → post(e). A
purely epistemic action is one that does not make any factual (ontic) changes.
An important example of such actions are public announcements, which are the
purely epistemic atomic actions. Actions that are not purely epistemic are called
ontic. Along an orthogonal axis, we can distinguish between observable and
non-observable actions. An action (E,Ed) is called fully observable or public, if all
the accessibility relations of E are identities (that is, no two distinct events are
connected). If an action is not fully observable, it is called partially observable.

Let there be given a partially observable action ((E,Q, pre, post),Ed) and a group
of agents G ⊆ A. If for each i ∈ G, the accessibility relation Qi is the identity,
then the action is said to be group observable by G. If, in addition, for each
j ∈ A −G the accessibility relation Q j is the universal relation, then it is said to
be group observable by G alone. An action is said to be privately observable by an
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agent i, if the action is group observable by {i} alone. Note, that agents j ∈ A−G
will know that something has happened, though not precisely what.

An action ((E,Q, pre, post),Ed) is called globally deterministic if all preconditions
are mutually inconsistent, that is, |= pre(e) ∧ pre( f )→ ⊥ for all distinct e, f ∈ E,
in other words, only one event is possible for each world. It is called a sensing
action if:

• it is purely epistemic

• it is globally deterministic

• its preconditions cover the logical space, that is, |=
∨

e∈E pre(e)↔ >.

Sensing actions are called answers in Gerbrandy (2007), but the word "sensing"
is better in line with the taxonomy of the automated planning literature.

Example 3. Consider again the Sally-Ann example (Example 2), but now from
the perspective of Sally. From her perspective, the event that takes place while
she is out of the room is represented by the following local action:

a′1 =
e1 : 〈b,>〉 e2 : 〈b,¬b〉

i

This action is group observable by { j, k} alone (Ann and the observer). The product
update of s0 with a′1 gives Sally’s view on the world after the event has taken
place:

s0 ⊗ a′1 =
(w1, e1) : b (w1, e2) : ¬b

i

Sally now no longer knows whether the marble is in the basket or not, that is,
s0 ⊗ a′1 |= ¬Kib ∧ ¬Ki¬b. Sally might after this consider the action of entering
the room again and look into the basket, where the marble used to be. This is a
sensing action, where Sally will get to know whether the marble is in the basket
or not. The sensing action looks as follows, again from the viewpoint of Sally:

a′2 =
e1 : 〈b,>〉 e2 : 〈¬b,>〉

Note that both events are still designated. This is because Sally does not know
the outcome of the sensing action at the time she plans the action (see a more
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thorough discussion of this in the following section). Now, updating Sally’s
local state s0 ⊗ a′1 with this sensing action, we get:

s0 ⊗ a′1 ⊗ a′2 =
(w1, e1, e1) : b (w1, e2, e2) : ¬b

Now there is no longer an i-edge between the two worlds, because it represents
the situation after Sally has been sensing which of the two holds. We now have
that Sally knows whether the marble is in the basket, that is, s0 ⊗ a′1 ⊗ a′2 |=
Kib ∨ Ki¬b.

In the next section, we will look at how epistemic planning domains generalise
some well-known types of planning domains studied in automated planning.

6 Propositional planning and partial observability
in single-agent domains

Following Ghallab et al. (2004), a propositional planning domain (or set-theoretic
planning domain) on a finite set P of atomic propositions is a restricted state-
transition system Σ = (S,A, γ) satisfying:

• S = 2P.

• A is a set of pairs a = (precond(a), effects(a)), where both precond(a) and
effects(a) are finite sets of literals over P. An action a is said to be applicable
in a state if precond+(a) ⊆ s and precond−(a) ∩ s = ∅.1

• γ is defined by:

γ(s, a) =

(s − effects−(a)) ∪ effects+(a) if a is applicable in s
undefined otherwise

Note that propositional planning is decidable, as the set of states is finite.
Every propositional planning domain Σ = (S,A, γ) is equivalent to an epistemic
planning domain Σ′ = (S′,A′, γ′) defined as follows:

1For any set of literals L, L+ denotes the set of atoms in L and L− denotes the set of atoms whose
negations are in L.
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• S′ is the set of atomic states of LKC(P,Ag) where |A| = 1.

• A′ is the set that for each a ∈ A contains an atomic action (Ea,Qa, prea, posta)
given by Ea = {e}, Qa = {(e, e)}, pre =

∧
p∈precond+(a) p ∧

∧
p∈precond−(a) ¬p and

post =
∧

p∈effects+(a) p ∧
∧

p∈effects−(a) ¬p.

• γ′ is defined as above for general epistemic planning domains.

It is easy to check that Σ and Σ′ are indeed equivalent. This shows that propo-
sitional planning domains are a special case of epistemic planning domains,
and that the propositional planning domains can be precisely characterised as
those epistemic planning domains where all states and actions are atomic, and
where all actions have purely propositional preconditions. This should come
as no surprise, but is still worth noting, as it clarifies the exact link between
classical propositional planning and epistemic planning.

Epistemic planning domains also allow for a nice treatment of partial observabil-
ity. Assume we are still in a single-agent domain, that is |A| = 1. Let i denote
the element ofA. Assume we have a local action ((E,Q, pre, post),Ed) of agent i.
Let e, e′ ∈ Ed. We say that e and e′ are runtime indistinguishable if eQie′, otherwise
they are called runtime distinguishable or plan-time indistinguishable. The point is
this. Assume, for example, that the agent is facing a closed box which might
either be full (denoted by f ) or empty (denoted by ¬ f ), but he doesn’t know
which. Let c denote the proposition “the box is closed". Then his local state is
this:

s0 =

w1 : f ∧ c

w2 : ¬ f ∧ c
i

Now assume he considers the action of opening the box to see its content. At
plan-time (when he is still computing the plan), he only knows that the effect of
opening the box will be that he either learns f or learns¬ f , but not which. So the
two outcomes are plan-time indistinguishable to him. However, at run-time
when actually carrying out the action, he will know which of the two is the case.
We can model this by the following local action:

openBox =
e1 : 〈 f ,¬c〉 e2 : 〈¬ f ,¬c〉
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Updating the state above with this action we then get:

s0 ⊗ openBox =

(w1, e1) : f ∧ ¬c

(w2, e2) : ¬ f ∧ ¬c

The state after the execution only differs from the state before by the substitution
of ¬c for c (opening the box) and the removal of the edge between the f -world
and the ¬ f -world. This means that after the action the agent will be able to
distinguish between f and ¬ f . However, as the agent at plan time still doesn’t
know which it will be, we need to keep both worlds in the set of distinguished
worlds. This explains the need of the set of distinguished worlds, Wd, and the
need of a special definition of bisimulation between states.

Constructing actions that combine runtime indistinguishable events with plan-
time indistinguishable events allows us to model partial observability: if two
possible outcomes (events) will be indistinguishable even when the action is
performed at runtime (no observation), then they should be in the same Qi
equivalence class; if the two possible outcomes will be distinguishable when the
action is performed (observable), then they should be in distinct Qi equivalence
classes. And, obviously, if the exact outcome is known already at plan-time,
the action will contain only a single event representing this outcome. Note that
this approach to partial observability is consistent with the definition of fully
observable actions introduced earlier. According to this definition, a single-agent
action is fully observable if and only if its accessibility relation is the identity,
that is, all pairs of events are runtime distinguishable. The articles Bacchus and
Petrick (1998), Petrick and Bacchus (2002) argue in favour of a similar approach
to partial observability.

As it can easily be seen, in the single-agent case, each local state can—modulo
bisimulation—be uniquely described by a set of atomic actions and a descrip-
tion of which of the actions are runtime distinguishable. Thus it seems fair to
say that epistemic planning with one agent captures exactly what is involved in
propositional planning in (nondeterministic) domains with partial observabil-
ity.

Example 4. Continuing the example with the agent and the box, consider the
following action:

emptyBox =
e1 : 〈 f ∧ ¬c,¬ f 〉 e2 : 〈¬ f ,>〉
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This is an action for emptying the box. Note that it distinguishes between two
cases: one covering the case where the box is full and open, and another cov-
ering the case where it’s already empty. Note that the action is only applicable
when the agent knows that either the box is open or already empty. We now
get:

s0 ⊗ openBox ⊗ emptyBox =

(w1, e1, e1) : ¬ f ∧ ¬c

(w2, e2, e2) : ¬ f ∧ ¬c

Thus a solution to the planning problem of satisfying the goal formula¬ f given
the initial state s0 would be openBox,EmptyBox. Note that the branching that
usually takes place when planning in partially observable domains like this
is being internalised in the state descriptions. Note also that if we take the
bisimulation contraction of the state s0 ⊗ openBox ⊗ emptyBox, we get an atomic
state. Thus if we want to plan further, e.g. close the box again, we can now
work with atomic states.

We will now prove that single-agent epistemic planning is decidable, that is,
given any epistemic planning problem we can decide whether a plan exists or
not. In the proof we actually show something slightly stronger, since we also
show how to construct a plan if one exists.

Theorem 1. Single-agent epistemic planning is decidable.

Proof. Given any single-agent epistemic planning problem, we can perform a
breadth-first exploration of the state space. However, after computing each
new state, we make sure to replace it by its bisimulation contraction, which
can be computed in linear time Dovier et al. (2001). Now it suffices to prove
that when |A| = 1, there are only finitely many distinct bisimulation minimal
states ofLKC(P,Ag) (recall that P is always assumed to be finite). Consider first
connected states of LKC(P,Ag), that is, states with only one equivalence class.
Since the accessibility relation is an equivalence relation, there can be no two
worlds satisfying the same atomic propositions in a bisimulation minimal state
(the two worlds would be bisimilar). Thus all bisimulation minimal connected
states are substates of the following state (up to isomorphism):2

((2P, 2P
× 2P,V), 2P),where V(p) = {w | p ∈ w}.

2A state ((W′,R′,V′),W′d) is called a substate of a state ((W,R,V),Wd) if (W′,R′,V′) is a submodel
of (W,R,V) and W′d = Wd ∩W′.
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There can obviously only be finitely many such substates (up to isomorphism).
Now consider the case of non-connected states. Note that we can not immedi-
ately reduce these to connected states due to the way we defined bisimulations
on states. In any case, each equivalence class in the state must again be a sub-
state of the state defined above. Furthermore, there can be no two bisimilar
equivalence classes, by bisimulation minimality. Thus, there can also only be
finitely many bisimulation minimal non-connected states (up to isomorphism).
This is the required conclusion. �

In this section we have only been considering the single-agent case, but obvi-
ously the multi-agent case is the most interesting, and, as we will see next, also
far more challenging.

7 Multi-agent epistemic planning

We will start this section by giving an example of a multi-agent epistemic
planning domain inspired by the well-known Byzantine Agreement problem (or
coordinated attack problem) Fagin et al. (1995).

Example 5. There are three logicians, a philosopher (i), a computer scientist ( j),
and a mathematician (k). They work at the same university, so usually they go
together in the same car, allowing them to discuss logic on the way. One day at
work it happens that agent i suddenly recalls that he forgot to turn off the lights
of the car, so that the battery is now flat. Let l denote the proposition “the lights
are on" and let b denote the proposition “the battery is flat". A possible local
state describing agent i’s internal view of the world immediately after having
realised that the light were left on could then be:

s0 =

w1 : l ∧ b

w2 : ¬l ∧ ¬b

w3 : ¬l ∧ b

j, k

j, k

Recall that, by convention, we only show the reflexive transitive reduction of
the state, so there is an implicit j, k-edge from w1 to w3. In this local state, it is
assumed to be common knowledge that j and k are still unaware of whether
the lights are on or not. The fact that there is no world labelled l ∧ ¬b means
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that it is also common knowledge that if the lights are on, then the battery is
flat, that is, l→ b.

Assume further, to keep the example manageable (and because leaving the
lights on happens more often than the three logicians would wish to think
about), that it is common knowledge that from now on agent i can repeatedly
only choose between the following three actions:

1. tell agent j that l:

2. go to the car and turn the lights off if they are still on;

3. tell agent k that l.

Actions 1 and 3 are both announcement of l, so they can both be expressed
by the event 〈l,>〉 . Action 2 is an ontic action that can be expressed by

the event 〈>,¬l〉 . Agent k cannot distinguish 1 from 2 and agent j cannot
distinguish 2 from 3. So we obtain an event model E looking like this:

E =
e1 : 〈l,>〉 e2 : 〈>,¬l〉 e3 : 〈l,>〉

k j

The three local actions available to agent i are then (E, {e1}), (E, {e2}) and (E, {e3})
(note that agent i has full observability). The three possible actions are modelled
by the same event model, only differing in the designated set. This is often
the case in multi-agent epistemic planning domains, and it means that the
branching that usually takes place in the search for a plan is here internalised in
a single epistemic action, and the branching factor of the plan search becomes
1 (if we make sure to label worlds with their update history to be able to keep
track of the designated sets). Of course, what you pay for this is that the
epistemic models might grow exponentially in size as you move down through
the state space, but this is essentially no different from classical planning, where
the number of reachable states can grow exponentially with the depth.

Now consider the product update of the initial state s0 with the local action
a = (E, {e1, e2, e3}), where we have chosen all three events as designated to
postpone the decision of which to pick (corresponds to nondeterministic, but



Thomas Bolander and Mikkel Birkegaard Andersen 75

observable, choice, cf. Section 5):

s0 ⊗ a =

(w1, e1) : l ∧ b (w1, e2) : ¬l ∧ b (w1, e3) : l ∧ b
k j

(w2, e2) : ¬l ∧ ¬b
j, k

(w3, e2) : ¬l ∧ b
j, k

It can be seen that if agent i e.g. chooses to do e1 (tell l to j), then afterward
K jb and ¬Kkb (since these formulas hold in the world (w1, e1)). Now consider a
second update with the action a:

s ⊗ a ⊗ a =

(w1, e1, e1) : l ∧ b (w1, e1, e2) : ¬l ∧ b (w1, e1, e3) : l ∧ b
k j

(w1, e2, e2) : ¬l ∧ b
k

(w1, e3, e1) : l ∧ b (w1, e3, e2) : ¬l ∧ b
k

j

(w1, e3, e3) : l ∧ b
j

(w2, e2, e2) : ¬l ∧ ¬b

j, k

(w3, e2, e2) : ¬l ∧ b
j, k

If agent i first chooses e1 and then e3, the designated world (actual world) will
become (w1, e1, e3). We here have KkK jb but not K jKkK jb. It might at first seem
intuitively puzzling that k knows that j knows the battery to be flat after i having
performed only the action sequence e1, e3 (tell l to j, tell l to k). To explain the
intuition, first note that by choice of event model, whenever agent i performs
an action, all three agents will “know” that one of e1, e2 or e3 has happened, but
not necessarily which. Thus after i having performed first e1 and then e3, we
can intuitively think of agent k as being able to perform the following line of
reasoning: “Agent i’s second action was to tell me l. Thus the lights must still
be on. Therefore agent i’s first action can not have been to turn off the lights.
Since his first action wasn’t to let me know about the lights either, his first action
must have been to let agent j know that the lights are on. From this, j must
have been able to conclude that the battery is flat." This reasoning leads k to
conclude that j knows b (no sequence of actions can change the truth value of
b). This provides the informal intuition behind why KkK jb holds at (w1, e1, e3).
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It can easily be shown that in general in the world

(w1,

2(n+1)︷                   ︸︸                   ︷
e1, e3, e1, e3, . . . , e1, e3)

of the state s0 ⊗ a2(n+1) we have (KkK j)n+1b but not K j(KkK j)n+1b. It’s a bit like an
inverse Muddy Children puzzle: instead of iteratively decreasing the depth of
the agents’ uncertainty, it is iteratively increased. This is similar to the situation
obtained in the Byzantine Agreement problem. From this we can infer that there
is no upper bound on the size of the models in the chain s0⊗a, s0⊗a2, s0⊗a3, . . . ,
not even if we take the bisimulation contractions of the states. Similar to
Byzantine Agreement, it is also easy to infer that no matter which sequence
of choices agent i makes, it will never become common knowledge that the
battery is flat (there will always be exactly one world in which ¬l ∧ ¬b holds,
and this world is accessible from all other worlds by some path).

The example we just gave made use of ontic actions. However, in Sadzik (2006)
it is shown that even allowing only purely epistemic actions with propositional
preconditions, we can still get iterated updates of arbitrary size (using a variant
of the coordinated attack problem). From the fact that in multi-agent epistemic
planning problems there is in general no upper bound on the size of the reach-
able epistemic states, one might fear that planning is not even decidable in the
general case. Indeed, this is exactly the case, as we will now show.

Theorem 2. Multi-agent epistemic planning is undecidable (even without common
knowledge).

Proof. Undecidability here means that there is no decision procedure that for
arbitrary multi-agent epistemic planning problems can determine whether a
solution exists or not. We give the proof by showing that for any Turing
machine M we can construct an epistemic planning problem PM that has a
solution if and only if M halts. As the halting problem is undecidable, so is
epistemic planning. The underlying idea is this. Given any Turing machine
M, we can encode its configurations (state, tape content and head position) as
epistemic models—models containing exactly one world per non-blank tape
cell. Furthermore, we can encode the possible transitions of M as epistemic
actions. In this way, we achieve that any run of M can be simulated by a
sequence of epistemic actions applied to the epistemic state representing the
initial configuration of M. Suppose M has only a single halting state which we
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represent in the epistemic language by a special propositional symbol q f . We
can then conclude that M halts if and only if there is a sequence of epistemic
actions leading from the (representation of the) initial epistemic state to an
epistemic state in which q f holds in one of the worlds. In this way, the Turing
machine halts if and only if there is a solution to the planning problem in which
the goal is that q f should hold in one of the worlds. This gives us the required
planning problem PM that has a solution if and only if M halts.

We now proceed with the details. Let there be given a deterministic Turing
machine M with two-way infinite tape, and states q0, q1, . . . , q f , where q0 is the
initial state and q f is the (only) halting state. The set of tape symbols is some
finite set Γ including a blank symbol, b. We will now show how to construct
an epistemic planning problem in which the Turing machine’s configurations
(state, tape content and head position) are encoded as epistemic states, and the
transitions of the Turing machine are encoded as epistemic actions. First we
will make use of common knowledge, but later we will show how the role of
common knowledge can be replaced by the introduction of an additional agent.
We build the planning problem on the languageLKC({q0, . . . , q f }∪Γ∪{ri, r j}, {i, j}).

Assume we are given a configuration of M with instantaneous description (ID)

x1 · · · xn−2xn−1qsxnxn+1 · · · xm,

where qs ∈ {q0, . . . , q f } and all xi ∈ Γ (see Hopcroft et al. (2006) for details
on Turing machines and instantaneous descriptions). Then this instantaneous
description will be encoded as either of the following local states:

x1 xn−2 xn−1
i

qs ∧ xn ∧ ri

j
xn+1

i
xn+2

j
xm

(1)

x1 xn−2 xn−1
j

qs ∧ xn ∧ r j
i

xn+1
j

xn+2
i

xm

(2)

We call these local states the states representing the ID. There is exactly one world
to represent each of the non-blank tape cells of the Turing machine, and this
world is labelled by the symbol representing the content of the cell. In addition,
the world representing the current tape cell is labelled by two additional atomic
propositions: the name of the current state (qs) and either the proposition ri or
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the proposition r j. The purpose of the propositions ri and r j will be explained
in a moment. First note the alternation of i- and j-edges in these models. This is
to ensure that the local states represent linear structures where each world has
exactly one left and one right neighbour. If instead all edges were i-edges, all
pairs of worlds would be each others neighbours, as all accessibility relations
are assumed to be equivalence relations. Thus, if all edges were i-edges, we
would be representing a set rather than a linear structure. The linear structure is
required, since this is the only way we can encode the tape of a Turing machine.
This also indicates why the current proof wouldn’t work in the single-agent
case, at least as long as we insist on using only equivalence classes, that is, insist
on representing knowledge.

Now back to the propositions ri and r j. The purpose of ri and r j is to mark which
indistinguishability relation (either i or j) will lead to the tape cell to the right
of the current one (the “next” tape cell). If ri holds at the world representing
the cell currently scanned, it means that the tape cell to the right is represented
by the neighbouring world reached by following the i-edge—and vice versa for
r j. Since in 1, ri holds at the world representing the current tape cell, it means
that the world representing the tape cell to the right is the one labelled xn+1. If
we replaced ri by r j in 1, it would correspond to changing the direction of the
tape, and the right neighbour would instead become xn−1.

The initial configuration of M (empty tape) will be represented by the singleton
local state

s0 = q0 ∧ b ∧ ri

This will be the initial state of our planning problem PM. In the planning
problem, we put two (symmetric) local actions for each of the transitions of the
Turing machine. We will only show the local actions for transitions of the form

δ(qs, xn) = (qt, y,R),where xn , y, (3)

as transitions of the form δ(qs, xn) = (qt, y,L) and transitions with xn = y can be
handled similarly. There are two local actions corresponding to (3), where one
is obtained from the other by interchanging i with j everywhere. We thus only
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show one of the two:

e1 : 〈¬qs ∧ Ki¬qs ∧ ¬r j,>〉

e2 : 〈qs ∧ xn ∧ ri ∧ ¬r j,¬qs ∧ ¬xn ∧ ¬ri ∧ y〉

e3 : 〈¬qs ∧ ¬Ki¬qs ∧ ¬r j, qt ∧ r j〉

e4 : 〈qs ∧ xn ∧ ri ∧ Kiqs ∧ ¬r j,¬qs ∧ ¬xn ∧ ¬ri ∧ qt ∧ b ∧ r j〉

i, j

i
i (4)

We call these local actions the actions representing the transitions of the Turing
machine. Suppose M can perform a move from an instantaneous description
ID1 to an instantaneous description ID2, and let a be the local action representing
the transition used in the move. The point is now that if s is a local state
representing ID1, then the product update s⊗ a will be representing ID2. Before
providing the details, we will try to explain the intuition behind the construction
of the local actions, and how they can simulate the moves of the Turing machine.

Let a denote an action of the form shown above, representing a transition of
type (3). Let s denote a local state representing an instantaneous description
of M, that is, s is on the form (1) or (2). Suppose a is applicable in the local
state s. Then, by the applicability condition (Definition 3.4), s can only be of
the form (1), as none of the events of a have preconditions that satisfy r j. Now
consider what happens when a is applied to s, that is, when we form the product
update s ⊗ a. We denote the world of s in which qs holds by wc. The world wc
represents the current tape cell of the Turing machine (before the update). We
now consider how the events e1, . . . , e4 of a affect the product update.

Event e1 has its precondition satisfied in all worlds of s except wc (because of
the conjunct ¬qs) and its right neighbour (because of the conjunct Ki¬qs). Since
e1 has an empty postcondition, this implies that in s ⊗ a all worlds of s except
wc and its right neighbour will be kept unchanged (paired with e1). In other
words, the tape excluding the current cell and its right neighbour remain the
same after the update, as it should.

Event e2 has its precondition satisfied in wc and this world only. Its postcon-
dition deletes qs, x, and ri, and instead adds y. Thus, event e2 makes sure to
change the symbol at the current tape cell from x to y, and remove the head
from this cell.

Event e3 has its precondition satisfied in the right neighbour of wc, if such a
right neighbour exists in s. In case it exists, qt and r j will be added as conjuncts
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to it. Thus e3 makes sure to place the head at the right neighbour of the previous
current cell, and to update the state from qs to qt.

In case the right neighbour of wc doesn’t exist, the action a makes sure to
construct such a right neighbour. This is done via the event e4. In case wc has
no right neighbour, the precondition of e4 will be satisified in wc. This implies
that the product update s ⊗ a will contain both a world (wc, e2) and a world
(wc, e4). The first of these is the “updated version” of wc, whereas (wc, e4) is a
“new” world. This new world is accessible from (wc, e2) by an i-edge. It is the
new right neighbour of wc. The postcondition of e4 makes sure that qt ∧ b ∧ r j
will hold in this new right neighbour. Thus e4 makes sure to construct a new
right neighbour cell (if needed), make this the new current cell, put a blank
symbol into it, and update the state.

Note that given any state s, either it will contain a world satisfying pre(e3) or a
world satisfying pre(e4), but not both. There will be a world satisfying pre(e3) if
the head stays within the previously used part of the tape when the transition
represented by a is executed, otherwise there will be a world satisfying pre(e4).

We can now finalise the proof. The set of local actions of the planning problem
PM is taken to be the set of local actions representing the transitions of M.
Now suppose there is a move of the Turing machine from an instantaneous
description ID1 to an instantaneous description ID2. We then need to prove
that if s1 is a local state representing ID1, then for all actions a applicable in
s1, the local state s1 ⊗ a represents ID2. We need to split the proof into cases,
distinguishing the cases where the tape head moves into the previously unused
part of the tape, and those where it doesn’t. We will only cover one of the cases
here, as they are largely similar. Let us consider the most tricky case, where
the tape gets extended. So assume ID1 is an instantaneous description of the
following form:

ID1 = x1 · · · xn−2xn−1qsxn,

and the move performed is a result of the following transition:

δ(qs, xn) = (qt, y,R),where xn , y. (5)

The move will then result in the following instantaneous description:

ID2 = x1 · · · xn−2xn−1yqtb.

There are two local states that can represent ID1, but they are symmetric, so we
can without loss of generality assume that the local state s1 representing ID1 is
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the following:

s1 =
w1 : x1 wn−2 : xn−2 wn−1 : xn−1

i
wn : xn ∧ ri ∧ qs

j

Now, the only actions applicable in this state are actions containing at least one
event with its preconditions being satisfied by xn ∧ ri ∧ qs. This implies that the
only action applicable is the one representing the transition (5) (recall that the
Turing machine is deterministic). This is the action shown in (4). Taking the
product update of s1 with the action (4), we get the following local state s2:

s2 =

(w1, e1) : x1 (wn−2, e1) : xn−2

(wn−1, e1) : xn−1

i
(wn, e2) : y

j
(wn, e4) : qt ∧ r j ∧ b

i

The reader is encouraged to check that this is indeed the correct product update
of s1 with the action (4). Action s2 is immediately seen to be a representation of
the instantaneous description ID2, as required.

It now follows that if a1, a2, . . . is any sequence of actions in PM where each ai
is applicable in s0 ⊗ a1 ⊗ · · · ⊗ ai−1, then the sequence s0, s0 ⊗ a1, s0 ⊗ a1 ⊗ a2, . . .
will be a representation of the sequence of the moves of the Turing machine M.
Now choose the goal formula of PM to be ¬C¬q f . This formula expresses that
there is world accessible by some path at which q f holds. It holds exactly in
those epistemic states representing halting states of the Turing machine. Thus
we now have that the planning problem has a solution if and only if M halts.
This is the required result.

The proof just given makes use of common knowledge. We can do away
with common knowledge by introducing a third agent, k, instead. The idea is
quite simple: whenever there is an i- or j-edge in any of the states or actions
introduced above, we also add a k-edge. Since all accessibility relations are
equivalence relations, this means that if a world of a state is accessible by
any path, then it is accessible by a single k-edge. Thus we can replace the
goal formula ¬C¬q f by the formula ¬Kk¬q f . The rest of the proof remains
unchanged. Whether epistemic planning with only two agents and no common
knowledge is decidable or not is an open problem. �

There seem to be no direct equivalents of this result in the existing literature,
although there are obviously some connections to the non-stabilisation results of
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iterated updates over various types of purely epistemic actions in Sadzik (2006),
and to the undecidability of the logic of iterated public announcements in Miller
and Moss (2005). The result above is of course not encouraging for epistemic
planning in the general case, however, semi-decidability can sometimes be
sufficient for a planner, as a planner embedded in an agent architecture (e.g.
a BDI agent) would usually in any case rely on being timed out if a plan is
not found within a reasonable time. From a positive perspective, this result
shows that we have been introducing a very expressive planning framework,
more expressive than previous frameworks suggested for planning based on
epistemic logic van der Hoek and Wooldridge (2002), Petrick and Bacchus
(2002) (since these other frameworks are known to be decidable, and ours is
only semi-decidable in the most general case). In any case, an interesting
problem of course becomes to find fragments of epistemic planning that are
decidable. We already saw one such fragment, the single-agent case. Another
decidable fragment is the one that only allows globally deterministic actions
(cf. Section 5). This covers e.g. public announcements, atomic ontic actions,
and sensing actions. That this fragment is decidable follows trivially from the
fact that updates with actions having mutually inconsistent preconditions can
never increase the model size. In Löwe et al. (2010), it is shown that interesting
planning problems can be expressed even within these restrictived fragments.
A more thorough investigation of which fragments of multi-agent epistemic
planning are decidable is left for future work.

8 Related and future work

Work on using Dynamic Epistemic Logic in planning was recently indepen-
dently initiated by Löwe, Pacuit and Witzel Löwe et al. (2010). Their work
however differs from ours in a number of ways. They only consider purely
epistemic actions (no postconditions), but on the other hand they allow arbi-
trary accessibility relations in models. Both accounts can surely be extended
to cover both ontic actions and arbitrary accessibility relations with a bit of
extra work. In Löwe et al. (2010), a restricted planning fragment is shown to be
decidable by giving an upper bound on model size, but general algorithms and
decidability issues are not covered. Our work also differs in allowing the inter-
nal perspective on planning, where the epistemic models represent the planning
agent’s internal view of the world. We have shown that this gives a nice and
natural way of dealing with partial observability in planning (even relevant in
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the single-agent case). The closest relative to our idea of epistemic models from
an internal perspective appears to be the recent work by Aucher Aucher (2010),
however, his approach is technically slightly different.

Another line of research considers planning as model checking. The idea is here
to represent the state space of the planning problem as a model in a suitable
temporal logic, and then recast the planning problem as a model checking
problem (model checking of a formula expressing reachability of the goal state).
The article van der Hoek and Wooldridge (2002) considers epistemic planning
from this perspective. It however assumes that the state space is already given,
and that it is finite. Thus, it doesn’t consider the problem of how to express
actions in a convenient formalism, and it doesn’t allow the expressiveness
we have in our formalism. In this approach, the treatment of epistemic and
ontic change is similar—either way it is just a next step in a run, and how the
valuation between different point changes is not essential to define or describe
the transition van Ditmarsch and Kooi (2008). Note also that tractable in the
article van der Hoek and Wooldridge (2002) refers to the fact that the model
checking algorithm is polynomial in the size of the model, that is, in the size of
the entire state space. Usually the complexity of planning problems is stated
as functions of the size of the descriptions of the available actions, and from
this perspective even classical propositional planning is pspace-complete. Of
further interest along this axis of inquiry is Hans van Ditmarsch and Ruan
(2011) where formulas in Dynamic Epistemic Logic are model checked by an
explicit construction of the corresponding interpreted system.

Currently, the authors are involved in work on a logic of branching plans, clearly
defining what it means for a plan to be a solution to a particular problem, by
way of reduction axioms to DEL. This allows plans validation in standard DEL
terms. Parallel to this work, a beginning algorithm for epistemic planning is
being developed, making concrete the process of plan synthesis. We are also
looking into using plausibility models (like those of Baltag and Smets (2007)),
rather than purely epistemic models for planning. This would allow a planning
agent to focus first on finding a plan that works for those outcomes which are
found most plausible, rather than having to take all possibilities into account.
Particularly in multi-agent scenarios, this may vital if planning is to be feasible.

Further work includes generalising the framework to arbitrary accessibility re-
lations, in particular for representing belief rather than knowledge. We would
also like to carry through a more thorough investigation of the decidable frag-
ments of epistemic planning. Finally, we wish to develop languages suitable
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for describing local actions in a form which is more manageable and closer
to the traditional planning languages like STRIPS. Such languages should not
necessarily possess the full expressivity of local actions, but should be tailored
for expressing a non-trivial subset relevant for actual planning problems in
multi-agent domains (e.g. with different predefined action types for dealing
with sensing, announcements, and ontic change, and parameters for specifying
the observers of the action).
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Abstract

The iterated regret minimization solution exhibits good qualitative behav-
ior, as observed in experiments in many games that have proved prob-
lematic for Nash Equilibrium (NE) solutions. So, it is interesting to explore
epistemic characterizations unearthing players’ rationality for an algorithm
of Iterated Eliminations Regret-dominated Strategy (IERS) related to the
solution. In this paper, firstly, based on dynamic epistemic logic (Pub-
lic Announcement Logic and Plausible Belief Revision Logic), we develop
two epistemic regret-game models, and define a new rationality. Then,
we characterize the Iterated Elimination Regret-Dominated procedure as a
process of dynamic information exchange by taking the players’ rational-
ity, respectively, as a proper announcement assertion and a radical upgrade
proposition. Thereby, we provide a new perspective on the outcomes of
the IERS algorithm.

1 Introduction

Deviations between behavioral rationality and Bayesian rationality in some
games will appear if we set the players’ rationality as a precondition of
game analysis: Bayesian rationality may predict outcomes (Nash Equilibria)
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that are inconsistent with empirical observations in these games (cf.McKelvey
(1992),Basu (2007)). One of the main issues in the study of rational behavior of
players in game theory has been to explore the causes of such deviations and
to provide reasonable epistemic foundations for the algorithms related to the
deviations. This study has recently spread to other subject fields (cf. Bernheim
(1984),David (1984)).

In Renou and Schlag (2011) and Halpern and Pass (2012), a new iterated al-
gorithm has been proposed named Iterated Eliminations Regret-dominated
Strategy (IERS). It is one way to capture the intuition that a player wants to do
well no matter what the other players do. With the algorithm, firstly, one player
needs to figure out the maximal regret value of each of his strategies accord-
ing to some rules, given that the players are uncertain about their opponents’
strategies(i.e., players regard any strategy of their opponents is possible). Then
strategies are chosen corresponding to a minimum regret value after comparing
these maximum regret values, and a new subgame is formed with the strategies
chosen at the previous step, repeating the process in the new subgame until
the subgame no longer changes. Halpern etc. in Halpern and Pass (2012) take
the strategy profiles of the final subgame obtained as new Game Solutions(GS),
Iterated Regret Minimization (IRM). They proved that the new solutions ex-
hibit the same behavior as that observed in experiments in real life for many
famous games that have proved problematic for NE, including the Traveler’s
Dilemma, the Centipede Game, and Nash Bargaining. The game solution and
its algorithm, IERS, are particularly appealing when considering inexperienced
but intelligent players that play a one-shot game for the first time. For example,
in the Traveler’s Dilemma, given a penalty is 2, minimax regret equilibrium is
precisely (97, 97), and agrees well with the experimental results in Becker et al.
(2005).

Accordingly, it becomes interesting to explore the epistemic characterization
unearthing players’ rationality for the algorithm IERS. Halpern etc. in Halpern
and Pass (2012) provided an epistemic characterization for IERS based on
an epistemic logic. However, in their characterization, an epistemic paradox
(cf.Halpern and Pass (2012)) arise so that they had to assign successively lower
probabilities to higher orders of rationality, and to weaken a basic premise
in game theory(i.e., “Rationality is common knowledge among players") by
insisting that the higher levels of belief regarding other players’ rationality
do not involve common knowledge or common belief. However, rationality
of common knowledge as a basic premise is recorded in almost all of game
textbooks, and supported by many game experts and researchers (cf. Au-
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mann (1997)Rubinstein (1994)). Therefore, inspired by van Benthem (2011),van
Benthem (2007) and Bonanno (2008), we construct two regret epistemic game
models for different dynamic epistemic analyses of the IERS algorithm. Based
on the epistemic models, we describe an iterated elimination regret-dominated
procedure as a process of dynamic information exchange by defining play-
ers’ rationality, respectively, as a proper announcement assertion and a radical
upgrade proposition. Then we show that the two different interactive epis-
temic results among players are both line with the outcomes of IERS. We thus
provide a new characterization of the algorithm IERS in a simpler and more
intuitive way. The characterization avoids the paradox in the IERS algorithm
and retains a classic rule in game theory, namely, that rationality should be
common knowledge among players. Moreover, we can construct a uniform
frame to analyze and explore rationality in iterated algorithms from players’
regret perspective, such as restating the concepts of Weak Rationality (WR) and
SR (Strong Rationality) in van Benthem (2007) based on our regret-epistemic
game model. We thus offer a new perspective to explore logic characterizations
for algorithms of Iterated Elimination Strictly Dominated strategies (IESD) and
algorithms of Rationalizability corresponding to Bernheims version.

The rest of this paper is organized as follows. The preliminaries about game
theory and dynamic epistemic logic are contained in Section 2. Section 3 - 5
are the heart of the paper: we construct two regret epistemic game models
based on the given games, after providing semantic interpretations for those
propositions related to a game, especially, giving the semantic definition of the
proposition “a player is rational" at a world in these models, we study the game
solutions in the context of the rational players with a soft information upgrade
and hard information update, and prove a consistency between outcomes of
the algorithm IERS and the results from players’ public announcement and dy-
namic upgrading with the rationality. In Section 6, we discuss related approach,
and conclude in Section 7.

2 Preliminaries

Recently researchers systematically the iterated minimax regret algorithm and
its solution (cf.Renou and Schlag (2011), Renou and Schlag (2010), Halpern and
Pass (2012)and Stoye (2011) etc.). Originally, the idea of minimax regret was
developed in decision theory by Savage( cf. L.J.Savage (1951)). Basically his
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approach is to minimize the worst-case regret. The aim of this is to perform as
closely as possible to the optimal course. Since the minimax criterion applied
here is to the regret rather than to the payoff itself, it is not as pessimistic as
the ordinary minimax approach. In finite pure strategies context, we choose a
simple version to keep the general proposal as simple as possible, and make the
dynamic epistemic logic analysis for the algorithm itself to be the key feature. 1

Definition 2.1. Let G = 〈N, {Si}i∈N, {ui}i∈N〉 be a strategic form game. A regret
game of G is a quintuple G′ = 〈N, {Si}i∈N, {rei}i∈N〉where {rei}i∈N stands for player
i’s ex-post regret associated with any profile of pure actions (si, s−i) as rei(si, s−i) =
max{ui(s′i , s−i), s′i ∈ Si} − ui(si, s−i), and let rei(si) = max{rei(si, s−i),∀s−i ∈ Si)} states
the regret value of choosing si for player i.

Definition 2.2. Given the game G = 〈N, {Si}i∈N, {rei}i∈N〉, let si and s′i be available
strategies for player i, and set S′

−i ⊆ S−i, then si is regret-dominated by s′i on
S′
−i if rei(s′i ) < rei(si). And for set S′ ⊆ S, strategy s′i ∈ Si is unregrettable with

respect to S′i , if no strategy in S′i regret-dominates s′i on S′
−i. In additional, a

regret-dominated strategy si is also called regrettable for a player i.

Definition 2.3. The procedure of Iterated Eliminations Regret-dominated
Strategies (IERS) is as follows. Given a regret game G′ = 〈N, {Si}i∈N, {rei}i∈N〉, let
IUD respectively be the se t of iterated regret-undominated strategies of the G′

recursively defined as follows:
IUD =

∏
i∈N IUDi, where IUDi =

⋂
m>0 IUDm

i , with IUD0
i = Si and RD0

i =

{si ∈ IUD0
i | si is regrettable with respect to IUD0

i in G′}. For m > 1, IUDm
i =

IUDm−1
i \ RDm−1

i , where, RDm
i = {si ∈ IUDm

i | si} is regrettable with respect to
IUDm

i in a subgame G′m.2.

It is assumed that at each stage all dominated strategies are simultaneously
deleted in Definition 2.3. In contrast to most equilibrium concepts, IERS yields
a rectangular set of strategy profiles, i.e., a Cartesian product of sets. This IERS
procedure is illustrated in Figure 1.

IUD0
1 = {X,Y,Z},RD0

1 = {X}, IUD0
2 = {a, b, c},RD0

2 = {b};

IUD1
1 = {Y,Z},RD1

1 = ∅, IUD1
2 = {a, c},RD1

2 = {c};

1Most of our conclusions in this paper can be extended to mixed strategy context. However, it
is beyond the scope of this paper. We will explore the problem in our future works

2G′m is a subgame of G′, in which Si = IUDm
i and G′0 = G′
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Figure 1: IERS procedure

IUD2
1 = {Y,Z},RD2

1 = {Y}, IUD2
2 = {a} = IUD2,RD2

2 = ∅;

IUD3
1 = {Z} = IUD1.

Thus, IUD = {(Z, a)}.

IUD is not consistent with NE in many games, but as we have known that tra-
ditional game-theoretic solution concepts (most notably NE) predict outcomes
that are inconsistent with empirical observations, that is the main reason why
researchers introduce the algorithms of minimax regret into the game theory.

3 Public Announcement Logic and Plausible Belief
Revision Logic

Exploring update or upgrade scenarios for scenarios of virtual communication
in games, in a dynamic epistemic logic for changing game models, has de-
veloped over the past decade (cf. Baltag et al. (1999), Ditmarsch et al. (2007),
van Benthem (1996), van Benthem (2011) etc.). As a basis for most dynamic
epistemic logics, Public Announcement Logic (PAL) can deal with the change
of information arising from the action of public announcement by adding a
dynamic modality [ϕ] to standard epistemic logics3, where [ϕ]ψ means after a
truthful public announcement of ϕ, formula ψ holds. Its truth condition is that:

M,w � [ϕ]ψ iff M,w � ϕ implies M |ϕ,w � ψ.4

3We assume the reader is familiar with Epistemic Logics.( for example, the concept of common
knowledge and the prosperities of various epistemic logic systems(S5,KD45 etc.). The reader can
consult the recent books and papers (cf. van Benthem (2011)Halpern (2003)) for details.

4M |ϕ is a submodel of M in which ϕ is true.
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With this language, we can say things like [!ϕ]Kiψ: after a truthful public an-
nouncement of ϕ, agent i knows ψ, or [ϕ]CNϕ: after its announcement, ϕ has become
common knowledge in the group N of agents and so on.

In van Benthem (2007), van Benthem stated the issue of “an announcement
limit" has close connections with the equilibria solved by algorithms of those
iterated elimination dominated strategies, he showed that for any model M we
can keep announcing ϕ, retaining just those worlds where ϕ holds, This yields
a sequence of nested decreasing sets, which must stop in finite models, i.e.,
](ϕ,M):

Definition 3.1. For any model M and formula ϕ, the announcement limit
](ϕ,M) is the first submodel in the repeated announcement sequence where
announcing ϕ has no further effect.5.

Public announcements or observations [ϕ] of true propositions ϕ yield “hard
information" that changes the current model irrevocably, discarding worlds that
fail to satisfy [ϕ]. This is a “hard" information attitude that changes irrevocably
what we know. Alternatively, we can consider an agent aware of being subject
to continuous belief changes, and taking incoming signals in a softer manner,
without throwing away options forever. We call this update ’soft’ information
attitude. To describe this, we can use worlds with plausibility orderings (�i)
supporting dynamic updates.

Here, we start with the simplest model of beliefs: a set of states where each
world is associated with the single plausibility orderings, (w �i v) that says
"player i considers world v at least as plausible as w, we set Min�i (X) = {v ∈W |
w �i v for all w ∈ X} and static models for this setting are easily defined6:

Definition 3.2. A simple plausibility models are structures M = (W, {Rare
i }i∈N, {�i

}i∈N,V), where (W, {Rare
i }i∈N,V) is an epistemic model, and for each i ∈ N,�i is a

well-founded reflexive and transitive relation on W satisfying, for all w, v ∈W:

plausibility implies possibility: if w �i v then v ∈ Rare
i (w).

locally-connected: if v ∈ Rare
i (w), then either w �i v or v �i w

We can define a basic soft informational attitude:
5This definition is in van Benthem (2007)
6cf.van Benthem (2004)
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Belief: M,w |= Biϕ iff for all v ∈ Min�i ([w]i),M, v |= ϕ, where [w]i is the
equivalence class of w under Rare

i .

Models like this representing have been extensively used by logicians (cf. Baltag
and Smets (2009),van Benthem (2004; 2011)), game theorists (cf. Board (2004)),
and computer scientist (cf. P.Lanarre and Y.Shoham (1994)C.Boutilier (1992)),
to represent rational agents’ (all-out) beliefs.

As stated above, public announcement assumes that agents treat the source of
the incoming information as infallible. But in many scenarios, agents trust the
source of the information up to a point. We require some ’soft’ announcements
of a formula ϕ–we needn’t eliminate worlds, but rather modify the plausibility
ordering that represents an agent’s current hard and soft information states.
The goal is to rearrange all states in such a way that ϕ is believed, and perhaps
other desiderata are met. Logicians have studied the policies of soft upgrade
van Benthem (2004), but here, we only focus on a radical policy for belief
upgrade.

Let ‖ϕ‖wi = {x |M, x |= ϕ} ∩ [w]i denote the set of ϕ worlds:

Definition 3.3. 7 Given an epistemic-doxastic model M = (W, {Rare
i }i∈N, {�i

}i∈N,V), and a formula ϕ, the radical upgrade of M with ϕ is the model
M⇑ϕ = (W⇑ϕ, {Rare

i }
⇑ϕ
i∈N, {�i}

⇑ϕ
�i∈N,V⇑ϕ) with W⇑ϕ = W,

for each i, {Rare
i }
⇑ϕ = {Rare

i },V
⇑ϕ = V and finally, for all i ∈ N,w ∈W⇑ϕ:

for all x ∈ ‖ϕ‖wi and y ∈ ‖¬ϕ‖wi , set x ≺⇑ϕi y,

for all x, y ∈ ‖ϕ‖wi , setx ≺⇑ϕi y iff x �i y, and

for all x, y ∈ ‖¬ϕ‖wi , setx ≺⇑ϕi y iff x �i y.

Accordingly, we can use modalities [⇑ ϕ]ψ meaning "after i’s radical upgrade
of ϕ,ψ is true. Formally, M,w |= [⇑ ϕ]ψ iff M⇑ϕ,w |= ψ.

The “hard and soft upgrade" is respectively illustrated in the following example
from Pacuit and Roy (2011) :

7The definition is quoted from van Benthem et al. (2011)
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Figure 2: A “hard” and a soft “upgrade”.

4 An Epistemic Game Regret Model

In order to give two dynamic epistemic analysis of the game solutions as model
changes, this section we present an epistemic game regret model based on the
structure of an original game model.

First, a logic is called a ‘regret-game logic‘ (G′ − logic) if the set of atomic
propositions are in the following forms:

Pure strategy symbols si, ti, ...: the intended interpretation of si is player i
chooses strategy si;

Symbols Rare
i , meaning player i is rational, symbols Br∗i interpreted as the

best response of player i and a symbol GS meaning it is a Game Solution with
max-minimizing regret algorithm;

Atomic propositions of the form si �
1 s′i means the strategy si is at most

as regrettable as the strategies s′i for player i, or si regret-dominant s′i .

Next, we define a frame for G′ − logic as follows:

Definition 4.1. Given a game with regret G′, F′G = 〈W, {∼i}i∈N, { fi}i∈N〉 is a frame
of G′ − logic , where

W(, ∅): consists of all players’ pure strategy profiles.

∼i is an accessibility relation for player i, which is defined as the equiva-
lence relation of agreement of profiles in the i’th coordinate.
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fi : W → Si is a pure strategic function, which satisfies the following
property: w ∼i v iff fi(w) = fi(v).

Simply, a frame for G′ − logic adds to a Kripke S5 frame (cf. Blackburn et al.
(2007.)) a function that associates with every state w a strategy profile f (w) =
( f1(w), ..., fm(w)) ∈ S. Here, the restriction w ∼i v iff fi(w) = fi(v) . It means
that player i knows her own choice: if she chooses strategy si, then she knows
that she chooses si. This accords with our intuition. Here, for convenience, we
denote Ri(w) = {v | w ∼i v, v ∈W}, and ‖si‖ = {w ∈W | fi(w) = si}.

Definition 4.2. An epistemic model MG′ over G′ − logic is obtained by
incorporating the following valuation on a F′G:

MG′ ,w � si ⇔ w ∈ ‖si‖

MG′ ,w � (si <1 s′i ) ⇔ ∃v ∈ ‖s′i‖), rei(si, f−i(w)) ≤ rei(s′i , f−i(v))

MG′ ,w � (si �
1 s′i ) ⇔ ∀v ∈ ‖s′i‖), rei(si, f−i(w)) < rei(s′i , f−i(v))

MG′ ,w � Rare
i ⇔ MG′ ,w � si ∧ (

∧
a,si

)Ki(si <1 a).

According to the above definition, our rationality has a straightforward game-
theoretic meaning. That is a rational player always choose the strategies, which
she knows are at least as good as her others. In details, player i is ratio-
nal at a state if she can know what she chooses at the current state is not
regret-dominated. That is, the rational players always try to choose an act that
minimizes her regret, when she is not sure what her opponents will do. It
is easy to verify that Rare

i fails exactly at the rows or the columns with which
the regret-dominated strategies correspond for player i in a general epistemic
regret-game model M∗G′ . For instance, in figure 1 (the left model), Rare

2 fails at
the states (X, b), (Y, b) and (Z, b), and Rare

1 fails at the states (X, a), (X, b) and (X, c)
of the original model MG′ .

As we mentioned previously, the dynamic analysis of iterated elimination al-
gorithms always has to do with changing of a epistemic model. So, In the
following, we call the above epistemic regret-game model MG′ a full epistemic
regret-game model, and take any submodel of a full epistemic regret-game
model MG′ as a general epistemic game model M∗G′ .

If we characterize the minimax algorithm in a static epistemic logic without any
dynamic modal operator, a paradox will arise (cf. Halpern and Pass (2012)), so
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that they have to use some complex methods or techniques to provide a rea-
sonable epistemic foundation of the algorithm, such as assigning successively
lower probability to higher orders of rationality, and abandoning or relaxing
the most foundational rule in game theory, i.e., the common knowledge in
rationality is necessary to form a game solution. However, if we analyze so-
lution algorithms as processes of learning which change game models, we
cannot only avoid these drawbacks, and since there are always dynamic intu-
itions concerning activities of deliberation and communication in a game, we
also understand equilibriums or empirical observations in some game better.
Therefore, it is more appropriate to deal with assumptions about rationality in
dynamic epistemic logic.

5 Belief updating in the light of hard information

In this subsection, we will describe the procedure of IERS as the process of
repeated announcement for the rationality assertion during players deliberate
in a one-shot game, and we show “the announcement limit of the rationality
assertion” always is consistent with the outcomes by solving a game with the
algorithm IERS.

First, it is known that the assertions that players publicly announce must be the
statement which they know, are true in PAL. The following theorems guarantee
that the rationality notion in Definition 4.2 can be as an assertion of a public
announcement.

Theorem 1. Every finite general epistemic regret-game model has worlds with Rare

true, where Rare =
⋂

i∈n Rare
i .

Proof. Since that atomic proposition Rare
i fails exactly at the rows or columns

with which regret-dominated strategies correspond for player i in a general
game model. Consider any general game model M∗G′ . If there are no regret-
dominated strategies for all players in M∗G′ , then Rare is true at all the worlds
in it. Thus, the iterated announcement of Rare cannot change the game model
and get stuck in cycles in this situation. If there is a regret-dominated action
for some player in the game, because of the relativity of the definition of regret-
dominated strategy, he must have a strategy which is better than this strategy,
i.e., if player i has a regret-dominated strategy a, then he must have a strategy,
say a strategy b, which is better than strategy a. Thus, Rare

i holds at all the
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worlds which belong to the row or the column corresponding to the strategy
b. On the other hand, for player j, if he has no weakly dominated action, then
also Rare

j holds at all the worlds. Furthermore, Rare
j holds at the worlds which

belong to the row or the column corresponding to strategy b. So, Rare holds
in the general game model. But if player j has also a regret-dominated action,
accordingly he must have a dominant action, say action Y, and Rare

j is true
at at the worlds which belong to the row or the column corresponding to the
strategy Y. Therefore, Rare is satisfied at the world (Y, b).

To sum up the above arguments, every finite general game model has worlds
with Rare true. �

It follows from Theorem 1 that the rationality is self-fulfilling on finite gen-
eral epistemic regret-game models. Additionally, we can easily conclude the
following result from the semantic interpretations Rare

i and the properties of
model MG′ .

Theorem 2. The rationality is epistemically introspective. i.e.,the formula Rare
i →

KiRare
i is valid on a general epistemic regret-game model.

Proof. Consider a general epistemic regret-game model M∗G′ and an arbitrary
w in M∗G′ such that M∗G′ ,w � Rare

i but M∗G′ ,w 2 KiRare
i . Because M∗G′ ,w 2 KiRare

i ,
∃v ∈ Ri(w) and M∗G′ , v 2 Rare

i . According to Definition 10, we have fi(v) is
a regret-dominated action for i by some her actions. And, by the property
of the function fi: fi(w) = fi(v) iff v ∈ Rare

i (w), we can conclude that fi(w)
is also a regret-dominated action for i, further, M∗G′ ,w 2 Rare

i , contrast to the
precondition, i.e., M∗G′ ,w � Rare

i . So, the formula Rare
i → KiRare

i is valid on a
general game model. �

As a result, these theorems guarantee that we can successively remove the
worlds at which Rare does not hold in model M∗G′ after repeated announcing
the rationality at some actual world. Although this scenario behind an iterative
solution algorithm is virtual, it is significant: we can expect players to announce
that they are rational, since they would know it. As van Benthem have shown
in van Benthem (2007), because the current game mode could be changed in
the light of the information from another player may change the current game
model, it is significance to iterate the process, and repeat the assertion Rare if
true.
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Figure 3: The public announcement of Rare

In figure 3, the left-most model is the model from fig. figure 1. The other models
are obtained by public announcements of Rare successively for three times. So,
in the last submodel, we have:
MG′ , (Z, a) � [!Rare][!Rare][!Rare]CN.
It indicates that if the players iteratively announce that they are rational, the
process of regret-dominated strategies elimination leads them to a solution that
is commonly known to be GS.

Theorem 3. Given a full epistemic game model based on a finite strategic-form G′

with regret and an arbitrary world w, w is in a general epistemic game model M∗G′
which is stable by repeated announcements of Rare in the MG′ for all players if and only
if f (w) ∈ IUD. That is to say, w ∈ ](Rare,MG′ )⇔ f (w) ∈ IUD.

Proof. (a) From left to right: if w ∈ ](Ra,MG′ ), that is to say, w ∈ M∗G′ , then
M∗G′ ,w � Ra, i.e., M∗G′ ,w � ∧i∈NRare

i .

First we show: ∀i ∈ N, fi(w) < RD0
i . Suppose not. Then ∃i ∈ N such

that fi(w) ∈ RD0
i , that is, fi(w) of player i is regret-dominated in G′ by

some other strategy s′i ∈ Si = IUD0
i , it means: rei( fi(w)) > rei(s′i ) ⇔

max{rei( fi(w), s−i),∀s−i ∈ S−i} > max{rei(s′i , s−i),∀s−i ∈ S−i}. Thus, let some
s′
−i ∈ S−i satisfied rei( fi(w), s′

−i) = max{rei( fi(w), s−i),∀s−i ∈ S−i}, and s′′
−i ∈ S−i

satisfied rei(s′i , s
′′

−i = max{rei(s′i , s−i),∀s−i ∈ S−i}. So, we have:
rei( fi(w), s′

−i) > rei(s′i , s
′′

−i). Accordingly, there exist a v′ ∈ Ri(w) ∩ ‖s′
−i‖ and a

v′′ ∈ Ri(w) ∩ ‖s′′
−i‖, satisfied rei( fi(w), f−i(v′)) > rei( fi(w), f−i(v′′)), considering

rei( fi(w), f−i(v′′)) ≥ rei( fi(w), f−i(v)), where ∀v ∈ ‖si‖, thereby, rei( fi(w), f−i(v′)) >
rei( fi(w), f−i(v)), where ∀v ∈ ‖si‖. In terms of Definition 4.2, we can conclude that
M∗G′ ,w 2 Rare

i , which contradicting the hypothesis that M∗G′ ,w � ∧i∈NRare
i . Since,

for every w ∈W, fi(w) ∈ IUD0
i = Si, it follows that fi(w) ∈ IUD0

i \ RD0
i = IUD1

i .
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Next we prove the inductive step. Fix an integer m ≥ 1 and suppose that, for
every player j ∈ N, f j(w) ∈ IUDm

j , we want to show that, for every player j,
f j(w) < RDm

j . Suppose not. Then there exists a player i, satisfied that fi(w) ∈
RDm

i , that is, fi(w) is a regret-dominated in G′m by some other strategy s′i ∈ IUDm
i .

Then, max{rei( fi(w), s−i),∀s−i ∈ IUDm
−i} > max{rei(s′i , s−i),∀s−i ∈ IUDm

−i}. Since, by
hypothesis, for ∀ j ∈ N, f j(w) ∈ IUDm

j , it follows-since the prosperity of fi(w),
that is, v ∈ Ri(w) ⇔ fi(w) = fi(v) that for ∀v ∈ Ri(w), fi(v) ∈ IUDm

i , further,
we have: max{rei( fi(w), f−i(v), v ∈ Ri(w)} > max{rei( fi(w′), f−i(v)), v ∈ Ri(w′)},
where w′ ∈ Ri(w) ∩ ‖s′

−i‖. Thus, similar to the reason above, we can conclude
M∗G′m ,w 2 Rare

i , again contradicting the fact that M∗G′ ,w � Rare
i since M∗G′ is a

submodel of M∗G′m and the prosperities of M∗G′ . So, for every player i, fi(w) ∈
IUDm

i \ RDm
i = IUDm+1

i . By induction, ∀i ∈ N, fi(w) ∈ IUDi .

(b) From right to left: Let f (w) ∈ IUD =
⋂

m>0 IUDm, by Definition 2.3, ∀i ∈
N fi(w) is never regret dominated IUDm

i . So, it means that after m rounds of
public announcement Rare, M∗G′m ,w � Rare, where M∗G′m is a general epistemic
model related to submodel G′m. Therefore, in terms of the arbitrary of m and
Definition 4.2, it is obvious that w ∈ ](Rare,MG′ ) �

6 Belief updating in the light of soft information

Alternatively, we can represent the procedure of IERS algorithm as the process
of repeated so f t announcement of the rationality among players.8 When this
rationality assertion is believed to be true by every player: it is common belief
that everybody believes that each of players is a the rational agent, the solution
to the one-shot games is just outcome of the IERS algorithm.

To do this, firstly, we need to introduce some new concepts into G′ − logic.

Definition 6.1. 9 A doxastic proposition P is true at a pointed model M10 if it
is true at an actual state w0 in the model M, a radical upgrade ⇑ P (where P is
a doxastic proposition.)is truthful in a model M if P is true at M. Moveover, a
radical upgrade stream ⇑ ~P = (⇑ Pn)n∈N is an infinite sequence of upgrades ⇑ Pn,

8The soft announcement refers to a radical update introduced in van Benthem (2004).
9Here, Definition 6.1 and 6.2 both are from Baltag and Smets (2009)

10A pointed model refers to a epistemic-doxastic model with a designated state w0, which is
called an actual state.
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and the upgrade stream ⇑ ~P is truthful if every ⇑ Pn is truthful with respect to
every model M.

Definition 6.2. A repeated radical upgrade stabilizes MG′ if it reaches a fixed
point of ⇑ ~P, that is, repeated radical upgrade ϕ has no further effect.

Next, we redefine a frame F′G′ of G′ − logic and an epistemic-doxastic regret-
game model M′G′ based on a given game G′ with regret. In fact, we can provide
the frame F′G′ just adding a plausibility relation (we mentioned in the section
3) for every player i to the frame FG′ Meanwhile, let R′i (w) = Min�i ([w]i), and
‖si‖

′ = R′i (w) ∩ ‖si‖. We introduce the semantic interpretation for those game
propositions in M′G′ as follows,

Definition 6.3. An epistemic model M′G′ over G′ − logic is obtained by incorpo-
rating the following valuation on a F′′G:

M′G′ ,w � si ⇔ fi(w) = si;

M′G′ ,w � (si % s′i ) ⇔ ∃v ∈ ‖s′i‖
′), rei(si, f−i(w)) ≤ rei(s′i , f−i(v))

MG′ ,w � (si �
′ s′i ) ⇔ ∀v ∈ ‖s′i‖

′), rei(si, f−i(w)) < rei(s′i , f−i(v))

M′G′ ,w � Rare′
i ⇔ MG′ ,w � si ∧ (

∧
a,si

Bi(si % a)).

Accordingly, by the definitions of radical upgrade in Baltag and Smets (2009),
it is easy to justify that the radical upgrade stream ⇑ ~Rare′ is truthful, since it is
reasonable that we take one of the worlds where GS is true as a actual world,
and Rare′ always holds at the world. And in the light of a proposition ( which
is proved in Baltag and Smets (2009) ):
Repeated truthful radical upgrade ⇑ ~P in epistemic-doxastic logic stabilizes
every model (with respect to which it is correct), we can have

Corollary 1. Repeated truthful radical upgrade ⇑ ~Rare′ in epistemic-doxastic logic
stabilizes every model (with respect to which it is correct).

And similar to the Definition 3.1, we can define:,

Definition 6.4. For any epistemic model M′G′ and formula ϕ, the radical up-
grade stabilization #(⇑ ϕ,M′G′ ) is the first model in a repeated upgrade stream
where upgrade ϕ has no further effect, and W#(⇑ϕ,M′G′ ) is the set of possible
worlds, which agents consider the most likely after repeated upgrade ϕ, i.e.,
W#(⇑ϕ,M′G′ ) = {w ∈Min�i∈N (W) | w � ϕ}, and call it as a kernel of the #(⇑ ϕ,M′G′ ).
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It is illustrated in the figure 4, how a radical upgrade⇑ Rare′ upgrades the regret-
game illustrated in figure 1. Finally, we also show another characterization

Figure 4: The radical update of Rare′

theorem for IERS.

Theorem 4. Given a full epistemic-doxastic game model M′G′ based on a regret-game

G′ and an arbitrary world w, w ∈W#(⇑Rare′ ,M′G′ ) if and only if f (w) ∈ IUD.

Proof. (a) From left to right: the proof is similar to the induction proof of
Theorem 3 and left to the reader.

(b) From right to left: suppose f (w) ∈ IUD =
⋂

m>0 IUDm, but w < W#(⇑Rare′ ,M′G′ ),
then, either #(⇑ Rare′ ,M′G′ ),w 2 Rare′ or w < Min�i∀i∈N (W).
On the one hand, if Rare′ does not hold at the world w, i.e., #(⇑ Rare′ ,M′G′ ),w 2

Rare′ , then fi(w) is a regret-dominated strategy by some strategy for player
i, because of the semantic definition of Rare′

i . Thus, fi(w) < IUDi, further,
f (w) < IUDi, contraction with the precondition;

On the other hand, if w < Min�i (W), then there must be a model M′′G′ before

repeated upgrade ⇑ ~Rare′ stabilize, so that M′′G′ ,w 2 Rare′ . So, ∃i ∈ N,M′′G′ ,w 2

Rare′
i . Further, we can derive that fi(w) must be a regret-dominated for i, thus,

fi(w) < IUDi, i.e., f (w) < IUD, which is also contradiction with the precondition.
�

7 Related Work

In Halpern and Pass (2012), Halpern and Pass put forward a new game solution
(they called an iterated regret minimization, similar to the regret equilibrium),
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and stated the rationality and significance of the game solution by many ex-
amples from the game theory. Meanwhile, they also provided the epistemic
characterization for the algorithm IERS (or say iterated regret minimization
solution) using Kripke structure similar to the way we did, they defined the
atomic proposition, " player i is rational at a world w in a epistemic game
model, denoted by “RATi", as her current strategy is a best response to strat-
egy sequences 〈s(B0

i (w)), s(B1
i (w)), ...〉 (where B0

i (w) consists of the worlds that
player i considers most likely at w, and the worlds in B1

i (w) are less likely,
and so on), i.e., M,w � RATi if si(w) is a best response to the strategy sequence
〈s(B0

i (w)), s(B1
i (w)), ...〉. Moreover they proved, this game solutions resulted from

the algorithm IERS involves higher and higher levels of belief regarding other
players’ rationality. At this point, we have the same viewpoint as theirs. We
view an iterated elimination dominated procedure as a process of dynamic
information exchange in the dynamic epistemic logic (PAL or Plausible Belief
Revision Logic), it is natural that these higher levels of belief regarding other
players’ rationality become an implicit requirement for players’ belief. The im-
plication is derived from the essential prosperities of these dynamic logic, for
example, after public announcing a formula ϕ in PAL, player i can delete the
worlds in her mind, which are not satisfied the formula ϕ. In other words, she
never reconsider the worlds as epistemic possible worlds for her. Similar sce-
nario will happen in the belief revision with the radical upgrade ⇑ Rare′ , because
agent i thinks the Rare-worlds become better than all the¬Rare′ , and keep the or-
dering at the later upgrade. Thus, she just considers her strategy based on those
worlds satisfied Rare (or the worlds in her the best plausible area). It implies
that player i’s final choice must be based on the higher and higher the knowl-
edge (or the belief) of other players’ rationality. Nevertheless, in order to avoid
a paradox similar to the paradox in the Iterated Admissibility (cf. Halpern
and Pass (2012) and Brandenburger et al. (2008)), they also insisted that the
higher and higher levels of belief regarding other players’ rationality does not
involves common knowledge or common belief, rather, higher levels of beliefs
are accorded lower levels of likelihood (i.e., they assigned successively lower
probability to higher orders of rationality). Considering this paradox does not
arise in our way for the essential prosperities of our dynamic logic again, and
the rationality defined by us is self-fulfilling. So, we keep well the classic rule
in game theory. That is, it is necessary for analyze a game that rationality is
common knowledge among players. Therefore, our dynamic analysis for IERS
is more appealing, and it may be more suitable to be extended to Dynamic
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Model Checking in computer science.11

Additionally, there is also a large amount of literatures on the algorithms
of iterated elimination either in the field of logic, computer science and
game theory. Bonanno (2008),Halpern and Pass (2012),van Benthem et al.
(2011),Halpern and Pass (2009) etc. In particular, van Benthem (2007) describe
and characterize different algorithms in game theory by redefining rationalities
based on epistemic logic. Our intellectual debt towards van Benthem (2007)
is clear. Compared with their work, we extend their findings in some sense.
In fact, we can also restate their results based on our epistemic regret-game
frame, provide a new kind of epistemic characterization for the algorithms,
which have been studied by them. For example, van Benthem (2007) defined
two types of rationality, the weak rationality and the strong rationality, which
are denoted by WRi and SRi. Here, we redefine these rationality assertion on
the epistemic regret-game frame as follows:
MG′ ,w � (si <2 s′i ) ⇔ (rei(si, f−i(w)) ≤ rei(s′i , f−i(w)))
MG′ ,w � (si �

2 s′i ) ⇔ (rei(si, f−i(w)) < rei(s′i , f−i(w)))
MG′ ,w �WR′i ⇔ (MG′ ,w) |= si ∧ (

∧
a,si
〈Ki〉( fi(w) <2 a))

MG′ ,w � SR′i ⇔ (MG′ ,w) |= si ∧ 〈Ki〉(
∧

a,si
( fi(w) <2 a)))

Thus, a weak rational player i thinks it is possible that the regret raised by the
current strategy is not greater than her other strategies. For example, she can
know that there is no alternative action that she knows to reduce her regret, and
strong rational player i thinks it is possible that the current strategy does not
make her regret more. In other words, a player with strong rationality always
a bit optimistic

Based the uniform structure, one can analyze and explore rationality implied
iterated algorithms from players’ regret perspective, also she can compare the
strength of these rationality and the size of stable models.

Theorem 5. The rationality Rare is stronger than the rationality WR′, i.e., Rare
→

WR′, and but not vise versa.

Proof. The proof is common and easy, so we left it to the reader. The reader can
find the similar proof in Cui and Tang (2010) and van Benthem (2007). �

11Some of our dynamic epistemic analysis for iterated elimination algorithms in the game theory
have been extend in the field of Dynamic Model Checking, cf.Cui and Tang (2010)
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Corollary 2. ](Rare,MG′ ) j ](WR′,MG′ )

However, there is no relation between Rare and SR′. For instance, in the game
G3 is from van Benthem (2011), and model G’3 is the regret game of G3. Rare

2
holds at the worlds :(A, a), (B, a), (C, a), (A, c),
(B, c), (C, c), but SR′2 is true at the worlds: (A, a), (B, a), (C, a), (A, b), (B, b), (C, b).

Figure 5: comparing Rare to SR′

8 Conclusion and Further Direction

The paper showed iterated hard and soft update is a powerful method and also
can be applied into non-standard game solution algorithms such as minimizing
regret. This brings more kinds of recent work in the foundations However, now
it is time to go beyond proving such single results. Here are a few directions
that we intend to pursue:

Introducing logics for qualitative reasoning: We will introduce modal logics
over matrix games in the spirit of van Benthem et al. (2011) referring to agents
available strategies, knowledge and preferences with propositional constants
for positions of rationality and/or regret, and study the qualitative calculus of
reasoning about these notions in interactive behavior.

Comparing, combining, and reducing methods: Comparing methods like IESD
and IERS, we see that one may be better than another depending on the struc-
ture of a given game. We will investigate what happens when agents have
a variety of such methods available. One possibility is that one method may
simulate another, by means of translating the given game systematically into
one with changed outcome values. Moreover, there are games where both
methods make sense intuitively. We will start with sequential combinations of
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solution methods, starting from very concrete questions such as whether or not
IESD; IERS = IESD; IERS. The eventual goal would be an algebra of solution
methods.

Linking up with limit behavior in learning theory: We have only considered
cases where games get solved through iterated soft updates with regret state-
ments. But many other scenarios can have the same features, including infinite
sequences where the approximation behavior itself is the focus of interest.
In particular, we are interested in connecting our setting with the learning-
theoretic scenarios and extended temporal update logics suggested by the re-
sults of Baltag et al. (2011) and Pacuit and Roy (2011).
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Abstract
We raise questions about voting rules, and provide some of the answers.
The method is to define a number of new formal properties of voting rules,
and use these for classification and analysis. The aim is to get a better
perspective on vices and virtues of individual voting rules.

Keywords: Voting rules, collective choice, multi-agent decision making.

1 Ballots, Profiles, Voting Rules

Voting is the process of selecting an item or a set of items from a finite set A of
alternatives, on the basis of the stated preferences of a set of voters. See Brams
and Fishburn (2002) for a detailed account. By calling the voters agents, voting
can be seen as a form of multi-agent decision making.

A ballot is a linear ordering of A. Let ord(A) be the set of all ballots on A. We
assume that the preferences of a voter are represented by a ballot. A profile is a
vector of ballots, one for each voter. We assume voter anonymity, so it does not
matter which voter has which ballot. The only thing that matters is the number
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of voters holding a certain ballot. Under this assumption voting profiles can be
represented as mappings from ballots to non-negative integers. Another way
to say this is by saying that our profiles are quantified, and the voting rules to
be introduced below act like quantifiers: they calculate an outcome based on
numbers (of voters holding certain ballots).

We will use P,Q to range over profiles, and b,b′ to range over ballots.

Profiles can be represented as lists of non-negative integers, where the length
of the list equals m!, with m the number of alternatives. The size of a profile is
equal to the length of its ballots. If a profile P has size m, this means that its
alternative set A has |A| = m.

If b is a ballot and P a profile, we use P(b) for the number of voters with ballot
b in P.

For example, assume the set of alternatives A equals {a, b, c}. Then the ballot
that has a in first position, b is second position, and c in third position is abc.
The following represents the profile P with P(abc) = 2 (two voters hold ballot
abc), P(bca) = 6 (six voters hold ballot bca), and so on:

(abc, 2), (bca, 6), (cab, 0), (acb, 4), (cba, 0), (bac, 2).

Profiles can be normalized by dividing with the gcd of the list of all nonzero
vote numbers. If P is a profile, we use P◦ for the normalized form of the profile.
The normalized form of the above example profile is:

(abc, 1), (bca, 3), (cab, 0), (acb, 2), (cba, 0), (bac, 1).

Definition 1.1. An (anonymous) voting rule V for set of alternatives A is a
function from A-profiles toP+(A) (the set of non-empty subsets of A). A voting
rule V is resolute if V maps every profile to a singleton set. If V(P) = B, then the
members of B are called the winners of P under V.

Anonymity means that all voters are treated equally. This is built into our
framework because we take profiles to be given by numbers of voters for each
ballot.

If P is a profile for A, and π is a permutation of A, then Pπ is the result of
replacing x by π(x) everywhere in P. If B ⊆ A, then π(B) = {π(x) | x ∈ B}.

Definition 1.2. A voting rule V is neutral if for every profile P and for every
permutation π of the set A of alternatives,

V(Pπ) = π(V(P)).
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Neutrality means that all alternatives are treated equally.

Definition 1.3. A voting rule V is normal if it holds for every profile P that
V(P) = V(P◦).

Proposition 1. There are anonymous and neutral voting rules that are not normal.

Proof. Let Vk be given by x ∈ Vk(P) if at least k voters have x at the top of their
ballots. Then Vk is anonymous and neutral, but Vk is not normal. �

Question 1. Characterize the normal voting rules.

A scoring vector for ballots of size m is a list of non-negative integers
(w0, . . . ,wm−1) satisfying wi ≥ wi+1. The number wi indicates the weight of
position i in the ballot. The plurality rule has scoring vector (1, 0, · · · , 0). The
anti-plurality rule (or: veto rule) has scoring vector (1, · · · , 1, 0). The Borda rule
(see Borda (1781)) has scoring vector (m − 1,m − 2, · · · , 1, 0). The trivial voting
rule that always returns the set of all alternatives has scoring vector (0, . . . , 0).

Every scoring vector w determines a voting rule Sw by means of:

Sw(P) = {x ∈ A | x has maximal w-scores in P}.

For any scoring vector w = (w0, . . . ,wm−1), let w◦ be the result of dividing out
common factors in (w0 −wm−1, . . . ,wm−2 −wm−1, 0). Call w◦ the normalization of
w.

Proposition 2. Scoring vector normalization does not affect the set of winners: for all
P and all scoring vectors w it holds that Sw(P) = Sw◦ (P).

Proof. Let (w1, . . . ,wm−1) be a scoring vector. If x is a winner under this vector
for profile P, this means that the score N of x for P is maximal among the scores,
i.e., greater than or equal to the score M of any alternative y , x. Scoring for the
vector (w1 −wm−1, . . . ,wm−2 −wm−1, 0) give scores N − kmwm−1 and M− kmwm−1,
so the score of x is still maximal. In the other direction, the scores change by
adding a constant, so winners are also preserved.

Next, compare (w1, . . . ,wm−1) and (w1K, . . . ,wm−1K), with K > 1. Scores M and
N for x and y under (w1, . . . ,wm−1) change into MK and NK. Since M > N iff
MK > NK, winners are not affected in either direction. �
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Absolute majority is the voting rule that selects an alternative with more than
50 % of the votes as winner, and returns the whole set of alternatives otherwise.
This is not the same as plurality, which selects an alternative that has the
maximum number of votes as winner, regardless of whether more than half of
the voters voted like this or not. Unanimity: if all voters have an alternative a
at the top of their ballots then a is the winner, otherwise all alternatives tie for a
win. Near-unanimity: if all but at most one of the voters have an alternative a
at the top of their ballots then a is the winner, otherwise all alternatives tie for
a win.

In the examples below we also use the Condorcet rule. the Copeland rule and
the Hare rule. Here are the definitions (see also Taylor (2005)).

A Condorcet winner is an alternative that beats every other alternative in pair-
wise contests. An alternative x beats another alternative y in a one-to-one
contest if more than half of the voters prefer x to y. The Condorcet voting rule
(proposed in 1785 by the marquis of Condorcet in Condorcet (1785)) selects
the Condorcet winner if it exists, and the set of all alternatives otherwise. The
Copeland voting rule Copeland (1951) selects the alternative that maximizes
the difference between the number of won and lost pairwise majority contests.
The voting rule of single transferable vote, also known as the Hare rule (see
Hare (1861); the rule is also described by John Stuart Mill, with an attribution to
Thomas Hare, in Mill (1861)), works as follows. If one of the candidates gets an
absolute majority, that candidate wins. Otherwise prune the candidate(s) who
is/are ranked first by the fewest number of voters from the profile, and repeat.

2 Profile Restriction

Profile restriction is computing a new profile for a subset of the alternative set
of the original profile. The relative preferences of the voters in the new profile
should remain unchanged.

If B ⊆ A, we use PB for the result of restricting P to B. Formally, let b ∼B b′ if
the ballots b and b′ become the same after restriction to the set B. Then PB is
given by

PB(b) =
∑
{P(b′) | b′ ∈ ord(A),b ∼B b′}.
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For example, let P be the following profile:

(abc, 1), (bca, 2), (cab, 0), (acb, 3), (cba, 0), (bac, 2).

Then the restriction of P to {a, b} is given by

(ab, 4), (ba, 4),

the restriction of P to {a, c} is given by

(ac, 6), (ca, 2),

and the restriction of P to {b, c} is given by

(bc, 5), (cb, 3).

Definition 2.1. A voting rule V is invariant for restriction if it holds for every
B ⊆ A and every profile P that

V(P) , A and V(P) ∩ B , ∅ imply V(P) ∩ B = V(PB).

Note: Invariance for restriction can be viewed as a strengthening of a property
that is known as Chernoff’s condition Chernoff (1951), or as Sen’s property
alpha Sen (1970), or as Arrow’s principle of invariance for irrelevant alternatives
Arrow (1951, second edition: 1963), applied to voting rules. A voting rule V
satisfies this condition if winners in a subset B of the set of all alternatives remain
winners if the choice is limited to B. In our terminology: if V(P) ∩ B ⊆ V(PB).

Proposition 3. The Hare rule and the Copeland rule are not invariant for restriction.

Proof. For the Hare rule, consider the following profile P (ballots that are not
mentioned get 0 votes):

(abc, 3), (bca, 2), (cab, 2).

If V is the Hare rule we get V(P) = {a}. The restricted profile P{a,c} looks like this:

(ac, 3), (ca, 4).

This gives V(P{a,c}) = {c}.

For the Copeland rule, consider the following profile:

(bacde, 1), (acdeb, 1), (debac, 1).
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Under the Copeland rule, this is a win for a. Next, restrict the profile to {a, b, c}.
This gives:

(bac, 2), (acb, 1).

Now b is the Copeland winner. �

Theorem 1. The Condorcet rule is invariant for restriction.

Proof. If there are no Condorcet winners then there is nothing to prove. A
winner in the contest between a and b in P is still a winner in a contest between
a and b in PB for any B with {a, b} ⊆ B, and vice versa. �

Theorem 2. Positional scoring rules with weights (w0, ...,wm−1) such that w0 > wm−1
are not invariant for restriction.

Proof. Consider the following profile P consisting of 3 ballots of 7 voters:

(abc, 3), (bca, 2), (cab, 2).

Suppose the scoring rule gives weights (w0,w1,w2) to the three positions. Then
the scores of the candidates are as follows:

a : 3w0 + 2w1 + 2w2
b : 2w0 + 3w1 + 2w2
c : 2w0 + 2w1 + 3w2

Note that the difference in score between a and c is exactly w0 − w2. Since by
assumption w0 > w2, the score of a is larger than that of c. This means that
the set of winners is either V(P) = {a} or V(P) = {a, b}. Now let us remove b
from the set of candidates. In both cases, the intersection of V(P) with the set
of remaining candidates is {a}. The profile that remains after removing b is the
following:

(ac, 3), (ca, 4).

Now since there is a different number of candidates, the scoring rule may give
different weights to the positions. Suppose the weights are (v0, v1). Then the
scores of the candidates are as follows:

a : 3v0 + 4v1
c : 4v0 + 3v1

By assumption v0 > v1, so c wins the election. Because V(P) ∩ {a, c} = {a}, this
shows that V is not invariant for restriction. �
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Question 2. Characterize the voting rules that are invariant for restriction.

Question 3. Is invariance for restriction a desirable property for a voting rule to have,
or not?

The last question may seem a bit vague, but in any case, here are some relevant
observations. Notice that restriction destroys information. If there are m alter-
natives and k voters then there are m! possible ballots. The number of integer
solutions for

x1 + · · · + xn = k

under the condition that xi ≥ 0 for all i = 1, . . . ,n is
(n+k−1

k
)

(Jukna 2011, Propo-
sition 1.5). Thus, for m alternatives and k voters there are(

m! + k − 1
k

)
possible profiles. There are m ways to prune away one alternative. After
pruning, there are (m − 1)! possible ballots, which leaves(

(m − 1)! + k − 1
k

)
profiles. All in all this gives

m
(
(m − 1)! + k − 1

k

)
possibilities.

To put these outcomes in perspective, here are some calculations for m = 4 and
k = 10: (

4! + 10 − 1
10

)
= 92561040.

4
(
3! + 10 − 1

10

)
= 12012.

To see that the information destruction is vast, consider the case where the
pruning process leaves only pairs. m alternatives give m(m − 1) pairs, so after
pair pruning there are only m(m− 1)(k + 1) possibilities left, since there are k + 1
ways to split k into non-negative integers k1, k2 with k1+k2 = k. For 4 alternatives
and 10 voters, this reduces the number of possibilities from 92561040 to 132.
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3 Profile Addition, Additivity of Voting Rules

Intuitively, we can merge two elections into a single election, by adding the
numbers of votes for the various ballots. Call this operation ⊕. Note that the
two operand profiles have to be of the same size (i.e., over the same set of
alternatives). Note also that (P ⊕ P)◦ = P◦.

Definition 3.1. A voting rule V is additive if it holds for all m-profiles P and
Q that V(P) ∩ V(Q) ⊆ V(P ⊕Q). Or in words: V is additive if winners of two
separate elections concerning the same set of alternatives remain winners if the
elections are merged.

The following definition is from Young (1975).

Definition 3.2. A voting rule V is consistent if it holds for all m-profiles P and
Q that V(P) ∩ V(Q) , ∅ implies V(P) ∩ V(Q) = V(P ⊕Q).

Clearly, every consistent rule is additive, but the property of additivity is weaker
than the property of consistency: see Proposition 8 below.

The requirement of additivity seems entirely reasonable. Still, there are re-
spectable voting rules that do not satify it.

Proposition 4. The Condorcet rule is not additive.

Proof. Consider the following two profiles P and Q:

(abc, 3), (bca, 0), (cab, 0), (acb, 0), (cba, 0), (bac, 2),

(abc, 1), (bca, 1), (cab, 1), (acb, 3), (cba, 3), (bac, 3).

The first of these has Condorcet winner a, the second has no Condorcet winner.
So V(P) = {a} and V(Q) = {a, b, c}, and therefore V(P)∩V(Q) = {a}. Their sum is:

(abc, 4), (bca, 1), (cab, 1), (acb, 3), (cba, 3), (bac, 5).

The Condorcet winner of this sum is b. �

A voting rule satisfies the Condorcet Criterion if it always elects the Condorcet
winner if there is one. The above proposition should worry anyone who thinks
of the Condorcet criterion as a benchmark for voting rule quality.



J. van Eijck and F. Sietsma 115

Proposition 5. The Hare rule is not additive.

Proof. Consider the following two profiles (ballots that are not mentioned have
no voters):

P = {(abcd, 5), (bacd, 6), (cabd, 2), (dabc, 10)}.
Q = {(abcd, 4), (bacd, 4), (cabd, 8), (dabc, 2)}.

If V is the Hare rule, then V(P) = V(Q) = {a}, and V(P ⊕Q) = {b}. �

Question 4. Is the Copeland rule additive?

Proposition 6. The majority, unanimity and near-unanymity rules are additive.

Proof. Suppose P and Q are m-profiles, V is the majority rule, and a ∈ V(P) ∩
V(Q). Let P have N voters and Q have M voters. Then either no x ∈ A has
an absolute majority, or more than N/2 ballots in P have a in first position.
Similarly, either no x ∈ A has an absolute majority in Q, or more than M/2
ballots in Q have a in first position. It follows that either no x ∈ A has an
absolute majority in P⊕Q, in which case a ∈ V(P⊕Q) = A, or (N + M)/2 ballots
in P ⊕Q have a in first position, i.e., a is the majority winner in P ⊕Q.

Same reasoning for the unanimity and near-unanymity rule. �

Proposition 7. The near-unanymity rule is not consistent.

Proof. Let V be the near-unanimity rule and let P be the following profile:

(ab, 2), (ba, 1).

Then V(P) = {a} and V(P ⊕ P) = {a, b}. This shows that V is not consistent. �

Proposition 8. Additivity does not imply consistency.

Proof. Immediate from Propositions 6 and 7. �

Theorem 3. Every positional voting rule is additive.

Proof. Let V be a positional voting rule, and let P, Q be a pair of m-profiles, for
some m. Suppose a ∈ V(P)∩V(Q). We have to show that a ∈ V(P⊕Q). But this
is immediate from the fact that if the score of a is maximal in P and Q, it is also
maximal in P ⊕Q. �

Question 5. Can we prove an if and only if for additivity?
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4 Cycles, Reduction

Definition 4.1. A permutation of alternatives π on A = {a0, . . . , am−1} is a full
cycle if π can be given as a0 = π0(a0) 7→ π(a0) 7→ π2(a0) 7→ · · · 7→ πm−1(a0), with
the πi(a0) all different.

Any full cycle on A can be considered as a linear ordering on A with a0 as least
element, and vice versa. Thus, there are (m − 1)! full cycles on {a0, . . . , am−1}.

Customary notation for full cycles π on a list of m elements is to give the list:

(a0, π(a0), π2(a0), · · · , πm−1(a0)).

For example, the full cycle in the following picture can be given as (adbc).

a d

bc

So cycles can also be represented as ballots. Moreover, cycles can be used to
classify ballots. Two ballots b and b′ are in the same ballot cycle if there is a full
cycle π on A and a number k such that πk maps b to b′. If the ballot size is m,
then each ballot is part of a cycle of m ballots.

For example, the ballot abcd is part of the following cycle:

abcd, bcda, cdab, dabc.

The following definition is from Saari Saari (1995).

Definition 4.2. A profile is reduced if each cycle in the profile contains a ballot
with no voters.

Example 1. The profile

(abc, 3), (bca, 1), (cab, 0), (acb, 2), (cba, 0), (bac, 2)

is reduced.
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Explanation: there are two cycles, {abc, bca, cab} and {acb, cba, bac}, and both have
a ballot with no voters.

Definition 4.3. A profile is balanced if each cycle in the profile is such that each
ballot in the cycle has the same number of voters. Use B for balanced profiles.

Example 2. The profile

(abc, 1), (bca, 1), (cab, 1), (acb, 3), (cba, 3), (bac, 3)

is balanced.

Proposition 9. For every profile P there exist a reduced Q and a balanced B such that
P = Q ⊕ B.

Definition 4.4. If P = Q⊕B, as in Proposition 9, then call B the surplus of P and
Q the reduced form of P. Use Pr for the reduced form of P.

Proposition 10. A profile P is both balanced and reduced iff P has no voters.

Definition 4.5. Call the operation of subtracting a balanced profile from P
reduction. Call the operation of adding a balanced profile to P dilution.

Here is an obvious algorithm for putting a profile P in reduced
form:

For each cycle π of P, let the minimum of the vote numbers in that
cycle be k. Subtract k from every vote number in the cycle.

The surplus of a profile indicates by how much the profile can be reduced.

Example 3. The surplus of the profile

(abc, 4), (bca, 2), (cab, 1), (acb, 3), (cba, 3), (bac, 6)

is the profile

(abc, 1), (bca, 1), (cab, 1), (acb, 3), (cba, 3), (bac, 3).

Example 4. The reduced form of the profile

(abc, 4), (bca, 2), (cab, 1), (acb, 3), (cba, 3), (bac, 6)

is the profile

(abc, 3), (bca, 1), (cab, 0), (acb, 0), (cba, 0), (bac, 3).
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Theorem 4. Any anonymous and neutral voting rule maps a balanced profile to the
set of all alternatives.

Proof. Let P be a balanced profile for A. Let V be an anonymous and neutral
voting rule. We must prove that V(P) = A.

Suppose not, i.e., suppose there is some b < V(P). There also is some a ∈ V(P),
for V(P) , ∅.

Let σ be any permutation of A that satisfies σ(a) = b.

Observe that each cycle will remain a cycle under the permutation σ. There-
fore, because of anonymity and the fact that P is balanced: Pσ = P. Because
of neutrality V(Pσ) = σ(V(P)), and therefore b = σ(a) ∈ V(Pσ) = V(P), and
contradiction. �

Theorem 5. If |A| = m then the number of voters in any balanced profile for A is a
multiple of m.

Proof. Each cycle in an m-profile has m elements. There are (m − 1)! cycles. Let
cycle i have ki voters. Then all in all we have m

∑(m−1)!
i=1 ki voters. �

Definition 4.6. A voting rule V is safe for dilution if it holds for all profiles P and
balanced profiles B that V(P) ⊇ V(P ⊕ B).

Safety for dilution means that dilution does not introduce new winners.

Definition 4.7. A voting rule V is safe for reduction if it holds for all profiles P
and balanced profiles B that V(P) ⊆ V(P ⊕ B).

Safety for reduction means that reduction does not introduce new winners.

Theorem 6. Any anonymous, neutral and additive voting rule is safe for reduction.

Proof. Assume V is anonymous and neutral. Then V(B) equals the set of all
alternatives. By additivity we have:

V(P) = V(P) ∩ V(B) ⊆ V(P ⊕ B).

�

Proposition 11. The Condorcet rule is neither safe for reduction nor safe for dilution.
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Proof. Consider the profile:

(abc, 1), (bac, 3), (bca, 1), (acb, 5), (cab, 4), (cba, 3).

The Condorcet winner for this profile is a. The reduced form of this is:

(abc, 0), (bac, 0), (bca, 0), (acb, 2), (cab, 3), (cba, 0).

The Condorcet winner for the reduced profile is c. �

Proposition 12. The absolute majority rule is safe for reduction, but not safe for
dilution.

Proof. The example from Proposition 11 works here as well. In the reduced
profile

(abc, 0), (bac, 0), (bca, 0), (acb, 2), (cab, 3), (cba, 0)

there is an absolute majority for c. Dilute this profile with

(abc, 1), (bac, 1), (bca, 1), (acb, 3), (cab, 3), (cba, 3).

There is no absolute majority in the diluted profile

(abc, 1), (bac, 3), (bca, 1), (acb, 5), (cab, 4), (cba, 3).

�

Theorem 7. Any voting rule V with positional scoring will assign to every alternative
in a balanced profile B the same score.

Proof. Let B be a balanced m-profile. Then there are (m − 1)! cycles, and there
are ki voters in each ballot in the i-th cycle. Let V be a positional voting rule
with (x0, · · · , xm−1) as its scoring vector. Let πi be an arbitrary cycle of P, let a be
an arbitrary alternative, and let j be an arbitrary position (i.e., 0 ≤ j < m). Then
the score for a for this position in the cycle under the voting rule is given by
kix j, for a occurs in this position exactly once in the cycle. Summing over the
cycles, we get that a collects the following score in B:

(m−1)!∑
i=1

kix j.
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Summing over the positions, we see that a collects the score:

m−1∑
j=0

(m−1)!∑
i=1

kix j.

Since a was arbitrary, every alternative collects this same score. �

Theorem 8. Any voting rule V with positional scoring is safe for reduction and safe
for dilution.

Proof. Let P be an m-profile, and let B be a balanced m-profile.

Since B is balanced, it follows from the previous Theorem that the scores for the
alternatives under V for P can be computed from those for P⊕B by subtracting
a constant c from each score, and vice versa, by adding a constant c to each
score. These subtractions and additions do not affect the outcome of V. �

Question 6. Does the converse hold as well? If a voting rule is safe in both directions,
does it follow that it is positional?

If this is too difficult to answer, the following questions may be easier:

Question 7. If a voting rule is safe in both directions, does it follow that it is additive?

Question 8. If a voting rule is safe in both directions, does it follow that it is consistent?

Notice that for all voting rules V that are not invariant under reduction, the
derived voting rule Vr defined by Vr(P) = V(Pr) is different from V. Also, for
any voting rule V, the derived voting rule Vr is invariant for reduction and
dilution by definition.

Question 9. What are the formal properties of the Condorcetr rule?

Question 10. Are there non-positional voting rules V with the property that Vr is
positional?

5 Strategizing

Strategizing is replacing a ballot b by a different one, b′, in the hope or expec-
tation to get a better outcome (where better is “closer to b” in some sense).
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As is explained in Taylor (2005), there are many ways to interpret ‘better’. One
way is that X is better than Y if X weakly dominates Y, that is if every x ∈ X
is at least as good as every y ∈ Y and some x ∈ X is better than some y ∈ Y.
Formally:

Definition 5.1. If X,Y ⊆ A X , ∅, Y , ∅, and b ∈ ord(A), then X >b Y if
∀x ∈ X∀y ∈ Y: x = y or x is above y in b, and ∃x ∈ X∃y ∈ Y: x is above y in b.

Let P ∼i P′ express that P and P′ differ only in the ballot of voter i.

Definition 5.2. A voting rule is strategy-proof if P ∼i P′ implies V(P) ≥i V(P′),
where ≥i expresses ‘betterness’ according to the i-ballot in P.

Note: the following definition does not assume voter anonymity. The definition
uses P−i for the result of removing the ballot of voter i from profile P.

Definition 5.3. A voting rule V is monotone if for any profile P and any alterna-
tive a ∈ V(P), if b′i is a new ballot for some voter i that results from moving a up
in the ranking of i and not changing the order between the other alternatives,
then a ∈ V(P−i

∪ b′i ).

Definition 5.4. A voting rule is resolute if V(P) is a singleton for any profile P.

Theorem 9. Any resolute voting rule that is monotone and invariant for restriction
is strategy-proof.

Proof. Take some resolute voting rule V, profile P and voter i. Suppose V(P) =
{a}. Then for any other candidate c, V(P{a,c}) = {a} by winner preservation under
restriction. Suppose i can strategize by submitting some dishonest ballot b′i in
order to elect some candidate b such that b >i a.

Let V(P−i
∪ b′i ) = {b}. It is possible that a >′i b. By monotonicity, if we construct

the ballot b′′i by moving b up until b >′′i a then V(P−i
∪ b′′i ) = {b}. By winner

preservation under restriction, V(P{a,b}) = a. But because b >′′i a, (P−i
∪ b′′i ){a,b} =

P{a,b} so V((P−i
∪ b′′i ){a,b}) = V(P{a,b}) = {a}. This contradicts our assumption that

b >i a, so strategizing is not possible. �

The concept of weak domination is borrowed from game theory (see, e.g.,
Osborne (2004)). As Taylor (Taylor 2005, p. 39) remarks:
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In point of fact, an election can be thought of as a game in which a
strategy for a player (voter) is a choice of ballot, and the outcome of
the game is the set of winners in the election.

To formalize this, let a ballot vector for A be a list of A-ballots (b0, . . . ,bn−1). We
assume that a ballot vector represents the true ballots of voters {0, . . . ,n − 1}, in
the sense that bi represents the true preferences of voter i.

Define a payoff function in terms of ≥b from Definition 5.1, as follows.

Definition 5.5. payoff(b,X) = |{Y | Y ∈ P+(A),X >b Y}|.

Thus, the payoff of a voting outcome X, given a ballot b serving as a point
of reference, is the size of the set of possible voting outcomes that are strictly
worse than X.

This payoff function can be used to define the value of a move for a player with
true ballot b, as follows:

Definition 5.6. move(V,P,b,b′) = payoff(b,V(P′)), where P′ is the result of
adding ballot b′ to P.

The game for voting rule V and ballot vector (b0, . . . ,bn−1) is now given in terms
of the move function, as follows.

Definition 5.7. Assume P is some profile for n − 1 voters. Then

Game(V, (b0, . . . ,bn−1),P, i) = {(b,move(V,P,bi,b) | b ∈ ord(A)}.

Thus, we see that a voting rule together with a ballot vector determines an
n-player game Game(V, (b0, . . . ,bn−1)), where each voter has a choice between
the members of ord(A) (the possible ballots), and where the payoff for player i
for a profile P for n−1 voters, and for (cast) ballot b is given by move(V,P,bi,b).

Clearly, a voting rule V is strategy-proof iff it holds for each ballot vector
(b0, . . . ,bn−1) that the profile P corresponding to vector (b0, . . . ,bn−1) is a Nash
equilibrium for Game(V, (b0, . . . ,bn−1)). But we can take a more general per-
spective:

Question 11. Characterize the ballot vectors for which Game(V, (b0, . . . ,bn−1)) (for
given V) has nontrivial pure Nash equilibria.



J. van Eijck and F. Sietsma 123

The following proposition shows that there are many trivial Nash equilibria.

Proposition 13. Let V be a voting rule and P a profile. If for all i and P′ with P ∼i P′

it holds that V(P) = V(P′), then P is a Nash equilibrium for Game(V, (b0, . . . ,bn−1)),
for any ballot vector (b0, . . . ,bn−1).

Proof. No voter has an incentive to deviate from his ballot in P, as it makes no
difference for the outcome. �

Players who realize they have lost the game have no incentive to strategize.
Similarly for players who realize they have won the game. If all players know
they are in one of these two categories, no strategizing will occur. Compare
also Chopra et al. (2004) for a first analysis of the crucial role of knowledge in
strategic voting.

Question 12. Analyze the abstention game for a voting rule and a ballot vector, where
each player has the choice between casting his true ballot or abstaining from the vote.
A voting rule V is abstention-proof if it holds for each ballot vector (b0, . . . ,bn−1) that
the profile corresponding to that vector is a Nash equilibrium for the abstention game
for V and (b0, . . . ,bn−1). Characterize the voting rules that are abstention-proof.

6 Conclusion and Further Research

We have introduced a number of concepts to classify and analyze voting rules:
invariance for restriction, additivity, safety for dilution, safety for reduction.
We have demonstrated the use of these concepts by proving some new results
about voting rules. Further clarification of relations between voting rules will
no doubt result from finding answers to the list of questions we have left open.
Answering the list of questions we have raised (or in some cases, finding the
answers in the literature) is future work.

We have an implemented system for voting with anonymous voting rules that
we used for checking a number of the factual propositions in this paper. The
present version of the software implements strategizing, under the assumption
that the rest of the profile is known to the strategizer. Our intention is to extend
this implementation to an epistemic model checker for voting under partial
uncertainty about the profile. The software is available on the internet as a
literate Haskell program Eijck and Sietsma (2012).
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Abstract
Consider a player playing against different opponents in two extensive
form games simultaneously. Can she then have a strategy in one game
using information from the other? The famous example of playing chess
against two grandmasters simultaneously illustrates such reasoning. We
consider a simple dynamic logic of extensive form games with sequential
and parallel composition in which such situations can be expressed. We
present a complete axiomatization and show that the satisfiability problem
for the logic is decidable.

1 Motivation

How can any one of us 1 expect to win a game of chess against a Grandmaster
(GM)? The strategy is simple: play simultaneously against two Grandmasters!
If we play black against GM 1 playing white, and in the parallel game play
white against GM 2 playing black, we can do this simply. Watch what GM 1
plays, play that move in the second game, get GM 2’s response, play that same

1By “us” we mean poor mortals who know how to play the game but lack expertise.
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move as our response in game 1, and repeat this process. If one of the two GMs
wins, we are assured of a win in the other game. In the worst case, both games
will end in a draw.

Note that the strategy construction in this example critically depends on several
features:

• Both games need to be played in lock-step synchrony; if they are slightly out
of step with each other, or are sequentialized in some way, the strategy is
not applicable. So concurrency is critically exploited.

• The strategy cannot be constructed a priori, as we do not know what moves
would be played by either of the GMs. Such reasoning is intrinsically
different from the discussion of the existence of winning strategies in
determined games. In particular, strategic reasoning as in normal form
games is not applicable.

• The common player in the two games acts as a conduit for transfer of
information from one game to the other; thus game composition is essential
for such reasoning. The example illustrates that playing several instances
of the same game may mean something very different from repeated
games.

• The common player can be a resource bounded agent who cannot analyse
the entire game structure and compute the winning strategy (even if it
exists). The player thus mimics the moves of an “expert” in order to win
one of the constituent games.

In general, when extensive form games are played in parallel, with one player
participating in several games simultaneously, such an information transfer
from one game to the other is possible. In general, since strategies are structured
in extensive form games, they can make use of such information in a non-trivial
manner.

In the context of agent-based systems, agents are supposed to play several
interactive roles at the same time. Hence when interaction is modelled by
games (as in the case of negotiations, auctions, social dilemma games, market
games, etc.) such parallel games can assume a great deal of importance. Indeed,
a prominent feature of an agent in such a system is the ability to learn and
transferring strategic moves from one game to the other can be of importance
as one form of learning.
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Indeed, sequential composition of games can already lead to interesting situa-
tions. Consider player A playing a game against B, and after the game is over,
playing another instance of the same game against player C. Now each of the
leaf nodes of the first game carries important historical information about play
in the game, and A can strategize differently from each of these nodes in the
second game, thus reflecting learning again. Negotiation games carry many
such instances of history-based strategizing.

What is needed is an algebra of game composition in which the addition of
a parallel operator can be studied in terms of how it interacts with the other
operators like choice and sequential composition. This is reminiscent of process
calculi, where equivalence of terms in such algebras is studied in depth.

In this paper, we follow the seminal work of Parikh (Parikh (1985)) on propo-
sitional game logic. We use dynamic logic for game expressions but extended
with parallel composition; since we wish to take into account game structure,
we work with extensive form games embedded in Kripke structures rather than
with effectivity functions. In this framework, we present a complete axiom-
atization of the logic and show that the satisfiability problem for the logic is
decidable.

The interleaving operator has been looked at in the context of program analysis
in terms of dynamic logic Abrahamson (1980). The main technical difficulty
addressed in the paper is that parallel composition is not that of sequences (as
typically done in process calculi) but that of trees. The main modality of the
logic is an assertion of the form 〈g, i〉α which asserts, at a state s, that a tree t
in the “tree language” associated with g is enabled at s, and that player i has a
strategy (subtree) in it to ensure α. Parallel composition is not compositional
in the standard logical sense: the semantics of g1||g2 is not given in terms of the
semantics of g1 and g2 considered as wholes, but by going into their structure.
Therefore, defining the enabled-ness of a strategy as above is complicated. Note
that the branching structure we consider is quite different from the intersection
operator in dynamic logic Harel (1984), Danecki (1984), Lange and Lutz (2005)
and is closer to the paradigm of concurrent dynamic logic Peleg (1987).

For ease of presentation, we first present the logic with only sequential and
parallel composition and discuss technicalities before considering iteration,
which adds a great deal of complication. Note that the dual operator, which is
important in Parikh’s game logic is not relevant here, since we wish to consider
games between several players played in parallel.
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Related work

Games have been extensively studied in temporal and dynamic logics. For con-
current games, this effort was pioneered by work on Alternating time temporal
logic (ATL) Alur et al. (2002), which considers selective quantification over
paths. Various extension of ATL was subsequently proposed, these include
ones in which strategies can be named and explicitly referred to in the formulas
of the logic van der Hoek et al. (2005), Ågotnes (2006), Walther et al. (2007).
Parikh’s work on propositional game logics Parikh (1985) initiated the study
of game structures in terms of algebraic properties. Pauly Pauly (2001) has
built on this to reason about abilities of coalitions of players. Goranko draws
parallels between Pauly’s coalition logic and ATL Goranko (2001). Van Ben-
them uses dynamic logic to describe games and strategies van Benthem (2002).
Strategic reasoning in terms of a detailed notion of agency has been studied in
the stit framework Horty (2001), Broersen (2010), Broersen et al. (2006).

Somewhat closer in spirit is the work of van Benthem et al. (2008) where van
Benthem and co-authors develop a logic to reason about simultaneous games
in terms of a parallel operator. The reasoning is based on powers of players in
terms of the outcome states that can be ensured. Our point of departure is in
considering extensive form game trees explicitly and looking at interleavings
of moves of players in the tree structure.

2 Preliminaries

2.1 Extensive form games

Let N = {1, . . . ,n} denote the set of players, we use i to range over this set. For
i ∈ N, we often use the notation ı to denote the set N \ {i}. Let Σ be a finite set
of action symbols representing moves of players, we let a, b range over Σ. For
a set X and a finite sequence ρ = x1x2 . . . xm ∈ X∗, let last(ρ) = xm denote the last
element in this sequence.
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Game trees:

LetT = (S,⇒, s0) be a tree rooted at s0 on the set of vertices S and⇒ : (S×Σ)→ S
is a partial function specifying the edges of the tree. The tree T is said to be
finite if S is a finite set. For a node s ∈ S, let

→

s = {s′ ∈ S | s a
⇒s′ for some a ∈ Σ},

moves(s) = {a ∈ Σ | ∃s′ ∈ S with s a
⇒s′} and ET(s) = {(s, a, s′) | s a

⇒s′}. By ET(s) × x
we denote the set {((s, x), a, (s′, x)) | (s, a, s′) ∈ ET(s)}. The set x × ET(s) is defined
similarly. A node s is called a leaf node (or terminal node) if

→

s = ∅. The depth
of a tree is the length of the longest path in the tree.

An extensive form game tree is a pair T = (T, λ̂) where T = (S,⇒, s0) is a
tree. The set S denotes the set of game positions with s0 being the initial game
position. The edge function⇒ specifies the moves enabled at a game position
and the turn function λ̂ : S → N associates each game position with a player.
Technically, we need player labelling only at the non-leaf nodes. However, for
the sake of uniform presentation, we do not distinguish between leaf nodes and
non-leaf nodes as far as player labelling is concerned. An extensive form game
tree T = (T, λ̂) is said to be finite if T is finite. For i ∈ N, let Si = {s | λ̂(s) = i}
and let frontier(T) denote the set of all leaf nodes of T. Let SL

T = frontier(T) and
SNL

T = S \ SL
T. For a tree T = (S,⇒, s0, λ̂) we use head(T) denote the depth one

tree generated by taking all the outgoing edges of s0.

A play in the game T starts by placing a token on s0 and proceeds as follows:
at any stage if the token is at a position s and λ̂(s) = i then player i picks an
action which is enabled for her at s, and the token is moved to s′ where s a

⇒s′.
Formally a play in T is simply a path ρ : s0a1s1 · · · in T such that for all j > 0,

s j−1
a j
⇒s j. Let Plays(T) denote the set of all plays in the game tree T.

2.2 Strategies

A strategy for player i ∈ N is a function µi which specifies a move at every
game position of the player, i.e. µi : Si

→ Σ. A strategy µi can also be viewed
as a subtree of T where for each player i node, there is a unique outgoing
edge and for nodes belonging to players in ı, every enabled move is included.
Formally we define the strategy tree as follows: For i ∈ N and a player i strategy
µi : Si

→ Σ the strategy tree Tµi = (Sµi ,⇒µi , s0, λ̂µi ) associated with µ is the least
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subtree of T satisfying the following property: s0 ∈ Sµi ,

• For any node s ∈ Sµi ,

– if λ̂(s) = i then there exists a unique s′ ∈ Sµi and action a such that

s a
⇒µi s′.

– if λ̂(s) , i then for all s′ such that s a
⇒s′, we have s a

⇒µi s′.

Let Ωi(T) denote the set of all strategies for player i in the extensive form game
tree T. A play ρ : s0a0s1 · · · is said to be consistent with µi if for all j ≥ 0 we have
s j ∈ Si implies µi(s j) = a j.

2.3 Composing game trees

We consider sequential and parallel composition of game trees. In the case
of sequences, composing them amounts to concatenation and interleaving.
Concatenating trees is less straightforward, since each leaf node of the first
is now a root of the second tree. Interleaving trees is not the same as a tree
obtained by interleaving paths from the two trees, since we wish to preserve
choices made by players.

Sequential composition:

Suppose we are given two finite extensive form game trees T1 = (S1,⇒1, s0
1, λ̂1)

and T2 = (S2,⇒2, s0
2, λ̂2). The sequential composition of T1 and T2 (denoted

T1; T2) gives rise to a game tree T = (S,⇒, s0, λ̂), defined as follows: S = SNL
1 ∪S2,

s0 = s0
1,

• λ̂(s) = λ̂1(s) if s ∈ SNL
1 and λ̂(s) = λ̂2(s) if s ∈ S2.

• s a
⇒s′ iff:

– s, s′ ∈ SNL
1 and s a

⇒1s′, or

– s, s′ ∈ S2 and s a
⇒2s′, or
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– s ∈ SNL
1 , s′ = s0

2 and there exists s′′ ∈ SL
1 such that s a

⇒1s′′.

In other words, the game tree T1; T2 is generated by pasting the tree T2 at all the
leaf nodes of T1. The definition of sequential composition can be extended to a
set of trees T2 (denoted T1;T2) with the interpretation that at each leaf node of
T1, a tree T2 ∈ T2 is attached.

Parallel composition:

The parallel composition of T1 and T2 (denoted T1||T2) yields a set of trees. A
tree t = (S,⇒, s0, λ̂) in the set of trees T1||T2 provided: S ⊆ S1 × S2, s0 = (s0

1, s
0
2),

• For all (s, s′) ∈ S:

– ET((s, s′)) = Et1 (s) × s′ and λ̂(s, s′) = λ̂1(s), or

– ET((s, s′)) = s × Et2 (s′) and λ̂(s, s′) = λ̂2(s′).

• For every edge s1
a
⇒1s′1 in t1, there exists s2 ∈ S2 such that (s1, s2) a

⇒(s′1, s2)
in t.

• For every edge s2
a
⇒2s′2 in t2, there exists s1 ∈ S1 such that (s1, s2) a

⇒(s1, s′2)
in t.

3 Examples

p1,1
a

��
b

��
p2 p3

q1,2
c

��
d

��
q2 q3

T1 T2

Figure 1: atomic games

Consider the trees T1 and T2 given in Figure 1. The sequential composition of
T1 and T2 (denoted T1; T2) is shown in Figure 2. This is obtained by pasting the
tree T2 at all the leaf nodes of T1.
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p1,1
a

zz
b

%%
q1,2

c

��
d

��

q1,2
c

��
d

��
q2 q3 q2 q3

Figure 2: T1; T2

Now consider two finite extensive form game trees T4 and T5 given in figure 3.
Each game is played between two players, player 2 is common in both games.

p1,1
a
ww

b
''

p2,2
c
��

d
��

p3,2
c
��

d
��

p4,1 p5,1 p6,1 p7,1

q1,2
a
ww

b
''

q2,3
c
��

d
��

q3,3
c
��

d
��

q4,2 q5,2 q6,2 q7,2

(a) T4 (b) T5

Figure 3: Atomic games

Note that we are talking about different instances of the same game (as evident
from the similar game trees) played between different pairs of players with
a player in common. Consider the interleaving of T4 and T5 where player 1
moves first in T4, followed by 2 and 3 in T5, and then again coming back to the
game T4, with the player 2-moves. This game constitutes a valid tree in the set
of trees defined by T4||T5 and is shown in Figure 4.

Due to space constraints, we have not provided the names for each of the states
in the parallel game tree, but they are quite clear from the context. The game
starts with player 1 moving from p1 in T4 to p2 or p3. Then the play moves to
the game T5, where player 2 moves to q2 or q3, followed by the moves of player
3. After that, the play comes back to T4, where player 2 moves once again.

These games clearly represent toy versions of “playing against two Grandmas-
ters simultaneously”. Players 1 and 3 can be considered as the Grandmasters,
and 2 as the poor mortal. Let us now describe the copycat strategy that can be
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c
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d
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2
c




d
��

2
c

��
d��

(p4,q4) (p5,q7) (p6,q4) (p7,q7)

Figure 4: Game tree T

used by player 2, when the two games are played in parallel. The simultaneous
game (figure 4), starts with player 1 making the first move a, say in the game
tree T4 (from (p1, q1)) to move to (p2, q1). Player 2 then copies this move in game
T5, to move to (p2, q2). The game continues in T5, with player 3 moving to
(p2, q4), say. Player 2 then copies this move in T4 (playing action c) to move to
(p4, q4). This constitutes a play of the game, where player 2 copies the moves of
players 1 and 3, respectively.

Evidently, if player 1 has a strategy in T4 to achieve a certain objective, whatever
be the moves of player 2, following the same strategy, player 2 can attain the
same objective in T5.

Parallel composition can also be performed with respect to games structures
which are not the same. Consider the game trees T6 and T7 given in Figure 5.

p1,1
a
��

b
��

p2,2

c
��

p3,2

d��
p4,1 p5,1

q1,3

x
��

q2,4
y

��
z
��

q3,3 q4,3

(a) T6 (b) T7

Figure 5: Atomic games
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An interleaved game where each game is played alternatively starting from the
game T6 can be represented by the game tree in Figure 6.

(p1,q1),1
a

tt
b

**
(p2,q1),3

x
��

(p3,q1),3

x
��

(p2,q2),2

c
��

(p3,q2),2

d
��

(p4,q2),4
y

{{
z

##

(p5,q2),4
y

{{
z

##
(p4,q3),1 (p4,q4),1 (p5,q3),1 (p5,q4),1

Figure 6: A game tree in T6||T7

4 The logic

For a finite set of action symbols Σ, letT (Σ) be a countable set of finite extensive
form game trees over the action set Σ which is closed under subtree inclusion.
That is, if T ∈ T (Σ) and T′ is a subtree of T then T′ ∈ T (Σ). We also assume that
for each a ∈ Σ, the tree consisting of the single edge labelled with a is in T (Σ).
LetH be a countable set and h, h′ range over this set. Elements ofH are referred
to in the formulas of the logic and the idea is to use them as names for extensive
form game trees in T (Σ). Formally we have a map ν : H→ T (Σ) which given
any name h ∈H associates a tree ν(h) ∈ T (Σ). We often abuse notation and use
h to also denote ν(h) where the meaning is clear from the context.

4.1 Syntax

Let P be a countable set of propositions, the syntax of the logic is given by:

Γ := h | g1; g2 | g1 ∪ g2 | g1||g2

Φ := p ∈ P | ¬α | α1 ∨ α2 | 〈g, i〉α
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where h ∈H and g ∈ Γ.

In Γ, the atomic construct h specifies a finite extensive form game tree. Com-
posite games are then constructed using the standard dynamic logic operators
along with the parallel operator. g1 ∪ g2 denotes playing g1 or g2. Sequential
composition is denoted by g1; g2 and g1||g2 denotes the parallel composition of
games.

The main connective 〈g, i〉α asserts at state s that a tree in g is enabled at s and
that player i has a strategy subtree in it at whose leaves α holds.

4.2 Semantics

A model M = (W,→, λ̂,V) where W is the set of states (or game positions),
→ ⊆ W × Σ × W is the move relation, V : W → 2P is a valuation function
and λ̂ : W → N is a player labelling function. These can be thought of as
standard Kripke structures whose states correspond to game positions along
with an additional player labelling function. An extensive form game tree can
be thought of as enabled at a certain state, say s of a Kripke structure, if we can
embed the tree structure in the tree unfolding of the Kripke structure rooted at
s. We make this notion more precise below.

Enabling of trees:

For a game position u ∈ W, let Tu denote the tree unfolding of M rooted at u.
We say the game h is enabled at a state u if the structure ν(h) can be embedded
in Tu with respect to the enabled actions and player labelling. Formally this
can be defined as follows:

Given a state u and h ∈ H, let Tu = (Ss
M,⇒M, λ̂M, s) and ν(h) = Th =

(Sh,⇒h, λ̂h, sh,0). The restriction of Tu with respect to the game tree h (denoted
Tu |

\ h) is the subtree of Ts which is generated by the structure specified by Th.
The restriction is defined inductively as follows: Tu |

\ h = (S,⇒, λ̂, s0, f ) where
f : S→ Sh. Initially S = {s}, λ̂(s) = λ̂M(s), s0 = s and f (s0) = sh,0.

For any s ∈ S, let f (s) = t ∈ Sh. Let {a1, . . . , ak} be the outgoing edges of t, i.e. for

all j : 1 ≤ j ≤ k, t
a j
⇒ht j. For each a j, let {s1

j , . . . , s
m
j } be the nodes in Ss

M such that
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s
a j
⇒Msl

j for all l : 1 ≤ l ≤ m. Add nodes s1
j , . . . , s

m
j to S and the edges s

a j
⇒sl

j for all

l : 1 ≤ l ≤ m. Also set λ̂(sl
j) = λ̂M(sl

j) and f (sl
j) = t j.

We say that a game h is enabled at u (denoted enabled(h,u)) if the tree Tu |
\ h =

(S,⇒, λ̂, s0, f ) satisfies the following properties: for all s ∈ S,

• moves(s) = moves( f (s)),

• if moves(s) , ∅ then λ̂(s) = λ̂h( f (s)).

Interpretation of atomic games:

To formally define the semantics of the logic, we need to first fix the interpreta-
tion of the compositional games constructs. In the dynamic logic approach, for
each game construct g and player i we would associate a relation Ri

g ⊆ (W×2W)
which specifies the outcome of a winning strategy for player i. However due
to the ability of being able to interleave game positions, in this setting we need
to keep track of the actual tree structure rather just the “input-output” rela-
tions, which is closer in spirit to what is done in process logics Harel et al.
(1982) . Thus for a game g and player i we define the relation Ri

g ⊆ 2(W×W)∗ .
For a pair x = (u,w) ∈ W ×W and a set of sequences Y ∈ 2(W×W)∗ we define
(u,w) · Y = {(u,w) · ρ | ρ ∈ Y}. For j ∈ {1, 2} we use x[ j] to denote the j-th
component of x.

For each atomic game h and each state u ∈ W, we define Ri
h(u) in a bottom-up

manner in such a way that whenever h is enabled at u, Ri
h(u) encodes the set

of all available strategies (cf. Section 2.2) for player i in the game h enabled at
u. The collection of all such strategies that a player i can have, whenever the
game h is enabled at some state u ∈W is given by Ri

h.

Let h = (S,⇒, s0, λ̂) be a depth 1 tree with moves(s0) = {a1, . . . , ak} and for all
s , s0, moves(s) = ∅. For i ∈ N and a state u ∈ W, we define Ri

h(u) ⊆ 2(W×W)∗ as
follows:

• If λ̂(s0) = i then Ri
h(u) = {X j | enabled(h,u) and X j = {(u,w j)}where u

a j
→w j}.

• if λ̂(s0) ∈ ı then Ri
h(u) = {{(u,w j) | enabled(h,u) and ∃a j ∈ moves(s0) with

u
a j
→w j}}.
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For g ∈ Γ, let Ri
g =

⋃
u∈W Ri

g(u).

For a tree h = (S,⇒, s0, λ̂) such that depth(h) > 1, we define Ri
h(u) as,

• if λ̂(s0) = i then Ri
h(u) = {{(u,w) · Y} | ∃X ∈ Ri

head(h) with (u,w) ∈ X,u
a j
→w

and Y ∈ Ri
haj
}

• if λ̂(s0) ∈ ı then Ri
h(u) = {{(u,w) ·Y | ∃X ∈ Ri

head(h) with (u,w) ∈ X,u
a j
→w and

Y ∈ Ri
haj
}}.

Remark: Note that a set X ∈ Ri
h can contain sequences such as (u,w)(v, x) where

w , v. Thus in general sequence of pairs of states in X need not represent a
subtree of Tu for some u ∈ W. We however need to include such sequences
since if h is interleaved with another game tree h′, a move enabled in h′ could
make the transition from w to v. A sequence % ∈ X is said to be legal if whenever
(u,w)(v, x) is a subsequence of % then w = v. A set X ⊆ 2(W×W)∗ is a valid tree
if for all sequence % ∈ X, % is legal and X is prefix closed. For X which is a
valid tree we have the property that for all %, %′ ∈ X, first(%)[1] = first(%′)[1]. We
denote this state by root(X). We also use frontier(X) to denote the frontier nodes,
i.e. frontier(X) = {last(%)[2] | % ∈ X}.

For a game tree h, although every set X ∈ Ri
h need not be a valid tree, we can

associate a tree structure with X (denoted T(X)) where the edges are labelled
with pairs of the form (u,w) which appears in X. Conversely given W × W
edge labelled finite game tree T, we can construct a set X ⊆ 2(W×W)∗ by simply
enumerating the paths and extracting the labels of each edge in the path. We
denote this translation by f(T). We use these two translations in what follows:

Interpretation of composite games:

For g ∈ Γ and i ∈ N, we define Ri
g ⊆ 2(W×W)∗ as follows:

• Ri
g1∪g2

= Ri
g1
∪ Ri

g2
.

• Ri
g1;g2

= {f(T(X);T ) | X ∈ Ri
g1

and T = {T(X1), . . . ,T(Xk)} where
{X1, . . . ,Xk} ⊆ Ri

g2
}.
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• Ri
g1 ||g2

= {f(T(X1)||T(X2)) | X1 ∈ Ri
g1

and X2 ∈ Ri
g2
}.

The truth of a formula α ∈ Φ in a model M and a position u (denoted M,u |= α)
is defined as follows:

• M,u |= p iff p ∈ V(u).

• M,u |= ¬α iff M,u 6|= α.

• M,u |= α1 ∨ α2 iff M,u |= α1 or M,u |= α2.

• M,u |= 〈g, i〉α iff ∃X ∈ Ri
g such that X constitutes a valid tree, root(X) = u

and for all w ∈ frontier(X), M,w |= α.

A formula α is satisfiable if there exists a model M and a state u such that
M,u |= α.

Let h1 and h2 be the game trees T4 and T5 given in Figure 3. The tree in
which the moves of players are interleaved in lock-step synchrony is one of
the trees in the semantics of h1||h2. This essentially means that at every other
stage if a depth one tree is enabled then after that the same tree structure is
enabled again, except for the player labelling. Given the (finite) atomic trees,
we can write a formula αLS which specifies this condition. If the tree h is a
minimal one, i.e. of depth one given by (S,⇒, s0, λ̂), αLSh can be defined as,∧

a j∈moves(s0)(〈a j〉> ∧ [a j](∧a j∈moves(s0)〈a j〉>).

If player 1 has a strategy (playing a, say) to achieve certain objective φ in the
game h1, player 2 can play (copy) the same strategy in h2 to ensure φ. This
phenomenon can be adequately captured in the interleaved game structure,
where player 2 has a strategy (viz. playing a) to end in those states of the game
h1||h2, where player 1 can end in h1. So we have that, whenever h1 and h1||h2 are
enabled and players can move in lock-step synchrony with respect to the game
h1 (or, h2), 〈h1, 1〉φ→ 〈h1||h2, 2〉φ holds.

5 Axiom system

The main technical contribution of this paper is a sound and complete axiom
system. Firstly, note that the logic extends standard PDL (without iteration).
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For a ∈ Σ and i ∈ N, let Ti
a be the tree defined as: Ti

a = (S,⇒, s0, λ̂) where
S = {s0, s1}, s0

a
⇒s1, λ̂(s0) = i and λ̂(s1) ∈ N. Let ti

a be the name denoting this tree,
i.e. ν(ti

a) = Ti
a. For each a ∈ Σ we define,

• 〈a〉α =
∧

i∈N(turni ⊃ 〈ti
a, i〉α).

From the semantics it is easy to see that we get the standard interpretation for
〈a〉α, i.e. 〈a〉α holds at a state u iff there is a state w such that u a

→w and α holds
at w.

Enabling of trees: The crucial observation is that the property of whether a
game is enabled can be described by a formula of the logic. Formally, for h ∈H
such that ν(h) = (S,⇒, s0, λ̂) and moves(s0) , ∅ and an action a ∈ moves(s0), let
ha be the subtree of T rooted at a node s′ with s0

a
⇒s′. The formula h

√

(defined
below) is used to express the fact that the tree structure ν(h) is enabled and head

√

h
to express that head(ν(h)) is enabled. This is defined as,

• If ν(h) is atomic then h
√

= > and head
√

h = >.

• If ν(h) is not atomic and λ̂(s0) = i then

– h
√

= turni ∧ (
∧

a j∈moves(s0)(〈a j〉> ∧ [a j]h
√

a j
)).

– head
√

h = turni ∧ (
∧

a j∈moves(s0) 〈a j〉>).

Due to the ability to interleave choices of players, we also need to define for
a composite game expression g, the initial (atomic) game of g and the game
expression generated after playing the initial atomic game (or in other words
the residue). We make this notion precise below:

Definition of init

• init(h) = {h} for h ∈ G

• init(g1; g2) = init(g1) if g1 , ε else init(g2).

• init(g1 ∪ g2) = init(g1) ∪ init(g2).

• init(g1||g2) = init(g1) ∪ init(g2).
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Definition of residue

• h\h = ε and ε\h = ε.

• (g1; g2)\h =

{
(g1\h); g2 if g1 , ε.
(g2\h) otherwise.

• (g1 ∪ g2)\h =


(g1\h) ∪ (g2\h) if h ∈ init(g1) and h ∈ init(g2).
g1\h if h ∈ init(g1) and h < init(g2).
g2\h if h ∈ init(g2) and h < init(g1).

• (g1||g2)\h =


(g1\h||g2) ∪ (g1||g2\h) if h ∈ init(g1) and h ∈ init(g2).
(g1\h||g2) if h ∈ init(g1) and h < init(g2).
(g1||g2\h) if h ∈ init(g2) and h < init(g1).

The translation used to express the property of enabling of trees in terms of
standard PDL formulas also suggest that the techniques developed for proving
completeness of PDL can be applied in the current setting. We base our axiom-
atization of the logic on the “reduction axioms” methodology of dynamic logic.
The most interesting reduction axiom in our setting would naturally involve
the parallel composition operator. Intuitively, for game expressions g1, g2, a
formula α and a player i ∈ N the reduction axiom for 〈g1||g2, i〉α need to express
the following properties:

• There exists an atomic tree h ∈ init(g1||g2) such that head(ν(h)) is enabled.

• Player i has a strategy in head(ν(h)) which when composed with a strategy
in the residue ensures α. We use compi(h, g1, g2, α) to denote this property
and formally define it inductively as follows:

Suppose h = (S,⇒, s0, λ̂) where A = moves(s0) = {a1, . . . , ak}.

• If h ∈ init(g1), h ∈ init(g2) and

– λ̂(s0) = i then compi(h, g1, g2, α) =
∨

a j∈A(〈a j〉〈(ha j ; (g1\h))||g2〉α ∨
〈a j〉〈g1||(ha j ; (g2\h))〉α).

– λ̂(s0) ∈ ı then compi(h, g1, g2, α) =
∧

a j∈A([a j]〈(ha j ; (g1\h))||g2〉α ∨
[a j]〈g1||(ha j ; (g2\h))〉α).
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• If h ∈ init(g1), h < init(g2) and

– λ̂(s0) = i then compi(h, g1, g2, α) =
∨

a j∈A(〈a j〉〈(ha j ; (g1\h))||g2〉α).

– λ̂(s0) ∈ ı then compi(h, g1, g2, α) =
∧

a j∈A([a j]〈(ha j ; (g1\h))||g2〉α).

• if h ∈ init(g2), h < init(g1) and

– λ̂(s0) = i then compi(h, g1, g2, α) =
∨

a j∈A(〈a j〉〈g1||(ha j ; (g2\h))〉α).

– λ̂(s0) ∈ ı then compi(h, g1, g2, α) =
∧

a j∈A([a j]〈g1||(ha j ; (g2\h))〉α).

Note that the semantics for parallel composition allows us to interleave subtrees
of g2 within g1 (and vice versa). Therefore in the definition of compi at each
stage after an action a j, it is important to perform the sequential composition
of the subtree ha j with the residue of the game expression.

The axiom schemes

A1 Propositional axioms:

(a) All the substitutional instances of tautologies of PC.

(b) turni ≡
∧

j∈ı ¬turn j.

A2 Axiom for single edge games:

(a) 〈a〉(α1 ∨ α2) ≡ 〈a〉α1 ∨ 〈a〉α2.

(b) 〈a〉turni ⊃ [a]turni.

A3 Dynamic logic axioms:

(a) 〈g1 ∪ g2, i〉α ≡ 〈g1, i〉α ∨ 〈g2, i〉α.

(b) 〈g1; g2, i〉α ≡ 〈g1, i〉〈g2, i〉α.

(c) 〈g1||g2, i〉α ≡
∨

h∈init(g1 ||g2)

head
√

h ∧ compi(h, g1, g2, α).

A4 〈h, i〉α ≡ h
√

∧ ↓(h,i,α).

For h ∈H with ν(h) = T = (S,⇒, s0, λ̂) we define ↓(h,i,α) as follow:
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• ↓(h,i,α)=


α if moves(s0) = ∅.∨

a∈Σ 〈a〉〈ha, i〉α if moves(s0) , ∅ and λ̂(s0) = i.∧
a∈Σ [a]〈ha, i〉α if moves(s0) , ∅ and λ̂(s0) ∈ ı.

Inference rules

(MP) α, α ⊃ β (NG) α
β [a]α

Axioms (A1) and (A2) are self explanatory. Axiom (A3) constitutes the re-
duction axioms for the compositional operators. Note that unlike in PDL
sequential composition in our setting corresponds to composition over trees.
The following proposition shows that the usual reduction axiom for sequential
composition remains valid.

Proposition 1. The formula 〈g1; g2, i〉α ≡ 〈g1, i〉〈g2, i〉α is valid.

Proof. Suppose 〈g1; g2, i〉α ⊃ 〈g1, i〉〈g2, i〉α is not valid. This means there exists
a model M and a state u such that M,u |= 〈g1; g2, i〉α and M,u 6|= 〈g1, i〉〈g2, i〉α.
From semantics we get ∃X ∈ Ri

g1;g2
such that X is a valid tree, root(X) = u

and for all w ∈ frontier(X) we have M,u |= α. By definition, X is of the form
f(T(Y);T ) where Y ∈ Ri

g1
and T = {T(X1), . . . ,T(Xk)} with {X1, . . . ,Xk} ⊆ Ri

g2
}.

Since X is a valid tree we have Y,X1, . . . ,Xk are valid trees. Thus we get
that for all j : 1 ≤ j ≤ k, M, root(X j) |= 〈ξ2, i〉α and from semantics we have
M,u |= 〈g1, i〉〈g2, i〉α which gives the required contradiction.

A similar argument which makes use of the definition of Ri
g and the semantics

shows that 〈g1, i〉〈g2, i〉α ⊃ 〈g1; g2, i〉α is valid.

�

5.1 Completeness

To show completeness, we prove that every consistent formula is satisfiable.
Let α0 be a consistent formula, and CL(α0) denote the subformula closure of
α0. In addition to the usual subformula closure we also require the follow-
ing: if 〈h, i〉α ∈ CL(α0) then g

√

, ↓(h,i,α)∈ CL(α0) and if 〈g1||g2, i〉α ∈ CL(α0) then∧
h∈init(g1 ||g2) head

√

h, compi(h, g1, g2, α) ∈ CL(α0).
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Let AT(α0) be the set of all maximal consistent subsets of CL(α0), referred to
as atoms. We use u,w to range over the set of atoms. Each u ∈ AT(α0) is
a finite set of formulas, we denote the conjunction of all formulas in u by û.
For a nonempty subset X ⊆ AT(α0), we denote by X̃ the disjunction of all
û,u ∈ X. Define a transition relation on AT(α0) as follows: u a

−→ w iff û∧〈a〉ŵ is
consistent. Let the model M = (W,−→,V) where W = AT(α0) and the valuation
function V is defined as V(w) = {p ∈ P | p ∈ w}. Once the model is defined, the
semantics (given earlier) specifies relation Ri

g. The following lemma asserts the
consistency condition on elements of Ri

g.

Lemma 1. For all i ∈ N, for all h ∈ H, for all X ⊆ (W ×W)∗ with X = frontier(X),
for all u ∈W the following holds:

1. if X is a valid tree with root(X) = u and X ∈ Ri
h then û ∧ 〈h, i〉X̃ is consistent.

2. if û ∧ 〈h, i〉X̃ is consistent then there exists a X′ which is a valid tree with
frontier(X′) ⊆ X and root(X′) = u such that X′ ∈ Ri

h.

Proof. A detailed proof is given in the appendix. It essentially involves showing
that the game h is enabled at the state u and that there is a strategy for player i
in Tu |

\ h represented by the tree X whose frontier nodes areX. The strategy tree
X is constructed in stages starting at u. For any path of the partially constructed
strategy tree if the paths ends in a position of player i then the path is extended
by guessing a unique outgoing edge. If the position belongs to a player in ı
then all edges are taken into account. �

Lemma 2. For all i ∈ N, for all g ∈ Γ, for all X ⊆ (W ×W)∗ with X = frontier(X)
and u ∈ W, if û ∧ 〈h, i〉X̃ is consistent then there exists X′ which is a valid tree with
frontier(X′) ⊆ X and root(X′) = u such that X′ ∈ Ri

h.

Proof is given in the appendix.

Lemma 3. For all 〈g, i〉α ∈ CL(α0), for all u ∈ W, û ∧ 〈g, i〉α is consistent iff there
exists X ∈ Ri

g which is a valid tree with root(X) = u such that ∀w ∈ frontier(X), α ∈ w.

Proof. (⇒) Follows from lemma 2.

(⇐) Suppose there exists X ∈ Ri
g which is a valid tree with root(X) = u such that

∀w ∈ frontier(X), α ∈ w. We need to show that û ∧ 〈g, i〉α is consistent, this is
done by induction on the structure of g.
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• The case when g = h follows from lemma 1. For g = g1 ∪ g2 the result
follows from axiom (A3a).

• g = g1; g2: Since X ∈ Ri
g1;g2

, ∃Y with root(Y) = u and frontier(Y) =
{v2, . . . , vk}, there exist sets X1, . . . ,Xk where for all j : 1 ≤ j ≤ k,
root(X j) = v j,

⋃
j=1,...,k frontier(X j) = frontier(X), X j ∈ Ri

g2
and Y ∈ Ri

g1
.

By induction hypothesis, for all j, v̂ j ∧ 〈g2〉α is consistent. Since v j is
an atom and 〈g2, i〉α ∈ CL(α0), we get 〈g2, i〉α ∈ v j. Again by induction
hypothesis we have û ∧ 〈g1, i〉〈g2, i〉α is consistent. Hence from (A3b) we
have û ∧ 〈g1; g2, i〉α is consistent.

• g = g1||g2: Let h ∈ init(g1||g2), and h = (S,⇒, s0, λ̂). We have three cases
depending on whether h is the initial constituent game in g1 and g2. We
look at the case when h ∈ init(g1) and h < init(g2), the arguments for the
remaining cases are similar. Let A = moves(s0) = {a1, . . . , ak}. By semantics,
since enabled(h,u) holds we have moves(u) = A. We also get there exists
Y j ∈ Ri

taj ;(g1\h)||g2
where

⋃
j=1,...,k frontier(Y j) = frontier(X). Suppose λ̂(s0) = ı,

by performing a second induction on the depth of X we can argue that
û∧ (

∧
a j∈A([a j]〈(ta j ; (g1\h))||g2〉α) is consistent. Therefore from axiom (A3c)

we have û ∧ 〈g1||g2〉α is consistent.

�

This leads us to the following theorem from which we can deduce the com-
pleteness of the axiom system.

Theorem 1. For all formulas α0, if α0 is consistent then α0 is satisfiable.

Dedidability: Given a formula α0, let H(α0) be the set of all atomic game terms
appearing in α0. Let T(α0) = {ν(h) | h ∈ H(α0)} and m = maxT∈T(α0) |T|. For any
finite tree T, we define |T| to be the number of vertices and edges in T. It can be
verified that |CL(α0)| is linear in |α0| and therefore we have |AT(α0)| = O(2|α0 |).
The states of the model M constitutes atoms of α0 and therefore we get that if
α0 is satisfiable then there is a model whose size is at most exponential in |α0|.
The relation Ri

g can be explicitly constructed in time O(2|M|
m

). Thus we get the
following corollary.

Corollary 1. The satisfiability problem for the logic is decidable.
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6 Discussion

Iteration

An obvious extension of the logic is to add an operator for (unbounded) iteration
of sequential composition. The semantics is slightly more complicated since
we are dealing with trees. One needs to define it in terms of a least fixed point
operator (as seen in Parikh (1985)). Under this interpretation, the standard
dynamic logic axiom for iteration remains valid: 〈g∗, i〉α ≡ α ∨ 〈g, i〉〈g∗, i〉α.

We also have the familiar induction rule for dynamic logic which asserts that
when α is invariant under g so it is with the iteration of g.

(IND) 〈g, i〉α ⊃ α
〈g∗, i〉α ⊃ α

Note that the completeness proof (in the presence of interleaving) gets consid-
erably more complicated now. Firstly, the complexity of g\h is no longer less
than that of g so we cannot apply induction directly for parallel composition.
In general when we consider g∗1||g

∗

2, the interleaving critically depends on how
many iterations are chosen in each of the components. The technique is to con-
sider a graph for every g as follows: add an edge labelled h from g to g\h. This
is a finite graph, and we can show that the enabling of g at a state s corresponds
to the existence of an embedding of this graph at s. In effect, the unfolding
of the parallel composition axiom asserts the existence of this subgraph, and
the rest of the proof uses the induction rule as in the completeness proof for
dynamic logic. We omit the detailed proof here since it is technical and lengthy.

Strategy specifications

Throughout the paper we have been talking of existence of strategies in compo-
sitional games. It would be more interesting to specify strategies explicitly in
terms of their properties as done in Ramanujam and Simon (2008). In the pres-
ence of parallel composition, this adds more value to the analysis since apart
from specifying structural conditions which ensures the ability for players to
copy moves, we can also specify the exact sequence of moves which are copied
across games. The basic techniques used here can be extended to deal with
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strategy specification. However, it would be more interesting to come up with
compositional operators for strategy specifications which can naturally exploit
the interleaving semantics.
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A Appendix

Lemma 1. For all i ∈ N, for all h ∈H, for all X ⊆ (W ×W)∗ with X = frontier(X),
for all u ∈W the following holds:

1. if X is a valid tree with root(X) = u and X ∈ Ri
h then û∧〈h, i〉X̃ is consistent.

2. if û ∧ 〈h, i〉X̃ is consistent then there exists a X′ which is a valid tree with
frontier(X′) ⊆ X and root(X′) = u such that X′ ∈ Ri

h.

Proof. Let h = (S,⇒, s0, λ̂). If moves(s0) = ∅ then from axiom (A4) we get
〈h, i〉α ≡ β ∧ α and the lemma holds. Let moves(s0) = {a1, . . . , ak} and λ̂(s0) = i.

Suppose X ∈ Ri
h, since X is a valid tree and enabled(head(h),u) holds, there exist

sets Y1, . . . ,Yk such that for all j : 1 ≤ j ≤ k, w j = root(Y j) and u
a j
−→ w j. Since u

is an i node we have that the strategy should choose a w j such that u
a j
−→ w j and

X′ ∈ Ri
haj

where X = (u,w j) · X′. By induction hypothesis we have ŵ j ∧ 〈ha j , i〉X̃

is consistent. Hence from axiom (A4) we conclude û ∧ 〈h, i〉X̃ is consistent.

Suppose û ∧ 〈h, i〉X̃ is consistent. From axiom (A4) it follows that there exists

w1, . . . ,wk such that for all j : 1 ≤ j ≤ k, we have u
a j
−→ w j and hence enabled(h,u)

holds. Let X = {v1, . . . , vm}, from axiom (A4) we have û ∧ (
∨

a∈Σ 〈a〉〈ha, i〉X̃) is

consistent. Hence we get that there exists w j such that u
a j
−→ w j and ŵ j∧〈ha, i〉X̃

is consistent. By induction hypothesis there exists X′ which is a valid tree
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with frontier(X′) ⊆ X, root(X′) = w j and X′ ∈ Ri
ha

. By definition of Ri we get
(u,w j) · X′ ∈ Ri

h.

Let λ̂(s0) = ı and suppose X ∈ Ri
h. Since enabled(head(h),u) holds and X is a valid

tree, there exist sets Y1, . . . ,Yk such that for all j : 1 ≤ j ≤ k, w j = root(Y j) and

u
a j
−→ w j. Since u is an ı node, any strategy of i need to have all the branches

at u (by definition of strategy). Thus we get: for all w j with u
a j
−→ w j, there

exists X j with root(X j) = w j such that X j ∈ Ri
h and X =

⋃
j=1,...,k(u,w j) · X j. By

induction hypothesis and the fact thatX j = frontier(X j) ⊆ X, we have ŵ j∧〈h, i〉X̃
is consistent. Hence from axiom (A4) we get û ∧ 〈h, i〉X̃ is consistent.

Likewise, using axiom (A4) we can show that if û ∧ 〈h, i〉X̃ is consistent then
there exists a X′ which is a valid tree with frontier(X′) ⊆ X and root(X′) = u such
that X′ ∈ Ri

h. �

Lemma 2. For all i ∈ N, for all g ∈ Γ, for all X ⊆ (W ×W)∗ with X = frontier(X)
and u ∈ W, if û ∧ 〈h, i〉X̃ is consistent then there exists X′ which is a valid tree
with frontier(X′) ⊆ X and root(X′) = u such that X′ ∈ Ri

h.

Proof. By induction on the structure of g.

• g = h: The claim follows from Lemma 1 item 2.

• g = g1 ∪ g2: By axiom (A3a) we get û∧ 〈g1, i〉X̃ is consistent or û∧ 〈g2, i〉X̃
is consistent. By induction hypothesis there exists X1 which is a valid tree
with frontier(X1) ⊆ X and root(X1) = u such that (u,X1) ∈ Ri

h or there exists
X2 which is a valid tree with frontier(X2) ⊆ X and root(X2) = u such that
X2 ∈ Ri

h. Hence we have X1 ∈ Ri
g1∪g2

or X2 ∈ Ri
g1∪g2

.

• g = g1; g2: By axiom (A3b), û ∧ 〈g1, i〉〈g2, i〉X̃ is consistent. Hence û ∧
〈g1, i〉(

∨
(ŵ∧〈g2, i〉X̃)) is consistent, where the join is taken over all w ∈ Y =

{w | w ∧ 〈g2, i〉X̃ is consistent }. So û ∧ 〈g1, i〉Ỹ is consistent. By induction
hypothesis, there exists Y′ which is a valid tree withY′ = frontier(Y′) ⊆ Y
and root(Y′) = u such that (u,Y′) ∈ Ri

g1
. We also have that for all w ∈ Y,

ŵ ∧ 〈g2, i〉X̃ is consistent. Therefore we get for all w j ∈ Y
′ = {w1, . . . ,wk},

ŵ j ∧ 〈g2, i〉X̃ is consistent. By induction hypothesis, there exists X j which
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is a valid tree with X j = frontier(X j) ⊆ X and root(X j) = w j such that
X j ∈ Ri

g2
. Let X′ be the tree in Y′; {X j | j = 1, . . . , k} obtained by pasting X j

to the leaf node w j in Y′. We get X′ ∈ Ri
g1;g2

.

• g = g1||g2: Note that for all g ∈ Γ and h ∈ head(g), the complexity of g\h
is less than that of g. Therefore by making use of axiom (A3c) we can
show that there exists X′ with frontier(X′) ⊆ X′ and root(X′) = u such that
X′ ∈ Ri

h.

�
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Abstract
The paper introduces a class of games in extensive form where players
take strategic decisions while not having access to the terminal histories of
the game, hence being unable to solve it by standard backward induction.
This class of games is studied along two directions: first, by providing
an appropriate refinement of the subgame perfect equilibrium concept,
a corresponding extension of the backward induction algorithm and an
equilibrium existence theorem; second, by showing that these games are a
well-behaved subclass of a class of games with possibly unaware players
recently studied in the literature.1

1 Introduction

In the past decade the multi agent systems (MAS) community has wit-
nessed several attempts to relax the strong assumptions underpinning game-

1This version slightly extends substantially similar versions of this paper which have appeared
in the proceedings of AAMAS 2012 and as a technical report of the Computer Science Department
of the University of Liverpool (ULCS-11-005).
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theoretical models, such as common knowledge of the game structure, log-
ical omniscence and unbounded computational power, to mention a few.
Along these lines Joseph Halpern’s invited talk at AAMAS 2011—Beyond Nash-
Equilibrium: Solution Concepts for the 21st Century2—highlighted several research
challenges that arise when attempting to provide more realistic versions of the
Nash equilibrium solution concept. Among those challenges, the issue of un-
awareness seems to stand out, viz. the observation that in real games, like for
instance chess, players take decisions even if they cannot possibly have access
to the whole game form. Halpern himself extensively contributed to the re-
search on players’ unawareness: in Halpern and Rêgo (2006) and its extension
Halpern and Rêgo (2007), a game-theoretical analysis of unawareness in exten-
sive games is presented, where players have access to only part of the terminal
histories of a game tree as they ignore, at some nodes, some of the actions avail-
able to their fellow players. The same phenomenon has been studied, although
by different means, by Yossi Feinberg in Feinberg (2004; 2005).

All the aforementioned models of unawareness in games make a common
assumption: players might be unaware of some branches of the game tree, but
they do have access to a subset of the terminal histories, that is, they have a
full representation of at least some possible endings of the game. With the
present work we would like to push Halpern’s stance further, by lifting this
assumption and present a model of players who not only might not see a part of
the terminal nodes of a game tree but who might not even see any such nodes.
As happens in real games like chess, but also in a number of occasions where
individuals are confronted with a large game structure, decisions are taken on
the basis of a stepwise evaluation of foreseeable intermediate positions. As the
game proceeds, it often reveals earlier decisions to be wrong.3 The following
example provides a concrete motivating scenario representing this special kind
of unawareness, which we will be calling short sight.

Example 1 (A chess scenario). In Figure 1 Black is to move. He has three
options at his disposal: moving the black king to g7 (shortly Kg7), moving
it to e7 (Ke7), or moving the pawn one square further to h2 (h2). Let us
assume that Black has to move under pressing time constraints or that he is not
well-versed in evaluating key positions on the chessboard. He will then take
into consideration only a few possible developments of the play—for instance

2Published in Halpern (2011).
3To say it with Watson (1998), “Chess is a draw that is only made competitive by human error”

.
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8 0Z0Z0j0Z
7 Z0Z0ZPZ0
6 0Z0ZPZ0Z
5 Z0Z0Z0J0
4 0Z0Z0Z0Z
3 Z0Z0Z0Zp
2 0Z0Z0Z0Z
1 Z0Z0Z0Z0

a b c d e f g h

�

Figure 1: Black to move

what he would be able to reach in two moves (i.e., some plays up to two steps
ahead)—and he will base his decisions on somewhat ‘coarse’ evaluations—for
instance, gaining material advantage.

If this is the case, in a situation such as the one displayed in Figure 1, he will
prefer to queen his pawn as quickly as possible.4 Comparing the moves Kg7,
Ke7 and h2, the latter clearly leads to material advantage while the formers do
not. So Black will go for h2. However after h2 White can move its king to f6
(Kf6). Now Black is in trouble because after the white king is in f6 Black has
only one move at its disposal — he must queen his pawn (h1) — as Ke7 and
Kg7 are now illegal. Black’s material advantage in the resulting position (one
queen against two pawns) is no consolation: after e7 Black is checkmated.

In the example Black loses for two reasons: 1) he has partial view even on the
immediate development of the game; 2) he bases his decision on an evalua-
tion criterion—reaching material advantage—which turns out to be counter-
productive. These observations exemplify the characteristics of short sight in
extensive games: 1) players may be aware of only part of the game structure
and may not be able to calculate the consequences of their actions up to the
terminal nodes; 2) at each choice point, players base their decisions evaluating
the positions they can foresee according to (possibly faulty) criteria. The paper

4 The black pawn reaching h1 can be queened, i.e. turned into a strong major piece, giving its
owner an often decisive advantage.
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will incorporate the characteristic features of short sight in a standard treatment
of extensive games, studying their properties and their relation with models
of players’ unawareness to be found in the literature—in particular the ones in
Halpern and Rêgo (2006).

Outline of the paper. Section 2 introduces the basic terminology and facts
to be used later on in the paper. It mainly concernes the notion of extensive
game and preference relation and it presents standard solution concepts, such
as the subgame perfect equilibrium. Section 3 equips extensive games with a
description of players’ limited view at each history and presents corresponding
solution concepts for the new models. In particular it defines a backward
induction algorithm for games with short sight and proves an equilibrium
existence theorem for this class of games. Section 4 discusses the relation
between games with short sight and games with awareness as studied by
Halpern and Rêgo. Concretely, it shows that games with short sight are a
special type of games with awareness. Section 5 concludes the paper pointing
to several possible developments.

2 Preliminaries

The section introduces the basic terminology and notation to be used in the rest
of the paper.

2.1 Game forms and games

The structures we will be working with are extensive games which, unlike the
games in strategic or normal form, take the sequential structure of decisions
into account Osborne and Rubinstein (1994). We start out introducing extensive
games forms of perfect information (henceforth simply "extensive game forms"
or "game forms"), where players have full knowledge of the possible courses
of events. The following definition is adapted from Osborne and Rubinstein
(1994).

Definition 2.1 (Extensive game forms). An extensive game form is a tuple G =
(N,H, t,Σi, o) where:

• N is a non-empty set of players;



D. Grossi and P. Turrini 155

• H is a non-empty set of sequences, called histories, such that:

– The empty sequence ∅ is a member of H;

– If (ak)k=1,...,K ∈ H and L < K then (ak)k=1,...,L ∈ H;

– If an infinite sequence (ak)ωk=1 is such that (ak)k=1,...,L ∈ H for every
L < ω = |N| then (ak)ωk=1 ∈ H;

A history h ∈ H is called terminal if it is infinite or it is of the form
(ak)k=1,...,K with K < ω and there is no aK+1 such that (ak)k=1,...,K+1 ∈ H. The
set of terminal histories is denoted Z. Each component of a history is
called an action. The set of all actions is denoted A. The set of actions
following a history h is denoted with A(h). Formally A(h) = {a | (h, a) ∈ H}.
If h is a prefix of h′ we write h C h′.

• t : H\Z → N is a function, called turn function, assigning players to non-
terminal histories, with the idea that player i moves at history h whenever
t(h) = i;

• Σi is a non-empty set of strategies σi : {h ∈ H\Z | t(h) = i} → A for each
player i that assign an action to any non-terminal history whose turn to
play is i’s; we refer to σt(h)(h) as the action prescribed by strategy σ at history
h for the player who moves at h;

• o :
∏

i∈N Σi → Z is a bijective outcome function from the set of strategy
profiles to the set of terminal histories.

For any set of histories A ⊆ H we denote l(A) the length of its longest history.
The notation can also be used with game forms, where l(G) = l(H), for H being
the set of histories of game form G. If H is a finite set G is called a finite game
form. Extensive game forms equipped with preference relations, i.e. a family of
orders on terminal histories for each player, are referred to as extensive games
(or simply as games).

Definition 2.2 (Extensive games). An extensive game is a tuple E = (G,�i)
where G is an extensive game form and �i⊆ Z2 is a total preorder5 over Z, for
each player i.

An extensive game E = (G,�i) is called finite if G is finite.

5 I.e., a reflexive, transitive and total binary relation.
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2.2 Preferences and evaluation criteria

In Definition 2.2 players’ preferences are given by a total preorder over the set
of terminal nodes. However situations such as the one described in Example 1
suggest that, in presence of short sight, decisions need to be taken even when
terminal nodes are not accessible. For this reason we assume here that players
hold preferences about foreseeable intermediate nodes according to general
criteria which remain stable throughout the game. The idea is that players
are endowed with some kind of ‘theory’ that allows them to conceptualize
and evaluate game positions. For instance, in Example 1 Black evaluates the
positions that he can calculate according to the general criterion of material
advantage.

Priority sequences

To model the intuition above we follow a simple strategy. We take evaluation
criteria to consist of preferences defined over properties of game positions, and
we take properties to be sets of game positions, i.e., sets of histories.

Definition 2.3 (Priority sequences). LetG = (N,H, t,Σi, o) be an extensive game
form. A priority sequence, or P-sequence, for G is a tuple P = (H ,�) where:

• H ⊆ ℘(H) andH is finite, i.e., the set of propertiesH is a finite set of sets
of histories. Elements ofH are denoted H,H′, . . . .

• �⊆ H
2 is a strict linear order6 on the properties in H . To say that H is

preferred to H′, for H,H′ ∈ H , we write: H � H′.

P-sequences express a fixed priority between a finite set of relevant criteria.
In our understanding they represent a general theory that a player can use to
assess game positions. P-sequences and their generalisation to graphs have
been object of quite some recent studies in the logic of preference, such as Liu
(2011) from which Definition 2.3 is adapted. Given a P-sequence, a preference
over histories can be derived in a natural way:

Definition 2.4 (Preferences). Let G = (N,H, t,Σi, o) be an extensive game form
and P = (H ,�) a P-sequence for G. The preference relation �P

⊆ H2 over the set

6 I.e. an irreflexive, transitive, asymmetric and total binary relation.
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of histories of G induced by P is defined as follows:

h �P h′ ⇐⇒ ∀H ∈ H : [ if h′ ∈ H then h ∈ H
or ∃H′ ∈ H : [h ∈ H′ and h′ < H′ and H′ � H]]

In words, a history h is at least as good as a history h′ according to P, if and only
if, either all properties occurring in P that are satisfied by h′ are also satisfied
by h or, if that is not the case and there is some property that h′ has but h has
not, then there exists some other better property which h satisfies and h′ does
not. This ‘recipe’ yields preferences of a standard type:

Fact 1. Let G be an extensive game form and P = (H ,�) a P-sequence for G. The
relation �P has the following properties:

1. It is a total pre-order;

2. �P contains at most 2|H| sets of equally preferred elements.7

Sketch of proof. 1. That �P is reflexive follows directly from Definition 2.4. Tran-
sitivity is established by the following argument: assume h �P h′ and h′ �P h′′.
By Definition 2.4 we have four possible cases: i) all properties satisfied by h′

are also satisfied by h and all properties satisfied by h′′ are also satisfied by h′,
hence h �P h′′; ii) all properties satisfied by h′ are also satisfied by h and for
some property H enjoyed by h′′ but not by h′ there exists another property H′

such that H′ � H and h′ satisfies H but h′′ does not. Hence for some prop-
erty H enjoyed by h but not by h′′ there exists another property H′ such that
H � H′ and h satisfies H but h′′ does not, from which we conclude h �P h′′. iii)
More schematically, for all H: ∃H′ ∈ H : [h′ ∈ H′ and h′′ < H and H′ � H]]
and ∀H ∈ H : [ if h′ ∈ H then h ∈ H]. The proof is analogous to the one
of ii). iv) For all H: ∃H′ ∈ H : [h ∈ H′ and h′ < H and H′ � H]] and
∃H′′ ∈ H : [h′ ∈ H′′ and h′′ < H′′ and H′′ � H]] follows from the transitiv-
ity of relation � (Definition 2.3). As for totality, suppose not h �P h′. But then,
by totality of � (Definition 2.3) ∃H ∈ H : [h′ ∈ H and h < H and ∀H′ ∈ H : [h ∈
H′ and h′ < H′ implies H � H′]], which implies that h′ �P h.

2) Equivalence classes in �P are determined by the set of properties in H that
they satisfy, hence by elements of ℘(H). As some of these sets might be empty,
2|H| is an upper bound. �

7 I.e., sets of elements h, h′ such that h �P h′ and h′ �P h.
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Intuitively, P-sequences yield total preorders consisting of a finite set of equally
preferred elements which form a linear hierarchy from the set of most preferred
elements to the set of least preferred elements. Notice that P-sequences are
flexible enough to represent a variety of players’ preferences, from natural
cases where the most preferred property in the P-sequence contains some of
the terminal histories of the game, to cases where all terminal histories of the
game are equally “disliked" by not appearing in any of the properties in the
P-sequence.

Remark 1 (Linearity of P-sequences and total pre-orders). The linearity of P-
sequences could be viewed as an unrealistic constraint for modeling the players’ criteria
for assessing positions in a game. On the other hand, allowing for non-linear preference
structures would induce, by Definition 2.4, preferences which fail to be total. This
would take us out of the realm of (standard) game theory, whose key tenet about
players’ preferences is that they be total.

Example 2. As an illustration, recall Example 1. We could model Black’s eval-
uation criteria by the following simple P-sequence (let cm denote the set of
histories where White is checkmated, dr the set of histories where the game
is a draw, and ma the set of histories where Black has material advantage):
cm � dr � ma. This P-sequence yields the total preorder over histories de-

picted at the top of the right page.8 Here, we have assumed that no history can
be a checkmate and a draw at the same time. In words, Black prefers most of
all positions where White is checkmated and at the same time he retains ma-
terial advantage, then positions where White is checkmated without material
advantage, and so according to the above P-sequence. The worst positions are
the ones where none of the properties occurring in the P-sequence are satisfied.

It is worth observing that the elements of a P-sequence can be represented
by set-theoretic compounds of properties 9. The link to logic should here be
evident as sets of histories—our properties—could be seen as denotations of
formulae in some logical language (e.g. propositional logic). Our exposition
abstracts from the logical aspect which could, however, add a further interesting
syntactic dimension to our account.

8 The total preorder is represented as a Hasse diagram consisting of linearly ordered equivalence
classes. Standard set-theoretic notation for inclusion and complementation is used.

9As an anonymous reviewer pointed out, there may be situations in which two properties H
and H′ that, when occurring together, outweigh a third one H′′, while H′′ would be preferred over
both H and H′ when they occur alone (e.g., centre control together with an exposed opponent’s
king may outweigh material disadvantage). In our framework this is handled by stating that
H ∩H′ � H′′ � H ∪H′.
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cm ∩ −dr ∩ma

cm ∩ −dr ∩ −ma

−cm ∩ dr ∩ma

−cm ∩ dr ∩ −ma

−cm ∩ −dr ∩ma

−cm ∩ −dr ∩ −ma

Games with priorities

Henceforth we will be working with game forms that are endowed with a
family of P-sequences, one for each player:

Definition 2.5 (Prioritized games). Let G be a game form and let Pi be a family
of P-sequences for G, one for each player i ∈ N. A prioritized game is a tuple
G

P = (G,Pi).

Clearly, each prioritized game GP = (G,Pi) defines a game in extensive form
(Definition 2.2) EGP = (G,Z2

∩ �
Pi ). So, when attention is restricted to terminal

histories, prioritized games yield standard extensive form games. What they
add to the them is information by means of which players can systematically
rank non-terminal histories also without having access to terminal histories.
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2.3 Subgame-perfect equilibrium

In this section we adapt the notion of subgame-perfect equilibrium to prior-
itized games. The adaptation is straightforward since each prioritized game
univocally determines an extensive one. It is nevertheless worth it to introduce
all the notions in details, as they will be our stepping stone for the definition of
an analogous solution concept in games with short sight.

We first need to introduce the notion of subgame.

Definition 2.6 (Subgames of prioritized games). Take a finite prioratized game
G

P = ((N,H, t,Σi, o),Pi). Its subgame from history h is a prioritized game GP
h =

((N|h,H|h, t|h,Σi|h, o|h),Pi|h) such that:

• H|h is the set of sequences h′ for which (h, h′) ∈ H;

• Σi|h is the set of strategies for each player available at h. It consists of
elements σi|h such that σi|h(h′) = σi(h, h′) for each h′ ∈ H|h with t(h, h′) = i;

• t|h is such that t|h(h′) = t(h, h′) for each h′ ∈ H|h;

• o|h :
∏

i∈N Σi|h → Z|h is the outcome function of GP
h , where Z|h is the set of

sequences h′ for which (h, h′) ∈ Z;

• Pi|h = Pi.

Now we are ready to introduce subgame perfect equilibria.

Definition 2.7 (Subgame perfect equilibrium). Let GP be a finite prioritized
game. A strategy profile σ∗ is a subgame perfect equilibrium if for every player
i ∈ N and every nonterminal history h ∈ H\Z for which t(h) = i we have that:

o|h(σ∗i |h, σ
∗

−i|h) �Pi o|h(σi, σ
∗

−i|h)

for every strategy σi available to player i in the subgame GP
h that differs from

σ∗i |h only in the action it prescribes after the initial history of GP
h .

The definition of subgame perfect equilibrium is normally given in its stronger
version, without the requirement that σi for player i in the subgame GP

h differs
from σ∗i |h only in the action it prescribes after the initial history of GP

h . However
the formulation we have given is equivalent to the stronger version for the case
of finite games, as proved in (Osborne and Rubinstein 1994, Lemma 98.2). This
property of the subgame perfect equilibria is known as the one deviation property.
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By Kuhn’s theorem10 we can then conclude that all finite prioritized games
have at least one subgame perfect equilibrium.

Remark 2. The existence of subgame perfect equilibria in finite extensive games is
usually proven constructively via the well-known backward induction (BI) algorithm.
It might be worth recalling that the algorithm solves the game by extending the total
preorder on the terminal histories of the game to a total preorder over all histories,
where for every player each history is as preferred as the terminal history it leads to
under the assumption that the other players play ‘rationally’. So the result of the
algorithm is a total preorder over all histories consisting of a finite set of equivalence
classes, viz. the sort of preference structures also determined by P-sequences (Fact 1).
The key difference, however, is that while the order determined by BI is consistent with
the order on the terminal nodes, in the sense that keeping on choosing the best option
guarantees the best outcome in the game, no such guarantee exist in the order yielded
by a P-sequence—as Example 1 neatly shows.

3 Short sight in games

In this section we introduce and discuss the notion that has motivated the
present work: short sight.

3.1 Players’ sights

The following definition introduces a simple device to capture what and how
deep each player can see in the game at each choice point.

Definition 3.1 (Sight function). Let GP = ((N,H, t,Σi, o),Pi) be a prioritized
game. A (short) sight function for GP is a function

s : H\Z→ 2H
\∅

associating to each non-terminal history h a finite subset of all the available
histories at h. That is:

1. s(h) ∈ 2H|h\∅ and |s(h)| < ω, i.e. the sight at h consists of a finite nonempty
set of histories extending h;

10We adopt the terminology of (Osborne and Rubinstein 1994, Proposition 99.2) and refer to the
result stating that every finite extensive game has a subgame perfect equilibrium as Kuhn’s theorem.
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2. h′ ∈ s(h) implies that h′′ ∈ s(h) for every h′′Ch′, i.e. players’ sight is closed
under prefixes.

Intuitively, the function associates to any choice point those histories that the
player playing at that choice point can see. Notice that how this set of histories
is determined is left open. In other words, the set constitutes the view that the
player playing at that non-terminal history has of the remaining of the game.
It could be, for instance, all the histories of length at least d, or all histories that
start with a given action a, or similar constraints.

The intuition is that s(h) is the limited view of t(h) after history h. Such intuition
is supported by the fact that s(h) inherits the moves and the turns from GP but
not necessarily the terminal nodes. That the view is limited can be noticed by
the conditions required in Definition 3.1, which together imply that l(s(h)) < ω,
i.e. players can only see finitely many steps ahead. Several extra conditions,
besides the one given in Definition 3.1, might be natural for short sight, e.g.:
requiring that the sight increases as the play proceeds, in the sense that what
player i can see from h is at least as much as from any history hh′. The present
work will not deal with these extra conditions and will limit itself to a general
account.

We now define the class of games with short sight.

Definition 3.2 (Games with short sight). A game with short sight is a tuple
S = (GP, s) where GP is a prioritized game and s a sight function for GP.

It is clear that each game with short sight yields a family of finite extensive
games, one for each non-terminal history:

Fact 2. Let S = (GP, s) be a prioritized game with short sight, with GP =
((N,H, t,Σi, o),Pi). Let also h be a finite non-terminal history. Consider the tuple:

Edh= (Ndh,Hdh, tdh,Σidh, odh,�i dh)

where:

• Ndh= N;

• Hdh= s(h). The set Zdh denotes the histories in Hdh of maximal length, i.e., the
terminal histories in Hdh;

• tdh= Hdh\Zdh→ N so that tdh(h′) = t(h, h′);
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• Σidh is the set of strategies for each player available at h and restricted to s(h). It
consists of elements σidh such that σidh(h′) = σi(h, h′) for each (h′, σi(h, h′)) ∈ Hdh
with tdh(h′) = i ;

• odh:
∏

i∈N Σidh→ Zdh;

• �i dh = �Pi ∩(Zdh)2.

Tuple Edh is a finite extensive game.

Remark 3. It is worth noticing that each finite extensive game EGP determined by a
prioritized game GP (recall Definition 2.5) is equivalent (modulo the sight function) to
the game with short sight built on GP such that, for each h, EGPdh= EGP |h. That is, at
each non-terminal history, the game determined by the sight function corresponds to
the whole subgame at h.

Remark 4. The definition of a game with short sight might look odd at first since players
are endowed with a sight, which restricts their awareness of the game structure, but,
at the same time, their preferences are expressed through P-sequences which are built
by assuming access to the set of all histories. It must be clear that this representation
is the one of an ‘external observer’ which knows the players’ sights and how players
evaluate the terminal histories within their sights according to their P-sequences. The
representation is such that players can be considered aware of their preferences only in
as much as they have access to the relevant histories.

3.2 Solving games with short sight

In games with short sight the course of the play is such that at each node
players are confronted with decisions to be taken on the grounds of what they
can foresee of the game. The purpose of this section is to provide a model of
rationality for such situations, i.e. what players should do given the history of
the play and their sight.

Subgame perfect equilibria

As we are dealing with self-interested agents, it is natural to think that they
will try to get the most out of the information they possess, choosing their best
strategy at each choice node. This leads us to a simple adaptation of the notion
of subgame perfect equilibrium (Definition 2.7).
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Definition 3.3 (Sight-compatible subgame perfection). Take a game with short
sight S = (GP, s) and, for each finite history h, let Edh be the extensive game
yielded by s at h (as defined in Fact 2). A sight-compatible subgame perfect
equilibrium of S is a profile of strategies σ∗ ∈

∏
i∈N Σi such that for every

nonterminal history h there exists a strategy profile σdh that is a subgame perfect
equilibrium of Edh and such that σt(h)dh(h) = σ∗t(h)(h).

Three aspects of the equilibrium definition are worth mentioning. First, each
restriction Edh prunes the game tree at the bottom (considering the extensions
of h) and at the top (considering only the sight-compatible extensions of h).
Second, each player i determines his best move supposing that his opponents
behave rationally with respect to their P-sequences and relative to the part of
the game that i can see. This might be considered a conservative—or safe,
depending on the circumstances—way for i to play, by attributing to the op-
ponents the ability to see at least as much as i sees. Third, the definition of
subgame perfect equilibrium in games with short sight does not require an
explicit finiteness assumption. A finiteness assumption—the finiteness of the
histories constituting the sight—is built in Definition 3.1. This brings us to the
next section.

An equilibrium existence theorem

Let us start with the following observation:

Fact 3. Let S = (GP, s) be a game with short sight and h one of its finite non-terminal
histories. Then Edh has a subgame perfect equilibrium.

Proof. The fact is a direct consequence of Fact 2 and Kuhn’s theorem (Osborne
and Rubinstein 1994, Proposition 99.2). �

We can now prove the existence of sight-compatible subgame perfect equilibria
(Definition 3.3) for each game with short sight.

Theorem 1. Every game with short sight has a sight-compatible subgame perfect
equilibrium.

Proof. Let S = (GP, s) be a game with short sight and let σ∗ be a strategy profile
such that, for each non-terminal history h:

σ∗t(h)(h) = σBI(Edh)
t(h)
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where σBI(Edh) denotes the strategy profile constructed by the standard backward
induction algorithm on the extensive gameEdh determined by the sight function
at history h. The result follows then directly by the construction—via backward
induction—of subgame perfect equilibria for each Edh (Kuhn’s theorem) as
σBI(Edh)

t(h) is the action dictated to player t(h) by its backward induction strategy
and therefore the action dictated by a subgame perfect equilibrium of Edh. �

An algorithm for solving games with short sight

By building on the standard backward induction algorithm (BI), we can define
an algorithm which solves each finite game with short sight by constructing
a terminal history, the one determined a sight-compatible subgame perfect
equilibrium of the game.

Definition 3.4 (BI-path in games with short sight).

Input: A finite game with short sight S = (GP, s)

Output: A terminal history (x0, . . . , xn) of GP

Method: 1. Define h := ∅;
2. Run BI over Edh and set h :=

(
h, σBI(Edh)

t(h)

)
;

3. If h ∈ Z then return h, otherwise repeat step 2.

It is easy to see that the algorithm terminates and constructs indeed a history
consisting of actions dictated by a sight-compatible subgame perfect equilib-
rium. Intuitively, the algorithm starts at the root and solves Ed∅. This yields a
terminal history in Zd∅, and their initial fragments of length 1 are taken as the
first moves of the histories returned by the algorithm. Each of these first moves
determine, in turn, as many extensive games via the sight function. These are
solved in the same way, determining a set of histories of length 2, and so on,
until terminal histories of GP are built.

Remark 5. Before concluding this section, it is worth stressing an important aspect of
sight-compatible subgame perfect equilibrium. In games with short sight, players could
be considered as having preferences not only on the terminal histories within their sight,
but also over the non-terminal ones—due to the fact their preferences are determined by
P-sequences. However, preferences over non-terminal histories are disregarded when
solving the game, as players proceed by backward induction from the terminal histories
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in their sight, therefore possibly overruling any preference they have over intermediate
histories.

4 Short sight and unawareness

This section is devoted to establishing the precise relationship between games
with short sight and games with possibly unaware players elaborated by
Halpern and Rêgo in Halpern and Rêgo (2006). As already pointed out, the
models focused upon in Halpern and Rêgo (2006) feature players that can al-
ways observe at least some of the terminal histories of the actual game being
played. In the same paper, in order to overcome this limitation, Halpern and
Rêgo generalize their models to allow players to hold false beliefs about the
game being played although, it must be mentioned, they do not provide an
equilibrium analysis of that class of games. Essentially, at each node of a game
each player might believe to be playing a completely different game from the
one that he or she is actually playing. These generalized models are extremely
abstract and can incorporate several forms of unawareness. Even though the
intuitive understanding of short sight is rather different from that of false belief,
the models in Halpern and Rêgo (2006) can be formally related to our models.
To establish this relationship we proceed as follows:

1. We formally introduce games with possibly unaware players and lack of
common knowledge of the underlying game, the most general model of
unawareness provided in Halpern and Rêgo (2006). We will refer to this
class of models simply as games with awareness (Subsection 4.1).

2. We provide a canonical representation of games with short sight as games
with awareness. In short, we are going to build a class of the latter models
where, at each position of the actual game being played, players believe to
be playing a game that corresponds to their own sight. We show, moreover, that
the canonical representation is of the right kind, i.e. it obeys the axioms of
the general models of Halpern and Rêgo (Subsection 4.2).

3. We provide the axioms that exactly characterize games with short sight as
games with awareness (Subsection 4.3).
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4.1 Games with awareness

Halpern and Rêgo work with finite extensive games endowed with informa-
tion sets and probability measures Halpern and Rêgo (2006). As the games
structures dealt with in our paper do not model epistemic aspects such as
knowledge and belief, the comparison to which this section is devoted will
concern the somewhat more fundamental level of the finite extensive games
with perfect information upon which Halpern and Rêgo base their models.

To each extensive game E = ((N,H, t,Σi, o),�i), Halpern and Rêgo (2006) asso-
ciates an augmented game +

E that specifies the level of awareness of each player
at each node of the original game. The following definition is adapted from
Halpern and Rêgo (2006).

Definition 4.1 (Augmented game). Let E = (G,�i) be a finite extensive game
and, for each history h (not necessarily belonging to the set of histories ofG), let
h be the subsequence of h consisting of the moves in h that are made by actions
available in G. The augmented game +

E = (((N,H, t,Σi, o),�i),Awi) based on G is
such that:

A1 (N,H, t,Σi, o),�i) is a finite extensive game;

A2 Awi : H → 2H′ is the awareness function of each player i, that maps each
history to a set of histories (in 2H′ ) of some arbitrary finite extensive game
E
′. For each h ∈ H the set Awi(h) consists of histories in H′ and their

prefixes.

A11 {z | z ∈ Z} ⊆ Z, i.e. the terminal histories of the game +
E correspond

to terminal histories of E; moreover if z′ is a terminal history of +
E then

z′ ∈ Z, i.e. terminal histories of which players are aware are terminal
histories of the game E upon which +

E is based.

A12 for each terminal history z ∈ Z such that z ∈ Z we have that z �i z and
z �i z for each i ∈ N, i.e. players’ preferences are inherited from game E
upon which +

E is based.

The items in the definition keep the original names of axioms A1, A2, A11
and A12 given in Halpern and Rêgo (2006) for games with lack of common
knowledge.

We can now formally introduce a game with awareness in its most general
form.
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Definition 4.2 (Games with awareness). Let E be a finite extensive game. A
game with awareness based on E is a tuple EAw = (Γ,Em,F ), where:

• Γ is a countable set of augmented games each one based on some (possibly
different) game E′;

• E
m is a distinguished augmented game based on E;

• F is a mapping that associates to each augmented game +
E
′
∈ Γ and

history h′ of +
E
′ an augmented game Eh′ . This game is the game the

player whose turn is to play believes to be the true underlying game when
the history is h′.11

The definition spells out the crucial feature of a game with awareness, namely
the fact that each player at each history is associated to a game that he belives to
be the current game. This can be distinct from the current game being played,
which is instead observed by an omniscent modeller. Specifically, while each
+
E
′ is the point of view of some player at some history (the precise relation is

given by the F mapping), Em is the point of view of the omniscent modeller,
who can actually see the game that is being played and the players’ awareness
level. Definition 4.2 is extremely abstract and can be refined by imposing
several reasonable constraints, especially with respect to Em, the point of view
of the modeller. The following definition, adapted from Halpern and Rêgo
(2006), takes care of that.

Definition 4.3 (Games with awareness: constraints). The class of games with
awareness is refined by the following constraints, for each EAw = (Γ,Em,F ):

M1 Nm = N, i.e. the modeller is aware of all the players;

M2 A ⊆ Am and {z : z ∈ Zm
} = Z, i.e. the modeller is aware of all the moves

available to the players and knows the terminal histories of the game;

M3 If tm(h) ∈ N then Am(h) = A(h), i.e. the modeller is aware of the possible
courses of the events;

C1 {h′ | h′ ∈ Hh} = Awi(h), i.e. the awareness function shows exactly the
histories that can be observed.

11Henceforth, to reduce clutter in notation, we use the subscript h′ to index the elements of game
tuple Eh′ , i.e. the game that player t(h′) believes to be playing at history h′. For instance Hh′ is the
set of histories that player t(h′) believes to be the set of histories that are available when he is in h′.
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The constraints just discussed hold for all games with awareness. The following
part lays a first bridge between these structures and games with short sight.

4.2 Canonical representation

In Rêgo and Halpern ((to appear) a canonical representation is provided of
a finite extensive game as a game with awareness. For the present pur-
poses, which are not concerned with epistemic aspects, a finite extensive
game E is representable as a tuple ({Em

},Em,F ) where Em = (((N,H, t,Σi, o),�i
),Awi) with Awi(h) = H for all
h ∈ H andF (Em, h) = Em. Essentially, all players and the modeller are aware of
the game and agree on it. Likewise in this section we provide a canonical repre-
sentation of games with short sight in terms of the general models introduced
above (Definitions 4.2 and 4.3).

Definition 4.4 (Canonical representation of short sight). Take a finite prioritized
game with short sight (GP, s) whereGP = ((N,H, t,Σi, o),Pi). Let also h be a finite
non-terminal history and Edh the resulting extensive game as in Definition 2.
The canonical representation of (GP, s) consists of the tuple

E
(GP,s) = ({{(Edh,Awidh) | h ∈ H},Em

},Em,F )

where:

1. Em = (((N,H, t,Σi, o),�i),Awi) with Awi(h) = Hdh= s(h);
2. Awidh(h′) = Awi(h, h′);
3. for each +

E ∈ Γ, +
�i = ( +Z × +Z)∩ �Pi ;

4. F (Em, h) = (Edh,Awidh);
5. F ((Edh,Awidh), h′) = (Ed(h,h′) ,Awid(h,h′) ).

In words, a game with short sight can be represented as a game with awareness
where at each choice point players believe to be playing the game induced by
their sight. Specifically, the first item says that the modeller knows the structure
of the game and the sight of the players at each point. The second item says that
players’ sight in each augmented game agrees with their sight in the original
game. The third item says that every augmented game is consistent with the P-
sequence in its terminal nodes. The fourth and fifth item say that the awareness
function returns the sight of the players at each decision point.
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The following result shows that the above representation of games with short
sight yields the right sort of games with awareness.

Theorem 2. Let (GP, s) be a game with short sight. E(GP,s) is a game with awareness.

Proof. We first need to check that Γ∗ is made by a countable set of augmented
games and then that they satisfy the axioms given in Definition 4.3. As for the
first part we need to show that the axioms of Definition 4.1 are satisfied: [A1]
we know that the game (GP, s) is finite (Definition 4.4) and that each Edh for h
being a history of E is a finite extensive game (Proposition 2); [A2] Awi is well
defined, as it associates each history of each augmented game exactly the sight
of the player who moves at that history. Players’ sight is closed under prefixes
by Definition 3.1; [A11-12] Notice that by the construction in Proposition 2 for
each history h ∈ H we have that h = h. By reflexivity of preferences we obtain
the desired result. As for the second part we need to show that the following
axioms are satisfied: [M1-M3, C1] Consequence of Definition 4.4 . �

4.3 Characterization result

In this section we provide the constraints that a game with awareness needs
to satisfy in order to be the canonical representation of some game with short
sight. Before doing this we introduce the auxiliary notion of game pruning.

Definition 4.5 (Game pruning). Let E = ((N,H, t,Σi, o),�i) be a finite extensive
game. The game E′ = ((N′,H′, t′,Σ′i , o

′),�′i ) is a pruning of game Ewhenever

• N = N′;

• H′ ⊆ H and H′ is a finite set of histories closed under prefixes;

• for each h′ ∈ H′, t′(h′) = t(h′);

• Σ′i = {σi ∈ Σi | σi : h′ → A for h′ ∈ H′ with t′(h′) = i and there is a h′′ ∈
H′ with h′ C h′′};

• for each σ′ ∈ Σ′, o′(σ′) = z′ whenever z′ ∈ Z′ and is obtained by executing
σ′.12

12Formally, for z = (z1, z2, . . . , zl(z)) and ∀i ∈ {1, 2, . . . , l(z)} we have that σt(zi)(zi) = zi+1.
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A game pruning of an extensive game E is just E deprived of some histories,
preserving the structure of strategies and turn function and defining the out-
come function accordingly. Notice that a game pruning of a game is nothing
but what we called a sight (recall Definition 3.1), defined at the root of the game.

The following definition makes use of game prunings, isolating a class of games
with awareness with which we will be able to exactly characterize games with
short sight.

Definition 4.6 (Coherence). Let EAw = (Γ,Em,F ) be a game with awareness
based on a finite extensive game E = ((N,H, t,Σi, o),�i). We call EAw coherent if
it satisfies the following constraints:

K1 the game Em is the tuple (((N,H, t,Σi, o),�i),Awi) with Awi(h) = H′ for H′

being the set of histories of some game +
E ∈ Γ;

K2 the set Γ comprises Em and for each h ∈ H a set of |H| augmented games of
the form (E′|h,Aw′i ), with E′ being a pruning of E, and Aw′i (h

′) = Awi(h, h′);

K3 there exists a total preorder �H
i on H extending �i such that for each +

E ∈ Γ

we have that +
�i=�

H
i ∩( +Z × +Z), i.e. histories get the same preferences

across augmented games;

K4 F (Em, h′) = (E′|h′ ,Aw′i ), for E′ being the pruning of E associated to h′;

K5 for each (E′|h,Aw′i ) ∈ Γ we have that F ((E′|h,Aw′i ), h
′) = (E′|(h,h′),Aw′′i ),

where Aw′′i (h′′) = Awi(h, h′, h′′).

The constraints deal with the game form structure and the preferences of co-
herent games with awareness. Axiom K1 states that the modeller has a perfect
view of the game and of the awareness of each player at each history. Notice
that by K1, awareness of players agrees at each decision point.13 Axiom K2
states that players can only see a part of the real game being played. Axiom
K3 deals instead with the preference relations and ensures that histories are
evaluated according to the same criteria if observed from different points. Ax-
ioms K4-5 state that what players believe to be true in the real game at a point
coincides with their awareness level at that point. Notice the resemblance of
these axioms with the conditions on Definition 4.4.

We first prove the following lemma:

13 The requirement looks rather strong, but notice that for decision making purposes the only
awareness level that matters is the one of the player who is to move.
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Proposition 1 (P-sequence existence). Let EAw = (Γ,Em,F ) be a game with aware-
ness that is coherent. We can construct a finite game with short sight GP = (G,Pi)
such that Z × Z∩ �Pi=�i where Z and �i are the terminal histories and the preference
relation for player i in any game +

E ∈ Γ.

(sketch). Let ((N,H, t,Σi, o) �i) be the game E upon which Em is based. Consider
its game form (N,H, t,Σi, o). We construct the desired P-sequence as follows. Let
�

H
i be the total preorder required by axiom K3 (Definition 4.6) and let�H

i indicate
its strict counterpart. Let moreoverH = {[h] | h′ ∈ [h]⇐⇒ h′ �H

i h and h �H
i h′}.

Intuitively, H is the set of all equivalence classes induced by the relation �H
i .

The desired P-sequence (H ,�) is so defined for each H,H′ ∈ H :

H � H′ if and only if for some x ∈ H, y ∈ H′ we have x �H
i y

We need to show (i) that (H ,�) is indeed a P-sequence and (ii) that it displays
the required properties. As for (i) set H is clearly a finite set of subsets of
H. We are left to show that the relation � is (a) irreflexive (b) transitive (c)
asymmetric and (d) total. (a) Suppose not, then for some H ∈ H and x, y ∈
H we would have x �H

i y, leading to contradiction. Claims (b) - (c) - (d) can
be proven by a similar procedure. (ii) For any two histories h′, h and +

E ∈ Γ
with preference relation �i and with h′, h among the terminal histories of +

E

we need to show that: h �i h′ if and only if h �(H ,�) h′. Both directions are
straightforward. �

We are now ready to formulate our main result.

Theorem 3 (Correspondence). Let EAw = (Γ,Em,F ) be a coherent game with
awareness based on E. There exists a finite game with short sight (GP, s) such that its
canonical representation E(GP,s) is such that EAw = E(GP,s).

Proof. We proceed by construction. Let ((N,H, t,Σi, o) �i) be the game E.
Consider its game form (N,H, t,Σi, o). To construct the game (GP, s) first
use Proposition 1 to obtain the desired P-sequence Pi for each player. As
for the sight function we simply impose the following: for every history
h ∈ H, and every player i ∈ N we have that s(h) = Awi(h), where Awi(h) = H′ is
the awareness function as appears in Em . The requirements of Definition 3.1
are satisfied as a consequence of the fact that s(h) is always the set of histories
of some finite game following h (Definition 4.6). Now the fact that EAw = E(GP,s)

follows from Definitions 4.4 and 4.6. �
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Theorems 2 and 3 have established a precise link between the most general class
of games with awareness introduced in Halpern and Rêgo (2006)—i.e., games
with awareness and lack of common knowledge of the game structure—and
the class of games with short sight, namely that the latter is a special subclass of
the former. This puts the results presented in Section 3 in an interesting light.
In fact, Halpern and Rêgo (2006) did not develop any equilibrium analysis of
games with awareness and lack of common knowledge of the game structure.
The notion of sight compatible subgame perfect equilibrium can therefore be
viewed as a first principled generalization of subgame perfection to a specific
form of unawareness—short sight.

5 Conclusions

Inspired by Joseph Halpern’s invited talk at AAMAS 2011—Beyond Nash-
Equilibrium: Solution Concepts for the 21st Century—and moving from simple
considerations concerning real life game playing (Example 1), the paper has
proposed a class of games where players are characterized by two key features:
1) they have only partial access to the game structure including, critically, hav-
ing possibly no access to terminal nodes; 2) they play according to extrinsic
evaluation criteria, which have here been modeled as sequences of proper-
ties of histories (Definition 2.3). The paper has shown thas such games 1)
always possess an appropriate refinement of the subgame perfect equilibrium
concept (Theorem 1); 2) are an interesting—because of the above equilibrium
properties—subclass of the most general class of games with awareness pro-
posed by Halpern and Rêgo (Theorems 2 and 3) which, although introduced
in Halpern and Rêgo (2006), had not yet been object of investigation from the
point of equilibrium analysis.

Future work will focus on weakening two assumptions. First, the fact that
in solving games with short sight we have presupposed that players only
consider their own sight (Definition 3.3) and that the evaluative components
of the game—the P-sequences—are common knowledge. Dropping these as-
sumptions could open up interesting avenues of research concerning learning
methods by means of which players could infer other players’ evaluation crite-
ria and sights, i.e., other players’ types. This would bring the game-theoretical
method of equilibrium analysis close to established game-playing techniques
in artificial intelligence and some of its recent developments such as the theory
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of general game playing Genesareth et al. (2005). Second, it is clear that the gran-
ularity of their evaluation criteria has direct impact on players’ performance in
a game with short sight. We have currently defined P-sequences as sequences
of sets of histories. A more refined approach would take into consideration the
(formal) language by means of which players express their evaluation criteria.
Methods from logic could then be used to compare the expressivity of different
languages for P-sequences, possibly correlating such expressivity to players’
performance in the games.
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Abstract
We propose a general account of decision making in social situations based on
an analysis of the role of three concepts: knowledge, preference and freedom
of choice. The normative aspect of decision making is sharply contrasted with
the descriptive aspect, as is the distinction between a priori and a posteriori
rationality. As a partial validation of the analysis, we apply our account to the
theory of strategic games with both pure and mixed (probabilistic) strategies,
showing that the concept of a dominated strategy and Nash equilibrium are
correctly predicted by more general norms. Our account is purely model-
theoretic but uses discrete relational structures that are well-suited for future
application of the techniques of modal logic.

1 Introduction

Modern decision theory has developed into an interdisciplinary subject pur-
sued by researchers from economics, psychology, philosophy, mathematics,
and statistics Peterson (2009). And, since the middle of 20th century logicians
have been interested in the norms of rational decision Jeffrey (1965). Social de-
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cision theory extends the theory of individual decisions to the case in which the
decisions of more than one agent interact. This is closely related to the field of
game theory Osberne and Rubinstein (1994). In recent years, techniques from
modal logic (especially epistemic and preference logic) have been widely used
to study game theory, e.g, van Benthem (2001), Pauly (2002), van Benthem et al.
(2006), van Benthem (2007), Bonanno (2008). A recent survey is van der Hoek
and Pauly (2006). In particular van Benthem et al. (2006), van Benthem (2007)
and Bonanno (2008) give detailed logical accounts of game-theoretic concepts
such as Nash Equilibrium and the procedure of iterated deletion of strictly (or
weakly) dominated strategy in strategic-form games. van Benthem (2001) and
Pauly (2002) concentrate on individual power and the ability of coalitions in
extensive-form games.

Our approach is to start with a very general account of decision-making, first
in the single-agent case, and then in a social setting, and only later to consider
the application to game theory. In this respect, our work is similar to Lorini
and Schwarzentruber (2010), which starts from a general theory of agency.
However, we make a sharp distinction between the descriptive and normative
aspects of decision-making, with the aim of showing precisely which assump-
tions are made along the way. Also, unlike Lorini and Schwarzentruber (2010),
we do not begin with an explicit model of actions. Instead, our account is based
on only three conceptual primitives: knowledge, preferences and freedom of
choice. Each of these is understood as a counterfactual relation between possi-
ble decision states. The novelty here is the ‘freedom of choice’ relation, which
holds between one’s current situation u and some other possible situation v
when one could have been in situation v instead, if one had chosen differently.
Finally, our approach is entirely model-theoretic. We do not consider formal
languages in this paper.

In Section 2, we introduce these three relations and show how they may be used
to define some central concepts such as independence, determinism, value and
decision itself. Section 3 aims to identify the norms of rationality that apply to
decision-making. We start with a series of arguments about the irrationality of
certain decisions under different idealising assumptions, and gradually remove
those assumptions to produce a general norm of decision-making. Along the
way, we find it important to distinguish between a priori and a posteriori ra-
tionality. The section ends with a discussion of the typical assumptions about
the preference relation, such as the reflexivity, transitivity and totality of the ‘at
least as good as’ relation, which we show to be largely irrelevant to the norms
of decision-making.
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Section 4 extends the account from the single-agent case to decisions made
in a social setting. Here the concept of freedom to choice is extended from
individuals to groups, and this enables us to describe when an agent’s decisions
are independent of other agents. The Reduction Lemma (3) identifies sufficient
conditions for the reduction of knowledge to freedom of choice, i.e., when every
agent is ignorant only of the other agents’ choices.

Section 5 gives a standard presentation of strategic games, with both pure and
mixed strategies, and shows how they can be understood as social decision
frames. This ends in Representation Theorem 1, which identifies the class of
social decision frames arising from games. Furthermore, within this class of
frames, we show how the general norms of a priori rational decisions and the
concept of a posteriori rationality characterise the basic game theoretic concepts
of weakly dominated strategy, best response and Nash equilibrium.

2 The Components of Decision: Freedom, Igno-
rance and Preference

We model decisions within a structure that is used to represent our knowledge,
preferences, and freedom to decide. A decision frame F is defined to be a rela-
tional structure 〈W,∼,≈,≤〉 where ∼ and ≈ are equivalence relations and ≤ is
an arbitrary binary relation.

The elements of W represent possible decisions and we interpret ∼ as repre-
senting your freedom to choose: u ∼ v means that in situation u you could have
been in situation v, if you had made a (possibly different) choice. If u / v then
no matter what you decided, the result would not have been your being in situ-
ation v; contextual factors operating in u are such that this is simply impossible.
For example, suppose you chose to take your umbrella with you when you left
your home this morning. Now, in situation u, it is raining and you are happy to
have the umbrella. You could have also worn a raincoat, or left both at home.
In the first case, you would be in situation v1, wearing a raincoat in the rain; in
the second you would very wet, in situation v2. Both u ∼ v1 and u ∼ v2. All
three situations lay within your freedom of choice. But situation v3 in which
you are without raincoat and umbrella, and still dry because it isn’t raining;
that is not. The equivalence class (u) of situation u therefore represents what
was possible, given your freedom of choice. We say that some state-of-affairs
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X ⊆ W is independent of your choices if (u) ⊆ X iff u ∈ X. In other words, if X
occurs in some situation u then you could not have chosen in such a way that
X would not have occurred and if X does not occurs in u, you could not have
chosen in such a way that X would have occurred. Whether it rains is, contrary
to popular opinion, quite independent of whether you carry an umbrella.

The second component of a decision frame, the relation ≈, represents your
knowledge concerning the consequences of your decision. As usual, we in-
terpret u ≈ v to mean that you are unable to distinguish between u and v on
the basis of what you know, and consider [u], the ≈-equivalence class of u to
represent your knowledge state in u. That [u] is not always {u} represents the
gap between your knowledge of the consequences of your decision, and what
those consequences really are, which is determined in part by the contextual
factors in operation when you make the decision. Another way of thinking
of [u] is as the most specific state-of-affairs that you ensured to be the case by
choosing as you did when you chose u. We will therefore also refer to [u] as
your decision in situation u.

We will also be interested in the effects of acquiring new knowledge. Just
as your knowledge is represented by an equivalence relation, so also is the
information that you might acquire. If E is such an equivalence relation, then
learning E is a matter of learning to discriminate between situations that are
not E-related, or, in other words, in any one situation, learning which of the
E-equivalence classes it belongs to. The effect is to update your knowledge
from ≈ to ≈ ∩E.1

When making decisions, we are particularly interested in the effect of know-
ing your own freedom to choose, given the (originally unknown) contextual
factors in operation when you made your decision. This is given by ≈ ∩ ∼.
The equivalence class (u)[u] = (u) ∩ [u] of this relation may still fail to be the
singleton {u} for situations u in which the outcome of your decision depends
on an essentially non-deterministic process. Even with full knowledge of what
you could have achieved, given operant contextual factors, there may still be
something further that influences the outcome.2 We will say that u is determin-

1This approach is taken, for example, in van Benthem and Ştefan Minică (2009). Note that this
update assume that the change in your knowledge has no effect on the contextual factors that might
influence the outcome of your decision. In the more complicated setting of social decision frames,
considered in Section 4, this is not necessarily true.

2The kind of non-determinism involved here is not just the randomness of the roll of a die, about
which you at least have some information in the form of a probability distribution, but something
about which you may have no information at all, such as the actions of other free agents subsequent
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istic iff (u)[u] = {u}. Likewise, a frame will be said to be deterministic when
every situation in it is deterministic.

Finally, u ≤ v represents your regarding v as at least as good as u. A strict
preference u < v can be defined as u ≤ v and v � u, meaning that you regard
v as better than u. Likewise, indifference between u and v, written u Z v, is
defined by u ≤ v and v ≤ u. There is also the possibility u#v that neither u ≤ v
nor v ≤ u. We interpret this as some sort of conflict in your preferences between
u and v. Although preference is taken as our primitive notion, rather than some
notion of value, the relation Z holds between situations of equal value, and so
we can define your values to be the sets Z (u) = {v ∈ W}u Z v. We will need
to consider the size of the set of your values, and so define the value size of a
decision frame to be the cardinality of the set of its values.

We intend a decision frame only to model the facts of decision making, not
the norms. So no assumption is made that ≤ is either reflexive or transitive or
total, although, as is often claimed and we will be shown below, failure of one’s
preferences to have these properties leads to undesirable consequences.3 Note,
however, that the definitions ensure that strict preference (<) is asymmetric and
both indifference (Z) and conflict (#) are symmetric. In the special case that ≤
is a linear order (as is often assumed in the literature on decision theory and
game theory), we will say that the frame is linear.

3 Norms of Decision Making

We will start by comparing events in a frame in which we have complete
knowledge of all possible decisions (so ≈ is the identity relation) and there are
no limitations on our freedom to decide (so ∼ is the universal relation). In such
circumstances, the basic norm of preference applies: do not choose one thing
when there is something better.

to your making your decision.
3Failure of transitivity can also lead to vague or overlapping values, since in this case, Z (u) is

not an equivalence class, and it is possible for Z u∩ Z (v) without u Z v.
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Ideal Decisions

If ≈ is the identity relation and ∼ is the universal relation then if u is
rational there is no v > u.

3.1 Coping with ignorance

Typically, however, we are not blessed with such ideal conditions. In particular,
we may be ignorant of the consequences of our decisions and so unsure of which
situation we are in. This lack of complete knowledge is represented by a non-
trivial ≈ relation. If we are actually in situation u, then we know only that we
are in one of the situations of the equivalence class [u]. Now suppose there is
another situation v that we prefer to u. We cannot be faulted in our decision, if
we do not know that it would result in our being in u. And even if we know v
to be better than u, even this is not enough. Because, in state v we would not
know we are in that state, but only in the class [v]. To judge whether we are
rational in making our decision, we must therefore compare the whole of [u]
with the whole of [v].

An example will help to think about this. Suppose there is a pile of envelopes
in front of you. Some of the envelopes are coloured red and some are coloured
green. You know that all the envelopes are initially empty and then see me
place a bank note (of suitably large denomination) in one of the red ones. Now
you are asked to pick one. Given that all the envelopes look the same apart from
their colour, your only decision is the choice between red and green. Assuming
that you want to get some money, although there is no guarantee of getting it,
you should not be completely indifferent; you should choose a red envelope.

After choosing a red envelope, you open it and find it empty. Call the resulting
situation r0. There was another possible situation r1 in which you picked the
envelope with the money. But at the time of picking a red envelope, you did not
know whether you were in situation r0 or r1, which we represent with r0 ≈ r1.
Despite your disappointment, your rationality cannot be faulted, since if you
have chosen a green envelope, you would be bound to do no better, and there
was at least a chance of getting the money.

This form of reasoning can be captured by defining defining the relation of
known preference to be
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u ≤K v iff u′ ≤ v′ for all u′ ≈ u and all v′ ≈ v.

Strict known preference (u <K v), indifference (u ≈K v) and conflict (u#Kv) can
be defined as before. Now suppose that faced with the pile of envelopes, you
had chosen a green one, putting you in situation g, with again no money. The
reason that the decision you would have made in g is worse than the one you
actually made in r0, despite the similar outcome, is that g <K r1, which is to say
g ≤K r1 (you knew your actual decision to be at least as good as choosing green)
and r1 �K g (you did not know that choosing green would be at least as good
as your actual decision, because of the possibility that you would be in state r1,
with the money, instead of in state r0).

By adjusting for the role of knowledge (or the lack of it) in our deliberations,
we have a second norm:

Known Decisions

If ∼ is the universal relation then if u is rational there is no v >K u.

Note that the norm of Ideal Decisions is a special case of Known Decisions,
and they are equivalent under the assumption of complete knowledge (≈ is the
identity relation).

3.2 Limited freedom to choose

Next, we relax the assumption that you are able to choose without restriction.
In conditions of complete knowledge, this a relatively straightforward change.
The rationality of your decision u is not defeated by a decision situation v that
you could not possibly have attained.

Free Decisions

If ≈ is the identity relation then if u is rational there is no v ∼ u such
that v > u.

Again, Ideal Decisions is a special case of Free Decisions, and they are equivalent
under the assumption of unrestricted freedom (∼ is the universal relation).
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3.3 The interaction of knowledge and freedom

Finally, we must consider the interaction between knowledge and freedom that
occurs when we drop both idealising assumptions. In the general case, the
existence of a preferred v that one could have achieved is not sufficient to make
your decision u irrational. This is for the same reason of ignorance that we have
already considered. v must not only be attainable, it must also be known to be
a better decision than u. Moreover, v be be known to be attainable.

Known Free Decisions

If u is rational there is no v ∼K u such that v >K u.

Here ∼K is defined in a parallel way to >K, namely,

u ∼K v iff u′ ∼ v′ for all u′ ≈ u and all v′ ≈ v.

Yet this too is relatively uninteresting. It is merely the restriction of Known
Decisions to the class of attainable decisions. Nonetheless, it is a generalisation:
both Free Decisions and Known Decisions are special cases.

More interesting, is to consider contextual factors, whose effect on your freedom
is unknown. Returning to our previous example, and simplifying a little,
suppose there are just four envelopes, which we’ll refer to as 1 and 2 (red), 3
and 4 (green). Although we presented the example as a choice between four
envelopes, there are really not four but eight possible decision situations for you
to consider, namely each of the situations u(n,m) in which you chose envelope
n (1,2,3, or 4) and the money is in envelope m (1 or 2). Suppose that the actual
situation is u = u(3, 2): you stupidly chose envelope 3 (green) and the money
is in envelope 2 (red). This is not shown to be irrational by the norm of Known
Free Decisions. Although there is a situation v = u(2, 2) that you know to be
better than u (v >K u), and you had the freedom to be in that situation (v ∼ u),
you did not know that you had that freedom. You cannot distinguish between
the actual situation u = u(3, 2) and the situation u(3, 1), in which the money is
in red envelope 1 (u ≈ u(3, 1)), and in that situation, you would not have had
the freedom to have been in situation v, so v / u(3, 1) and hence v ∼K u.

Of course, had the money been in envelope 1, and you in u(3, 1) there is another
situation you could have been in which would have been better for you, namely
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u(1, 1), and this is why your decision was stupid. Unknown limitations on our
freedom to choose serve as ceteris paribus conditions on our preferences. For
any decision u, we can identify the operating limiting condition as (u): within
this class, you are free to make alternative choices, and so comparisons are
possible. As argued above, for an alternative v to be judged as better than your
actual decision u, you are limited to comparing what you would know about v
to what you know about u. That means that you must not only compare u to v
but also other possibilities u′ and v′ that you cannot distinguish from u and v
(u ≈ u′ and v ≈ v′). But such a comparison is only needed when u′ and v′ are
also genuine alternatives, that is when u′ ∼ v′.

This form of reasoning can be captured by restricting our comparisons to sit-
uations related by the ∼ relations, so defining the relation of free preference to
be

u ≤F v iff u′ ≤ v′ for all u′ ≈ u and all v′ ≈ v such that u′ ∼ v′.

Our final expression of a norm of rational decisions that incorporates the effects
of ignorance, limitations of freedom and preference is therefore the following:

Free Known Decisions

If u is rational there is no v ∼ u such that v >F u.

Free Known Decisions is a generalisation of all previously mentioned norms.

3.4 A priori and a posteriori rationality

A further issue to be considered is the distinction between a priori and a posteriori
norms of decision making. Typically, as we have seen, a decision takes place
in conditions of uncertainty. You do not know what the result of your decision
will be because it depends on contextual factors over which you have neither
knowledge or control. Applying the kind of reasoning outlined above, you will
view any decision u that fails to obey the norm of Free Known Decisions as
irrational. In this case we will say that the decision is a priori irrational because
its irrationality is based only on what is known in advance of the decision being
made. Moreover, to be precise, we will talk of ≤F as a priori free preference, and
then define
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u is a priori rational iff there is no v ∼ u such that v >F u.

Thus the norm of Free Known Decisions is just that a priori rationality is neces-
sary for rationality. We will allow for there being further conditions for rational
decisions that are not considered here, so that a priori considerations may not
be sufficient. In particular, in the social setting, which we consider in the next
section, consideration of the rationality of other agents may be relevant.

One can also look at decisions from the perspective of what is known after
the decisions, looking back on what one chose and asking whether one could
have done any better, after gaining information about those contextual factors
that influenced the outcome. This is obviously a graded concept but here we
will confine our attention to the limiting case: complete knowledge of the
circumstances of one’s decision. This is modelled by the relation ≈′=≈ ∩ ∼. Or,
in other words, after discovering the limitations of one’s freedom to choose,
one can distinguish between between u and v when u / v. We therefore define
a posteriori free preference to be

u ≤F′ v iff u′ ≤ v′ for all u′ ≈ u and all v′ ≈ v such that u ∼ u′ ∼ v′ ∼ v.

Moreover, we will talk of a posteriori rationality, which can be defined as

u is a posteriori rational iff there is no v ∼ u such that v >F′ u.

In a deterministic frame, this can be simplified:

Lemma 1 (Deterministic a posteriori rationality). In a deterministic frame, u is a
posteriori rational iff there is no v ∼ u such that v > u.

Proof. In a deterministic frame, u′ ≈ u and v′ ≈ v and u ∼ u′ ∼ v′ ∼ v if and
only if u′ = u and v′ = v and u ∼ v. �

Unlike a priori rationality, a posteriori rationality is not necessary for rationality
since it makes use of information that is not available to you at the time you
make the decision. Nonetheless, it captures the goal of decision-making: to
choose so that you could not have (in fact) done better by making another
choice, given the context.
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3.5 Constraints on the preference order

Finally, we come to the much-discussed issue of whether ≤ should be transitive
and the less discussed, but also commonly assumption, that it should be reflex-
ive. Another issue is whether your preferences should be total, i.e. for every u
and v, either u ≤ v or v ≤ u.

First, reflexivity. As noted above, we already have that < is irreflexive, by
definition. There are therefore two possibilities for any situation u: either u Z u
or u#u. If we think of the situations as ‘possible worlds’ in which every aspect
of your life is completely specified, then we could rule out the second case. But
if the situations we model have a variety of different consequences for you, it
is quite possible that you are in a state of conflict rather than indifference.

Next, transitivity. The usual argument that your preferences should be transi-
tive is that otherwise, you could be faced with a series of free decisions after
which you end up with less desirable goods than you started with. If, for
example, you prefer A to B and B to C and C to A, then you would trade A for B
and then B for C, with the effect that you now have C instead of A even though
you prefer A to C. So let u be your decision to refuse the first trade, keeping A,
v1 your decision to accept the first and refuse the second, so keeping B, and v2
your decision to accept both trades, resulting in having C. Then u < v1 < v2 but
v2 < u, and all three situations are within the same ∼-class. Assuming that you
have complete knowledge of the consequences of these trades, so that [u] = {u},
[v1] = {v1}, and [v2] = {v2}, all three decisions are a priori irrational. The norm
of Free Known Decisions applies but is somewhat unhelpful since there is no
decision you can make that is rational. A proper account of transitivity should
therefore consider preference change, which is beyond the scope of the present
analysis.

Lastly, totality. As with reflexivity, totality is only plausible if the situations are
completely specified. This is not an assumption we wish to make, as for many
applications to ordinary decision-making, it is simply false. Moreover, there
is a technical reason for avoiding this assumption. Given any decision frame
F = 〈W,∼,≈,≤〉, we can remove the indeterminacy in F by taking a quotient
F′ = 〈W′,∼′,≈′,≤′〉, in which W′ is the set of equivalence classes (u)[u] for each
u ∈W, with ∼′ and ≈′ defined in the obvious way4 and (u)[u] ≤ (v)[v] iff u′ ≤ v′

for all u′ ∈ (u)[u] and v′ ∈ (v)[v]. The resulting frame F′ is deterministic and

4(u)[u] ∼′ (v)[v] iff (u) = (v), and (u)[u] ≈′ (v)[v] iff [u] = [v].
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is just as good as F for the purposes of practical decision making: u is a priori
rational in F iff (u)[u] is a priori rational in F′. Yet, clearly, conflict can arise in
comparing (u)[u] with (v)[v], even if the underlying order ≤ is total.

Nonetheless, in comparing our account with game theory (in Section 5.3 and
6), it will be necessary to consider frames in which all three conditions hold. So
we say that a decision frame is linear iff ≤ is a linear order (reflexive, transitive,
and total).

4 Social Decision Frames

So far we have only considered the single-agent case. In moving to a social
setting, nothing changes from the perspective of individual rationality, but
there is the possibility of systematic relationships between agents that can have
consequences for decision-making. We define a social decision frame to be a
structure F = 〈W,A,∼,≈,≤〉 in which for each a ∈ A, Fa = 〈W,∼a,≈a,≤a〉 is a
decision frame. We write [u]a for the ≈a equivalence class of u and (u)a for its
∼a equivalence class. We also write a for A \ {a}, the set of agents other than a.

Borrowing from epistemic logic, the common knowledge of a group of agents
G ⊆ A is defined by

≈G= [
⋃
a∈G

≈a]∗

i.e., the transitive closure of the the union of the indistinguishability relations
of all agents in G. Put another way, this is the greatest amount of knowledge
compatible with the restriction that it is possessed by every agent in the group.
We write [u]G for the ≈G equivalence class of u, so that X ⊆ W is common
knowledge among members of G iff [u]G ⊆ X.

Analogously, the joint freedom of the group is represented by the relation

∼G= [
⋃
a∈G

∼a]∗

We write (u)G for the ∼G-equivalence class of u, which is the the set of situations
v that could have occurred, given the capacities of all the agents in G, had they
chosen otherwise. Our notion of independence extends to groups, so that a
state-of-affairs X is independent of the group G iff (u)G ⊆ X for all u ∈ X. This
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holds when the group G lacks the (joint) power to influence whether or not X
occurs.

This idea can then be applied to other agent’s decisions. We say that agent a’s
decision in situation u is independent of a group G iff [u]a is independent of G,
i.e., iff (u)G ⊆ [u]a. We can also interpret this as saying that a is ignorant of the
all of the decisions of agents in G. When a’s decisions are independent of all
other agents (A \ {a}) in situation u, we say that a is isolated in u, and when every
agent is isolated in every situation, we say that the frame F is isolated. Isolation
is a common assumption of game theory, as will be shown in Section 5.3.

An important issue that arises for social decision-making is the possibility of
ignorance about other agent’s capacities and preferences. Within game theory,
this kind of ignorance is called ‘incomplete information’ and it has been known
since Harsanyi (1967/68) that its effect can be modelled by introducing a new
agent, ‘Nature’, with the freedom to choose between different games, and
about whose choice agents may be ignorant. Again, we will postpone a proper
treatment of this issue here, noting only that this kind of ignorance is possible
in a social decision frame, without such a manoeuvre. The reason for this is
that game theory generated the space of possible decisions from the capacities
of agents. We can capture this property in the general case with two additional
concepts.

Firstly, if in situation u, agent a had the freedom to be in situation v (u ∼a v)
and agent b had the freedom to be in situation w (u ∼b w) , then there is another
situation u′ in which agent b had the freedom to be in v (u′ ∼b v) and agent a had
the freedom to be in w (u′ ∼a w). The thought is that whatever choice a could
make in situation u so as to make v possible is a freedom of a and whatever
choice b could make in situation u so as to make w possible is a freedom of b, so it
should be possible for the two agents to exercise those freedom simultaneously.
In this case, we say that the two agents have ‘unordered’ freedoms. More
precisely, we say that a group G of agents is unordered iff ∼a;∼b=∼b;∼a for all
a, b ∈ G, and a frame F is unordered if the group A of all agents is unordered.
The following lemma about unordered agents will prove useful.

Lemma 2 (Order of Choices). If G is an unordered group of agents and H ⊂ G, then

∼G=∼H;∼(G\H)

Proof. If u ∼G v then there is an ordering a1, . . . , an of G such that u ∼a1 ; . . . ;∼an v.
Choose a permutation b1, . . . , bm, c1, . . . , cp of this ordering such that the b’s
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are all in H and the c’s are all in G \ H. Since G is an unordered group,
u ∼b1 ; . . . ;∼bm ;∼c1 ; . . . ;∼cp v, and hence u ∼H;∼(G\H) v. The converse follows
because H,G \H ⊆ G. �

Secondly, we say that the frame F is connected if u ∼A v for all u, v ∈ W, or,
equivalently, that (u)A = W for all u ∈ W. For F to be connected, there can
be no external source of possibility in addition to the joint capacity of the set
of all agents. Together, the assumptions that F is unordered and connected
will be shown to be necessary assumptions in the characterisation of strategy
games (see Theorem 1). In particular, the combination of the above mentioned
properties of frames enable a reduction of knowledge to freedom:

Lemma 3 (Reduction of Knowledge). In a connected isolated unordered determin-
istic frame, [u]a = (v)a for all v ≈a u.

Proof. That (v)a ⊆ [u]a is just a restatement of the isolation of the frame. To show
that [u]a ⊆ (v)a, suppose that w ≈a u. By connectedness of the frame, w ∼A v and
so by Lemma 2, there is a w′ such that w ∼a w′ ∼a v. But then w′ ≈a v, since the
frame is isolated. We assumed that w ≈a u and v ≈a u, so w ≈a w′ by transitivity.
Determinism then ensures that w = w′ and so w ∼a v, as required. �

Lemma 4 (Reduction of Freedom). In a connected isolated unordered deterministic
frame, (u)a =

⋂
b∈a[v]a for all v ∼a u.

Proof. By Lemma 3, it is enough to show (u)a =
⋂

b∈a(u)b. Firstly, (u)a ⊆ (u)b

for each b , a because {a} ⊆ b = A \ {b}. For the converse inclusion, suppose
v ∈

⋂
b∈a(u)b, that is, for each b , a such that v ∼b u. So by Lemma 2, there is

some w such that v ∼a w ∼ab u. Then there is a path w0 = w, . . . ,wi, . . . ,wm = u
and agents b0, . . . , bm−1 (, a, b) such that wi ∼bi wi+1 and for i ≤ i ≤ m. Without
loss of generality, by Lemma 2, we can assume that b0, . . . , bm−1 are all distinct.
Now we prove w = wi by induction, so that w = wm = u and hence v ∼a u,
as required. The base case w = w0 holds by definition. Suppose w = wi, so
v ∼a wi ∼bi wi+1. But also wi+1 ∼bi

wm = u because bi does not occur again
in the list bi+1, . . . , bm−1. Now bi , a, so v ∼bi

u since v ∈
⋂

b∈a(u)b. Thus
w = wi ∼bi

v ∼bi
u ∼bi

wi+1 and hence wi ∼bi
wi+1. Then, by isolation, w ≈bi wi+1

and by determinism, w = wi+1. �

Finally, the concept of value can be extended to the social setting in a straight-
forward way. We say that a subset of W is a value in a social decision frame iff
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it is a value for one of the agent, ie., a Za-equivalence class. The value size of a
social decision frame is the cardinality of the set of its values.

5 Strategic games

We will show that standard models of strategic games used in game theory can
be accommodated in our framework. Consider a game in which each player
aifrom a finite set {a1, . . . , an} of players has a finite set Si of possible strategies.
We will call these pure strategies to foreshadow the ‘mixed strategy’ case to be
considered shortly. A pure strategy profile is a sequence s1, . . . , sn with si ∈ Si
Each pure strategy profile determines an outcome O(s1, . . . , sn) in a set Ω of
outcomes. Each player a assigns a real-valued utility ua(ω) to each outcome
ω ∈ Ω.

5.1 Pure strategy games

In a pure strategy game, the contextual factors influencing one’s decisions are
completely determined by the strategies of the other players. So once you have
chosen your strategy, all the relevant facts regarding your decision have been
fixed. We therefore define the set W of social decision states to be the set of
pure strategy profiles, namely

W = S1 × . . . × Sn

In a game situation, an agent’s preferences are assumed to be determined
entirely by the utility of the game outcome. If one has other preferences, such
as wanting your daughter to beat you at chess at least some of the time, this
makes the decision situation different from the one specified by the rules of the
game.5 The game utility Ua(s1, . . . , sn) of profile s1, . . . , sn to player a is given by

Ua(s1, . . . , sn) = ua(O(s1, . . . , sn))

5Of course, games are used to model many situations that are not formal games, but in all cases,
the model is only as good as the utility function, and so we must assume this is accurate.



M. Guo and J. Seligman 191

and this defines a preference order by 6

w ≤a v iff Ua(w) ≤ Ua(v)

Each player is assumed to be aware only of her own actions, so define

w ≈ai v iff wi = vi

Yet each player is able to choose freely between pure strategies, and so between
any two outcomes in which the pure strategies of all other agents is fixed. So
we define

w ∼ai v iff w j = v j for all j , i

Denote the resulting social decision frame as P(A,S,Ω,O,u). It is clearly tran-
sitive. Any model constructed in this way we call a pure strategy game model.

5.2 Mixed strategy games

Now consider ‘mixed’ strategies, in which player ai makes a non-deterministic
choice of strategy, modelled by a probability function δ : Si → [0, 1]. If δ takes
values in {0, 1} we say that it is a deterministic strategy.7 Let ∆i be the set of ai’s
mixed strategies. A mixed strategy profile is a sequence δ1, . . . , δn such that δi is
in ∆i.

Generalising the pure strategy case, we define a social decision state to be a
mixed strategy profile, setting

W = ∆1 × . . . × ∆n

It may seem a little strange to define the decision state to be such an obviously
indeterminate entity. The obvious objection to doing this is that it does not
determine an outcome. But in decision situations in general, it can be very
difficult to determine outcomes. They are only relevant to our decisions insofar
as our beliefs about them allow us to determine a preference relation between

6It is not normal to distinguish between game utility and utility simpliciter but we do so for
theoretical reasons, explained below.

7Deterministic strategies are equivalent to pure strategies, in a sense to be made clear below.
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decision states. And the same holds in mixed-strategy games. The game utility
Ua(δ1, . . . , δn) of a profile δ1, . . . , δn to agent a is computed as the expected utility

Ua(δ1, . . . , δn) =
∑

s∈S1×...×Sn

ua(O(s1, . . . , sn))
n∏

i=1

δi(si)

Recall that S1 × . . . × Sn is the set of pure strategy profiles, and so for any
s ∈ S1 × . . . × Sn, the probability that the actions modelled by s are actually
carried out by agents with mixed strategy profile δ is

∏n
i=1 δi(si), assuming that

these actions are independent.8 Using this more sophisticated account of game
utility, we define the relations ≤, ∼ and ≈ as before and denote the resulting
mixed strategy social decision frame as M(A,S,Ω,O,u).

5.3 Games as social decision frames

Examining the above constructions, we see that there are many details that
are irrelevant to our construction, so we will simplify a bit. We use the term
‘strategy’ to generalise over pure and mixed strategies. Given any finite set
A, sets Da of strategies for each a ∈ A, let W(A,D) be the set of social decision
situations given above:

W(A,D) =
∏
a∈A

Da

In other words, each social decision situation is just a strategy profile. Now let
Ua be the real-valued function with domain W(A,D) that represents a’s utilities.
Define the relations ≤, ∼ and ≈ on W(A,D) in the familiar way:

w ≤a v iff Ua(w) ≤ Ua(v)
w ≈a v iff wa = va
w ∼a v iff wb = vb for all b , a in A

Call the resulting social decision frame G(A,D,U) a strategic game frame.

Lemma 5 (Game Frames). Every pure or mixed strategy game frame is a strategic
game frame.

8Since A and each Si is finite, the sum and product here are both well-defined, despite the fact
that the set of game states W is uncountable.
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Proof. Suppose P(A,S,Ω,O,u) is a pure strategy game frame. When U is defined
by Ua(w) = ua(O(w)) and Dai = Si then clearly P(A,S,Ω,O,u) = G(A,D,U).

Now suppose M(A,S,Ω,O,u) is a mixed strategy game frame. Let ∆i be the
set of ai’s mixed strategies and let U be the game utility function defined in
the construction of M(A,S,Ω,O,u). Now let Dai = ∆i. It is easy to check that
M(A,S,Ω,O,u) = G(A,D,U). �

A useful notation for discussing strategies in game frames is the following.
Given w ∈W(A,D), a ∈ A and d ∈ D, let w[a

d] be the strategy profile defined by

w[a
d]b =


d if a = b

wb otherwise

noting that w ∼a v iff w = v[a
wa

]. The notation helps us to prove the following
small but useful lemma:

Lemma 6 (Joint Freedom in Game Frames). In a strategic game frame, G(A,D,U),
for any G ⊆ A and u, v ∈W(A,D),

u ∼G v iff ub = vb for all b < G.

Proof. Suppose ub = vb for all b < G. G is finite, so let G = {a0, ..., an−1} and define
u0, ...,un inductively by: u0 = u and ui+1 = ui[ai

vai
]. Then ui ∼ai ui+1 and

unb = u[a0
va0

]...[an−1
van−1

]b =


vai if b = ai

ub if b < G
= vb

So un = v; hence u ∼G v. Conversly, suppose u ∼G v, so there are u0, ...,un and
a0, ..., an−1 ∈ G such that a0 = u,un = v and ui ∼ai ui+1. But then uib = ui+1b for all
b , ai, and so for all b < G. Thus ub = u0b = unb = vb for all b < G. �

There are many social decision frames that are not strategic game frames, so
we can ask what properties of social decision frames characterise the class of
game frames. The answer is given by the following representation theorem.
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Theorem 1 (Representation). A social decision frame is isomorphic to a strategic
game frame iff it is connected, isolated, unordered, deterministic, linear, with a value
size ≤ 2ℵ0 and a finite number of agents.

The theorem follows from the following lemmas.

Lemma 7 (Left-to-right). Every strategic game frame is connected, isolated, un-
ordered, deterministic, linear, with a value size ≤ 2ℵ0 and has a finite number of
agents.

Proof. The set A of agents in a strategic game frame G(A,D,U) is finite by
definition. And the function Ua maps W(A,D) to R, and so the a cannot have
more values that the cardinality of R, namely 2ℵ0 .

Determinism: Suppose that u ∼a v and u ≈a v. Then vb = ub for all b , a in A
(definition of ∼a) and va = ua (definition of ≈a). So u = v.

Isolation: We need to show that (u)a ⊆ [u]a. So suppose that v ∼a u. Then by
Lemma 6, vb = ub for all b < a. But a < a, so va = ua. Hence v ≈a u, as required.

Connectedness: For any u, v ∈W, by Lemma 6, u ∼A v holds vacuously.

Unordered: Suppose a , b and u ∼a w ∼b v. Then by Lemma 6, w = u[a
wa

] and
v = w[b

vb
], so v = u[a

wa
][b

vb
]. But u[a

wa
][b

vb
] = u[b

vb
][a

wa
] because a , b. So let w′ = u[b

vb
].

Then u ∼b w′ ∼a v, as required.

�

Lemma 8 (Existence). In any connected isolated unordered social decision frame, for
any function d : A→W, there is a u ∈W such that da ≈a u for all a ∈ A.

Proof. Suppose for contradiction that
⋂

a∈A[da]a = ∅. Let G be a minimal subset
of A such that

⋂
a∈G[da]a = ∅. Clearly G , ∅ so let b ∈ G and H = G \ {b}. Then⋂

a∈H[da]a , ∅, so there is a v such that da ≈a v for all a ∈ H. By connectedness,
db ∼A v, and by Lemma 2, there is a u such that db ∼H u ∼A\H v. But as H ⊆ b
and A \ H ⊆ a for each a ∈ H, we get that db ∼b u ∼a v, and by isolation, that
db ≈b u ≈a v, for all a ∈ H. By the choice of v, also da ≈a v and so da ≈a u, for all
a ∈ H. Hence u ∈

⋂
ai∈G[da]a, which is a contradiction. �

Lemma 9 (Uniqueness). In any connected isolated unordered deterministic social
decision frame with a finite number of agents, for any function d : A→ W, if da ≈a u
and da ≈a v for all a ∈ A, then u = v.
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Proof. Let the finite set of agents be A = {a0, ..., an} and define Ai inductively as
follows: A0 = A and Ai+1 = Ai \ {ai}, so that An = ∅. We will show by induction
that u ∼Ai\{a} v for all a ∈ A. Then, since An \ {a} = ∅, u = v, as required.

For the base case, for any a ∈ A, u ≈a da ≈a v so u ≈a v, and so by Lemma 3,
u ≈a v. But A0 \ {a} = a and so we are done.

For the inductive case, suppose that u ∼Ai\{a} v for all a ∈ A. Let a ∈ A. If
a = ai then Ai+1 \ {a} = Ai \ {a}, by definition of Ai+1 and so u ∼Ai+1\{a} v, as
required. So suppose a , ai. We have that u ∼Ai\{a} v, so by Lemma 2, observing
that (Ai \ {a}) \ (Ai+1 \ {a}) = {ai}, there is a w such that u ∼Ai+1\{a} w ∼ai v. But
Ai+1 \ {a} ⊆ ai so by isolation, u ≈ai w. Also, as above, u ≈ai dai ≈ai v, so by
transitivity, w ≈ai v. But then, by determinism, w = v and so u ∼Ai+1\{a} v, as
required. �

Proof of Theorem 1. Firstly, the direction from left to right is a consequence of
Lemma 7. Now, suppose we have a social decision frame F = 〈W,A,∼,≈,≤〉
that is is connected, isolated, unordered, deterministic, linear, with a value size
≤ 2ℵ0 and has a finite number of agents. The strategies of each agent a will be
given by

Da = {[u]a}u ∈W

Since F has a value size ≤ 2ℵ0 there is a strong ≤-homomorphism h : W → R,
i.e. v is such that u ≤ v iff hu ≤ hv.9 We lift h to a function hmin : pow W → R by
defining

hmin(X) = min{h(u)}u ∈ X

Next we define the utility function U : W(A,D)→ R by

U(w) ≤ U(w′) iff hmin

⋂
a∈A

wa ≤ hmin

⋂
a∈A

w′a

This completes our construction of a strategic game frame G(A,D,U). We must
now show that G(A,D,U) is isomorphic to F. The isomorphism f : W(A,D)→
W is defined by ⋂

a∈A

wa = { f (w)}

9The cardinality of W itself may be much bigger, but the quotient underZ gives us a linear order
of size no bigger than R, which can therefore be isomorphically embedded in 〈R,≤〉, so giving a
strong homomorphism from W into R.
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That f is well-defined follows from Lemmas 8 and 9, which together imply that⋂
a∈A wa is a singleton. To see that it is a bijection, we define g : W → W(A,D)

by g(u)a = [u]a for each a ∈ A, and claim that this is the inverse of f . 10

Finally, to see that f (equivalently g) is an isomorphism, we need only check
the following sequences of equivalences:

u ≈a v

[u]a = [v]a Defn. [u]a

g(u)a = g(v)a Defn. g

g(u) ≈ g(v) Defn. ≈a in G(A,D,U).

u ∼a v

u ∈ (v)a Defn. (u)a

u ∈
⋂

b∈a[v]b Lemma 4

u ∈ [v]b for all b , a Defn. a

[u]b = [v]b for all b , a Defn. [v]b

g(u)b = g(v)b for all b , a Defn. g

g(u) ∼a g(v) Defn. ∼a in G(A,D,U).

10For f g(u) = u note that, by definition, { f g(u)} =
⋂

a∈A g(u)a =
⋂

a∈A[u]a = {u}. For g f (w)a = wa,
also by definition g f (w)a = [ f (w)]a = [

⋂
a∈A wa]a = wa.
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w ≤ v

U(w) ≤ U(v) Def. ≤ in G(A,D,U).

hmin
⋂

a∈A wa ≤ hmin
⋂

a∈A va Defn. U

hmin{ f (w)} ≤ hmin{ f (v)} Defn. f

h f (w) ≤ h f (v) Defn. hmin

f (w) ≤ f (v) h strong homomorphism

�

6 Norms of rationality in game theory

Having established that strategic games (with either pure or mixed strategies)
can be regarded as a special class of social decision frames, we will now apply
the norms of decision making from Section 3 to this class and show that they cor-
respond precisely to various concepts from game theory. Our present purpose
is merely to confirm that our definitions in the general case make good sense in
a known special case. But we are also making the first step in a larger project
of using social decision frames to model a range of game-theoretic concepts.

6.1 Dominated strategies

Given a strategic game frame G(A,D,U), agent a’s strategy d ∈ Da is dominated
by another strategy d′ ∈ Da iff

1. d′ is sure to be at least as good as d: w[a
d′ ] ≥a w[a

d] for all w ∈W(A,D), and

2. d′ may be better than d: w[a
d′ ] >a w[a

d] for some w ∈W(A,D).

Situations in which an agent plays a dominated strategy are deemed irrational
because she would risk nothing by playing differently, and has a possibility
of doing better. That this definition correctly applies to standard accounts of
game theory is confirmed by the following easy lemma.



198 Making Choices in Social Situations

Lemma 10 (Domination in Game Frames). Given a pure strategy game
P(A,S,Ω,O,u), a pure strategy si ∈ Si is dominated by some pure strategy s′i ∈ Si iff
for all pure strategy profiles s1, . . . , sn and s′1, . . . , s

′
n in which s j = s′j for all j , i,

Uai (O(s′1, . . . , s
′

n)) ≥ Uai (O(s1, . . . , sn))

and for some pure strategy profiles s1, . . . , sn and s′1, . . . , s
′
n in which s j = s′j for all j , i,

Uai (O(s′1, . . . , s
′

n)) > Uai (O(s1, . . . , sn))

Similarly for mixed strategy games.

Note that game theorists typically distinguish between a weak and strict form
of domination; this is the weak version. The distinction is not so important
for judging whether a strategy is rational, because strict domination implies
weak domination. When we judge a strategy to be irrational because it is dom-
inated, the sense of ‘rational’ is clearly that of a priori rationality. A player can
tell that the strategy is dominated based only on her knowledge of her own
capacities and preferences and of the capacities (but not necessarily the pref-
erences) of other players. To make the connection between a priori rationality
and domination, we need a technical lemma:

Lemma 11 (Free Preference in Game Frames). In any game frame G(A,D,U),
u <aF v iff

1. w[a
ua

] ≤a w[a
va

] for all w ∈W(A,D).

2. w[a
ua

] <a w[a
va

] for some w ∈W(A,D).

Proof. It is enough to prove that u ≤aF v iff w[a
ua

] ≤a w[a
va

] for all w ∈W. (The rest
follows from the linearity of ≤a in a game frame and the definition of u <aF v
as u ≤aF v and v �aF u.) By definition, u ≤aF v iff u′ ≤a v′ for all u′ ≈a u and all
v′ ≈a v such that u′ ∼a v′. But the following are equivalent:

u′ ≈a u and v′ ≈a v and u′ ∼a v′

u′a = ua and v′a = va and u′b = v′b for all b , a

u′ = w[a
ua

] and v′ = w[a
va

] for some w ∈W(A,D)
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Moreover, w[a
ua

] ≈a u and w[a
va

] ≈a v and w[a
ua

] ∼a w[a
va

] for all w ∈ W(A,D). So
u ≤aF v iff w[a

ua
] ≤a w[a

va
] for all w ∈W(A,D). �

Theorem 2 (Dominated Strategies). d ∈ Da is a dominated strategy iff no situation
w for which wa = d is a priori rational for a.

Proof. Suppose wa = d and va = d′. Then from the definition of ‘dominates’ and
Lemma 11, d is dominated by d′ iff w <aF v. Thus d is a dominated strategy iff
for each w with wa = d there is a v such that w <aF v, i.e., iff there is no a priori
rational w with wa = d. �

6.2 Nash equilibrium

The central concept of the theory of strategic games is that of Nash equilibrium,
which is defined in terms of the players having played in such a way that
they could not have done better, given the moves of the other players. This
is an a posteriori concept. We imagine the players evaluating their moves after
they know what has happened. More precisely, given a strategic game frame
G(A,D,U), a situation w ∈ W(A,D) is a best response for agent a iff there is no
strategy d ∈ Da such that

w <a w[a
d]

It is a Nash equilibrium iff it is a best response for all agents.11

That this definition correctly applies to standard definitions of ‘best response’
in game theory is confirmed by the following easy lemma.

Lemma 12 (Best Response in Game Frames). Given a pure strategy game
P(A,S,Ω,O,u), a pure strategy profile s1, . . . , sn is a best response for player ai iff
she can not have a strictly better outcome by taking another pure strategy, that is, there
is no s ∈ Sai such that

Uai (O(s1, . . . , sn)) < Uai (O(s1, . . . , s′n))

where s′i = sand s′j = si for all j , i. Likewise, given a mixed strategy game
M(A,S,Ω,O,u), a mixed strategy profile δ1, . . . , δn is a best response for player ai

11The linearity of the preference relation allows us to give an alternative definition but equivalent
definition of ‘best response’ and hence Nash equilibrium: ‘w ≥ w[a

d] for every strategy d ∈ Da’.
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iff there is no δ ∈ ∆i such that the expected utility of playing with δ would have
produced a better outcome:

Uai (O(δ1, . . . , δn)) < Uai (O(δ′1, . . . , δ
′

n))

where δ′i = δ and δ′j = δi for all j , i.

We can now see that ‘best response’ corresponds precisely to a posteriori ratio-
nality.

Theorem 3 (Best Response). u is a best response for player a iff u is a posteriori
rational for a.

Proof. The following are equivalent:

u is a best response for player a.

There is no strategy d ∈ Da such that u[a
d] >a u. Defn. ‘best response’

There is no v ∼a u such that v >a u. Defn. ∼a

iff u is a posteriori rational for a. by Lemma 1

�

Corollary 1 (Nash). A situation w is a Nash equilibrium iff it is a posteriori rational
for all agents.

7 Conclusion

The main contribution of the present paper is the attempt to provide a sharp
distinction between descriptive and normative aspects of decision making in
both the individual and social settings, to justify certain norms in their own
terms, and to confirm their correctness by applying them to game theory. The
emphasis on a relational analysis of the fundamental concepts (knowledge,
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freedom and preference) avoids the need for an explicit account of action.
Our main result is Theorem 1, which gives a useful characterisation of the
assumptions of strategic game theory.

This is part of an ongoing project. A hidden agenda is the use of hybrid modal
logic to axiomatise the class of strategic game frames, and provide a language
for expressing the concepts of a priori and a posteriori rationality, building on
Cui et al. (2009) and Seligman (2010). We also intend to use this framework
to explore other concepts in game theory and other games, such as those of
imperfect information, incomplete games, sequential games, etc.
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Abstract

Unlike standard modal logics, many dynamic epistemic logics are not closed
under uniform substitution. A distinction therefore arises between the logic
and its substitution core, the set of formulas all of whose substitution instances
are valid. The classic example of a non-uniform dynamic epistemic logic is
Public Announcement Logic (PAL), and a well-known open problem is to
axiomatize the substitution core of PAL. In this paper we solve this problem
for PAL over the class of all relational models with infinitely many agents,
PAL-Kω, as well as standard extensions thereof, e.g., PAL-Tω, PAL-S4ω, and
PAL-S5ω. We introduce a new Uniform Public Announcement Logic (UPAL),
prove completeness of a deductive system with respect to UPAL semantics,
and show that this system axiomatizes the substitution core of PAL.1

1This paper is a preprint of “A Uniform Logic of Information Dynamics,” forthcoming in
Advances in Modal Logic, Vol. 9 (College Publications).
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1 Introduction

One of the striking features of many of the dynamic epistemic logics (Plaza 1989,
Gerbrandy and Groenevelt 1997, Baltag et al. 1998, van Ditmarsch, H. et al.
2008, van Benthem, J. 2011a) studied in the last twenty years is the failure of
closure under uniform substitution in these systems. Given a valid principle of
information update in such a system, uniformly substituting complex epistemic
formulas for atomic sentences in the principle may result in an invalid instance.
Such failures of closure under uniform substitution turn out to reveal insights
into the nature of information change ( van Benthem, J. 2004, van Ditmarsch, H.
and Kooi 2006, Balbiani et al. 2008, Holliday and Icard, III 2010, van Ditmarsch,
H. et al. 2011). They also raise the question: what are the more robust principles
of information update that are valid in all instances, that are schematically valid?
Even for the simplest system of dynamic epistemic logic, Public Announcement
Logic (PAL) (Plaza 1989), the answer has been unknown. In van Benthem’s
“Open Problems in Logical Dynamics” ( van Benthem, J. 2006a), Question 1 is
whether the set of schematic validities of PAL is axiomatizable.2

In this paper, we give an axiomatization of the set of schematic validities—or
substitution core—of PAL over the class of all relational models with infinitely
many agents, PAL-Kω, as well as standard extensions thereof, e.g., PAL-Tω,
PAL-S4ω, and PAL-S5ω. After reviewing the basics of PAL in §1.1, we introduce
the idea of Uniform Public Announcement Logic (UPAL) in §1.2, prove com-
pleteness of a UPAL deductive system in §3 with respect to alternative semantics
introduced in §2, and show that it axiomatizes the substitution core of PAL in
§4. In §5, we demonstrate our techniques with examples, and in §6 we conclude
by discussing extensions of these techniques to other logics.

Although much could be said about the conceptual significance of UPAL as a
uniform logic of information update, here we only present the formal results.
For conceptual discussion of PAL, we refer the reader to the textbooks ( van

2Dynamic epistemic logics are not the only non-uniform modal logics to have been studied.
Other examples include Buss’s (Buss 1990) modal logic of “pure provability,” Åqvist’s (Aqvist
1973) two-dimensional modal logic (see (Segerberg 1973)), Carnap’s (Carnap 1946) modal system
for logical necessity (see (Ballarin 2005, Schurz 2005)), an epistemic-doxastic logic proposed by
Halpern (Halpern 1996), and the full computation tree logic CTL∗ (see (Reynolds 2001)). Among
propositional logics, inquisitive logic (Mascarenhas 2009, Ciardelli 2009) is a non-uniform example.
In some of these cases, the schematically valid fragment—or substitution core—turns out to be
another known system. For example, the substitution core of Carnap’s system C is S5 (Schurz
2005), and the substitution core of inquisitive logic is Medvedev Logic (Ciardelli 2009, §3.4).
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Ditmarsch, H. et al. 2008, van Benthem, J. 2011a). Our work here supports a
theme of other recent work in dynamic epistemic logic: despite its apparent
simplicity, PAL and its variants prove to be a rich source for mathematical
investigation (see, e.g., van Benthem, J. 2006a;b, Kooi 2007, Holliday and Icard,
III 2010, Holliday et al. 2011, Wang 2011, Ma 2011, van Benthem, J. 2011b,
Holliday et al. 2012, Wang and Cao 2012).

1.1 Review of PAL

We begin our review of PAL with the language we will use throughout.

Definition 1.1. For a set At of atomic sentences and a set Agt of agent symbols
with |Agt| = κ, the language LκPAL is generated by the following grammar:

ϕ ::= > | p | ¬ϕ | ϕ ∧ ϕ | ^aϕ | 〈ϕ〉ϕ,

where p ∈ At and a ∈ Agt. We define �aϕ as ¬^a¬ϕ and [ϕ]ψ as ¬〈ϕ〉¬ψ.

• Sub(ϕ) is the set of subformulas of ϕ;

• At(ϕ) = At ∩ Sub(ϕ);

• Agt(ϕ) = {a ∈ Agt | ^aψ ∈ Sub(ϕ) for some ψ ∈ LκPAL};

• An(ϕ) = {χ ∈ LκPAL | 〈χ〉ψ ∈ Sub(ϕ) for some ψ ∈ LκPAL}.

We will be primarily concerned with the language LωPAL with infinitely many
agents, which leads to a more elegant treatment than Ln

PAL for some arbitrary
finite n. In §6 we will briefly discuss the single-agent and finite-agent cases.

We will consider two interpretations of LκPAL, one now and one in §2. The
standard interpretation uses the following models and truth definition.

Definition 1.2. Models for PAL are tuples of the form M = 〈W, {Ra}a∈Agt,V〉,
where W is a non-empty set, Ra is a binary relation on W, and V : At→ P(W).

Definition 1.3. Given a PAL model M = 〈W, {Ra}a∈Agt,V〉 with w ∈ W, ϕ,ψ ∈
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L
κ
PAL, and p ∈ At, we defineM,w � ϕ as follows:

M,w � >;

M,w � p iff w ∈ V(p);

M,w � ¬ϕ iff M,w 2 ϕ;

M,w � ϕ ∧ ψ iff M,w � ϕ andM,w � ψ;

M,w � ^aϕ iff ∃v ∈W : wRav andM, v � ϕ;

M,w � 〈ϕ〉ψ iff M,w � ϕ andM|ϕ,w � ψ,

whereM|ϕ = 〈W|ϕ, {Ra|ϕ }a∈Agt,V|ϕ〉 is the model such that

W|ϕ = {v ∈W | M, v � ϕ};

∀a ∈ Agt : Ra|ϕ = Ra ∩ (W|ϕ ×W|ϕ);

∀p ∈ At : V|ϕ(p) = V(p) ∩W|ϕ.

We use the notation ~ϕ�M = {v ∈ W | M, v � ϕ}. For a class of models C,
ThLκPAL

(C) is the set of formulas of LκPAL that are valid over C.

For the following statements, we use the standard nomenclature for normal
modal logics, e.g., K, T, S4, and S5 for the unimodal logics and Kκ, Tκ, S4κ,
and S5κ for their multimodal versions with |Agt| = κ (assume κ countable). Let
Mod(Lκ) be the class of all models of the logic Lκ, so Mod(Kκ) is the class of
all models, Mod(Tκ) is the class of models with reflexive Ra relations, etc. We
write Lκ for the Hilbert-style deductive system whose set of theorems is Lκ, and
for any deductive system S, we write `S ϕ when ϕ is a theorem of S.

Theorem 1 (PAL Axiomatization (Plaza 1989)). Let PAL-Lκ be the system ex-
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tending Lκ with the following rule and axioms:3

i. (replacement)
ψ↔ χ

ϕ(ψ/p)↔ ϕ(χ/p)

ii. (atomic reduction) 〈ϕ〉p↔ (ϕ ∧ p)

iii. (negation reduction) 〈ϕ〉¬ψ↔ (ϕ ∧ ¬〈ϕ〉ψ)

iv. (conjunction reduction) 〈ϕ〉(ψ ∧ χ)↔ (〈ϕ〉ψ ∧ 〈ϕ〉χ)

v. (diamond reduction) 〈ϕ〉^aψ↔ (ϕ ∧^a〈ϕ〉ψ).

For all ϕ ∈ LκPAL,
`PAL-Kκ ϕ iff ϕ ∈ ThLκPAL

(Mod(Kκ)).

The same result holds for Tκ/Tκ, S4κ/S4κ, and S5κ/S5κ in place of Kκ/Kκ.

Although we have taken diamond operators as primitive for convenience in
later sections, typically the PAL axiomatization is stated in terms of box op-
erators by replacing axiom schemas ii - v by the following: [ϕ]p ↔ (ϕ → p);
[ϕ]¬ψ↔ (ϕ→ ¬[ϕ]ψ); [ϕ](ψ ∧ χ)↔ ([ϕ]ψ ∧ [ϕ]χ); [ϕ]�aψ↔ (ϕ→ �a[ϕ]ψ).

1.2 Introduction to UPAL

As noted above, one of the striking features of PAL is that it is not closed
under uniform substitution. In the terminology of Goldblatt (1992), PAL is
not a uniform modal logic. For example, the valid atomic reduction axiom has
invalid substitution instances, e.g., 〈p〉�ap↔ (p ∧ �ap). Given this observation,
a distinction arises between PAL and its substitution core, defined as follows.

3If Lκ contains the rule of uniform substitution, then we must either restrict this rule so that in
PAL-Lκ we can only substitute into formulas ϕwith An(ϕ) = ∅, or remove the rule and add for each
axiom of Lκ all substitution instances of that axiom with formulas inLκPAL. Either way, we take the
rules of modus ponens and �a-necessitation from Lκ to apply in PAL-Lκ to all formulas. Finally, for
ϕ,ψ ∈ LκPAL and p ∈ At(ϕ), ϕ(ψ/p) is the formula obtained by replacing all occurrences of p in ϕ by
ψ. For alternative axiomatizations of PAL, see Wang 2011, Wang and Cao 2012.
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Definition 1.4. A substitution is any σ : At→ LκPAL; and (·)σ : LκPAL → L
κ
PAL is the

extension such that (ϕ)σ is obtained from ϕ by replacing each p ∈ At(ϕ) by σ(p)
(Blackburn et al. 2001, Def. 1.18). The substitution core of ThLκPAL

(C) is the set

{ϕ ∈ LκPAL : (ϕ)σ ∈ ThLκPAL
(C) for all substitutions σ}.

Formulas in the substitution core of ThLκPAL
(C) are schematically valid over C.

Examples of formulas that are in ThLκPAL
(Mod(Kκ)) but are not in the substitution

core of ThLκPAL
(Mod(Kκ)) include the following (for κ ≥ 1):4

[p]p �ap→ [p]�ap[
p
]
�ap �ap→ [p](p→ �ap)[

p
]
(p→ �ap) �a(p→ q)→ (〈q〉�ar→ 〈p〉�ar)[

p ∧ ¬�ap
]
¬(p ∧ ¬�ap) (〈p〉�ar ∧ 〈q〉�ar)→ 〈p ∨ q〉�ar.

We discuss the epistemic significance of failures of uniformity in Holliday et al.
2012. Burgess (2003, 147f) explains the logical significance of uniformity:

The standard aim of logicians at least from Russell onward has been
to characterize the class [of] all formulas all of whose instantiations are
true. Thus, though Russell was a logical atomist, when he endorsed
p∨∼p as [a] law of logic, he did not mean to be committing himself
only to the view that the disjunction of any logically atomic statement
with its negation is true, but rather to be committing himself to the
view that the disjunction of any statement whatsoever with its negation
is true . . . . This has remained the standard employment of statement
letters ever since, not only among Russell’s successors in the classi-
cal tradition, but also among the great majority of formal logicians
who have thought classical logic to be in need of additions and/or
amendments, including C. I. Lewis, the founder of modern modal
logic. With such an understanding of the role of statement letters, it
is clear that if A is a law of logic, and B is any substitution in A, then B
also is a law of logic . . . . Thus it is that the rule of substitution applies

4The first two principles in the second column are schematically valid over transitive single-
agent models, but not over all single-agent models or over transitive multi-agent models.
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not only in classical logic, but in standard, Lewis-style modal logics
(as well as in intuitionistic, temporal, relevance, quantum, and other
logics). None of this is meant to deny that there may be circumstances
where it is legitimate to adopt some other understanding of the role of
statement letters. If one does so, however, it is indispensable to note
the conceptual distinction, and highly advisable to make a notational
and terminological distinction.

In PAL, an atomic sentence p has the same truth value at any pointed models
M,w and M|ϕ,w, whereas a formula containing a modal operator may have
different truth values atM,w andM|ϕ,w, which is why uniform substitution
does not preserve PAL-validity. Hence in PAL an atomic sentence cannot be
thought of as a propositional variable in the ordinary sense of something that
stands in for any proposition. By contrast, if we consider the substitution core
of PAL as a logic in its own right, for which semantics will be given in §2, then
we can think of the atomic sentences as genuine propositional variables.

The distinction between PAL and its substitution core leads to Question 1 in
van Benthem’s list of “Open Problems in Logical Dynamics”:

Question 1 ( van Benthem, J. 2006b;a; 2011a). Is the substitution core of PAL
axiomatizable?

To answer this question, we will introduce a new framework of Uniform Public
Announcement Logic (UPAL), which we use to prove the following:

Theorem 2 (Axiomatization of the PAL Substitution Core).
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Let UPAL-Lκ be the system extending Lκ with the following rules and axioms:5

1. (uniformity)
ϕ

(ϕ)σ
for any substitution σ

2. (necessitation)
ϕ

[p]ϕ

3. (extensionality)
ϕ↔ ψ

〈ϕ〉p↔ 〈ψ〉p

4. (distribution) [p](q→ r)→ ([p]q→ [p]r)

5. (p-seriality) p→ 〈p〉>

6. (truthfulness) 〈p〉> → p

7. (>-reflexivity) p→ 〈>〉p

8. (functionality) 〈p〉q→ [p]q

9. (pa-commutativity) 〈p〉^aq→ ^a〈p〉q

10. (ap-commutativity) ^a〈p〉q→ [p]^aq

11. (composition) 〈p〉〈q〉r↔ 〈〈p〉q〉r.

For all ϕ ∈ LωPAL,

`UPAL-Kω ϕ iff ϕ is in the substitution core of ThLωPAL
(Mod(Kω)).

The same result holds for Tω/Tω, S4ω/S4ω, and S5ω/S5ω in place of Kω/Kω, with
only minor adjustments to the proof (see note 6).

Theorem 3 (Axiomatization of the PAL Substitution Core cont.).

5As in PAL-Lκ, in UPAL-Lκ we take the rules of modus ponens and �a-necessitation from Lκ to
apply to all formulas in LκPAL.
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1. `UPAL-Tω ϕ iff ϕ is in the substitution core of ThLωPAL
(Mod(Tω));

2. `UPAL-S4ω ϕ iff ϕ is in the substitution core of ThLωPAL
(Mod(S4ω));

3. `UPAL-S5ω ϕ iff ϕ is in the substitution core of ThLωPAL
(Mod(S5ω)).

Unless the specific base system Lκ matters, we simply write ‘UPAL’ and ‘PAL’. It
is easy to check that all the axioms of PAL except atomic reduction are derivable
in UPAL, and the rule of replacement is an admissible rule in UPAL. Another
system with the same theorems as UPAL, but presented in a format closer to that
of the typical box version of PAL, is the following (with ⊥ := ¬>):

I. (uniformity)
ϕ

(ϕ)σ
for any substitution σ

II. (RE)
ϕ↔ ψ

[p]ϕ↔ [p]ψ

III. ([ ]-extensionality)
ϕ↔ ψ

[ϕ]p↔ [ψ]p

IV. (N) [p]>

V. (>-reflexivity) [>]p→ p

VI. (⊥-reduction) [p]⊥ ↔ ¬p

VII. (¬-reduction) [p]¬q↔ (p→ ¬[p]q)

VIII. (∧-reduction) [p](q ∧ r)↔ ([p]q ∧ [p]r)

IX. (�a-reduction) [p]�aq↔ (p→ �a[p]q)

X. ([ ]-composition) [p][q]r↔ [p ∧ [p]q]r.

We have formulated UPAL as in Theorem 2 to make clear the correspondence
between axioms and the semantic conditions in Definition 2.3 below, as well as
to make clear the specific properties used in the steps of our main proof.
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2 Semantics for UPAL

In this section we introduce semantics for Uniform Public Announcement Logic,
for which the system of UPAL is shown to be sound and complete in §3.

Definition 2.1. Models for UPAL are tuplesM = 〈M, {Ra}a∈Agt, {Rϕ}ϕ∈LκPAL
,V〉; M

is a non-empty set, Ra and Rϕ are binary relations on M, andV : At→ P(M).

Unlike in the PAL truth definition, in the UPAL truth definition we treat 〈ϕ〉 like
any other modal operator.

Definition 2.2. Given a UPAL model M = 〈M, {Ra}a∈Agt, {Rϕ}ϕ∈LκPAL
,V〉 with

w ∈M, ϕ,ψ ∈ LκPAL, and p ∈ At, we defineM,w  ϕ as follows:

M,w  >;

M,w  p iff w ∈ V(p);

M,w  ¬ϕ iff M,w 1 ϕ;

M,w  ϕ ∧ ψ iff M,w  ϕ andM,w  ψ;

M,w  ^aϕ iff ∃v ∈M : wRav andM, v  ϕ;

M,w  〈ϕ〉ψ iff ∃v ∈M : wRϕv andM, v  ψ.

We use the notation ‖ϕ‖M = {v ∈M |M, v  ϕ}.

Instead of giving the 〈ϕ〉 operators a special truth clause, we ensure that they
behave in a PAL-like way by imposing constraints on theRϕ relations in Defini-
tion 2.3 below. Wang and Cao (2012) have independently proposed a semantics
for PAL in this style, with respect to which they prove that PAL is complete. The
difference comes in the specific constraints for UPAL vs. PAL.

Definition 2.3. A UPAL model M = 〈M, {Ra}a∈Agt, {Rϕ}ϕ∈LκPAL
,V〉 is legal iff the

following conditions hold for all ψ, χ ∈ LκPAL, w, v ∈M, and a ∈ Agt:
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(extensionality) if ‖ψ‖M= ‖χ‖M, then Rψ = Rχ;

(ψ-seriality) if w ∈ ‖ψ‖M, then ∃v: wRψv;

(truthfulness) if wRψv, then w ∈ ‖ψ‖M;

(>-reflexivity) wR>w;

(functionality) if wRψv, then for all u ∈M, wRψu implies u = v;

(ψa-commutativity) if wRψv and vRau, then ∃z: wRaz and zRψu;

(aψ-commutativity) if wRav, vRψu and w ∈ ‖ψ‖M,

then ∃z: wRψz and zRau;

(composition) R〈ψ〉χ = Rψ ◦ Rχ.

In §4, we will also refer to weaker versions of the first and third conditions:

(extensionality for ϕ) if ψ, χ ∈ An(ϕ) ∪ {>} and ‖ψ‖M= ‖χ‖M,

then Rψ = Rχ;

(truthfulness for ϕ) if ψ ∈ An(ϕ) ∪ {>} and wRψv, then w ∈ ‖ψ‖M.

It is easy to see that each of the axioms of UPAL in Theorem 2 corresponds to the
condition of the same name written in boldface in Definition 2.3.

3 Completeness of UPAL

In this section, we take our first step toward proving Theorem 2 by proving:

Theorem 4 (Soundness and Completeness). The system of UPAL-Kω given in
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Theorem 2 is sound and complete for the class of legal UPAL models.

Soundness is straightforward. To prove completeness, we use the standard
canonical model argument.

Definition 3.1. The canonical model Mc = 〈Mc, {Rc
a}a∈Agt, {Rc

ϕ}ϕ∈LκPAL
,Vc
〉 is de-

fined as follows:

1. Mc = {Γ | Γ is a maximally UPAL-Kω-consistent set};

2. ΓRc
a∆ iff ψ ∈ ∆ implies ^aψ ∈ Γ;

3. ΓRc
ϕ∆ iff ψ ∈ ∆ implies 〈ϕ〉ψ ∈ Γ;

4. Vc(p) = {Γ ∈Mc
| p ∈ Γ}.

The following fact, easily shown, will be used in the proof of Lemma 2.

Fact 1. For all Γ ∈Mc, ϕ ∈ LκPAL, if 〈ϕ〉> ∈ Γ, then {ψ | 〈ϕ〉ψ ∈ Γ} ∈Mc.

The proof of the truth lemma is standard (Blackburn et al. 2001, §4.2).

Lemma 1 (Truth). For all Γ ∈Mc and ϕ ∈ LκPAL,

Mc,Γ  ϕ iff ϕ ∈ Γ.

To complete the proof of Theorem 4, we need only check the following.

Lemma 2 (Legality). Mc is a legal model.

Proof. Suppose ‖ϕ‖M
c
= ‖ψ‖M

c
, so by Lemma 1 and the properties of maximally

consistent sets,ϕ↔ ψ ∈ Γ for all Γ ∈Mc. Hence `UPAL-Kω ϕ↔ ψ, for if¬(ϕ↔ ψ)
is UPAL-Kω-consistent, then ¬(ϕ ↔ ψ) ∈ ∆ for some ∆ ∈ Mc, contrary to what
was just shown. It follows that for any α ∈ LκPAL, `UPAL-Kω 〈ϕ〉α ↔ 〈ψ〉α, given
the extensionality and uniformity rules of UPAL-Kω. Hence if Γ1R

c
ϕΓ2, then for all

α ∈ Γ2, 〈ϕ〉α ∈ Γ1 and 〈ψ〉α ∈ Γ1 by the consistency of Γ1, which means Γ1R
c
ψΓ2.

The other direction is the same, whence Rc
ϕ = Rc

ψ. Mc satisfies extensionality.

Suppose Γ1R
c
〈ϕ〉ψ

Γ2, so for all α ∈ Γ2, 〈〈ϕ〉ψ〉α ∈ Γ1. Hence 〈ϕ〉〈ψ〉α ∈ Γ1

given the composition axiom and uniformity rule of UPAL-Kω, so 〈ϕ〉> ∈ Γ1 by
normal modal reasoning with the distribution axiom. It follows by Fact 1 and
Definition (c).3 that there is some Σ1 such that Γ1RϕΣ1 and 〈ψ〉α ∈ Σ1, and by
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similar reasoning that there is some Σ2 such that Σ1RψΣ2 and α ∈ Σ2. Hence
Γ2 ⊆ Σ2, so Γ2 = Σ2 given that Γ2 is maximal. Therefore, Rc

〈ϕ〉ψ
⊆ R

c
ϕ ◦ R

c
ψ. The

argument in the other direction is similar. Mc satisfies composition.

We leave the other legality conditions to the reader. �

4 Bridging UPAL and PAL

In this section, we show that UPAL axiomatizes the substitution core of PAL. It
is easy to check that all of the axioms of UPAL are PAL schematic validities, and
all of the rules of UPAL preserve schematic validity, so UPAL derives only PAL
schematic validities. To prove that UPAL derives all PAL schematic validities, we
show that if ϕ is not derivable from UPAL, so by Theorem 4 there is a legal UPAL
model falsifying ϕ, then there is a substitution τ and a PAL model falsifying
(ϕ)τ, in which case ϕ is not schematically valid over PAL models.

Proposition 1. For any formula ϕ ∈ LωPAL, if there is a legal UPAL model
M = 〈M, {Ra}a∈Agt, {Rψ}ψ∈LωPAL

,V〉 with w0 ∈M such thatM,w0 1 ϕ, then there is
a PAL model N = 〈N0, {Sa}a∈Agt,U〉 with w0 ∈ N0 and a substitution τ such that
N ,w0 2 (ϕ)τ.

Our first step in proving Proposition 1 is to show that we can reduce ϕ to a
certain simple form, which will help us in constructing the substitution τ.

Definition 4.1. The set of simple formulas is generated by the grammar

ϕ ::= > | p | ¬ϕ | ϕ ∧ ϕ | ^aϕ | 〈ϕ〉p,

where p ∈ At and a ∈ Agt.

Proposition 2. For every ϕ ∈ LκPAL, there is a simple formula ϕ′ ∈ LκPAL that is
equivalent to ϕ over legal UPAL models (and all PAL models).

Proof. The proof is similar to the standard PAL reduction argument ( van Dit-
marsch, H. et al. 2008, §7.4), only we do not perform atomic reduction steps,
and we use the composition axiom of UPAL to eliminate consecutive occurrences
of dynamic operators. �



216 A Uniform Logic of Information Update

By Proposition 2, given thatM is legal, we can assume that ϕ is simple. Before
constructing N and τ, we show that our initial model M can be transformed
into an intermediate model N that satisfies a property (part 2 of Lemma 3) that
we will take advantage of in our proofs below. We will return to the role of this
property in relating UPAL to PAL in Example 1 and §6.

For what follows, we need some new notation. First, let

RAgt =
⋃

a∈Agt

Ra;

R
∗ is the reflexive transitive closure of R; and R(w) = {v ∈M | wRv}.

Lemma 3. For any legal model M = 〈M, {Ra}a∈Agt, {Rϕ}ϕ∈LωPAL
,V〉 with w0 ∈ M

such that M,w0  ϕ, there is a model N = 〈N, {Sa}a∈Agt, {Sϕ}ϕ∈LωPAL
,U〉 with

w0 ∈ N such that

1. N,w0  ϕ;
2. if α, β ∈ An(ϕ) ∪ {>} and ‖α‖N, ‖β‖N, then

‖α‖N ∩S∗Agt(w0) , ‖β‖N ∩S∗Agt(w0).

3. N satisfies >-reflexivity, functionality, extensionality for ϕ and truthful-
ness for ϕ.

Proof. Consider some α, β ∈ An(ϕ) ∪ {>} such that ‖α‖M, ‖β‖M. Hence there is
some v ∈ M such that M, v 1 α ↔ β. Let M′ be exactly like M except that for
some x < Agt(ϕ), w0R

′
xv.6 Then it is easy to show that for all ψ ∈ Sub(ϕ) and

u ∈M,
M′,u  ψ iffM,u  ψ.

HenceM′,w0  ϕ andM′, v 1 α↔ β. Then given w0R
′
xv, we have

‖α‖M
′

∩R
′∗

Agt(w0) , ‖β‖M
′

∩R
′∗

Agt(w0).

Finally, one can check thatM′ satisfies >-reflexivity, functionality, extension-
ality for ϕ and truthfulness for ϕ by the construction. By repeating this proce-
dure, starting now withM′, for each of the finitely many α and β as described
above, one obtains a model N as described in Lemma 3 �

6As noted after Theorem 2, we can modify our proof for other models classes. For example,
for the class of models with equivalence relations, in this step we can define R′x to be the smallest
equivalence relation extendingRx such that w0R

′
xv. Note that sinceα, β ∈ An(ϕ)∪{>} and x < Agt(ϕ),

no matter how we define R′x, the following claim in the text still holds.
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Obtaining N from M as in Lemma 3, we now define our PAL model N =
〈N0, {Sa}a∈Agt,U〉. Let N0 = S∗Agt(w0); for some z < Agt(ϕ), let Sz be the universal
relation on N0; and for each a ∈ Agt with a , z, let Sa be the restriction of Sa to
N0. We will define the valuation U after constructing the substitution τ. The
following facts will be used in the proof of Lemma 5.

Fact 2.

1. For all a ∈ Agt and w ∈ N0, Sa(w) = Sa(w).
2. if ‖α‖N ∩N0 = ‖β‖N ∩N0, then for all u ∈ N0,

N,u  〈α〉χ iff N,u  〈β〉χ.

Proof. Part 1 is obvious. For part 2, if ‖α‖N ∩N0 = ‖β‖N ∩N0, then ‖α‖N= ‖β‖N

by Lemma 3.2, so Sα = Sβ by Lemma 3.3 (extensionality for ϕ). �

Remark 1. There is another way of transforming the given UPAL model M =
〈M, {Ra}a∈Agt, {Rϕ}ϕ∈LωPAL

,V〉 into a PAL model N sufficient for our purposes.
First, let N = 〈N, {Sa}a∈Agt, {Sϕ}ϕ∈LωPAL

,U〉 be exactly likeM except that for some
z < Agt(ϕ), Sz is the universal relation on N, and observe that N satisfies the
conditions of Lemma 3. Second, take N = 〈N0, {Sa}a∈Agt,U〉 such that N0 = N,
Sa = Sa, and U is defined as below, and observe that Fact 2 holds. Then the
proof can proceed as below. The difference is that this approach takes the
domain of the PAL model to be the entire domain of the UPAL modelN, with Sz
as the universal relation on this entire domain, whereas our approach takes the
domain of the PAL model to be just that of the “epistemic submodel” generated
by w0 in N, S∗Agt(w0), with Sz as the universal relation on this set. We prefer the
latter approach because it allows us to work with smaller PAL models when we
carry out the construction with concrete examples as in §5.

To construct τ(p) for p ∈ At(ϕ), let B1, . . . ,Bm be the sequence of all Bi such that
〈Bi〉p ∈ Sub(ϕ), and let B0 := >. For 0 ≤ i, j ≤ m, if ‖Bi‖

N
∩N0 = ‖B j‖

N
∩N0,

delete one of Bi or B j from the list (but never B0), until there is no such pair. Call
the resulting sequence A0, . . . ,An, and define

s(i) = { j | 0 ≤ j ≤ n and ‖A j‖
N
∩N0 ( ‖Ai‖

N
∩N0}.

Extend the language with new variables p0, . . . , pn and a0, . . . , an, and define
τ(p) = γ0 ∧ · · · ∧ γn such that

γi := (�zai ∧
∧
j∈s(i)

¬�za j)→ pi.
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Having extended the language for each p ∈ At(ϕ), define the valuation U for N0
such that for each p ∈ At(ϕ), U(p) =U(p) ∩N0, and for the new variables:

(a) U(pi) = {w ∈ N0 | ∃u : wSAi u and u ∈ U(p)};

(b) U(ai) = ‖Ai‖
N
∩N0.

Hence:

(a) ~pi�N = {w ∈ N0 | ∃u : wSAi u and u ∈ U(p)};

(b) ~ai�N = ‖Ai‖
N
∩N0.

Note that it follows from (a) and the UPAL truth definition that

(c) ~pi�N = ‖〈Ai〉p‖N ∩N0.

Using these facts, we will show that N,w0 1 ϕ impliesN ,w0 2 τ(ϕ).

Lemma 4. For all 0 ≤ i ≤ n,

~τ(p)�N|ai = ~pi�
N .

Proof. We first show that for 0 ≤ i, j ≤ n, i , j:

(i) ~γi�
N|ai = ~pi�

N|ai ;

(ii) ~γ j�
N|ai = ~ai�

N|ai (= N0|ai ).

For (i), we claim that

~�zai ∧
∧
k∈s(i)

¬�zak�
N|ai = N0|ai .

Since ai is atomic, ~�zai�
N|ai = N0|ai . By definition of the s function and (b), for

all k ∈ s(i), ~ak�
N ( ~ai�N , so ~¬�zak�

N|ai = N0|ai . Hence the claimed equation
holds, so ~γi�

N|ai = ~pi�
N|ai given the structure of γi.

For (ii), we claim that for j , i,

~�za j ∧
∧

k∈s( j)

¬�zak�
N|ai = ∅.
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By construction of the sequence A0, . . . ,An for p and (b), ~a j�N , ~ai�N . Hence
if not ~ai�N ( ~a j�N , then ~ai�N * ~a j�N , so ~�za j�

N|ai = ∅ because Sz is the
universal relation on N0. If ~ai�N ( ~a j�N , then by (b) and the definition of s,
i ∈ s( j); since ai is atomic, ~¬�zai�

N|ai = ∅. In either case the claimed equation
holds, so ~γ j�

N|ai = N0|ai given the structure of γ j.

Given the construction of τ, (i) and (ii) imply:

~τ(p)�N|ai = ~γi�
N|ai ∩

⋂
j,i

~γ j�
N|ai = ~pi�

N|ai ∩ ~ai�
N|ai = ~pi�

N ,

where the last equality holds because ~pi�N ⊆ ~ai�N , which follows from (a),
(b), and the fact that N satisfies truthfulness for ϕ. �

We now establish the connection between the UPAL model N on the one hand
and the PAL modelN and substitution τ on the other.

Lemma 5. For all simple subformulas χ of ϕ,

~(χ)τ�N = ‖χ‖N ∩N0.

Proof. By induction on χ. For the base case, we must show ~(p)τ�N = ‖p‖N ∩N0
for p ∈ At(ϕ). By construction of the sequence A0, . . . ,An for p, A0 = >, so
‖A0‖

N
∩N0 = N0. Then by (b), ~a0�N = N0, and hence

~(p)τ�N = ~(p)τ�N|a0

= ~p0�N by Lemma 4

= {w ∈ N0 | ∃u : wSA0 u and u ∈ U(p)} by (a)

= {w ∈ N0 | w ∈ U(p)} by >-reflexivity

and functionality

= ‖p‖N ∩N0.

The boolean cases are straightforward. Next, we must show ~(�aϕ)τ�N =
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‖�aϕ‖N ∩N0. For the inductive hypothesis, ~(ϕ)τ�N = ‖ϕ‖N ∩N0, so

~(�aϕ)τ�N = ~�a(ϕ)τ�N

= {w ∈ N0 | Sa(w) ⊆ ~(ϕ)τ�N }

= {w ∈ N0 | Sa(w) ⊆ ‖ϕ‖N ∩N0}

= {w ∈ N0 | Sa(w) ⊆ ‖ϕ‖N} given Sa ⊆ N0 ×N0

= {w ∈ N0 | Sa(w) ⊆ ‖ϕ‖N} by Fact 2.1

= ‖�aϕ‖N ∩N0.

Finally, we must show ~(〈Bi〉p)τ�N = ‖〈Bi〉p‖N ∩N0. For the inductive hypoth-
esis, ~(Bi)τ�N = ‖Bi‖

N
∩N0. By construction of the sequence A0, . . . ,An for

p ∈ At(ϕ), there is some A j such that

(?) ‖Bi‖
N
∩N0 = ‖A j‖

N
∩N0.

Therefore,

~(Bi)τ�N = ‖A j‖
N
∩N0

= ~a j�N by (b),

and hence

~(〈Bi〉p)τ�N = ~〈(Bi)τ〉(p)τ�N

= ~〈a j〉(p)τ�N

= ~(p)τ�N|aj

= ~p j�N by Lemma 4

= ‖〈A j〉p‖N ∩N0 by (c)

= ‖〈Bi〉p‖N ∩N0 given (?) and Fact 2.2.

The proof by induction is complete. �
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With the following fact, we complete the proof of Proposition 1.

Fact 3. N ,w0 2 (ϕ)τ.

Proof. Immediate from Lemma 5 given N,w0 1 ϕ. �

5 Examples

In this section, we work out two examples illustrating how the techniques of
§4 allow us to find, for any formula ϕ that is valid but not schematically valid
in PAL, a PAL model that falsifies a substitution instance of ϕ. The proof in §4
shows that all we need to do is find a legal UPAL model falsifying ϕ. However,
since legal UPAL models are generally large, we would like to instead find a
small UPAL model falsifying ϕ, from which we can read off a PAL model that
falsifies a substitution instance of ϕ. In fact, we can always do so provided that
the model satisfies a weaker condition than legality. For a given ϕ ∈ LκPAL, we
say that a UPAL modelM is ϕ-legal iff it satisfies all of the legality conditions of
Definition 2.3 when we replace ψ-seriality with:

(ψ-seriality for ϕ) if ψ ∈ An(ϕ) ∪ {>} and w ∈ ‖ψ‖M,

then ∃v: wRψv.

Hence in a ϕ-legal model, we can let all of the infinitely many Rψ rela-
tions irrelevant to ϕ be empty, which makes constructing ϕ-legal models easier.
With this new notion, we can state a simple method for finding a PAL model
that falsifies a substitution instance of the non-schematically valid ϕ:

Step 1. Transform ϕ into an equivalent simple formula ϕ′.

Step 2. Find a ϕ′-legal pointed UPAL modelM,w0 such thatM,w0 1 ϕ′.

Step 3. ObtainN and τ fromM,w0 as in §4 so thatN ,w0 2 (ϕ′)τ.

Sinceϕ↔ ϕ′ is schematically valid in PAL, we haveN ,w 2 (ϕ)τ, as desired. The
key to this method is that the construction in §4 also establishes the following
variant of Proposition 1:

Proposition 3. For any simple ϕ ∈ LωPAL, if there is a ϕ-legal UPAL model M =
〈M, {Ra}a∈Agt, {Rψ}ψ∈LωPAL

,V〉 with w0 ∈ M such that M,w0 1 ϕ, then there is a
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PAL model N = 〈N0, {Sa}a∈Agt,U〉 with w0 ∈ N0 and a substitution τ such that
N ,w0 2 (ϕ)τ.

This proposition holds because if ϕ is already simple, then the only properties
ofM used in the proof of Fact 3 are >-reflexivity, functionality, extensionality
for ϕ and truthfulness for ϕ, which are part of ϕ-legality.

Finally, if ϕ does not contain any occurrence of a dynamic operator in the scope
of any other, then we can simply skip Step 1 and do Steps 2 and 3 for ϕ itself.
One can check that the construction in §4 works not only with a simple formula,
but more generally with any formula with the scope restriction.

Example 1. Consider the PAL-valid formula ϕ := [p]p, which is already simple.
Let us try to falsify ϕ in a ϕ-legal UPAL model. The obvious first try isM in Fig.
1, which is indeed a ϕ-legal UPAL model, in which all Ra relations are empty.
(We simplify the diagrams by omitting all reflexive R> loops.) However,M has
an un-PAL-like property: although ‖>‖M ∩R∗Agt(w0) = ‖p‖M ∩R∗Agt(w0), we have
w0R>w0 but not w0Rpw0. (See §6 for why this is un-PAL-like.) To eliminate
this property, we modify M to N = 〈N, {Sa}a∈Agt, {Sψ}ψ∈LωPAL

,U〉 in Fig. 1 as in
Lemma 3.7 Next, following the procedure in §4, we obtain the PAL model
N = 〈N0, {Sa}a∈Agt,U〉 in Fig. 1 and the substitution τ given below.

M

x0

pw0

Rp

N

x0

pw0 w1

Sp

Sz

N

pw0

pw0

p0, a0, a1

w1

a0Sz

N|τ(p)

p0, a0, a1

Figure 1: UPAL and PAL Models for Example 1

Where A0 := >, A1 := p, and a0, a1, p0, and p1 are the new atoms, we define the
valuation U inN such that:

7In fact, the construction of Lemma 3 would connect w0 to x0 by Rz, but note that we can always
connect w0 to a new point falsifying α↔ β (in this case, > ↔ p) instead.
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U(a0) = ‖A0‖
N
∩N0 = {w0,w1};

U(a1) = ‖A1‖
N
∩N0 = {w0};

U(p0) = {w ∈ N0 | ∃u : wSA0 u and u ∈ U(p)} = {w0};

U(p1) = {w ∈ N0 | ∃u : wSA1 u and u ∈ U(p)} = ∅.

Defining the function s such that

s(i) = { j | 0 ≤ j ≤ n and ‖A j‖
N
∩N0 ( ‖Ai‖

N
∩N0},

we have s(0) = {1} and s(1) = ∅. Defining τ(p) = γ0 ∧ · · · ∧ γn such that

γi := (�zai ∧
∧
j∈s(i)

¬�za j)→ pi,

we have
τ(p) = ((�za0 ∧ ¬�za1)→ p0) ∧ (�za1 → p1).

Observe:

~(�za0 ∧ ¬�za1)→ p0�N = {w0};

~�za1 → p1�N = {w0,w1};

~τ(p)�N = {w0}.

HenceN|τ(p) is the model displayed in the upper-right in Fig. 1. Observe:

~(�za0 ∧ ¬�za1)→ p0�N|τ(p) = {w0};

~�za1 → p1�N|τ(p) = ∅;

~τ(p)�N|τ(p) = ∅.

HenceN ,w0 2 ([p]p)τ, so our starting formula ϕ is not schematically valid over
PAL models.

Example 2. Consider the PAL-valid formulaϕ := [p∧¬�bp]¬(p∧¬�bp).8 Let us
try to falsify ϕ in a ϕ-legal UPAL model. The obvious first try is the model A in

8Here we could transform ϕ := [p ∧ ¬�bp]¬(p ∧ ¬�bp) into the simple

ϕ′ := (p ∧ ¬�bp)→ ¬([p ∧ ¬�bp]p ∧ ((p ∧ ¬�bp)→ ¬((p ∧ ¬�bp)→ �b[p ∧ ¬�bp]p))),

but as noted before Example 1, if ϕ does not contain any occurrence of a dynamic operator in the
scope of any other, then we can skip Step 1 and do Steps 2 and 3 for ϕ itself.
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Fig. 2. However,A is notϕ-legal, since it violatesψz-commutativity forψ := p∧
¬�bp. By modifying A to N = 〈N, {Sa}a∈Agt, {Sψ}ψ∈LωPAL

,U〉 in Fig. 2, we obtain a
ϕ-legal UPAL model withN,w0 1 ϕ. (In this case, the transformation of Lemma
3 is uncecessary, since the condition of Lemma 3.2 is already satisfied by N.)
Following the procedure of §4, we obtain the PAL model N = 〈N0, {Sa}a∈Agt,U〉
in Fig. 3 and the substitution τ given below.

A

px0 x1

pw0 w1

Rp∧¬�bp

Rb

N

px0 x1

pw0 w2

p w1

Sp∧¬�bp

Sb

Figure 2: UPAL Models for Example 2

Where A0 := >, A1 := p ∧ ¬�bp, and a0, a1, p0, and p1 are the new atoms, we
define the valuation U inN such that:

U(a0) = ‖A0‖
N
∩N0 = {w0,w1,w2};

U(a1) = ‖A1‖
N
∩N0 = {w0,w1};

U(p0) = {w ∈ N0 | ∃u : wSA0 u and u ∈ U(p)} = {w0,w1};

U(p1) = {w ∈ N0 | ∃u : wSA1 u and u ∈ U(p)} = {w0}.

Defining the function s as before, we have s(0) = {1} and s(1) = ∅. Since this is
the same s as in Example 1, the substitution is also the same:

τ(p) = ((�za0 ∧ ¬�za1)→ p0) ∧ (�za1 → p1).
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Note that since the construction ofN fromN is such that Sz = Sb, we can simply
take �z to be �b in τ(p), so that Agt((ϕ)τ) = Agt(ϕ) = {b}.

N

pw0 w2

p w1

p0, a0, a1

p0, p1, a0, a1 a0

Sz = Sb

N|(p∧¬�bp)τ

pw0

p w1

p0, a0, a1

p0, p1, a0, a1

Sz = Sb

Figure 3: PAL Models for Example 2

Observe:

~(�za0 ∧ ¬�za1)→ p0�N = {w0,w1};

~�za1 → p1�N = {w0,w1,w2};

~τ(p)�N = {w0,w1};

~τ(p) ∧ ¬�bτ(p)�N = {w0,w1}.

HenceN|(p∧¬�bp)τ is the model displayed on the right in Fig. 3. Observe:

~(�za0 ∧ ¬�za1)→ p0�
N|(p∧¬�bp)τ = {w0,w1};

~�za1 → p1�
N|(p∧¬�bp)τ = {w0};

~τ(p)�N|(p∧¬�bp)τ = {w0};

~τ(p) ∧ ¬�bτ(p)�N|(p∧¬�bp)τ = {w0}.

HenceN ,w0 2 ([p∧¬�bp]¬(p∧¬�bp))τ, so our starting formulaϕ is not schemat-
ically valid over PAL models.

We invite the reader to work out other examples using UPAL, starting from the
other valid but not schematically valid PAL principles mentioned in §1.2.
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6 Discussion

In this paper, we have shown that UPAL axiomatizes the substitution core of
PAL with infinitely many agents. In this final section, we briefly discuss the
axiomatization question for the single-agent and finite-agent cases. For a given
language and class of models, the key question is how close we can come to
expressing that two formulas are co-extensional in the epistemic submodel
generated by the current point. For example, this condition is expressed by the
formula �+

a (ϕ ↔ ψ) (where �+
a α := α ∧ �aα) in single-agent PAL over transitive

models. In this case, we get a new schematic validity in PAL:

(inner extensionality) �+
a (ϕ↔ ψ)→ (〈ϕ〉α↔ 〈ψ〉α).

The corresponding legality condition for UPAL models is:

(inner extensionality) if ‖ϕ‖M ∩Ra(w) = ‖ψ‖M ∩Ra(w),

then wRϕv iff wRψv,

which does not follow from any of the other legality conditions.

For multiple agents, we cannot in general express the co-extensionality of
two formulas in the epistemic submodel generated by the current point;
however, if we allow our models to be non-serial, then we do get related
schematic validities for the single and finite-agent cases that are not deriv-
able in UPAL-Kn (where the antecedent can be written using�a operators and⊥):9

(FPE) “all RAgt-paths from the current point are of length ≤ n”→

(En(ϕ↔ ψ)→ (〈ϕ〉α↔ 〈ψ〉α)),

9The (FPE) axioms are also schematically valid over serial models, because the antecedent is
always false, but then they are also derivable using the seriality axiom ^a>.
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where
E0α := α ∧

∧
a∈Agt

�aα and Enα := α ∧ E0En−1α.

The corresponding legality condition for UPAL is:

(FPE) if R∗Agt(w) is path-finite and ‖ϕ‖M ∩R∗Agt(w) = ‖ψ‖M ∩R∗Agt(w),

then wRϕv iff wRψv, where

R
∗

Agt(w) is path-finite just in case every RAgt-path from w ends in a dead-end
point in finitely many steps. This shows why the axiomatization of the
substitution core of PAL-Kω is more elegant than that of PAL-Kn: with infinitely
many agents we cannot express the “everybody knows” modality E, so we do
not need to add to UPAL the infinitely many FPE axioms.

Finally, if we consider PAL with the standard common knowledge operator C,
then we can express co-extensionality in the generated epistemic submodel
using the formula C(ϕ↔ ψ), in which case we get the new schematic validity

(common extensionality) C(ϕ↔ ψ)→ (〈ϕ〉α↔ 〈ψ〉α).

The corresponding legality condition in UPAL is:

(common extensionality) if ‖ϕ‖M ∩R∗Agt(w) = ‖ψ‖M ∩R∗Agt(w),

then wRϕv iff wRψv.

We leave it to future work to give analyses for the above languages analogous
to the analysis we have given here forLωPAL. A natural next step is to axiomatize
the substitution core of the system of PAL-RC ( van Benthem, J. et al. 2006) with
relativized common knowledge. Relativized common knowledge C(ϕ,ψ) is
interpreted in UPAL models exactly as in PAL models. We conjecture that UPAL
together with the relativized common knowledge reduction axiom 〈p〉C(q, r)↔
C(〈p〉q, 〈p〉r), the common extensionality axiom above, and the appropriate base
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logic (see van Benthem, J. et al. 2006) axiomatizes the substitution core of PAL-
RC with finitely or infinitely many agents over any of the model classes we
have discussed. Indeed, it can be shown using arguments similar to those of §4
that the set of formulas in the language LκPAL-RC that are valid over legal UPAL
models with common extensionality is exactly the substitution core of PAL-RC.
Hence it only remains to prove that the extended system just described—call it
UPAL-RC—is sound and complete for this model class. Such a proof requires a
finite canonical model construction to deal with common knowledge, and we
cannot go into the details here.

Another natural step is to attempt to apply the strategies of this paper to
axiomatize the substitution cores of other dynamics epistemic logics, including
the full system of DEL ( van Benthem, J. 2011a, Ch. 4). One may imagine a
general program of “uniformizing” dynamic epistemic logics, of which UPAL
is only the beginning.

Acknowledgements We thank Johan van Benthem for stimulating our inter-
est in the topic of this paper and the AiML referees for very helpful comments.
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Abstract
We study definability of second-order generalized quantifiers. We show that
the question whether a second-order generalized quantifier Q1 is definable
in terms of another quantifierQ2, the base logic being monadic second-order
logic, reduces to the question if a quantifierQ?1 is definable in FO(Q?2 , <,+,×)
for certain first-order quantifiers Q?1 and Q?2 . We use our characterization
to show new definability and non-definability results for second-order gen-
eralized quantifiers. We also show that the monadic second-order majority
quantifier Most1 is not definable in second-order logic.1

1 Introduction

The notion of generalized quantifier goes back to Mostowski (1957) and Lind-
ström (1966). Generalized quantifiers were first mainly studied in the frame-

1This is an extended version of Kontinen and Szymanik (2011)
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work of model theory. The study of generalized quantifiers extended to the
context of finite model theory via applications to descriptive complexity theory.
We refer to Väänänen (1999) and Ebbinghaus and Flum (1999) for surveys of
first-order generalized quantifiers in finite model theory. Generalized quan-
tifiers have been also extensively studied in the formal semantics of natural
language (see Peters and Westerståhl 2006, for a survey).

The study of second-order generalized quantifiers is a relatively new and un-
explored area in finite model theory. On the other hand, second-order logic
(SO) and its many fragments have been studied extensively starting from Fa-
gin’s characterization of NP in terms of existential second-order logic (Fagin
1974). Second-order generalized quantifiers were first studied in the context
of finite structures by Burtschick and Vollmer (1998). Shortly after, Andersson
(2002) studied the expressive power of families of second-order generalized
quantifiers determined by the syntactic types of quantifiers. Kontinen (2005,
2010, 2006) studied definability questions of second-order generalized quanti-
fiers. In the case of first-order quantifiers, definability of a quantifier Q in a
logic L means that the class of structures, used to interpret Q, is axiomatiz-
able in L. In the second-order case, the analogous concept of definability was
formulated in Kontinen (2005; 2010). In this article, we give a computation-
ally motivated characterization for the notion of definability of second-order
generalized quantifiers.

Burtschick and Vollmer (1998) noticed that second-order generalized quanti-
fiers can be used to logically characterize complexity classes defined in terms
of so-called Leaf Languages. The leaf languages approach in computational
complexity theory, introduced by Bovet, Crescenzi, and Silvestri (1992), is a
unifying approach to define complexity classes. The central idea behind this
approach is to generalize the conditions under which, e.g., a Turing machine or
an automaton accepts its input. Many complexity classes can be defined in this
context in terms of suitable leaf languages. On the other hand, a complexity
class defined in terms of a leaf language B can be under certain conditions
characterized logically by a logic of the form:

QB FO,

where QB is a second-order generalized quantifier corresponding to the lan-
guage B. In the context of leaf languages, polynomial time non-deterministic
Turing machines can be sometimes replaced by non-deterministic finite au-
tomata (so-called finite leaf automata) without a significant decrease in com-
plexity (Peichl and Vollmer 2001). Galota and Vollmer (2001) showed that com-



J. Kontinen and J. Szymanik 233

plexity classes defined by finite leaf automata can be logically characterized in
terms of monadic second-order generalized quantifiers. This result nicely ex-
tends the well known Büchi and Elgot (1958), Büchi (1962), Trakhtenbrot (1961)
characterization of regular languages in terms of monadic second-order logic
(MSO).

The definability theory of second-order generalized quantifiers has some simi-
larities and differences compared to that of first-order generalized quantifiers.
For example, it was observed by Kontinen (2005) that the binary second-order
existential quantifier cannot be defined in terms of any monadic second-order
generalized quantifiers. This result is in contrast with the fact (a corollary of
a result of Andersson (2002)) that all classes of finite first-order structures are
already definable in terms of monadic second-order generalized quantifiers.

In this paper we prove a general result characterizing the question when a
quantifier Q is definable in MSO(Q′,+), where + denotes the built-in addition
relation. We assume the built-in addition in order to unleash the expressive
power embodied by MSO. Recall that, while MSO corresponds to regular
languages over strings, MSO(+) corresponds to the linear fragment of the poly-
nomial hierarchy (LINH) on strings (More and Olive 1997). Some of our results
can be generalized to the case where the base logic is full second-order logic
instead of MSO(+).

Our characterization is based on the idea connecting oracle separation results
with lower bound results for small constant depth circuits (see, e.g., Furst et al.
1984, Yao 1985, Håstad 1987, Torán 1988, Vollmer 1998). We show that a second-
order generalized quantifierQ1 is definable in the logic MSO(Q2,+) iff for certain
first-order encodingsQ?i ofQi,Q

?
1 is definable in FO(Q?2 ,+,×). It is worth noting

that the latter condition implies thatQ?1 is AC0 (Turing) reducible toQ?2 . We use
our characterization to show new definability and non-definability results for
second-order generalized quantifiers. In particular, we show that the monadic
second-order majority quantifier Most1 is not definable in second-order logic.

This answers the question left open in Kontinen and Szymanik (2008) (see
also Szymanik 2009), where second-order generalized quantifiers were used to
model collective quantification in natural language, for example:

1. Most girls gathered.

2. All soldiers surrounded the Alamo

The common strategy in formalizing collective quantification has been to de-
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fine the meanings of collective determiners, quantifying over collections, using
certain type-shifting operations. These operations, i.e., lifts, define the collec-
tive interpretations of determiners systematically from the standard meanings
of quantifiers (see. e.g., van der Does 1993, Winter 2001). In Kontinen and
Szymanik (2008) we show that all these lifts are definable in second-order logic.
In this paper we prove that some collective quantifiers (second-order general-
ized quantifiers) are not definable in second-order logic. Therefore, there is no
second-order definable lift expressing their collective meaning. This is clearly
a restriction of the type-shifting approach. One possible alternative would be
to use second-order generalized quantifiers in the study of collective seman-
tics, as we already proposed in Kontinen and Szymanik (2008). However, as
it follows from this paper the computational complexity of such approach is
excessive and hence it may not be a plausible model of collective quantification
in natural language (see Szymanik and Zajenkowski 2010, Szymanik 2010, for a
discussion of computational restrictions in natural language semantics). Hence,
it may be wise to turn in the direction of another well-known way of study-
ing collective quantification in natural language, the many-sorted (algebraic)
tradition (see Lønning 2011). Another linguistic interpretation of our results
might be that computational complexity restricts the expressive power of ev-
eryday language (see Mostowski and Szymanik 2012). Namely, even though
natural language can in principle realize collective quantifiers non-definable in
second-order logic, its everyday fragment does not contain such constructions
due to their high complexity.

2 Preliminaries

In this article all structures are assumed to be finite. The universe of a structure
A is denoted by A. Without loss of generality, we may assume that A is always
of the form {0, . . . ,m} for some m ∈ N. For a logic L, the set of τ-formulas of
L is denoted by L[τ]. If ϕ is a τ-sentence, then the class of τ-models of ϕ is
denoted by Mod(ϕ). A class K of τ-models is said to be axiomatizable in a logic
L, if K = Mod(ϕ) for some sentence ϕ ∈ L[τ]. For logics L and L′, we write
L ≤ L

′, if for every τ and every sentence ϕ ∈ L[τ] there is a sentence ψ ∈ L′[τ]
such that Mod(ϕ) = Mod(ψ). The set of natural numbers is denoted by N and
N∗ denotes the set N \ {0}.

Sometimes we assume that our structures (and logics) are equipped with auxil-
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iary built-in relations. In addition to the built-in ordering<, which is interpreted
naturally, we also use the ternary relations + and ×. The relations + and × are
defined as

+(i, j, k) ⇔ i + j = k,
×(i, j, k) ⇔ i × j = k.

The relation BIT is a further important relation which is defined by: BIT(a, j)
holds iff the bit of order 2 j is 1 in the binary representation bin(a) of a. The
presence of built-in relations is signalled, e.g., by the notation FO(<). It is well
known that FO(<,+,×) ≡ FO(<,BIT) (see Immerman 1999).

Note that < is easily definable in FO(+) and hence, in the presence of +, we
sometimes do not mention < explicitly.

We assume that the reader is familiar with the basics of computational com-
plexity theory. Below, we recall certain results from descriptive complexity
theory. It is instructive to note that many of the logics considered in this ar-
ticle correspond to interesting complexity classes. We mention first the logic
FO(<,+,×) which corresponds exactly to the so-called logarithmic hierarchy
(LH). This class is the logarithmic analogue of the polynomial hierarchy (PH),
corresponding to SO (Stockmeyer 1976), defined in terms of alternating Turing
machines (ATM) running in polynomial time with O(1) alternations. In be-
tween LH and PH we have the linear hierarchy (LINH) corresponding to the
logic MSO(+) over strings (More and Olive 1997).

In this article also majority quantifiers are discussed and studied. It is well-
known that majority quantifiers can be used to logically characterize counting
computations. The following counting hierarchies are relevant for this arti-
cle: the logarithmic counting hierarchy (LCH), the linear counting hierarchy
(LINCH), and the (polynomial) counting hierarchy (CH) all of which can be
defined, with analogous resource bounds as LH, LINH, and PH, in terms of
so-called Threshold Turing machines (Parberry and Schnitger 1988). On the
logical side, majority quantifiers (defined in Section 2.1) can be used to provide
logical counterparts for these classes: FO(M,+,×) ≡ LCH (Barrington et al.
1990), FO(Most1, <) ≡ LINCH (over strings) (Kontinen and Niemistö 2011),
and FO(Mostk)k∈N∗ ≡ CH (Kontinen 2009). Furthermore, in circuit complex-
ity, it is known that LH corresponds exactly to DLOGTIME-uniform AC0 and
LCH to DLOGTIME-uniform TC0 (Barrington et al. 1990). Also, DLOGTIME-
uniform AC0[p] (AC0 with unbounded fan-in MODp gates) corresponds on the
logical side to FO(Dk,+,×) (Barrington et al. 1990).
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2.1 Generalized quantifiers

In this section we briefly recall some basics of generalized quantifiers.

Let τ = {P1, . . . ,Pr} be a relational vocabulary, where Pi is li-ary for 1 ≤ i ≤ r,
and Q a class of τ-structures closed under isomorphisms. The class Q gives rise
to a generalized quantifier which we also denote by Q. The tuple s = (l1, . . . , lr)
is the type of the quantifier Q.

Definition 2.1. The extension FO(Q) of first-order logic by a quantifier Q is
defined as follows:

1. The formula formation rules of FO are extended by the rule: if for 1 ≤ i ≤ r,
ϕi(xi) is a formula and xi is an li-tuple of pairwise distinct variables then
Qx1, . . . , xr (ϕ1(x1), . . . , ϕr(xr)) is a formula.

2. The satisfaction relation of FO is extended by the rule:

A |= Qx1, . . . , xr (ϕ1(x1), . . . , ϕr(xr)) iff (A, ϕA1 , . . . , ϕ
A
r ) ∈ Q,

where ϕAi = {a ∈ Ali | A |= ϕi(a)}.

We say that a quantifier Q is definable in a logicL if the class Q is axiomatizable
in L. Note that Q is trivially definable in FO(Q). If L has the substitution
property and is closed under FO-operations, then definability of Q inL implies
that FO(Q) ≤ L. So, among such logics, FO(Q) is the minimal logic in which Q
is definable.

Example 1. The following quantifiers will be discussed in the following sec-
tions. Suppose S ⊆N and k ∈N.

∃ = {(A,P) | P ⊆ A and P , ∅}
M = {(A,P) | P ⊆ A and |P| > |A|/2}

QS = {(A,P) | P ⊆ A and |P| ∈ S}
I = {(A,P1,P2) | Pi ⊆ A and |P1| = |P2|}

If S is of the form {kn | n ∈N} for some k ∈N, we denote QS by Dk.

We will also refer to the vectorizations of the quantifiers Dk and M later. The nth
vectorization of Dk is the following quantifier

Dn
k = {(A,P) | P ⊆ An and |P| = 0 mod k},
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and the nth vectorization of M is

Mn = {(A,P) | P ⊆ An and |P| > |An
|/2}.

Let us then turn to second-order generalized quantifiers. Let t = (s1, . . . , sw),
where si = (li1, . . . , l

i
ri

) is a tuple of positive integers for 1 ≤ i ≤ w. A second-
order structure of type t is a structure of the form (A,P1, . . . ,Pw), where Pi ⊆

P(Ali1 ) × · · · × P(Aliri ).

Definition 2.2. A second-order generalized quantifier Q of type t is a class of
structures of type t such that Q is closed under isomorphisms.

A quantifier Q is monadic if lij = 1 for all 1 ≤ j ≤ ri and 1 ≤ i ≤ w. Let us look at
some examples of second-order generalized quantifiers.

Example 2. Suppose S ⊆N and k ∈N.

∃
2
k = {(A,P) | P ⊆ P(Ak) and P , ∅}

Even = {(A,P) | P ⊆ P(A) and |P| is even}
Even′ = {(A,P) | P ⊆ P(A) and ∀X ∈ P (|X| is even)}

Mostk = {(A,P) | P ⊆ P(Ak) and |P| > 2|A|
k
−1
}

I2 = {(A,P1,P2) | Pi ⊆ P(A) and |P1| = |P2|}

QS = {(A,P) | P ⊆ P(A) and |P| ∈ S}

Analogously to the first-order case, if S is of the form {kn | n ∈ N} for some
k ∈N, we denote QS byDk.

The first example is the familiar k-ary second-order existential quantifier. The
quantifier Even says that a formula holds for an even number of subsets of
the universe. On the other hand, the quantifier Even′ says that all the subsets
satisfying a formula have an even cardinality. The quantifier Mostk is the k-ary
second-order version of M expressing that a formula holds for more than half
of the k-ary relations.

Definition 2.3. The extension FO(Q) of FO by a quantifier Q is defined as
follows:

1. The formula formation rules of FO are extended by the rule: if for 1 ≤ i ≤ w,
ϕi(Xi) is a formula and Xi = (X1,i, . . . ,Xri,i) is a tuple of pairwise distinct
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predicate variables such that the arity of X j,i is lij for 1 ≤ j ≤ ri, then

QX1, . . . ,Xw (ϕ1(X1), . . . , ϕw(Xw))

is a formula.

2. Satisfaction relation of FO is extended by the rule:

A |= QX1, . . . ,Xw (ϕ1, . . . , ϕw) iff (A, ϕA1 , . . . , ϕ
A
w) ∈ Q,

where ϕAi = {R ∈ P(Ali1 ) × · · · × P(Aliri ) | A |= ϕi(R)}.

2.2 Definability

Recall that a first-order generalized quantifier Q is definable in a logic L if the
class Q is axiomatizable in L. This condition can be reformulated as follows
assuming L has the substitution property:

Theorem 1. A first-order quantifier Q is definable in a logicL if and only ifL ≡ L(Q).

How do we formalize definability for second-order quantifiers? Intuitively,
e.g., the monadic second-order existential quantifier ∃2

1 is definable in a logicL
if there is a uniform way to express

∃
2
1Xψ(X)

for any formula ψ(X) in the logic L. Over a model A, ψ(X) defines a collection
of subsets

{C ⊆ A | A |= ψ(C)},

so the problem is to find a way to express the non-emptyness of this collection
in a way which does not depend on the particular formula ψ(X). This was
formalized in Kontinen (2010) using second-order relations.

Definition 2.4. Let L be a logic, t = (s1, . . . , sw) a second-order type, and let
G1, . . . ,Gw be first-order quantifier symbols of types s1, . . . , sw.

1. The logic L(G1, . . . ,Gw) is obtained by extending the syntax of L in terms
of the quantifiers G1, . . . ,Gw.
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2. The models of L(G1, . . . ,Gw) are of the formA = (A,G1, . . . ,Gw), where A
is a first-order model and

Gi ⊆ P(Ali1 ) × · · · × P(Aliri ).

3. The quantifiers Gi are interpreted using the relations Gi:

A |= Gix̄1, . . . , x̄ri (ϕ1(x̄1), . . . , ϕri (x̄ri ))

iff (ϕA1 , . . . , ϕ
A
ri

) ∈ Gi.

Note that if ϕ ∈ L(G1, . . . ,Gw) is a sentence of vocabulary τ = ∅. Then

Mod(ϕ) = {(A,G1, . . . ,Gw) | (A,G1, . . . ,Gw) |= ϕ}

corresponds to a second-order generalized quantifier of type t. This observation
can be used to formalize definability of second-order generalized quantifiers.
Below, we assume that L is closed under substitution.

Definition 2.5. Let Q be a quantifier of type t. The quantifier Q is definable in
a logic L if there is ϕ ∈ L(G1, . . . ,Gw) of vocabulary σ = ∅ such that for any
t-structure (A,G1, . . . ,Gw),

(A,G1, . . . ,Gw) |= ϕ⇔ (A,G1, . . . ,Gw) ∈ Q.

The following was shown in Kontinen (2010):

Theorem 2. If Q is definable in L then L ≡ L(Q).

The converse of Theorem 2 does not hold:

Theorem 3 (Kontinen (2010)). There is a quantifier Q of type ((1)) which is not
definable in FO and satisfies FO ≡ FO(Q).

Definability questions of second-order quantifiers has been studied in Kontinen
(2010; 2006; 2009). We recall the following results.

Theorem 4 (Kontinen (2006)). Let t be type and Bt the collection of all second-order
quantifiers of types less than t. Then there is a quantifier Q of type t such that Q is not
definable in SO(Bt).
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Theorem 4 is proved with respect to a natural ordering of the types of second-
order generalized quantifiers. Theorem 4 is existential in nature and does not
give us a concrete non-definable quantifier. It was observed in Kontinen (2005)
that it is not so difficult to find concrete quantifiers which cannot be defined
using any monadic quantifiers. Denote by Q the collection of all monadic
second-order generalized quantifiers.

Theorem 5 (Kontinen (2005)). The quantifier ∃2
2 is not definable in FO(Q).

It is worth noting that the logic FO(Q) is capable of defining all classes of first-
order structures (cf. Theorem 6.2 in Andersson (2002)). Finally, we recall the
following result about second-order majority quantifiers:

Theorem 6 (Kontinen (2009)). The quantifier ∃2
k is definable in FO(Mostk).

It interesting to note that definability of Most1 in the logic SO would imply
that PH ≡ CH in computational complexity. This observation was discussed in
Kontinen and Szymanik (2008). In this paper we show that the quantifier Most1

is not definable in SO, but, analogously to Theorem 3, this non-definability
result does not imply that PH ( CH.

3 Characterizing definability

The computational analogue of a first-order generalized quantifier is the notion
of an oracle (see Immerman 1999). Let Q be a quantifier of vocabulary τ and
L a logic. The idea is that in L(Q) we can query "without a cost" if a definable
τ-structureA is a member of the class Q. Recall that a second-order generalized
quantifierQ of type ((1)) is definable, e.g., in SO if there is a sentence ϕ ∈ SO(G)
such that for all second-order structures (A,G):

(A,G) |= ϕ⇔ (A,G) ∈ Q . (1)

It is not immediately clear how to view this notion in computational terms. The
set G corresponds to a local first-order quantifier and, if we treat G as an oracle,
then in (1) we are infact trying to define a property oracles. One way to proceed
is to formalize definability of a quantifier Q in terms of oracle Turing machines
that treat (a suitable initial segment) the oracle as part of the input. However,
in this article we do not follow that idea as there is a more familiar route to
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take. An important observation here is that the set G can be of exponential
size compared to the domain A. This observation can be used to show that
SO-definability of Q reduces to logarithmic time definability.

Our result is a logical version of the results connecting oracle separation results
with lower bound results for small constant depth circuits (Furst et al. 1984,
Yao 1985, Håstad 1987, Torán 1988, Vollmer 1998, see, e.g.,). For example,
in Torán (1988), Torán studied oracle separations in the counting hierarchy
and noticed that there is essentially no difference between an oracle Turing
machine writing an oracle query on its query tape and a logarithmic time
Turing machine writing an address on its random access tape. He used this
analogy to show that an oracle separation result for classes in the polynomial
counting hierarchy implies a real separation for the corresponding classes in the
logarithmic counting hierarchy LINCH (equivalently in DLOGTIME-uniform
TC0). We use a logical version of this idea: we show that SO and the relation
G in (1) can be replaced by FO and a unary relation P by passing from A to a
domain of cardinality 2|A|.

In this section we mainly restrict attention to monadic second-order generalized
quantifiers. We interpret definability of second-order quantifiers in MSO(+) in
the natural way: for example, a second-order quantifier Q of type ((1)) is
definable in MSO(+) if there is ϕ ∈ MSO(G,+) such that for all structures
(A,+,G): (A,+,G) |= ϕ ⇔ (A,G) ∈ Q. In particular, Theorem 2 can be proved
analogously in this setting.

Next we define a first-order encoding of a second-order structure of type t, for
a monadic t. We use the fact that there is a one-to-one correspondence between
integers m ∈ B = {0, . . . , 2n

− 1} and subsets of A = {0, . . . ,n− 1} seen as length-n
binary numbers. Therefore, relations of A can be encoded in terms of tuples of
elements of B and, further, sets of relations of A by relations of B.

Definition 3.1. Let t = (s1, . . . , sw) be a type where si = (1, . . . , 1) is of length ri for
1 ≤ i ≤ w. Let A = (A,G1, . . . ,Gw) be a t-structure where A = {0, . . . ,n − 1} and
Gi ⊆ P(A) × · · · × P(A). Denote by Â = (B,P1, . . . ,Pw) the following first-order
structure of vocabulary τ = {P1, . . . ,Pw}, where Pi is a ri-ary predicate, and

1. B = {0, . . . , 2n
− 1},

2. Pi = {( j1, . . . , jri ) ∈ Bri | (J1, . . . , Jri ) ∈ Gi}, where, for 1 ≤ k ≤ ri, the length-n
binary representation of jk is given by s0 · · · sn−1, and sl = 1⇔ l ∈ Jk.

For a quantifier Q of type t, we denote by Q? the first-order quantifier of
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vocabulary τ defined by

Q
? := {Â : A ∈ Q}.

It is easy to see that the quantifier Q? has only structures in cardinalities of
the form 2n and that |Gi| = |Pi| for 1 ≤ i ≤ w. Note also that the quantifier Q?

encoding Q may depend on the ordering of the domain B and hence does not
strictly speaking correspond to a Lindström quantifier of vocabulary τ but a
τ-quantifier with build-in arithmetic relations (quantifiers defined and studied
in Hella et al. (2010)). On the other hand, for the numerical quantifiers Q
discussed in the rest of this section, the first-order encodings Q? are obviously
order invariant and hence correspond to Lindström quantifiers of vocabulary
τ. We are now ready for the main result of this article.

Theorem 7. Let Q1 and Q2 be monadic quantifiers. Then Q1 is definable in
MSO(Q2,+) if and only if Q?1 is definable in FO(Q?2 ,+,×).

Proof. To simplify notation, we assume that the type of Q1 and Q2 is ((1, 1)) and
((1), (1)), respectively.

Let us first assume that Q1 is definable in the logic MSO(Q2,+). Then there is a
sentence ϕ ∈MSO(Q2,G,+) such that for all structures (A,+,G)

(A,+,G) |= ϕ⇔ (A,G) ∈ Q1 .

We shall next show that there is a sentence ϕ∗ ∈ FO(Q?2 +,×)[{P}], where P is
binary, such that for all structures A = (A,G):

(A,+,G) |= ϕ⇔ (B,P, <,+,×) |= ϕ∗, (2)



J. Kontinen and J. Szymanik 243

where (B,P) = Â (see Definition 3.1). We defineϕ∗ via the following translation:

xi = x j  xi = x j

xi + x j = xk  xi + x j = xk

Yi(x j)  BIT(yi,n − (x j + 1))

Gxi, x j(ψ1(xi), ψ2(x j))  ∃z1∃z2

(
P(z1, z2) ∧

∧
1≤i≤2

∀(w < n)(ψ∗i (w)

↔ BIT(zi,n − (w + 1)))
)

ψ ∧ θ  ψ∗ ∧ θ∗

¬ψ  ¬ψ∗

∃xiψ  ∃xi(xi < n ∧ ψ∗(xi))
∃Yiψ  ∃yiψ

∗

Q2 Yi,Y j(ψ(Yi), θ(Y j))  Q
?
2 yi, y j(ψ∗(yi), θ∗(y j))

It is now straigthforward to show that for all formulas ψ ∈ MSO(Q2,G,+),
structures (A,G), and assignments s

(A,+,G) |=s ψ⇔ (B,P, <,+,×) |=s∗ ψ
∗,

where the assignment s∗ is defined such that s∗(xi) = s(xi) for all first-order
variables xi, and, if s(Yi) = D ⊆ {0, . . . ,n − 1}, then s∗(yi) is the unique d < 2n

whose binary representation is given by s0 · · · sn−1 where s j = 1 ⇐⇒ j ∈ D.

In the formula translation, we use the predicate BIT, which is FO(+,×)-
definable, to recover the set D from the integer d. By the above translation,
the sentence

∃n(|B| = 2n
∧ ϕ∗)

of the logic FO(Q?2 ,+,×) now defines the quantifier Q?1 .

Let us then show the converse implication. Assume that ϕ ∈ FO(Q?2 ,+,×)
defines the quantifier Q?1 . The idea is now to translate ϕ ∈ FO(Q?2 ,+,×) to
ϕ′ ∈MSO(Q2,G,+) such that for all A = (A,G):

(A,+,G) |= ϕ′ ⇔ (B,P, <,+,×) |= ϕ. (3)

Analogously to the first translation, we encode integers in the domain B =
{0, . . . , 2n

− 1} in terms of subsets X ⊆ {0, . . . ,n − 1}. We use the following
formulas X = Y, X < Y, X + Y = Z, and X × Y = Z expressing arithmetic
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operations on binary numbers. The first three formulas are FO(+)-expressible,
and the fourth is expressible in the logic FO(M,+,×) ≤ MSO(+) (Hesse et al.
2002). The translation ϕ ϕ′ is now defined as follows.

P(xi, x j)  Gz1, z2(Xi(z1),X j(z2))
xi = x j  Xi = X j

xi < x j  Xi < X j

xi + x j = xk  Xi + X j = Xk

xi × x j = xk  Xi × X j = Xk

ψ ∧ ϕ  ψ′ ∧ ϕ′

¬ψ  ¬ψ′

∃xiψ(xi)  ∃Xiψ
′(Xi)

Q?
2 xi, x j(ψ(xi), θ(x j))  Q2 Xi,X j(ψ′(Xi), θ′(X j))

It is straightforward to show that this translation works as intended. In partic-
ular, it follows that the sentence ϕ′ ∈MSO(Q2,G,+) now defines the quantifier
Q1. �

Let us then discuss some corollaries of Theorem 7. We need the following
definition.

Definition 3.2. Let t = (s1, . . . , sw) and τ be as in Definition 3.1. Let Q be a
quantifier of type t. The quantifier Q is numerical if there is a relation T ⊆ Nw

such that for all t-structures (A,P1, . . . ,Pw)

(A,P1, . . . ,Pw) ∈ Q ⇔ (|P1|, . . . , |Pw|) ∈ T.

We denote Q by QT and by QT the first-order numerical quantifier (defined
analogously) of vocabulary τ.

It is easy to see that, for a numerical QT, the quantifier Q?T (see Definition
3.1) is just the restriction of the corresponding first-order quantifier QT to the
cardinalities 2n:

Q
?
T = {(A,P1, . . . ,Pw) ∈ QT : |A| = 2n for some n ∈N}.

This observation allows us to show the following:

Theorem 8. Let QT be a numerical quantifier and k ∈N. Then
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1. QT is definable in MSO(+) iff QT is definable in FO(+,×).
2. QT is definable in MSO(Dk,+) iff QT is definable in FO(Dk,+,×).

3. QT is definable in MSO(Most1,+) iff QT is definable in FO(M,+,×).

Proof. The proof is based on the fact that each of the logics FO(<,+,×),
FO(Dk,+,×), and FO(M,+,×) is closed under logical reductions. Suppose that
QT is of type t = (s1, . . . , sw) and let τdenote the vocabulary of the corresponding
first-order quantifier QT (see Definition 3.1).

Let us consider claim 2. By Theorem 7 it suffices to show that the following are
equivalent:

(a) Q?T is definable in FO(D?
k ,+,×)

(b) QT is definable in FO(Dk,+,×)

Recall that the quantifiers Q?T and D?
k are the restrictions of the quantifiers QT

and Dk to cardinalities of the form 2n, respectively. Let us first note that (a) is
equivalent with

(c) Q?T is definable in FO(Dk,+,×).

First of all, since D?
k is easily definable in FO(Dk,+,×) using the FO(+,×)-

expressible predicate x = 2y, it follows that (a) ⇒ (c). Assume then that (c)
holds and let ϕ ∈ FO(Dk,+,×) define Q?T . Define a sentence ψ as follows:

ψ := ∃n(|A| = 2n
∧ ϕ(Dk /D

?
k )).

Since the quantifier Q?T contains structures only in cardinalities of the form 2n

it is easy to see that ψ ∈ FO(D?
k ,+,×) also defines Q?T .

It now suffices to show that (b) and (c) are equivalent. Note first that (b) ⇒ (c)
can be easily proved using the predicate x = 2y. We will show (c) ⇒ (b). Here
we use the fact that the logic FO(Dk,+,×) is closed under logical reductions.
We will define QT (over all cardinalities) with the help of the quantifier Q?T . Let
A be a structure. If |A| = 2n for some n ∈ N, then A ∈ QT can be expressed in
terms of the quantifier Q?T . Note that even if |A| is not a power of two, it holds
that the least m such that |A| ≤ 2m satisfies 2m

≤ 2|A|.

We will now sketch how the quantifier QT can be defined in terms of Q?T .
Assume ϕ ∈ FO(Dk,+,×) is a sentence defining Q?T . Let A = (A,P1, . . . ,Pw) be a
τ-structure, where A = {0, . . . ,n − 1}. We use the following facts:
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1. There is a FO(<,+,×)-definable query I that maps A to the structure I(A)
which is isomorphic to

({0, . . . , 2m
− 1},P1, . . . ,Pw, <,+,×),

where 2m is the least power of two satisfying n ≤ 2m.

2. There is a sentence ψ ∈ FO(Dk,+,×) such that for all A:

A |= ψ⇔ I(A) |= ϕ.

Since QT is numerical, the sentence ψ now defines QT. The query I is easily
definable in FO(<,+,×); the domain of I(A) is defined as {(i, j) ∈ A2

| in + j <
2m
} (see Immerman 1999, for more on first-order queries). The sentence ψ

is constructed inductively (see e.g., Immerman 1999, Section 3.2 ) using, in
particular, the fact that the second vectorization D2

k of Dk can be expressed in
FO(Dk,+,×).

The claims 1 are 3 are proved analogously. For claim 3 we use the facts that
(Most1)? is the restriction of M to the cardinalities 2n and that the second
vectorization M2 of M is definable in FO(M,+,×) (see Barrington et al. 1990).

�

The following lemma can be now used.

Lemma 1. Let S ⊆N, p a prime, and q > 1 relatively prime to p. Then

1. QS is definable in FO(+,×) iff S either finite or cofinite.

2. Dq is not definable in FO(Dp,+,×).

Proof. The first claim follows from non-definability of the language PARITY
in FO(+,×) (Furst et al. 1984, Ajtai 1983) (see Theorem 4.3 in Barrington et al.
(2005)). The second claim goes back to Smolensky (1987). �

By combining Theorem 8 and Lemma 1 we can show the following.

Corollary 1. Let S ⊆N, p a prime, and q > 1 relatively prime to p. Then

1. QS is definable in MSO(+) iff S is either finite or cofinite.

2. Dq is not definable in MSO(Dp,+).
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Another corollary of Theorem 8 is that the quantifier Most1 is not definable in
the logic MSO(+).

Corollary 2. The quantifier Most1 is not definable in MSO(+).

Proof. For a contradiction, let us assume that Most1 is definable in MSO(+).
By the results of Kontinen (2009), the quantifier I2 can then also be defined in
MSO(+). Now, since I2 is numerical, Theorem 8 implies that the quantifier I is
definable in FO(+,×). This is a contradiction since

FO(I,+,×) ≡ FO(M,+,×) > FO(+,×).

�

It is possible to replace MSO(+) by SO in Theorem 7. The idea is that, if Q1 is
definable in SO(Q2), then in the defining formula, for some k, only relations of
arity at most k are quantified. We will not pursued this generalization in full
generality but only consider the special case of the quantifier Most1.

Theorem 9. The quantifier Most1 is not definable in SO.

Proof. It suffices to show that Most1 is not definable in FO(∃2
k) for any k. For a

contradiction, assume that Most1 is definable in FO(∃2
k). We will now proceed

as follows: First an analogous translation as in Theorem 7 is used to show that
definability of Most1 in FO(∃2

k) implies that a certain padded version of the
class M is definable in FO(+,×) over cardinalities 2nk

. This class corresponds to
a variant L of the binary language MAJ

MAJ = {w ∈ {0, 1}+| |w|1 > |w|0},

when ordered {P}-structures are viewed as binary strings. Definability of L
in FO(+,×) would allow us to construct constant depth quasipolynomial size
(2log(n)O(1)

) AND/OR circuits for MAJ contradicting the result of Yao (1985) and
Håstad (1987).

We will now discuss the proof in more detail. Note first that, in order to
translate the quantifier∃2

k to the logic FO(+,×), we need to redefine the structure
Â (see Definition 3.1) to have a domain of the form {0, . . . , 2nk

− 1} instead of
{0, . . . , 2n

− 1}. In other respects the definition of Â is not altered. We can
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now use the fact that there is a one-to-one correspondence between integers
m ∈ {0, . . . , 2nk

− 1} and k-ary relations R of {0, . . . ,n − 1}. In other words, by
using the lexicographic ordering on k-tuples, a relation R can be encoded by a
binary string of length nk corresponding to the binary representation of a unique
integer m < 2nk

. It is straightforward to adjust the translation in the proof of
Theorem 7 to this setting. The only difference is that the unary relations Yi are
now k-ary. The translation is modified as follows to translate the k-ary atomic
formulas Yi(x1, . . . , xk):

Yi(x1, . . . , xk) ∃z(BIT(yi,nk
− (z + 1)) ∧ z = nk−1x1 + · · · + nxk−1 + xk).

We assumed that the quantifier Most1 is definable in FO(∃2
k) which now implies

that the following class (Most1)?

(Most1)? = {(B,P, <,+,×) | (B,P) = Â and A ∈Most1
}

can be defined in the logic FO(+,×). Note that (B,P, <,+,×) ∈ (Most1)? iff
B = {0, . . . , 2nk

− 1}, P ⊆ {0, . . . , 2n
− 1}, and |P| > 2n−1. By viewing the structures

of (Most1)? as binary words, it follows that the binary language L

L = {w1w2 ∈ {0, 1}∗ : |w1| = 2n, w1 ∈MAJ, |w2| = 2nk
− 2n, w2 ∈ 0∗},

can be defined in the logic FO(+,×).

Since FO(+,×) corresponds to DLOGTIME-uniform AC0, we get that there is
a uniform family (Cn)n∈N of constant depth polynomial size AND/OR circuits
accepting L. These circuits can be now used to construct a family (C′2n )n∈N of
constant depth quasipolynomial size AND/OR circuits for MAJ in input lengths
2n: the circuit C′2n for length 2n binary words is acquired from the circuit C2nk

by turning the input gates with index i, for 2n < i ≤ 2nk
, to constant 0 gates. It

is easy to see that the size of C′m is 2O(log(m)k). This is a contradiction with the
results of Yao (1985) and Håstad (1987) showing that such a quasipolynomial
size family (C′2n )n∈N cannot exist. �

Conclusion

We have shown that definability of second-order generalized quantifiers can be
reduced to definability of first-order generalized quantifiers. We have indicated
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a couple of corollaries to our characterization but surely there is more to be
done here, e.g., with replacing the base logic MSO(+) by SO as in Theorem 9.
In particular, Theorem 9 solves the open problem proposed in Kontinen and
Szymanik (2008), where we studied the collective meanings of natural language
quantifiers. It suggests, as we argued in Kontinen and Szymanik (2008), that
the type-shifting strategy (see Winter 2001) to define the meanings of natural
language quantification might be too restricted in its computational power.
It is likely that second-order logic is not enough to capture natural language
semantics. Another interpretation would be that everyday language does not
realize hard collective quantifiers (for sure they are marginal at best) due to
their complexity.
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Abstract
While both situation calculus and dynamic epistemic logics (DELs) are con-
cerned with reasoning about actions and their effects, historically, the em-
phasis of situation calculus was on physical actions in the single-agent case,
in contrast, DELs focused on epistemic actions in the multi-agent case. In
recent years, the cross-fertilization between the two areas has begun to at-
tract attention. In this paper, we incorporate the idea of action models from
DELs into the situation calculus to develop a general multi-agent extension
of it. We analyze properties of beliefs in this extension, and give examples to
illustrate the modeling of multi-agent scenarios in the situation calculus.

1 Introduction

While both situation calculus (Reiter 2001) and dynamic epistemic logics (DELs)
(van Ditmarsch et al. 2007) are concerned with reasoning about actions and their
effects, historically, the emphasis of situation calculus was on physical actions
in the single-agent case, in contrast, DELs focused on epistemic actions in the
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multi-agent case. In recent years, cross-fertilization between the two areas has
begun to attract attention. In particular, van Benthem (2011) proposed the idea
that situation calculus and modal logic meet and merge. van Ditmarsch et al.
(2011) embedded a propositional fragment of situation calculus into a DEL.
Kelly and Pearce (2008) incorporated ideas from DELs to handle regression for
common knowledge in the situation calculus. Baral (2010) proposed to combine
results from reasoning about actions and DELs.

In a multi-agent setting, the agents in the domain may have different perspec-
tives of the actions. Baltag et al. (1998) introduced a construct called an action
model to represent these differences of perspectives. An action model consists
of a set of actions, a precondition for each action, and a binary relation on the
set of actions for each agent, which represents the agent’s ability to distinguish
between the actions. Moreover, they defined an operation by which an action
model may be used to update a Kripke world to obtain a successor world mod-
eling the effects of the action execution. They proposed a logic, called action
model logic, to reason about action models and their effects on agents’ epis-
temic state. van Benthem et al. (2006) generalized the concept of action model to
that of update model where each action is also associated with a postcondition.
So action models can model events which bring about epistemic change, but
update models can model events which can not only change agents’ epistemic
state but also the world state.

The situation calculus was first introduced by (McCarthy and Hayes 1969) and
historically, one of its major concerns was how to solve the frame problem, that
is, how to represent the effects of a world-changing action without explicitly
specifying which conditions are not affected by the action. Reiter (1991) gave a
solution to the frame problem under some conditions in the form of successor
state axioms. This solution to the frame problem has proven useful as the
foundation for the high-level robot programming language Golog (Levesque
et al. 1997). Scherl and Levesque (1993; 2003) extended Reiter’s solution to
cover epistemic actions in the single-agent case. Later, Shapiro et al. (1998)
extended their work to the multi-agent case, but they only considered public
actions whose occurrence is common knowledge. In the last decade, Lakemeyer
and Levesque (2004; 2005) proposed a logic called ES, which is a fragment of
the situation calculus with knowledge. Recently, Belle and Lakemeyer (2010)
gave a multi-agent extension of ES, but as Shapiro et al. (1998), they only
considered public actions. So up to now, although there have been extensions
of the situation calculus into the multi-agent case, they are not able to account
for arbitrary multi-agent scenarios.
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In this paper, we incorporate action models into the situation calculus to de-
velop a general multi-agent extension of it. We analyze properties of beliefs
in this extension, and give examples to illustrate the modeling of multi-agent
scenarios in the situation calculus.

2 Preliminaries

In this section, we introduce the situation calculus, and action model logic.

2.1 Situation calculus and Golog

The situation calculus (Reiter 2001) is a many-sorted first-order language suit-
able for describing dynamic worlds. There are three disjoint sorts: action for
actions, situation for situations, and object for everything else. A situation cal-
culus language Lsc has the following components: a constant S0 denoting the
initial situation; a binary function do(a, s) denoting the successor situation to s
resulting from performing action a; a binary predicate s @ s′ meaning that situa-
tion s is a proper subhistory of situation s′; a binary predicate Poss(a, s) meaning
that action a is possible in situation s; a binary predicate Poss(a, s) meaning that
action a is possible in situation s; action functions; a finite number of relational
and functional fluents, i.e., predicates and functions taking a situation term as
their last argument; and a finite number of situation-independent predicates
and functions.

The situation calculus has been extended to accommodate sensing and knowl-
edge. Assume that in addition to ordinary actions that change the world, there
are sensing actions which do not change the world but tell the agent informa-
tion about the world. A special binary function SR(a, s) is used to characterize
what the sensing action tells the agent about the world. Knowledge is modeled
in the possible-world style by introducing a special fluent K(s′, s), meaning that
situation s′ is accessible from situation s. Note that the order of the arguments
is reversed from the usual convention in modal logic. Then knowing ϕ at
situation s is represented as follows:

Knows(ϕ(now), s)
de f
= ∀s′.K(s′, s) ⊃ ϕ(s′),

where now is used as a placeholder for a situation argument. For example,
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Knows(∃s∗.now = do(open, s∗), s) means knowing that the open action has just
been executed. When “now” only appears as situation arguments to fluents, it
is often omitted.

Scherl and Levesque (1993) proposed the following successor state axiom for
the K fluent:

K(s′, do(a, s)) ≡ ∃s∗.K(s∗, s) ∧ s′ = do(a, s∗) ∧ SR(a, s∗) = SR(a, s).

Intuitively, situation s′ is accessible after action a is done in situation s iff it is
the result of doing a in some s∗ which is accessible from s and agrees with s on
the sensing result.

Based on the situation calculus, a logic programming language Golog (Levesque
et al. 1997) has been designed for high-level robotic control. It draws consid-
erably from dynamic logic, and has the following programming constructs:
primitive actions: α, test actions: ϕ?, sequence: (δ1; δ2), nondeterministic choice
of actions: (δ1 | δ2), nondeterministic choice of action arguments: (π x)δ(x), non-
deterministic iteration: δ∗, and procedures. The formal semantics of Golog is
specified by an abbreviation Do(δ, s, s′), which intuitively means executing δ
brings us from situation s to s′. It is inductively defined on δ, and we give some
example definitions in the following:

• Do(α, s, s′)
de f
= Poss(α, s) ∧ s′ = do(α, s);

• Do(ϕ?, s, s′)
de f
= ϕ[s] ∧ s = s′, where ϕ is a situation-suppressed formula,

and ϕ[s] denotes the formula obtained from ϕ by taking s as the situation
arguments of all fluents.

• Do(δ1; δ2, s, s′)
de f
= (∃s′′).Do(δ1, s, s′′) ∧Do(δ2, s′′, s′);

• Do((π x)δ(x), s, s′)
de f
= (∃x)Do(δ(x), s, s′).

2.2 Action model logic (AML)

We fix a finite set of agentsA and a countable set of propositional atoms P. We
first define Kripke models.

Definition 2.1. A Kripke model M is a triple (S,R,V) where

• S is a set of states;
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• For each agent i, Ri is a binary relation on S;

• For each s ∈ S, V(s) is a subset of the atoms.

A pointed Kripke model is a pair (M, s0) where M is a Kripke model and s0 is a
state of M.

Definition 2.2. An action model over a languageL is a triple (A,→, pre) where

• A is a set of action points;

• For each agent i,→i is a binary relation on A;

• For each action point a, pre(a) ∈ L is its precondition.

A pointed action model is a pair (N, a0) where N is an action model and a0 is an
action point of N.

Definition 2.3. Let M = (S,R,V) be a Kripke model, and s0 ∈ S. Let N = (A,→
, pre) be an action model, and a0 ∈ A. The product of (M, s0) and (N, a0), denoted
by (M, s0) ⊗ (N, a0), is a pointed Kripke model (M′, s′0) where M′ = (S′,R′,V′),
and

• S′ = {(s, a) | s ∈ S, a ∈ A, and M, s |= pre(a)}

• s′0 = (s0, a0)

• (s, a)Ri(s′, a′) iff sRis′ and a→i a′

• For each (s, a) ∈ S′, V′((s, a)) = V(s).

Definition 2.4. The language Lam of action model logic is defined by

ϕ ::= p | ¬ϕ | (ϕ ∧ ψ) | Biϕ | CEϕ | [N, a0]ϕ

where p ∈ P, i ∈ A, E ⊆ A, ϕ,ψ ∈ Lam, and (N, a0) is a pointed action model
with a finite domain and such that for all action point a, pre(a) ∈ Lam.

Definition 2.5. Let M = (S,R,V) be a Kripke model and s0 a state of M. The
interpretation of formulas is as follows:

1. M, s0 |= p iff p ∈ V(s0);

2. M, s0 |= ¬ϕ iff M, s0 |,ϕ;

3. M, s0 |= ϕ ∧ ψ iff M, s0 |= ϕ and M, s0 |= ψ;
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4. M, s0 |= Biϕ iff for all s such that s0Ris, M, s |= ϕ;

5. M, s0 |= CEϕ iff for all s s.t. s0REs, M, s |= ϕ, where RE is the reflexive
transitive closure of the union of Ri for i ∈ E;

6. M, s0 |= [N, a0]ϕ iff if M, s0 |= pre(a0), then (M, s0) ⊗ (N, a0) |= ϕ.

A formula ϕ is valid if it is true in any pointed Kripke model.

Example 1. (van Ditmarsch et al. 2007) Two stockbrokers Ann and Bob are
having a little break in a Wall Street bar, sitting at a table. A messenger comes
in and delivers a letter to Ann. On the envelope is written “urgently requested
data on United Agents”. Let atom p mean that “United Agents is doing well”.
Consider the following scenarios:

1. Bob sees that Ann reads the letter. From Bob’s point of view, Ann could
learn p or she could learn¬p, and he cannot distinguish between these two
actions. But Ann can certainly distinguish between the two actions. Thus
we get the following action model: read = (A,→, pre), where A = {0, 1},
pre(0) = ¬p, pre(1) = p, →a is the identity relation, and →b is the total
relation.

2. Bob leaves the table; Ann may have read the letter while Bob is away.
From Bob’s point of view, there are 3 possibilities: Ann learns p, Ann
learns ¬p, and Ann learns nothing, and he cannot distinguish between
these actions. Thus the action model is: mayread = (A,→, pre), where
A = {0, 1, t}, pre(0) = ¬p, pre(1) = p, pre(t) = true,→a is the identity relation,
and→b is the total relation.

3 A multi-agent extension of the situation calculus

We assume that in addition to ordinary actions which change the world, there
are observation actions of the form observeϕ(now), which does not change the
world but observes a condition ϕ(s) holds in the current situation, where ϕ(s) is
a formula with a single free situation variable s. For simplicity of notation, we
write ϕ(now) instead of observeϕ(now), and when “now” only appears as situation
arguments to fluents, we often omit it. We have Poss(ϕ(now), s) ≡ ϕ(s). There is
a special observation action true, denoted by nil.
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Instead of Scherl and Levesque’s K fluent, we now use a fluent B(i, s′, s), which
means that agent i considers situation s′ accessible from situation s. We intro-
duce a special fluent A(i, a′, a, s), meaning that in situation s, agent i considers
action a′ as a possible alternative of action a.

There is a special type of actions, which does not change the world, but changes
the A fluent. We call these actions context actions. For each context action c,
we have Poss(c, s) ≡ ∀i∀a.A(i, a, c, s) ≡ a = c. That is, c is possible in s iff in s,
each agent i considers c as the only alternative to itself. We introduce a special
situation-independent predicate D(c, a), which means that a is a possible action
for context action c. For each context action c, we use ~c� to abbreviate for the
program c; (πa).D(c, a)?; a.

We propose the following successor state axiom for the B fluent:

B(i, s′, do(a, s)) ≡ ∃s∗∃a∗.B(i, s∗, s) ∧ A(i, a∗, a, s)∧
[Poss(a, s) ⊃ Poss(a∗, s∗)] ∧ s′ = do(a∗, s∗).

Intuitively, for agent i, situation s′ is accessible after action a is performed in
situation s iff it is the result of doing some alternative a∗ of a in some s∗ accessible
from s, and executability of a in s implies that of a∗ in s∗.

In the multi-agent case, a domain of application is specified by a basic action
theory of the form:

D = Σ ∪Dss ∪Dap ∪Duna ∪DS0 , where

1. Σ are the foundational axioms:

(F1) do(a1, s1) = do(a2, s2) ⊃ a1 = a2 ∧ s1 = s2

(F2) (¬s @ S0) ∧ (s @ do(a, s′) ≡ s v s′)
(F3) ∀P.∀s[Init(s) ⊃ P(s)] ∧ ∀a, s[P(s) ⊃ P(do(a, s))] ⊃ (∀s)P(s), where

Init(s)
de f
= ¬(∃a, s′)s = do(a, s′).

(F4) B(i, s, s′) ⊃ [Init(s) ≡ Init(s′)].

Intuitively, Init(s) means s is the initial situation. A model of the above ax-
ioms consists of a forest of isomorphic trees rooted at the initial situations,
which can be B-related to only initial situations.

2. Dss is a set of successor state axioms (SSAs) for fluents. The SSAs for
ordinary fluents must satisfy the no-side-effect conditions, i.e., they are
not affected by observation or context actions. In this paper, we will
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present an SSA for the A fluent by presenting an axiom of the form
A(i, a′, a, do(C(~x), s)) ≡ Θ for each action function C(~x) which may change
the A fluent. Usually, such a C(~x) is a context action, and we will also
present an axiom of the form D(C(~x), a) ≡ ∆, which specifies the possible
actions for the context action.

3. Dap is a set of action precondition axioms.
4. Duna is the set of unique names axioms for actions.
5. DS0 is a set of sentences about S0.

We now axiomatize the letter example:

Example 2.

1. Bob sees that Ann reads the letter. The axioms are:
D(read, a) ≡ a = p ∨ a = ¬p,
A(i, a′, a, do(read, s)) ≡ D(read, a) ∧D(read, a′) ∧ (i = ann ⊃ a = a′).
So read is a context action with two possible actions: p and ¬p. After doing
read, Agent i considers a′ as an alternative of a iff both a and a′ are possible
actions for read and if i is Ann, a and a′ should be identical.

2. Bob thinks Ann may have read the letter. The axioms are:
D(mayread, a) ≡ a = p ∨ a = ¬p ∨ a = nil,
A(i, a′, a, do(mayread, s)) ≡ D(mayread, a) ∧D(mayread, a′) ∧

(i = ann ⊃ a = a′).

We now introduce some notation which will be used in the rest of the paper.
Let ϕ(s) be a formula with a single situation variable s.

• Agent i believes ϕ:

Bel(i, ϕ(now), s)
de f
= ∀s′.B(i, s′, s) ⊃ ϕ(s′).

• Agent i truly believes ϕ:

TBel(i, ϕ(now), s)
de f
= ϕ(s) ∧ Bel(i, ϕ(now), s).

• Agent i believes whether ϕ holds:

BW(i, ϕ(now), s)
de f
= Bel(i, ϕ(now), s) ∨ Bel(i,¬ϕ(now), s).
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• Let E be a subset of the agents. We let C(E, s′, s) denote the reflexive
transitive closure of ∃i ∈ E.B(i, s′, s), which can be defined with a second-
order formula:

C(E, s′,s)
de f
=

∀P.∀u P(u,u) ∧ ∀i∈E,u, v,w[P(u, v) ∧ B(i, v,w) ⊃ P(u,w)] ⊃ P(s′, s).

• The agents commonly believes ϕ:

CKnows(ϕ(now), s)
de f
= ∀s′.C(A, s′, s) ⊃ ϕ(s′),

whereA is the set of all agents.

4 Properties of beliefs

In this section, we analyze properties of beliefs in our formalism. We begin with
the main property of beliefs. We use Ψ0(a, s) to denote the following formula:

∀i.Bel(i,∃s∗∃a∗.A(i, a∗, a, s) ∧ now = do(a∗, s∗) ∧ Poss(a∗, s∗) ∧Dss[a∗, s∗], do(a, s)),

where Dss[a∗, s∗] denotes the instantiation of the SSAs for ordinary fluents wrt
a∗ and s∗. This says that in the situation resulting from doing action a, each
agent i believes that some alternative of a was possible and has happened. We
use Ψn+1(a, s) to denote the following formula:

∀i.Bel(i,∃s∗∃a∗.A(i, a∗, a, s) ∧ now = do(a∗, s∗)∧
Poss(a∗, s∗) ∧Dss[a∗, s∗] ∧Ψn(a∗, s∗), do(a, s)).

Thus Ψ1(a, s) says that in the situation resulting from doing action a, each agent
i believes that some alternative a∗ of a was possible, has happened, and in the
resulting situation, each agent believes that some alternative of a∗ was possible
and has happened.

By the SSA for the B fluent, it is straightforward to prove:

Theorem 1. D |= ∀a∀s.Poss(a, s) ⊃ Ψn(a, s) for all n.
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Proof. We prove by induction on n. Basis: n = 0. This directly follows from the
SSA for the B fluent. Induction step: Assume thatD |= ∀a∀s.Poss(a, s) ⊃ Ψn(a, s).
By the SSA for the B fluent, we have

∀a∀s.Poss(a, s) ⊃ ∀i.Bel(i,∃s∗∃a∗.A(i, a∗, a, s) ∧ now = do(a∗, s∗)∧
Poss(a∗, s∗) ∧Dss[a∗, s∗], do(a, s)).

By the induction hypothesis, we have

∀a∀s.Poss(a, s) ⊃ ∀i.Bel(i,∃s∗∃a∗.A(i, a∗, a, s) ∧ now = do(a∗, s∗)∧
Poss(a∗, s∗) ∧Dss[a∗, s∗] ∧Ψn(a∗, s∗), do(a, s)),

which is ∀a∀s.Poss(a, s) ⊃ Ψn+1(a, s). �

It is also easy to prove the following propositions. By an objective formula, we
mean one with only ordinary fluents.

Proposition 1. Let ϕ be objective. Suppose that agent i is an observer of action ϕ in
situation σ, i.e.,D |= A(i, a, ϕ, σ) ≡ a = ϕ. ThenD |= ϕ(σ) ⊃ Bel(i, ϕ, do(ϕ, σ)).

Proposition 2. Let ϕ be objective. Suppose that agent i is a partial observer of
action ϕ in situation σ, i.e., D |= A(i, a, ϕ, σ) ≡ a = ϕ ∨ a = ¬ϕ. Then D |=
ϕ(σ) ∧ ¬BW(i, ϕ, σ) ⊃ ¬BW(i, ϕ, do(ϕ, σ)).

Proposition 3. Let ϕ be objective. Suppose that agent i is oblivious of action α in
situation σ, i.e., D |= A(i, a, α, σ) ≡ a = nil. Then D |= Poss(α, σ) ⊃ [Bel(i, ϕ, σ) ≡
Bel(i, ϕ, do(α, σ))].

In the following, we show how we model some special types of actions and
prove the desired properties. We first consider public sensing and reading
actions, and give their axioms as follows:

• senseϕ(i, ~x) means agent i senses the truth value of ϕ(~x)

• read f (i, ~x) means agent i reads the value of f (~x)

1. D(senseϕ(i, ~x), a) ≡ a = ϕ(~x) ∨ a = ¬ϕ(~x)

2. A( j, a′, a, do(senseϕ(i, ~x), s)) ≡
D(senseϕ(i, ~x), a) ∧D(senseϕ(i, ~x), a′) ∧ ( j = i ⊃ a = a′)

3. D(read f (i, ~x), a) ≡ ∃y.a = [ f (~x) = y]



Y. Liu and H. J. Levesque 263

4. A( j, a′, a, do(read f (i, ~x), s)) ≡
D(read f (i, ~x), a) ∧D(read f (i, ~x), a′) ∧ ( j = i ⊃ a = a′)

It is easy to prove:

Proposition 4. D entails the following:

1. Do(~senseϕ(i, ~x)�, s, s1) ⊃ [B( j, s′, s1) ≡
∃s∗.B( j, s∗, s) ∧Do(~senseϕ(i, ~x)�, s∗, s′) ∧ ( j = i ⊃ ϕ(~x, s) ≡ ϕ(~x, s∗))]

2. Do(~read f (i, ~x)�, s, s1) ⊃ [B( j, s′, s1) ≡
∃s∗.B( j, s∗, s) ∧Do(~read f (i, ~x)�, s∗, s′) ∧ ( j = i ⊃ f (~x, s) = f (~x, s∗))]

This is the same as Shapiro et al. ’s extension of Scherl and Levesque’s SSA for
the K fluent to public sensing and reading actions in the multi-agent case. So
our account of beliefs and actions subsumes theirs. As an easy corollary, we get

Proposition 5. Let ϕ be objective. ThenD entails the following:

1. Do(~senseϕ(i, ~x)�, s, s1) ⊃ BW(i, ϕ(~x), s1) ∧
( j , i ⊃ Bel( j,BW(i, ϕ(~x)), s1))

2. Do(~read f (i, ~x)�, s, s1) ⊃ ∃yBel(i, f (~x) = y, s1) ∧
( j , i ⊃ Bel( j,∃yBel(i, f (~x) = y), s1))

Bacchus et al. (1999) considered noisy sensors: when an agent reads the value
of f (~x), she may get a value y such that | f (~x, s) − y| ≤ b for some bound b. This
can be easily described as follows:

1. D(nread f (i, ~x), a) ≡ ∃y.a = [ f (~x) = y]

2. A( j, a′, a, do(nread f (i, ~x), s)) ≡ D(nread f (i, ~x), a) ∧D(nread f (i, ~x), a′) ∧
{ j = i ⊃ (∃y, y′).a = [ f (~x) = y] ∧ a′ = [ f (~x) = y′] ∧ |y − y′| ≤ b}

As desired, we have

Proposition 6. D |= Do(~nread f (i, ~x)�, s, s′) ⊃ ∃y.Bel(i, | f (~x) − y| ≤ b, s′).

Similar to noisy sensors, we may have unintended actions: an agent wants
to push button m, but she may push button n such that |m − n| ≤ b. Other
agents can observe that she pushes a button, but have no idea which button
she pushes.
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1. D(npush(i,m), a) ≡ ∃n.a = push(n)
2. A( j, a′, a, do(npush(i,m), s)) ≡ D(npush(i,m), a) ∧D(npush(i,m), a′) ∧

{ j = i ⊃ (∃n,n′).a = push(n)∧ a′ = push(n′)∧ |m−n| ≤ b∧ |m−n′| ≤ b}

Proposition 7. D |= Do(~npush(i,m)�, s, s′) ⊃ Bel(i,∃n.|n −m| ≤ b ∧ on(n), s′).

Finally, we have the following description for the action of publicly truthfully
announcing ϕ(~x):

1. D(pubϕ(~x), a) ≡ a = ϕ(~x)
2. A(i, a′, a, do(pubϕ(~x), s)) ≡ a = ϕ(~x) ∧ a′ = ϕ(~x)

Proposition 8. Let ϕ be objective.
ThenD |= Do(~pubϕ(~x)�, s, s′) ⊃ CKnows(ϕ(~x), s′).

5 Extended examples

In this section, we present two extended examples of modeling multi-agent
scenarios in the situation calculus. In the first example, the role of each agent is
not common knowledge. The second one involves both physical and sensing
actions.

Example 3. Ann senses the truth value of p. Bob and Carol are observing Ann.
But Ann doesn’t know the role of Bob or Carol. Bob and Carol do not know the
role of each other. We introduce two actions:

1. context(x, y, z), where x, y, and z represent the role of Ann, Bob, and Carol,
respectively, and each takes the values of 0, 1, and 2: 0 means the agent is
an observer, 1 means the agent is a partial observer, and 2 means that the
agent is oblivious.

2. uncertain, which represents the uncertainty among the different contexts.

The axioms are as follows:

1. A(i, a′, a, do(uncertain, s)) ≡ ∃x, y, z, x′, y′, z′.
a = context(x, y, z) ∧ a′ = context(x′, y′, z′) ∧
[i = ann ⊃ x = x′] ∧
[i = bob ⊃ y = y′ ∧ (x = 0 ∧ y = 1 ⊃ x′ = 0)] ∧
[i = carol ⊃ z = z′ ∧ (x = 0 ∧ z = 1 ⊃ x′ = 0)]
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2. D(context(x, y, z), a) ≡ a = p ∨ a = ¬p ∨ a = nil
3. A(i, a′, a, do(context(x, y, z), s)) ≡

D(context(x, y, z), a) ∧D(context(x, y, z), a′) ∧
[role(context(x, y, z), i) = 0 ⊃ a = a′] ∧
[role(context(x, y, z), i) = 1 ⊃ a = a′ ∨ a , nil ∧ a′ , nil] ∧
[role(context(x, y, z), i) = 2 ⊃ a′ = nil]

The reason we have [i = ann ⊃ x = x′] is that Ann knows her own role. The
reason we have [i = bob ⊃ y = y′∧ (x = 0∧ y = 1 ⊃ x′ = 0)] is that Bob knows his
own role and Bob is observing Ann. So the actual context is 011. But to Ann,
context 022 is possible; to Bob, context 012 is possible; and to Carol, context 021
is possible.

AssumeDS0 contains CKnows(∀i¬BW(i, p),S0).
Let S1 = do(uncertain; context(0, 1, 1); p,S0). ThenD entails the following:

1. BW(ann, p,S1);

2. ¬BW(bob, p,S1);

3. Bel(bob,BW(ann, p),S1);

4. ¬Bel(ann,Bel(bob,BW(ann, p)),S1);

5. ¬Bel(carol,Bel(bob,BW(ann, p)),S1).

Example 4. We use a simplified and adapted version of Levesque’s Squirrel
World. Squirrels and acorns live in a one-dimensional world unbounded on
both sides. Each acorn and squirrel is located at some point, and each point can
contain any number of squirrels and acorns. Acorns are completely passive.
Squirrels can do the following actions:

1. le f t(i): Squirrel i moves left a unit;

2. right(i): Squirrel i moves right a unit;

3. pick(i): Squirrel i picks up an acorn, which is possible when he is not
holding an acorn and there is at least one acorn at his location;

4. drop(i): Squirrel i drops the acorn he is holding;

5. learn(i,n): Squirrel i learns that there are n acorns at his location. We use
smell(i) to denote (πn)learn(i,n).

A squirrel can observe the action of another squirrel within a distance of 4, but
if the action is a sensing action, the result is not observable. Initially, there are
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two acorns at each point. There are three squirrels: Nutty, Edgy, and Wally.
Initially, they are all at point 0, holding no acorns, and have no knowledge
of the number of acorns at each point, and the above is common knowledge.
There are 3 ordinary fluents:

1. hold(i, s): Squirrel i is holding an acorn in situation s;
2. loc(i, p, s): Squirrel i is at location p in situation s;
3. acorn(p,n, s): There are n acorns at location p in s.

For illustration, we only present some axioms ofD:

1. Poss(pick(i), s) ≡ ¬hold(i, s) ∧ ∃p(loc(i, p, s) ∧ acorn(p,n, s) ∧ n > 0)
2. loc(i, p, do(a, s)) ≡ Φloc(i, p, a, s), which is:

a = le f t(i) ∧ loc(i, p + 1, s) ∨ a = right(i) ∧ loc(i, p − 1, s) ∨
loc(i, p, s) ∧ a , le f t(i) ∧ a , right(i)

3. A(i, a′, a, do(a∗, s)) ≡ ∃ j, p, p′[agt(a) = j ∧Φloc(i, p, a∗, s) ∧Φloc( j, p′, a∗, s) ∧
(|p − p′| > 4 ⊃ a′ = nil) ∧
(|p − p′| ≤ 4 ⊃ a = a′ ∨ j , i ∧ ∃n,n′(a = learn( j,n) ∧ a′ = learn( j,n′)))]

4. CKnows(∀i.loc(i, 0) ∧ ¬hold(i) ∧ ∀p∀n¬Bel(i,¬acorn(p,n)),S0)
5. ∀p.acorn(p, 2,S0)
6. A(i, a′, a,S0) ≡ a = a′ ∨ ∃ j,n,n′. j , i ∧ a = learn( j,n) ∧ a′ = learn( j,n′)

Let ϕ(s, s′) be a formula. We let Bel(i, ϕ(now, prev), s) denote
∀s′.B(i, s′, s) ⊃ ∃s∗∃a∗.s′ = do(a∗, s∗) ∧ ϕ(s′, s∗).

ThenD entails the following:

1. Do(δ1,S0, s) ⊃ TBel(N, acorn(0, 1), s) ∧
CKnows(hold(N) ∧ ∃nTBel(N, acorn(0,n)), s),

where δ1 = smell(N); pick(N).
2. Do(δ1; δ2,S0, s) ⊃ CKnows(∃n(acorn(1,n, prev) ∧ acorn(1,n + 1,now)), s),

where δ2 = right(N); drop(N). This says that the squirrels commonly knows
that there is one more acorn at point 1 now than previously.

3. Do(δ1; δ2; δ3,S0, s) ⊃ CKnows(loc(W,−2) ∧ loc(N, 1) ∧ loc(E, 3), s),
where δ3 = le f t(W)2; right(E)3.

4. Do(δ1; δ2; δ3; δ4,S0, s) ⊃ TBel(N, hold(W) ∧ loc(W,−3) ∧ loc(E, 2), s) ∧
Bel(E,¬hold(W) ∧ loc(W,−2), s) ∧ Bel(W, loc(E, 3), s),

where δ4 = smell(W); pick(W); le f t(W); le f t(E).
Note that now Edgy and Wally have incorrect beliefs about each other.
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6 Conclusions

In this paper, by incorporating the idea of action models from DELs, we have
developed a general multi-agent extension of the situation calculus. We ana-
lyzed properties of multi-agent beliefs in the situation calculus, and showed that
we can provide a uniform treatment of special types of actions, such as public
sensing and reading actions, noisy sensors and unintended actions, and public
announcements. Since DELs are propositional, an advantage of our work is
the gain of more expressiveness and compactness in representation. We gave
two extended examples to illustrate modeling of multi-agent scenarios in the
situation calculus.

There are a number of topics for future research. First of all, as mentioned in the
introduction, van Benthem et al. (2006) generalized the concept of action model
to that of update model which can be used to model both epistemic and physical
actions. They proposed a logic, called logic of communication and change
(LCC), to reason about update models. It would be interesting to explore if
we can embed action model logic and further LCC into the situation calculus.
Secondly, as shown in the Squirrel World example, because of unreliable sources
of information, at certain points, agents may have incorrect beliefs about the
world and other agents. When incorrect beliefs lead to inconsistent beliefs,
belief revision is necessary for the agents to keep functioning in the world.
The DEL community has done extensive work on multi-agent belief revision,
and a good reference is (Baltag and Smets 2008). The general idea is this:
The semantic model is a plausibility model, where for each agent, there is a
plausibility order on the set of states or actions. An agent believes ϕ if ϕ
holds in the most plausible states. When we update a plausibility model by an
action plausibility model, give priority to the action plausibility order. In the
future, we would like to incorporate this line of work into the situation calculus.
Thirdly, while the focus of the current paper is on the representation side, in the
future, we would like to investigate reasoning in multi-agent situation calculus.
Finally, we would like to explore multi-agent high-level program execution and
develop interesting applications of it.
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Abstract

The Lambek-Grishin calculus (LG) is a multiple-conclusion extension of
Lambek’s categorial type logic with dual families of fusion (’merge’) and
fission operations, and linear distributivity principles relating these two.
Thanks to the distributivity principles, LG captures dependency patterns be-
yond context-free, both in syntax and semantics. In this paper we represent
the information flow in categorial derivations in terms of a proof net graphi-
cal calculus. We study the correspondence between the composition graphs
for these nets and the terms associated with focused sequent derivations.

1 Background, motivation

In this paper, we study LG, a type logic based on the generalization of Lambek’s
Syntactic Calculus proposed in Grishin (1983). The formula language of this
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logic is given in (1).

A,B ::= p | atoms: s, np, . . .

A ⊗ B | B\A | A/B | product, left vs right division

A ⊕ B | A � B | B ; A coproduct, right vs left difference

(1)

Algebraically, LG combines the residuated triple of (3) — fusion with its two
residuals — with the dual residuated triple in (4): fission, left and right differ-
ence.

A ≤ A ; from A ≤ B and B ≤ C infer A ≤ C (2)

A ≤ C/B iff A ⊗ B ≤ C iff B ≤ A\C (3)

B ; C ≤ A iff C ≤ B ⊕ A iff C � A ≤ B (4)

For the interaction between the fusion and fission families, we have the pos-
tulates of (5).1 These postulates have come to be called linear distributivity
principles (e.g. Cockett and Seely (1996)): linear, because they respect resources
(no material gets copied).

(A ; B) ⊗ C ≤ A ; (B ⊗ C) C ⊗ (B � A) ≤ (C ⊗ B) � A

C ⊗ (A ; B) ≤ A ; (C ⊗ B) (B � A) ⊗ C ≤ (B ⊗ C) � A
(5)

LG is attractive for syntactic and for semantic reasons. Syntactically, the interac-
tion principles of (5) bring expressivity beyond context-free. Moot (2007) gives
an LG encoding of the adjunction operation of Tree Adjoining Grammar, the
most restricted formalism in the mildly context-sensitive hierarchy Kallmeyer
(2010); Moortgat (2009) has an LG grammar for MIX, according to Salvati (p.c.)
an instance of a non-wellnested 2-MCFG. The upper bound for the syntactic
expressivity of LG grammars in their full generality is open; see Melissen (2010)
for discussion.

At the semantic level, LG derivations can be given an interpretation in the
continuation-passing style. The CPS interpretation leads to a considerable
simplification of the syntax/semantics interface: semantic scope construal can

1There is a second set, with the inequalities reversed, which we’ll not discuss here.
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be obtained on the basis of simple first-order syntactic types, as shown in
Bastenhof (2012) and discussed in §3.1.

Despite these attractions, working with the standard ‘symbolic’ presentations
of LG involves rather formidable technical machinery. Our focus in this paper
is on proof nets — an elegant graphical calculus that captures the essence of LG
derivations without the bureaucracy of heavy symbol manipulation.

2 Display sequent calculus and proof nets

A sequent calculus for LG, in the ‘display logic’ style, can be found in Goré
(1997). We present it in §2.1, using the notation of Moortgat (2009). In §2.2,
we introduce the proof net graphical calculus, and show how it leads to a
representation of LG derivations that is free of spurious ambiguities.

2.1 sLG: display sequent calculus

The characteristic feature of Display Logic is that for every logical connective,
there is a corresponding structural connective, not just for conjunction and
disjunction as in standard sequent calculus. We use the same symbols for the
logical operations and their structural counterparts; structural operations are
marked off by centerdots. Below the grammar for input (sequent left hand
side), and output structures (sequent rhs). Atomic structures are formulas F .

I ::= F | I · ⊗ · I | I · � · O | O ·; · I

O ::= F | O · ⊕ · O | I · \ · O | O · / · I
(6)

Figures 1 and 2 then give the structural and logical rules of sLG. The (dual)
residuation principles take the form of ‘display postulates’, so called because
they allow any formula component of a structure to be displayed as the sole
occupant of the sequent lhs or rhs. The logical rules apply to formulas thus dis-
played. The one-premise rules simply replace a logical connective by its struc-
tural counterpart; these rules are invertible. The non-invertible two-premise
rules give expression to the monotonicity properties of the type-forming oper-
ations. The distributivity principles (5) appear in rule form here as G1 − G4 in
the structural group.
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A⇒ A Ax X⇒ A A⇒ Y
X⇒ Y Cut

X⇒ Z · / · Y

X · ⊗ · Y⇒ Z
rp

Y⇒ X · \ · Z
rp

Y ·; · Z⇒ X

Z⇒ Y · ⊕ · X
drp

Z · � · X⇒ Y
drp

X · ⊗ · Y⇒ Z · ⊕ ·W
Z ·; · X⇒W · / · Y G1

X · ⊗ · Y⇒ Z · ⊕ ·W
Y · � ·W ⇒ X · \ · Z G3

X · ⊗ · Y⇒ Z · ⊕ ·W
Z ·; · Y⇒ X · \ ·W G2 X · ⊗ · Y⇒ Z · ⊕ ·W

X · � ·W ⇒ Z · / · Y G4

Figure 1: sLG. Structural rules.

A · $ ·B⇒ Y
A $ B⇒ Y

$L $ ∈ {⊗,;,�} X⇒ A · # ·B
X⇒ A # B

#R # ∈ {⊕, /, \}

X⇒ A Y⇒ B
X · ⊗ · Y⇒ A ⊗ B ⊗R A⇒ X B⇒ Y

A ⊕ B⇒ X · ⊕ · Y ⊕L

X⇒ A B⇒ Y
A\B⇒ X · \ · Y

\L X⇒ A B⇒ Y
X · � · Y⇒ A � B �R

X⇒ A B⇒ Y
B/A⇒ Y · / · X

/L X⇒ A B⇒ Y
Y ·; · X⇒ B ; A ;R

Figure 2: sLG. Logical rules.

It is shown in Moortgat (2009) that the display sequent format sLG enjoys cut
elimination and thus allows for decidable proof search. Still, there is room for
improvement:

• spurious ambiguity: as with sequent calculi in general, one and the same
matching of occurrences of atomic subformulae in a proof’s axiom leaves
may be obtained in different ways as a result of irrelevant rule permuta-
tions;
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• no parsing: backward chaining sequent proof search requires the structure
of the formulas making up the end sequent to be given in advance; for
genuine LG parsing, one would like this structure to be computed as the
outcome of the deduction process;

• display equivalences represent alternative views on one and the same
structure: one would like to have a proof format where there is no need
for the explicit structural manipulations of the display postulates.

The proof net approach to be discussed below removes these problematic as-
pects.

2.2 Proof nets

Proof nets are a graphical way of representing proofs, introduced first for linear
logic Girard (1987). The proof nets for LG we present in this section are a
simple extension of the proof nets for the multimodal Lambek calculus of Moot
and Puite (2002). A proof structure is a (hyper)graph where the vertices are
labeled by formulas and the edges connect these formulas.2 The hyperedges
correspond to the logical rules, linking the active formulas and the main formula
of the rule and keeping track of whether one is dealing with a non-invertible
two-premise rule or with an invertible one-premise rule. We’ll call these tensor
and cotensor links respectively.

Definition 2.1. A link is a tuple 〈t, p, c,m〉where

• t is the type of the link — tensor or cotensor

• p is the list of premises of the link,

• c is the list of conclusions of the link,

• m, the main vertex/formula of the link, is either a member of p, a member
of c or the constant “nil”.

In case m is a member of p we speak of a left link (corresponding to the left
rules of the sequent calculus, where the main formula of the link occurs in the
antecedent) and in case m is a member of c we speak of a right link.

2In what follows we will often speak of formula occurrences (or simply formulas if there is no
possibility of confusion) instead of vertices labeled by formulas.
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Graphically, links are displayed as shown below. A central node links together
the premises and conclusions of the link; when we need to refer to the connec-
tions between the central node and the vertices, we will call them its tentacles.
The interior of this central node is white for a tensor link and black for a coten-
sor link. The premises are drawn, in left-to-right order, above the central node
and the conclusions, also in left-to-right order, are drawn below it. The main
formula of cotensor links is drawn with an arrow towards it; the main formula
of a tensor link can only be determined by inspection of the formulas.

P1 · · · Pm

C1 · · · Cn

tensor rule

P1 · · · Pm

C1 · · · Cn

cotensor rule (right rule)

P1 · · · Pm

C1 · · · Cn

cotensor rule (left rule)

Figure 3 shows the links for LG. The links for the fission connectives are up-
down symmetric versions of the links for the fusion connectives.

Definition 2.2. A proof structure 〈S,L〉 is a finite set of formula occurrences S
and a set of links L from those shown in Figure 3 such that

• each formula is at most once the premise of a link,
• each formula is at most once the conclusion of a link.

Formulas which are not the conclusion of any link are called the hypotheses of
the proof structure. Formulas which are not the premise of any link are called
the conclusions of the proof structure.

We will say that a proof structure with hypotheses H1, . . . ,Hm and conclusions
C1, . . . ,Cn is a proof structure of H1, . . . ,Hm ⇒ C1, . . .Cn.

Example 1. Figure 4 shows the hypothesis unfolding of (s � s) ; np and the
conclusion unfolding of s / (np \ s). Both are obtained by simple application of
the rules of Figure 3 until we reach the atomic subformulas.

Though the figure satisfies the condition on proof structures (connectedness is
not a requirement), it is a proof structure of (s�s);np, s, s,np⇒ s/(np\s), s, s,np.
We obtain a proof structure of (s � s) ; np ⇒ s / (np \ s) by identifying atomic
formulas.3 In this case, we choose to identify the top s of the left subgraph

3This node identification corresponds to the “axiom links” of linear logic proof nets.
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Fusion connectives — hypothesis

[L/]

A

A / B B

[L⊗]

A ⊗ B

A B

[L\]

A

B B \ A

Fusion connectives — conclusion

[R/]

A

A / B B

[R⊗]

A ⊗ B

A B

[R\]

A

B B \ A

Fission connectives — hypothesis

[L�]

A

A � B B

[L⊕]

A ⊕ B

A B

[L;]

A

B B ; A

Fission connectives — conclusion

[R�]

A

A � B B

[R⊕]

A ⊕ B

A B

[R;]

A

B B ; A

Figure 3: Links for proof structures of the Lambek-Grishin calculus

with the bottom s of the right subgraph and perform the unique choice for the
remaining atomic formulas. The result is the proof structure shown in Figure 5
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s

np \ s

s / (np \ s)

np

s

s

s

s � s

(s � s) ; np

np

Figure 4: Lexical unfolding

s

ss � s

np np \ s

(s � s) ; np

s / (np \ s)

�

��

� �

(s�s);np�

�
s/(np\s)

Figure 5: Proof structure of (s� s);np⇒ s / (np \ s) corresponding to the lexical
unfolding of Figure 4 and its corresponding abstract proof structure

on the left.

Due to the graphical constraints of writing these proof nets on the plane —
we want to draw the np \ s node below the cotensor link at the bottom of the
figure, since it is a conclusion of this link, but would have to draw the figure
on a cylinder to make this work — we need to use curved tentacles connect the
minor premise of (co-)implication links to the rest of the proof structure.

Definition 2.3. An abstract proof structure 〈V,L, h, c〉 is a set of vertices V, a set
of (unlabeled) links L and two functions h and c, such that
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• each formula is at most once the premise of a link,
• each formula is at most once the conclusion of a link,
• h and c are functions from the hypotheses resp. conclusions of the abstract

proof structure to formulas

Note that the abstract proof structure corresponding to a two formula sequent
A⇒ B has only a single vertex v, with h(v) = A and c(v) = B.

The transformation from proof structure to abstract proof structure is a forgetful
mapping: we transform a proof structure into an abstract proof structure by
erasing all formula information on the internal vertices. Visually, we remove
the formula labels from the graph and replace them by simple vertices (�). We
indicate the results of the functions h and c above (resp. below) the vertices (for
the hypotheses and conclusions respectively). As a result, we have to following
four types of vertices in an abstract proof structure.

� � � �A

B

A

B

internal hypothesis conclusion both

Example 2. Figure 5 shows (on the right) the transformation of the proof struc-
ture on its left into an abstract proof structure.

Definition 2.4. A tree is an acyclic, connected abstract proof structure which
does not contain any cotensor links.

The trees of Definition 2.4 correspond to sequents in a rather direct way. In fact,
they have the pleasant property of “compiling away” the display rules of the
sequent calculus. Or, in other words, trees represent a class of sequents which
is equivalent up to the display postulates.

Definition 2.5. Given an abstract proof structure A, we say that A contracts in
one step to A′, written A→ A′ iff A′ is obtained from A by replacing one of the
subgraphs of the form shown in Figures 6 and 7 by a single vertex.

H�
C

H represents the result of the function h for the indicated node (relevant only
in case this node is a hypothesis of the abstract proof structure). Similarly, C
represents the formula assigned by the function c to the indicated node.
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[R/]

�

H� �

�
C

[L⊗]

�
C

� �

H�

[R\]

�

H��

�
C

Figure 6: Contractions — Lambek connectives

[L�]

�

�
C

�

H�

[R⊕]

�
C

� �

H�

[L;]

�

�
C

�

H�

Figure 7: Contractions — Grishin connectives

Given an abstract proof structure A we say that A contracts to an abstract proof
structure A′ if there is a sequence of zero or more one step contractions from A
to A′.

When we say that a proof structure P contracts to an abstract proof structure A′

we will mean that the underlying abstract proof structure A of P contracts to
A′.

To obtain expressivity beyond context-free, we are interested in LG with added
interaction principles. Figures 8 and 9 give the additional rewrite rules on
abstract proof structures that correspond to the rule form of Grishin’s distribu-
tivity laws.

Definition 2.6. A proof structure P is a proof net iff its underlying abstract proof
structure A converts to a tree using the contractions of Figures 6 and 7 and the
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X�

��
V

Y�

�
W

�

�
W

�
V

X� Y� Y�

�
W

�X�

�
V

G1 G3

Figure 8: Grishin interactions I — “mixed associativity”
Y�

�

�
V

X�

�
W

�

�
W

�
V

X� Y�

X�

�
W

�
Y�

�
V

G2 G4

Figure 9: Grishin interactions II — “mixed commutativity”

structural rules of Figures 8 and 9.

Theorem 1. A proof structure P is a proof net — that is, P converts to a tree T — iff
there is a sequent proof of T.

The proof is an easy adaptation of the proof of Moot and Puite (2002). A detailed
proof can be found in Moot (2007).

Example 3. We show that the proof structure of Figure 5 is a proof net by
contracting it to a tree. Starting with rule (G1), the two cotensor links can be
contracted in any order. Figure 10 shows a complete sequence.

Example 4. For a second example (to be taken up again when we discuss fo-
cused proof search in §3) we turn to Figure 11 which shows the lexical proof
structures for a generalized quantifier noun phrase, a transitive verb, a deter-
miner and a lexical noun.

Consider the sentence ‘everyone likes the teacher’. In the unfocused sequent
calculus sLG, the sequent (np /n)⊗n, (np \ s) /np,np /n,n⇒ s has at least seven
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�

��

� �

(s�s);np�

�
s/(np\s)

G1

�

�� �

�

(s�s);np�

�
s/(np\s)

L;

(s�s);np� �

�

�
s/(np\s)

R/ (s�s);np�
s/(np\s)

Figure 10: Reducing the abstract proof structure of Figure 5 to a tree.

(np / n) ⊗ n

n

np / n

n

np

np np \ s

s

(np \ s) / np np

np / n n

np n

Figure 11: Lexical proof structures for a generalized quantifier noun phrase, a
transitive verb, a determiner and a noun.

proofs, depending on the order of application of the introduction rules for the
five occurrences of the logical connectives involved: ⊗ (once), / (three times),
\ (once). Figure 12 gives, on the left, the single possible identification of n and
np formulas that gives rise to a proof net with the lexical entries in the desired
order. The corresponding abstract proof structure is given in the middle. This
abstract proof structure allows us to apply a contraction directly, as shown on
the right.

The table below summarizes the correspondence between proof nets and se-
quent proofs.
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(np / n) ⊗ n

np / n n

np np \ s

s

(np \ s) / np np

np / n n
(np/n)⊗n�

� �

� �

�
s

(np\s)/np� �

np/n� n�

(np/n)⊗n� �

�
s

(np\s)/np� �

np/n� n�

L⊗

Figure 12: Judgement (np / n) ⊗ n, (np \ s) / np,np / n,n ⇒ s: proof structure,
abstract proof structure and contraction.

sequent calculus proof structure conversion

axiom axiomatic formula —

cut cut formula —

two-premise rule tensor link —

one-premise rule cotensor link contraction

interaction rule — rewrite

The invertible one-premise rules correspond to both a link and a contraction
and the interaction rules are invisible in the proof structure, appearing only in
the conversion sequence.

With a bit of extra effort in the sequentialization proof (and the exclusion of
cuts on axioms) we can show that these correspondences are 1-to-1, that is each
axiomatic formula in a proof net corresponds to exactly one axiom rule in the
sequent proof, each non-invertible two-premise rule corresponds to exactly one
link in the proof net and each invertible one-premise rule to exactly one link in
the proof net and exactly one contraction in its conversion sequence.

Summing up, the proof net approach offers the following benefits in comparison
to sequent proof search.



Moortgat and Moot 283

• Parsing. Whereas for sequent proof search the structure of the sequent has
to be given, the contraction sequence that identifies a proof structure as a
proof net actually computes this structure.

• Removal of spurious ambiguity. Proof nets, like (product-free) natural
deduction, have different proof objects only for proofs of a judgement
which differ essentially. The combinatorial possibilities for such readings,
which are obtained by finding a complete matching of the premise and
conclusion atomic formulas, can easily be enumerated for a given sequence
of formulas.

• Display rules compiled away. The tensor trees associated with well-
formed proof nets represent a class of sequents which is equivalent up
to the display postulates.

3 Proof nets and focused display calculus

The spurious non-determinism of naive backward-chaining proof search can
also be addressed within the sequent calculus itself, by introducing an appro-
priate notion of ‘normal’ derivations. In §3.1, we introduce fLG, a focused
version of the sequent calculus for LG. In §3.2, we then study how to interpret
focused derivations from a proof net perspective.

3.1 fLG: focused display calculus

The strategy of focusing has been well-studied in the context of linear logic,
starting with the work of Andreoli Andreoli (2001). It is based on the distinction
between asynchronous and synchronous non-atomic formulas. The introduction
rule for the main connective of an asynchronous formula is invertible; it is non-
invertible for the synchronous formulas. Backward chaining focused proof
search starts with an asynchronous phase where invertible rules are applied
deterministically until no more candidate formulas remain. At that point,
a non-deterministic choice for a synchronous formula must be made: this
formula is put ‘in focus’, and decomposed in its subformulae by means of
non-invertible rules until no more non-invertible rules are applicable, at which
point one reenters an asynchronous phase. The main result of Andreoli (2001)
is that focused proofs are complete for linear logic.
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Focused proof search for the Lambek-Grishin calculus has been studied by
Bastenhof (2011) who uses a one-sided presentation of the calculus. In this
section, we implement his focusing regime in the context of the two-sided
sequent format of Bernardi and Moortgat (2010). We proceed in two steps.
First we introduce fLG, the focused version of the sequent calculus of §2.1.
fLG makes a distinction between focused and unfocused judgements, and has
a set of inference rules to switch between these two. fLG comes with a term
language that is in Curry-Howard correspondence with its derivations. This
term language is a directional refinement of the λµµ̃ language of Curien and
Herbelin (2000).

The second step is to give a constructive interpretation for LG derivations by
means of a continuation-passing-style translation: a mapping d·e that sends
derivations of the multiple-conclusion source logic to (natural deduction)
proofs in a fragment of single-conclusion intuitionistic Linear Logic MILL (in
the categorial terminology: LP). For the translation of Bastenhof (2011) that
we follow here, the target fragment has linear products and negation A⊥, i.e. a
restricted form of linear implication A(⊥, where ⊥ is a distinguished atomic
type, the response type. Focused source derivations then can be shown to
correspond to distinct normal natural deduction proofs in the target calculus.

fLGA/,⊗,\,�,⊕,;
d·e
−−−−−→ LPA∪{⊥}

⊗,·⊥

(
·
`

−−−−−→ IL{e,t}
×,→

)
For the linguistic illustrations in §3.2, we compose the CPS translation d·e with
a second mapping ·`, that establishes the connection with Montague-style se-
mantic representations. This mapping sends the linear constructs to their intu-
itionistic counterparts, and allows non-linear meaning recipes for the translation
of the lexical constants.

fLG: proofs and terms In the Curry-Howard proofs-as-programs tradition,
we set up fLG starting from a term language for which the sequent logic
then provides the type system. The term language encodes the logical steps
of a derivation (left and right introduction rules, and the new set of left and
right (de)focusing rules, to be introduced below); structural rules (residuation,
distributivity) leave no trace in the proof terms.

Sequent structures, as in §2.1, are built out of formulas. Input formulas now are
labeled with variables x, y, z, . . ., output formulas with covariables α, β, γ, . . ..
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To implement the focusing regime, we allow sequents to have one displayed
formula in focus. Writing the focused formula in a box, fLG will have to deal
with three types of judgements: sequents with no formula in focus (we’ll call
these structural), and sequents with a succedent or antecedent formula in focus.

X ` Y X ` A A ` Y

Corresponding to the types of sequents, the term language has three types of
expressions: commands, values and contexts respectively. For commands, we use
the metavariables c,C, for values v,V, for contexts e,E. The typing rules below
provide the motivation for the subclassification.

v ::= µα.C | V ; V ::= x | v1 ⊗ v2 | v � e | e ; v

e ::= µ̃x.C | E ; E ::= α | e1 ⊕ e2 | v\e | e/v

c ::= 〈x � E〉 | 〈V � α〉

C ::= c | x y
z .C |

x β
z .C |

β x
z .C |

α β
γ .C |

x β
γ .C |

β x
γ .C

(7)

Typing rules To enforce the alternation between asynchronous and syn-
chronous phases of focused proof search, formulas are associated with a po-
larity: positive for non-atomic formulas with invertible left introduction rule:
A ⊗ B, A � B, B ; A; negative for non-atomic formulas with invertible right in-
troduction rule: A ⊕ B, A\B, B/A. For atomic formulas, one can fix an arbitrary
polarity. Different choices lead to different prooftheoretic behaviour (and to
different interpretations, once we turn to the CPS translation). We will assume
that atoms are assigned a bias (positive or negative) in the lexicon. Below the
typing rules for fLG (restricting attention to the cut-free system).

(Co-)Axiom, (de)focusing First we have the focused version of the axiomatic
sequents, and rules for focusing and defocusing which are new with respect
to the unfocused presentation of §2.1. There is a polarity restriction on the
formula A in these rules: the boxed formula has to be negative for CoAx, µ, µ̃∗;
for Ax, µ̃, µ∗ it has to be positive. In the (Co-)Axiom cases, A can be required to
be atomic.
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x : A ` x : A
Ax

α : A ` α : A
CoAx

X ` V : A

〈V � α〉 : (X ` α : A)
µ∗

E : A ` X

〈x � E〉 : (x : A ` X)
µ̃∗

C : (x : A ` X)

µ̃x.C : A ` X
µ̃

C : (X ` α : A)

X ` µα.C : A
µ

(8)

From a backward-chaining perspective, the µ, µ̃ rules remove the focus from a
focused succedent or antecedent formula. The result is an unfocused premise
sequent, the domain of applicability of the invertible rules, i.e. one enters the
asynchronous phase. From the same perspective, the rules µ∗, µ̃∗ place a succe-
dent or antecedent formula in focus, shifting control to the non-invertible rules
of the synchronous phase. The µ∗, µ̃∗ rules are in fact instances of Cut where
one of the premises is axiomatic.

Invertible rules The term language makes a distinction between simple com-
mands c (the image of the focusing rules µ̃∗, µ∗: 〈x � E〉, 〈V � α〉) from extended
commands C. The latter start with a sequence of invertible rewrite rules replac-
ing a logical connective by its structural counterpart. We impose the require-
ment that in the asynchronous phase all formulas to which an invertible rule is
applicable are indeed decomposed.

C : (x : A · ⊗ · y : B ` X)
x y
z .C : (z : A ⊗ B ` X)

⊗L
C : (X ` α : A · ⊕ · β : B)
α β
γ .C : (X ` γ : A ⊕ B)

⊕R

C : (x : A · � · β : B ` X)
x β
z .C : (z : A � B ` X)

�L
C : (X ` x : A · \ · β : B)

x β
γ .C : (X ` γ : A\B)

\R

C : (β : B ·; · x : A ` X)
β x
z .C : (z : B ; A ` X)

;L
C : (X ` β : B · / · x : A)
β x
γ .C : (X ` γ : B/A)

/R

(9)
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Non-invertible rules When a positive (negative) formula has been brought
into focus in the succedent (antecedent), one is committed to transfer the focus
to its subformulae.

e1 : B ` Y e2 : A ` X

e1 ⊕ e2 : B ⊕ A ` Y · ⊕ · X
⊕L

X ` v1 : A Y ` v2 : B

X · ⊗ · Y ` v1 ⊗ v2 : A ⊗ B
⊗R

X ` v : A e : B ` Y

v\e : A\B ` X · \ · Y
\L

X ` v : A e : B ` Y

X · � · Y ` v � e : A � B
�R

e : B ` Y X ` v : A

e/v : B/A ` Y · / · X
/L

e : B ` Y X ` v : A

Y ·; · X ` e ; v : B ; A
;R

(10)

Derived inference rules: focus shifting To highlight the correspondence with
the algorithm for proof net construction to be discussed in §2.2, we will use
a derived rule format for shifting between a conclusion and premise focused
formula. A branch from (µ̃∗) via a sequence (possibly empty) of structural rules
and rewrite rules to (µ) is compiled in a derived inference rule with the µ̃∗

restrictions on A and the µ restrictions on B.

E : A ` Y

〈x � E〉 : (x : A ` Y)
µ̃∗

...
(res, distr, rewrite)

...
(÷)〈x � E〉 : (X ` β : B)

X ` µβ.(÷)〈x � E〉 : B
µ

{

E : A ` Y

X ` µβ.(÷)〈x � E〉 : B
�

For the combinations of µ∗, µ̃∗ and µ, µ̃, this results in the focus shifting rules
below. We leave it to the reader to add the terms.
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A ` Y

X ` B
�

X′ ` A

X ` B
⇀⇁

X ` A

B ` Y



A ` Y′

B ` Y
↼↽

(11)

Example 5. We illustrate the effect of the focusing regime with some alternative
ways of assigning a polarity bias to atomic formulas with a simple Subject-
Transitive Verb-Object sentence. Examples with lexical material filled in would
be ‘everyone seeks/finds a unicorn’.

(np/n ⊗ n) · ⊗ · ((np\s)/np · ⊗ · (np/n · ⊗ · n)) ` s (12)

For the Object we have a Determiner-Noun combination. For the Subject, we
take a product type (np/n)⊗n, so that we have a chance to illustrate the working
of the asynchronous phase of the derivation. In the discussion of Figure 12, we
saw that (12) has multiple proofs in the unfocused sequent calculus, but only
one proof net, i.e. one way of matching the premise and conclusion atoms.

What about the focused calculus fLG? Before answering this question, we
have to decide on the polarization of the atomic types. Suppose we give them
uniform negative bias. There is only one focused proof then, with proof term
(13): ‘goal driven’, top-down, to use parsing terminology. In the proof term,
we write tv for the transitive verb; det for the object determiner; noun for the
object common noun; subj for the subject noun phrase.

µβ.(
y z

subj
.〈 tv � ((Q \ β) /Q′) 〉) with

Q : µγ.〈 y � (γ / µγ′.〈 z � γ′〉)〉 , Q′ : µα.〈 det � (α / µα′.〈 noun � α′〉)〉
(13)

As an alternative, suppose basic type s keeps its negative bias, resetting the
sentence continuation for each clausal domain, but the other basic types are
assigned positive bias. We now have two focused derivations: ‘data driven’,
bottom-up. To make sense of this difference, we will have to look at the CPS
translation of these proofs, to be introduced below.

µα.(
x′ z
subj

.〈 x′ � (µ̃x.〈 det � (µ̃y.〈 tv � ((x \ α) / y) 〉 / noun) 〉 / z) 〉) (14)
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Table 1: CPS translation: non-atomic types

pol(·)

A B dA ⊗ Be dA/Be dB\Ae dA ⊕ Be dA � Be dB ; Ae

− − dAe⊥ ⊗ dBe⊥ dAe ⊗ dBe⊥ dBe⊥ ⊗ dAe dAe ⊗ dBe dAe⊥ ⊗ dBe dBe ⊗ dAe⊥

− + dAe⊥ ⊗ dBe dAe ⊗ dBe dBe ⊗ dAe dAe ⊗ dBe⊥ dAe⊥ ⊗ dBe⊥ dBe⊥ ⊗ dAe⊥

+ − dAe ⊗ dBe⊥ dAe⊥ ⊗ dBe⊥ dBe⊥ ⊗ dAe⊥ dAe⊥ ⊗ dBe dAe ⊗ dBe dBe ⊗ dAe

+ + dAe ⊗ dBe dAe⊥ ⊗ dBe dBe ⊗ dAe⊥ dAe⊥ ⊗ dBe⊥ dAe ⊗ dBe⊥ dBe⊥ ⊗ dAe

µα.(
x′ z
subj

.〈 det � (µ̃y.〈 x′ � (µ̃x.〈 tv � ((x \ α) / y) 〉 / z) 〉 / noun) 〉) (15)

CPS translation Let us turn then to the translation that associates the proofs
of the multiple-conclusion source logic fLG with a constructive interpretation,
i.e. a linear lambda term of the target logic MILL/LP. CPS translations for LG
were introduced in Bernardi and Moortgat (2007; 2010), who adapt the call-by-
value and call-by-name regimes of Curien and Herbelin (2000) to a directional
environment. The translation of Bastenhof (2011) (following Girard (1991)) is
an improvement in that it avoids the ‘administrative redexes’ of the earlier
approaches: the image of LG source derivations, under the mapping from
Bastenhof (2011) that we present below, are normal LP terms.

The target language, on the type level, has the same atoms as the source lan-
guage, and in addition a distinguished atom ⊥, the response type. Complex
types are linear products − ⊗ − and a defined negation A⊥ .

= A (⊥. The CPS
translation d·e maps fLG source types, sequents and their proof terms to the
target types and terms in Curry-Howard correspondence with normal natural
deduction proofs.

Types For positive atoms, dpe = p, for negative atoms dpe = p⊥. For complex
types, the value of d·e depends on the polarities of the subtypes as shown in
Table 1.
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Terms The action of d·e on terms is given in (16). We write x̃, α̃ for the target
variables corresponding to source x, α. The (de)focusing rules correspond to
application/abstraction in the target language. Non-invertible (two premise)
rules are mapped to linear pair terms; invertible rewrite rules to the matching
deconstructor, the case construct (ϕ,ψ, ξmetavariables for the the (co)variables
involved).

(co)var dxe = x̃ ; dαe = α̃

linear application d〈x � E〉e = (x̃ dEe) ; d〈V � α〉e = (α̃ dVe)

linear abstraction dµ̃x.Ce = λx̃.dCe ; dµα.Ce = λα̃.dCe

linear pair dϕ#ψe = 〈dϕe, dψe〉 (# ∈ {⊗, /, \,⊕,�,;})

case d
ϕ ψ
ξ .Ce = case ξ̃ of 〈ϕ̃, ψ̃〉.dCe

(16)

Sequents For sequent hypotheses/conclusions, we have

pol(A) dx : Ae dα : Ae

+ x̃ : dAe α̃ : dAe⊥

− x̃ : dAe⊥ α̃ : dAe

(17)

Table 1 then specifies how the translation extends to sequents (replace logical
connectives by their structural counterparts, and target ⊗ by the comma for
multiset union).

dC : (X ` Y)e = dXe, dYe `LP dCe :⊥⌈
X ` v : A

⌉
= dXe `LP dve : dAe⌈

e : A ` Y
⌉

= dYe `LP dee : dAe⊥

(18)

Illustrations We return to our sample derivations. In (19) one finds the CPS
image of the source types for transitive verb and determiner under the different
assignments of bias to the atomic subformulas, and the composition with ·`,
assuming np` = e (entities), s` =⊥`= t (truth values) and n` = e → t (sets of
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Table 2: Constants: lexical translations

(np+
\s−)/np+ finds λ〈〈x, c〉, y〉.(c (findeet y x))

(np+/n+) ⊗ n+ everyone 〈λ〈x, y〉.(∀ λz.(⇒ (y z) (x z))), personet
〉

np+/n+ some λ〈x, y〉.(∃ λz.(∧ (y z) (x z)))

n+ unicorn unicornet

(np−\s−)/np− needs λ〈〈q, c〉, q′〉.(q λx.(need((et)t)et q′ x))

(np−/n−) ⊗ n− everyone 〈λ〈x,w〉.(∀ λz.(⇒ (w λy.(y z)) (x z))), λk.(k personet)〉

np−/n− some λ〈x,w〉.(∃ λz.(∧ (w λy.(y z)) (x z)))

n− unicorn λk.(k unicornet)

entities). For the lexical constants of the illustration, Table 2 gives ·` translations
compatible with the typing. In Table 3, these lexical recipes are substituted for
the parameters of the CPS translation.

LG d·e
⊥ (d·e⊥)`

a. (np+
\s−)/np+ ((np ⊗ s⊥) ⊗ np)⊥ ((e × (tt)) × e)→ t

b. np+/n+ (np⊥ ⊗ n)⊥ ((et) × (et))→ t

c. (np−\s−)/np− ((np⊥⊥ ⊗ s⊥) ⊗ np⊥⊥)⊥ ((((et)t) × (tt)) × ((et)t))→ t

d. np−/n− (np⊥ ⊗ n⊥⊥)⊥ ((et) × (((et)t)t))→ t

(19)

Table 3: Compositional translations

d(13)e = λβ̃.(case subj` of 〈ỹ, z̃〉.(tv` 〈〈λγ̃.(ỹ 〈γ̃, λγ̃′.(̃z γ̃′)〉), β̃〉, λα̃.(det` 〈α̃, λα̃′.(noun` α̃′)〉)〉))

d(13)e` = λc.(∀ λx.((⇒ (person x)) (c ((needs λw.(∃ λy.((∧ (unicorn y)) (w y)))) x))))

d(14)e = λα̃.(case subj` of 〈x̃′, z̃〉.(x̃′ 〈λx̃.(det` 〈λỹ.(tv` 〈〈x̃, α̃〉, ỹ〉),noun`〉), z̃〉))

d(14)e` = λc.(∀ λx.((⇒ (person x)) (∃ λy.((∧ (unicorn y)) (c ((likes y) x))))))

d(15)e = λα̃.(case subj` of 〈x̃′, z̃〉.(det` 〈λỹ.(x̃′ 〈λx̃.(tv` 〈〈x̃, α̃〉, ỹ〉), z̃〉),noun`〉))

d(15)e` = λc.(∃ λy.((∧ (unicorn y)) (∀ λx.((⇒ (person x)) (c ((likes y) x))))))
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3.2 Proof nets and focusing

We saw in §3.1 that fLG may allow multiple derivations from one and the same
set of (co)axiom judgements. These derivations would be identified under
the proof net perspective of §2.2. To establish the correspondence with fLG
derivations, we introduce term-labeled proof nets, and show how a proof term
can be read off from the composition graph associated with a net.

Our approach is comparable to the algorithm of de Groote and Retoré (1996),
which computes a linear lambda term from a traversal of the dynamic graph
associated with a proof net for a derivation in the Lambek calculus L. For single-
conclusion L, the term associated with a given proof net is unique; in the case of
multiple-conclusion LG the term computation algorithm may associate more
than one term with a proof net. These multiple results will then be shown to
correspond to the derivational ambiguity of focused proof search.

Reduction tree In order to analyse the structure of a conversion sequence in
more detail, we introduce the notion of a proof net component:

Definition 3.1. Given a proof net P, a component C of P is a maximal subnet of
P containing only tensor links.

From a proof net, we can obtain its components by simply erasing all coten-
sor links. The components will be the connected components (in the graph-
theoretic sense) of the resulting graph. To simplify the following discussion,
unless otherwise indicated, we will use the word component to refer only to
components containing at least one tensor link.

When P is a proof net (and therefore converts to a tensor tree using a sequence ρ
of conversions and contractions) the components of P can bee seen as a parallel
representation of the synchronous phases in sequent proof search. In ρ, all
interaction rules operate in one component C, the cotensor rules and the corre-
sponding contractions join two different components (though the component
connected to the main vertex can be trivial here). When multiple cotensor links
have both active tentacles attached to a single component (Figure 10 shows
an example), we apply all contractions simultaneously, repeating this process
until no further contractions apply.

So instead of seeing ρ as a sequence of reductions, we can see it as a rooted tree
of reductions: the initial components are its leaves (synchronous phases) and



Moortgat and Moot 293

x : A y : B

α : C β : D

c

Command

x : A e : B

α : C β : D

Context

x : A y : B

v : C β : D

Value

Figure 13: Proof nets with term labels: commands, context and values

the contractions, which join components, are its branches (the branches from
the active components to their parents correspond to asynchronous phases)
and the final tree — a single component — is its root (we will see an example
in Figure 19 below). Note that this same observation is essential to the cut
elimination proof of Moot and Puite (2002).

Nets and term labeling When assigning a term label to a proof net, our
algorithms will assign labels to larger and larger subnets of a given proof net,
until we have computed a term for the complete proof net. Like in the sequent
calculus, we distinguish between subnets which are commands, contexts and
values. Figure 13 shows how we will distinguish these visually: the main
formula of a subnet is drawn white, other formulas are drawn in light gray,
values are drawn inside a rectangle, contexts inside an oval.

Figure 14 gives the term-labeled version of the proof net links corresponding
to the logical rules of the sequent calculus. The flow of information is shown
by the arrows: information flow is always from the active formulas to the main
formula of a link, and as a consequence the complex term can be assigned either
to a conclusion or to a premise of the link. This is the crucial difference with term
labeling for the single-conclusion Lambek calculus, where the complex term is
always assigned to a conclusion. The cotensor rules, operating on commands,
indicate the prefix for the command corresponding to the term assignment for
the rule (we will see later how commands are formed).

The proof term of an LG derivation is computed on the basis of the composition
graph associated with its proof net.

Definition 3.2. Given a proof net P, the associated composition graph cg(P) is
obtained as follows.
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L/ L⊗ L \

v : A

e : B

e / v : B / A

x : A y : B

z : A ⊗ B

x y
z

v : A

e : B

v \ e : A \ B

R/ R⊗ R \

γ : B / A x : A

β : B

βx
γ

v1 : A v2 : B

v1 ⊗ v2 : A ⊗ B x : A

β : B

γ : A \ B

xβ
γ

L� L ⊕ L;

α : A

x : B

z : B � A
xα
z

e1 : A e2 : B

e1 ⊕ e2 : A ⊕ B α : A

x : B

z : A ; B
αx
z

R � R ⊕ R ;

e : A

v : B

v � e : B � A

α : A β : B

γ : A ⊕ B

αβ

γ

e : A

v : B

e ; v : A ; B

Figure 14: LG links with term labeling
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A

A / B B

(A / B) ⊗ B

α / y : A / B y : B

α : A

v : A

x : A / B y : B

z : (A / B) ⊗ B

z : (A / B) ⊗ B

x y
z

α / y : A / B

α : A

v : A

x : A / B y : B

z : (A / B) ⊗ B

x y
z

Figure 15: Proof net, initial composition graph, reduced composition graph.

1. all vertices of P with formula label A are expanded into axiom links: edges
connecting two vertices with formula label A; all links are replaced by the
corresponding links of Figure 14;

2. all vertices in this new structure are assigned atomic terms of the cor-
rect type (variable or covariable) and the terms for the tensor rules are
propagated from the active formulas to the main formula;

3. all axiom links connecting terms of the same type (value or context) are
collapsed.

Figure 15 gives an example of the composition graph associated with a net. In
all, the expansion stage gives rise to four types of axiom links, depending on
the type of the term assigned to the A premise and the A conclusion. These
cases are summarized in Figure 16. The substitution links are collapsed in the
final stage of the construction of the composition graph (shown on the right of
Figure 15; the command and µ/µ̃ cases are the ones that remain.

Given the composition graph cg(P) associated with a proof net P, we compute
terms for it as follows.

1. we compute all maximal subnets of cg(P), which consist of a set of tensor
links with a single main formula, marking all these links as visited;
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Substitution

v

v

Substitution

e

e

Command

e

x

〈x � e〉

α

v

〈v � α〉

µ/µ̃

µα.c

α

µ

µ̃x.c

x

µ̃

Figure 16: Types of axiom links

2. while cg(P) contains unvisited links do the following:

(a) follow an unvisited command link attached to a previously calculated
maximal subnet, forming a correct command subnet; like before, we
restrict to active subnets which do not contain (or allow us to reach
through an axiom) the main formula of a negative link;

(b) for each negative link with both active formulas attached to the cur-
rent command subnet, pass to the main formula of the negative link,
forming a new command, repeat this step until no such negative links
remain attached;

(c) follow a µ or µ̃ link to a new vertex, forming a larger value or context
subnet and replacing the variable previously assigned to the newly
visited vertex by the µ value or µ̃ context.

The algorithm stays quite close to the focused derivations of the previous
section: the maximal subnets of step 1 are rooted versions of the components
we have used before, with the directions of the arrows potentially splitting
components into multiple rooted components (Figure 18 will give an example)
and the asynchronous phases, which consisted of one or more contractions for
cotensor links, will now consist of a passage through a command link, followed
by zero or more cotensor links, followed by either aµ or a µ̃ link, the result being
a new, larger subnet. The term assignment algorithm is a way to enumerate the
non-equivalent proof terms of a net. Given that these terms are isomorphic to
focused sequent proofs, it is no coincidence that the computation of the proof
terms looks a lot like the sequentialisation algorithm.4

Lemma 1. If P is a proof net (with a pairing of command and µ/µ̃ links) and v is a term
calculated for P using this pairing then there is a sequent proof π which is assigned v

4The connection between proof net sequentialisation and focusing for linear logic is explored in
Andreoli and Maieli (1999)
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as well.

This lemma is easily proved by induction on the depth of the tree: it holds
trivially for the leaves (which are rooted components), and, inductively, each
command, cotensor, µ/µ̃ sequence will produce a sequent proof of the same
term: in fact each such step corresponds exactly to the derived inference rules
for focus shifting discussed in §3.1.

To summarize, the difference between computing terms for proof nets in the
Lambek calculus L and in LG can be characterized as follows:

L: the (potential) terms are given through a bijection between premise and
conclusion atomic formulas (ie. a complete matching of the axioms),

LG: the (potential) terms are given through a bijection between premise and
conclusion atomic formulas plus a bijection between command and µ/µ̃
axioms.

We speak of potential terms, since in the case of the Lambek calculus only proof
nets can be assigned a term, whereas in the LG case we need proof nets plus a
coherent bijection between command and µ/µ̃ axioms, where the µ or µ̃ rule is
applied to one of the free variables of the command c.

Illustrations Figure 17 shows how to compute the term for the example proof
net of Figure 15, starting from the composition graph (on the right). We first
look for the components (step 1). Since there is only a single tensor link, this is
simple. Figure 17 shows, on the left, the context subnet corresponding to this
link.

Now, there is only one command to follow from here (step 2a), which produces
the command shown in the middle of Figure 17. Applying the cotensor link
(step 2b) produces the figure shown on the right. The final µ link (step 2c, not
shown) produces the completed term for this proof net.

v = µα.
x y
z
〈x � α / y〉

Some remarks about this example. First, some of the axioms can be traversed
in only one of the two possible directions: in cut-free proof nets, command
links move either towards the active formulas of cotensor links or towards
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α / y : A / B

α : A

v : A

x : A / B y : B

z : (A / B) ⊗ B

x y
z

〈x � α / y〉

α : A

v : A

x : A / B y : B

z : (A / B) ⊗ B

x y
z

x y
z 〈x � α / y〉

α : A

v : A

z : (A / B) ⊗ B

Figure 17: Computing the proof term from a composition graph

“dead ends”: hypotheses or conclusions of the proof net. And since we want
to compute the value of v for the example proof net, it only makes sense to
apply a µ rule to compute this value: we always “exit” the proof net from a
designated conclusion. With a slight modification to the algorithm that reads
off terms from a composition graph, we could also compute commands for proof
nets, or compute the context for a designated premise of the net.

Figure 18 returns to our “subj tv det noun” example. On the left we see the
composition graph for the example of Figure 12.

The only cotensor link in the figure has the node subj : (np / n) ⊗ n as its main
formula. When we compute the rooted components, we see that there are three,
shown on the right of the figure.

There are three command axioms, one for the root node of each of the three
components, C1 to C3 on the right hand side of the figure; these are numbered c1
to c3 next to the corresponding links with the same number as the corresponding
component. There are also three µ/µ̃ links (numbered µ1 to µ3).

Figure 19 gives a schematic representation of the proof net of Figure 18. The
arrows next to the µ/µ̃ links indicate the different possibilities for traversing
the link and whether this traversal corresponds to a µ or a µ̃ link.

If both np arguments of the transitive verbs are lexically assigned a positive
bias, then we can only pass the two axioms µ2/µ̃2 and µ3/µ̃3 in the µ̃2 and µ̃3
directions, following the arrows away from component C2. Simple combina-
torics will then give us two possible terms for this proof net: c2 − µ̃3, c3 − µ̃2 and
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x\β : np \ s

γ : np

x : np

γ/z′ : np / n

y′ : np / n

subj : (np / n) ⊗ n

z′ : n

(x\β)/y : (np \ s)/np

tv : (np \ s)/np

y : np

α : np

α/noun : np/n

det : np/n

noun : n

β : s

x′ : s

C1

C2

C3

γ : np

x : np

γ/z′ : np / n

y′ : np / n

subj : (np / n) ⊗ n

z′ : n

(x\β)/y : (np \ s)/np

tv : (np \ s)/np

y : np

α : np

α/noun : np/n

det : np/n

noun : n

β : s

x′ : s

(µ1)

(µ2)

(µ3)

(c1)

(c3)

(c2)

Figure 18: Composition graph (left) and initial components (right) for the “subj
tv det noun” example

C1

� �
µ1

�

�
µ̃2µ2

�

�
µ3 µ̃3

��
c1

��
c2

��
c3

C2

C3

C1

C2−3 � �
µ1

�

�
µ̃2µ2

��
c1

��
c3

C1−3��
c1

� �
µ1

Figure 19: Matching: c2 − µ̃3, c3 − µ̃2, c2 − µ1. Reading: subj < det < tv.

c1 − µ1 (shown in Figure 19), producing term 20 below, and c2 − µ̃2, c1 − µ̃3 and
c3 − µ1, producing term 21.
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µγ.
y′z′

subj
.〈y′ � (µ̃x.〈det � (µ̃y.〈tv � (x\β)/y〉)/noun〉)/z′〉 (20)

µβ.〈det � (µ̃y.
y′z′

subj
.〈y′ � (µ̃x.〈tv � (x\β)/y〉)/z′〉)/noun〉 (21)

These are the only two readings available with positive bias for the two atomic
np arguments of the transitive verb, and, as we have seen before, this gives
the right quantifier scope possibilities for an extensional transitive verb such
as “likes” we have seen in equations (14) and (15) (apart from the variable
names, equation (21) differs from (15) in that the extended command fraction
in the latter term is at the innermost position, but the terms are equivalent up
to commutative conversions).

When we use a negative bias for the two np arguments of the transitive verb,
we obtain the following term, corresponding to equation (13).

µβ.
y′z′

subj
.〈y′ � (µ̃x.〈tv � (x\β)/(µα.〈det � α/noun〉)〉)/z′〉 (22)

4 Conclusions

The Lambek-Grishin calculus is a symmetric version of the Lambek calculus.
Together with the interaction principles, it allows for the treatment of pat-
terns beyond context-free which cannot be satisfactorily handled in the Lam-
bek calculus. We have compared two proof systems for LG: focused sequent
proofs and proof nets. Focused proofs avoid the spurious non-determinism
of backward-chaining search in the sequent calculus; they provide a natural
interface to semantic interpretation via their continuation-passing-style trans-
lation. Proof nets present the essence of a derivation in a visually appealing
form; they do away with the syntactic clutter of sequent proofs, and compute
the structure of the end-sequent in a data-driven manner where this structure
has to be given before one can a start backward-chaining sequent derivation.
Proof terms are read off from the composition graph associated with a net. The
computation of these terms depends both on a bijection between premise and
conclusion atomic formulas and between command and µ/µ̃ axioms. As a re-
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sult, one net can be associated with multiple construction recipes (proof terms),
corresponding to multiple derivations in the focused sequent calculus.

Acknowledgements An extended version of this paper appears as a chapter
in C. Heunen, M. Sadrzadeh and E. Grefenstette (eds.) Compositional methods in
quantum physics and linguistics, OUP. We thank Arno Bastenhof for comments
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Abstract
Epistemic game theory has shown the importance of informational contexts
in understanding strategic interaction. We propose a general framework to
analyze how such contexts may arise. The idea is to view informational
contexts as the fixed-points of iterated, “rational responses” to incoming
information about the agents’ possible choices. We show general conditions
for the stabilization of such sequences of rational responses, in terms of
structural properties of both the decision rule and the information update
policy.

1 Background and Motivation

An increasingly popular1 view is that “the fundamental insight of game theory
[is] that a rational player must take into account that the players reason about

1But, of course, not uncontroversial. See, for example, (Kadane and Larkey 1982, pg. 239).
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each other in deciding how to play” (Aumann and Dreze 2008, pg. 81). Exactly
how the players (should) incorporate the fact that they are interacting with
other (actively reasoning) agents into their own decision making process is the
subject of much debate. A variety of frameworks explicitly model the reasoning
of rational agents in a strategic situation. Key examples include Brian Skyrms’
models of “dynamic deliberation" Skyrms (1990), Ken Binmore’s analysis of
“eductive reasoning” Binmore (1987), and Robin Cubitt and Robert Sugden’s
“common modes of reasoning" Cubitt and Sugden (2011a). Although the details
of these frameworks are quite different they share a common line of thought: In
contrast to classical game theory, solution concepts are no longer the basic object
of study. Instead, the “rational solutions" of a game are the result of individual
(rational) decisions in specific informational “contexts”.

This perspective on the foundations of game theory is best exemplified by the
so-called epistemic program in game theory (cf. Brandenburger (2007)). The
central thesis here is that the basic mathematical model of a game should include
an explicit parameter describing the players’ informational attitudes. However,
this broadly decision-theoretic stance does not simply reduce the question of
decision-making in interaction to that of rational decision making in the face
of uncertainty or ignorance. Crucially, higher-order information (belief about
beliefs, etc.) are key components of the informational context of a game2. Of
course, different contexts of a game can lead to drastically different outcomes,
but this means that the informational contexts themselves are open to rational
criticism:

“It is important to understand that we have two forms of irrational-
ity [...]. For us, a player is rational if he optimizes and also rules
nothing out. So irrationality might mean not optimizing. But it can
also mean optimizing while not considering everything possible."
(Brandenburger et al. 2008, pg. 314)

2That is, strategic behavior depends, in part, on the players’ higher-order beliefs. However, the
question of what precisely is being claimed should be treated with some care. The well-known
email game of Ariel Rubinstein Rubinstein (1989) demonstrates that misspecification of arbitrarily
high-orders of beliefs can have a great impact on (predicted) strategic behavior. So there are simple
examples where (predicted) strategic behavior is too sensitive to the players’ higher-order beliefs.
We are not claiming that a rational agent is required to consider all higher-order beliefs, but only
that a rational player recognizes that her opponents are actively reasoning, rational agents, which
means that a rational player does take into account some of her higher-order beliefs (e.g., what she
believes her opponents believe she will do) as she deliberates. Precisely “how much" higher-order
information should be taken into account is a very interesting, open question which we set aside
in this paper.
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Thus, a player can be rationally criticized for not choosing what is best given their
information, but also for not reasoning to a “proper” context. Of course, what
counts as a “proper” context is debatable. There might be rational pressure
for or against making certain substantive assumptions3 about the beliefs of one’s
opponents, for instance, always entertaining the possibility that one of the
players might not choose optimally.

Recently, researchers using methods from dynamic-epistemic logic have taken
steps to understanding this idea of reasoning to a “proper” or “rational” con-
text van Benthem (2007), Baltag et al. (2009), Baltag and Smets (2009a), van
Benthem and Gheerbrant (2010). Building on this literature4, we provide a
general characterization of when players can or cannot rationally reason to an
informational context.

2 Belief Dynamics for Strategic Games

Our goal is to understand well-known solutions concepts, not in terms of fixed
informational contexts—for instance, models (e.g., type spaces or epistemic
models) satisfying rationality and common belief of rationality—but rather
as a result of a dynamic, interactive process of “information exchanges”. It
is important to note that we do not see this work as an attempt to represent
some type of “pre-play communication" or form of “cheap talk". Instead, the
idea is to represent the process of rational deliberation that takes the players
from the ex ante stage to the ex interim stage of decision making. Thus, the
“informational exchanges" are the result of the players’ practical reasoning about
what they should do, given their current beliefs. This is in line with the current
research program using dynamic epistemic and doxastic logics to analyze well-
known solution concepts (cf. Apt and Zvesper (2010a), Baltag et al. (2009),
van Benthem (2007) where the “rationality announcements" do not capture any
type of communication between the players, but rather internal observations
about which outcomes of the game are “rational").

3The notion of substantive assumption is explored in more detail in Roy and Pacuit (2010).
4The reader not familiar with this area can consult the recent textbook van Benthem (2010) for

details.
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2.1 Describing an Informational Context

Let G = 〈N, {Si}i∈N,ui〉 be a strategic game (where N is the set of players and
for each i ∈ N, Si is the set of actions for player i and ui : ΠiSi → R is a utility
function).5 The informational context of a game describes the players’ hard
and soft information about the possible outcomes of the game. Many different
formal models have been used to represent an informational context of a game
(for a sample of the extensive literature, see Bonanno and Battigalli (1999),
van Benthem (2007) and references therein). In this paper we employ one such
model: a plausibility structure consisting of a set of states and a single plausibility
ordering (which is reflexive, transitive and connected) w � v that says “v is at
least as plausible as w." Originally used as a semantics for conditionals (cf.
Lewis (1973)), these plausibility models have been extensively used by logicians
(van Benthem 2004; 2010, Baltag and Smets 2009a), game theorists (Board 2004)
and computer scientists (Boutilier 1992, Lamarre and Shoham 1994) to represent
rational agents’ (all-out) beliefs. We thus take for granted that they provide a
natural model of beliefs in games:

Definition 2.1. Let G = 〈N, {Si}i∈N,ui〉 be a strategic form game. An infor-
mational context of G is a plausibility model MG = 〈W,�, σ〉 where � is a
connected, reflexive, transitive and well-founded6 relation on W and σ is a
strategy function: a function σ : W → ΠiSi assigning strategy profiles to each
state. To simplify notation, we write σi(w) for (σ(w))i (similarly, write σ−i(w) for
the sequence of strategies of all players except i).

A few comments about this definition are in order. First of all, note that there
is only one plausibility ordering in the above models, yet we are interested in
games with more than one player. There are different ways to interpret the fact
that there is only one plausibility ordering. One is that the models represent
the beliefs of a single player before she has made up her mind about which
option to choose in the game. A second interpretation is to think of a model
as representing the modeler’s or game theorist’s point of view about which
outcomes are more or less plausible given the reasoning of the players. Thus,

5We assume the reader is familiar with the basic concepts of game theory. For example, strategic
games and various solution concepts, such as iterated removal of strictly (weakly) dominated
strategies.

6Well-foundedness is only needed to ensure that, for any set X, the set of minimal elements
in X is nonempty. This is important only when W is infinite – and there are ways around this in
current logics. Moreover, the condition of connectedness can also be lifted, but we use it here for
convenience.
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a model describes a stage of the rational deliberation of all the players starting
from an initial model where the players have the same beliefs (i.e., the common
prior). The private information about which outcomes the players consider
possible given their actual choice can then be defined from the conditional beliefs.7

Our second comment on the above definition is that since we are representing
the rational deliberation process, we do not assume that the players have made
up their minds about which actions they will choose. Finally, note that the
strategy functions need not be onto. Thus, the model represents the player’s(s’)
opinions about which outcomes of the game are more or less plausible among
the ones that have not been ruled out.

Of course, this model can be (and has been: see Baltag and Smets (2009a),
van Benthem (2010)) extended to include beliefs for each of the players, an
explicit relation representing the player(s) hard information or by making the
plausibility orders state-dependent. In order to keep things simple we focus
on models with a single plausibility ordering.

We conclude this brief introduction to plausibility models by giving the well-
known definition of a conditional belief. For X ⊆ W, let Min�(X) = {v ∈ X | v �
w for all w ∈ X } be the set of minimal elements of X according to �.

Definition 2.2 (Belief and Conditional Belief). LetMG = 〈W,�, σ〉 be a model
of a game G. Let E and F be subsets of W, we say:

• E is believed conditional on F inMG provided Min�(F) ⊆ E.

Also, we say E is believed inMG if E is believed conditional on W. Thus, E is
believed provided Min�(W) ⊆ E

2.2 A Primer on Belief Dynamics

We are not interested in informational contexts per se, but rather how the infor-
mational context changes during the process of rational deliberation. The type
of change we are interested in is how a model MG of a game G incorporates
new information about what the players should do (according to a particular
choice rule). As is well known from the belief revision literature, there are

7The suggestion here is that one can define a partition model á la Aumann Aumann (1999)
from a plausibility model. Working out the details is left for future work, but we note that such
a construction blurs the distinction between so-called belief-based and knowledge-based analyses of
solution concepts (cf. the discussion in Brandenburger (2007)).
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many ways to transform a plausibility model given some new information Rott
(2006). We do not have the space to survey the entire body of relevant literature
here (cf., van Benthem (2010), Baltag and Smets (2009b)). Instead we sketch
some key ideas, assuming the reader is already familiar with this approach to
belief revision.

The general approach is to define a way of transforming a plausibility model
MG given a proposition ϕ. A transformation τ maps plausibility models and
propositions to plausibility models (we writeMτ(ϕ)

G for τ(MG, ϕ)). Different def-
initions of τ represent the different attitudes an agent can take to the incoming
information. The picture below provides three typical examples:

A

B

C

D

E

ϕ

!(ϕ) : A ≺ B

A

B

C

D

E

ϕ

↑ (ϕ) : A ≺ C ≺ D ≺ B ∪ E

A

B

C

D

E

ϕ

⇑ (ϕ) : A ≺ B ≺ C ≺ D ≺ E

The operation on the left is the well-known public announcement operation Plaza
(1989), Gerbrandy (1999), which assumes that the source of ϕ is infallible, ruling
out any possibilities that are inconsistent withϕ. For the other transformations,
while the players do trust the source of ϕ, they do not treat the source as
infallible. Perhaps the most ubiquitous policy is conservative upgrade (↑ϕ),
which allows the player(s) only tentatively to accept the incoming information
ϕ by making the best ϕ-worlds the new minimal set while keeping the old
plausibility ordering the same on all other worlds. The operation on the right,
radical upgrade (⇑ϕ), is stronger, moving all ϕ worlds before all the ¬ϕ worlds
and otherwise keeping the plausibility ordering the same. These dynamic
operations satisfy a number of interesting logical principles van Benthem (2010),
Baltag and Smets (2009b), which we do not discuss further here.

We are interested in the operations that transform the informational context
as the players deliberate about what they should do in a game situation. In
each informational context (viewed as describing one stage of the deliberation
process), the players determine which options are “rationally permissible" and
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which options the players ought to avoid (which is guided by some fixed
choice rule). This leads to a transformation of the informational context as the
players adopt the relevant beliefs about the outcome of their practical reasoning.
The different types of transformation mentioned above then represent how
confident the player(s) (or modeler) is (are) in the assessment of which outcomes
are rational. In this new informational context, the players again think about
what they should do, leading to another transformation. The main question is
does this process stabilize?

The answer to this question will depend on a number of factors. The general
picture is

M0
τ(D0)
=⇒ M1

τ(D1)
=⇒ M2

τ(D2)
=⇒ · · ·

τ(Dn)
=⇒ Mn+1=⇒· · ·

where each Di is some proposition and τ is a model transformer. Two questions
are important for the analysis of this process. First, what type of transformations
are the players using? For example, if τ is a public announcement, then it is not
hard to see that, for purely logical reasons, this process must eventually stop
at a limit model (see Baltag and Smets (2009a) for a discussion and proof). The
second question is where do the propositions Di come from? To see why this
matters, consider the situation where you iteratively perform a radical upgrade
with p and ¬p (i.e., ⇑ (p),⇑ (¬p), . . .). Of course, this sequence of upgrades never
stabilizes. However, in the context of reasoning about what to do in a game
situation, this situation may not arise thanks to special properties of the choice
rule that is being used to describe (or guide) the players’ decisions.

2.3 Deliberating about What to Do

It is not our intention to have the dynamic operations of belief change discussed
in the previous section directly represent the players’ (practical) reasoning. In-
stead, we treat practical reasoning as a “black box" and focus on general choice
rules that are intended to describe rational decision making (under ignorance).
To make this precise, we need some notation:

Definition 2.3 (Strategies in Play). Let G = 〈N, {Si}i∈N, {ui}i∈N〉 be a strategic
game and MG = 〈W,�, σ〉 an informational context of G. For each i ∈ N, the
strategies in play for i is the set

S−i(MG) = {s−i ∈ Π j,iS j | there is w ∈Min�(W) with σ−i(w) = s−i}
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This set S−i(MG) is the set of strategies that are believed to be available for
player i at some stage of the deliberation process represented by the model
MG. Given S−i(MG), different choice rules offer recommendations about which
options to choose. There are many choice rules that could be analyzed here
(e.g., strict dominance, weak dominance or admissibility, minimax, minmax
regret, etc.). For the present purposes we focus primarily on weak dominance
(or admissibility), although our main theorem in Seciton 1 applies to all choice
rules.

Weak Dominance (pure strategies8) Let G = 〈N, {Si}i∈N, {ui}i∈N〉 be a strategic
game andMG an model of G. For each i and a ∈ Si, put a ∈ Swd

i (MG) provided
there is b ∈ Si such that for all s−i ∈ S−i(MG), ui(s−i, b) ≥ ui(s−i, a) and there is
some s−i ∈ S−i(MG) such that ui(s−i, b) > ui(s−i, a).

So an action a is weakly dominated for player i if it is weakly dominated with
respect to all of i’s available actions and the (joint) strategies believed to be still
in play for i’s opponents.

More generally, we assume that given the beliefs about which strategies are in
play the players categorize their available options (i.e., the set Si) into “good"
(or “rationally permissible") strategies and those strategies that are “bad" (or
“irrational"). Formally, a categorization for player i is a pair Si(MG) = (S+

i ,S
−

i )
where S+

i ∪S−i ⊆ Si. (We write Si(MG) to signal that the categorization depends
on current beliefs about which strategies are in play.) Note that, in general,
a categorization need not be a partition (i.e., S+

i ∪ S−i , Si) . See Cubitt and
Sugden (2011b) for an example of such a categorization algorithm. However,
in the remainder of this paper we focus on familiar choice rules where the
categorization does form a partition. For example, for weak dominance we let
S−i = Swd

i (MG) and S+
i = Si − S−i .

Given a model of a gameMG and for each player i a categorization is Si(MG);
the next step is to incorporate this information into MG using some model
transformation. We start by introducing a simple propositional language to
describe a categorization.

Definition 2.4 (Language for a Game). Let G = 〈N, {Si}i∈N, {ui}i∈N〉 be a strategic
game. Without loss of generality, assume that each of the Si is disjoint and let

8This definition can be modified to allow for dominance by mixed strategies, but we leave issues
about how to incorporate probabilities to another occasion.
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AtG = {Pi
a | a ∈ Si} be a set of atomic formulas (one for each a ∈ Si). The propo-

sitional language for G, denoted LG, is the smallest set of formulas containing
AtG and closed under the Boolean connectives ¬ and ∧.

Formulas ofLG are intended to describe possible outcomes of the game. Given
an informational context of a gameMG, the formulasϕ ∈ LG is can be associated
with subsets of the set of states in the usual way:

Definition 2.5. Let G be a strategic game, MG = 〈W,�, σ〉 an informational
context of G and LG a propositional language for G. We define a map [[·]]MG :
LG → ℘(W) by induction as follows: [[Pi

a]]MG = {w | σ(w)i = a}, [[¬ϕ]]MG =
W − [[ϕ]]MG and [[ϕ ∧ ψ]]MG = [[ϕ]]MG ∩ [[ψ]]MG .

Using the above language, for each informational context of a gameMG, we can
define Do(MG), which describes what the players are going to do according to
a fixed categorization procedure. To make this precise, suppose that Si(MG) =
(S+

i ,S
−

i ) is a categorization for each i and define:

Doi(MG) :=
∨
a∈S+

i

Pa
i ∧

∧
b∈S−i

¬Pb
i

Then, let Do(MG) =
∧

i Doi(MG).9

The general project is to understand the interaction between types of catego-
rizations (eg., choice rules) and types of model transformations (representing
the rational deliberation process). One key question is: Does a deliberation pro-
cess stabilize(and if so, under what conditions)? (See Baltag and Smets (2009a)
for general results here.) In this paper there are two main reasons why an
upgrade stream would stabilize. The first is from properties of the transforma-
tion. The second is because the choice rule satisfies a monotonicity property so
that, eventually, the categorizations stabilize and no new transformations can
change the plausibility ordering. We are now ready to give a formal definition
of a “deliberation sequence":

Definition 2.6 (Deliberation Sequence). Given a game G and an informational
contextMG, a deliberation sequence of type τ (which we also call an upgrade se-
quence), induced byMG is an infinite sequence of plausibility models (Mm)m∈N
defined as follows:

9There are other ways to describe a categorization, but we leave this for further research.
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M0 =MG Mm+1 = τ(Mm,Do(Mm))

An upgrade sequence stabilizes if there is an n ≥ 0 such thatMn =Mn+1.

3 Case Study: Iterated Admissibility

A key issue in the epistemic foundations of game theory is the epistemic anal-
ysis of iterated removal of weakly dominated strategies. Many authors have
pointed out puzzles surrounding such an analysis Asheim and Dufwenberg
(2003), Samuelson (1992), Brandenburger et al. (2008). For example, Samuelson
Samuelson (1992) showed (among other things) that “common knowledge of
admissibility" may be an inconsistent concept (in the sense that there is a game
which does not have a model with a state satisfying ‘common knowledge of
rationality’ (Samuelson 1992, Example 8, pg. 305)).10 This is illustrated by the
following game:

Bob

L R

Ann
u 1,1 1,0

d 1,0 0,1

The key issue is that the assumption that players only play admissible strategies
conflicts with the logic of iteratively removing strategies deemed “irrational".
The general framework introduced above offers a new, dynamic perspective
on this issue, and on reasoning with admissibility more generally.11 Dynami-
cally, Samuelson’s non-existence result corresponds to the fact that the players’
rational upgrade streams do not stabilize. That is, the players are not able to

10Compare with strict dominance: it is well known that common knowledge that players do not
play weakly dominated strategies implies that the players choose a strategy profile that survives
iterated removal of strictly dominated strategies.

11We do not provide an alternative epistemic characterization of this solution concept. Both
Brandenburger et al. (2008) and Halpern and Pass (2009) have convincing results here. Our goal is
to use this solution concept as an illustration of our general approach.
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deliberate their way to a stable, common belief in admissibility. In order to
show this we need the “right" notion of model transformation.

Our first observation is that the model transformations we discussed in Section
2.2 do not explain Samuelson’s result.

Observation 1. Suppose that the categorization method is weak dominance
and that Do(M) is defined as above. For each of the model transformations
discussed in Section 2.2 (i.e., public announcement, radical upgrade and con-
servative upgrade), any deliberation sequence for the above game stabilizes.

The proof of this Observation is straightforward since the language used to de-
scribe the categorization does not contain belief modalities12. This observation
is nice, but it does not explain the phenomena noticed by Samuelson Samuelson
(1992). The problem lies in the way we incorporate information when there is
more than one element of S+

i (M) for some agent i.

It is well known that, in general, there are no rational principles of decision
making (under ignorance or uncertainty) which always recommend a unique
choice. In particular, it is not hard to find a game and an informational context
where there is at least one player without a unique “rational choice". How
should a rational player incorporate the information that more than one action
is classified as “choice-worthy" or “rationally permissible" (according to some
choice rule) for her opponent(s)? Making use of a well-known distinction
due to Edna Ullmann-Margalit and Sidney Morgenbesser Ullmann-Margalit
and Morgenbesser (1977), the assumption that all players are rational can help
determine which options the player will choose, but rationality alone does not
help determine which of the rationally permissible options will be “picked"13.
What interests us is how to transform a plausibility model to incorporate the
fact that there is a set of choice-worthy options for (some of) the players.

12An interesting extension would be to start with a multiagent belief model and allow players
not only to incorporate information about which options are “choice-worthy", but also what beliefs
their opponents may have. We leave this extension for future work, focusing here on setting up
the basic framework.

13This line of thought led Cubitt and Sugden to impose a “privacy of tie breaking" property
which says that players cannot know that her opponent will not pick an option that is classified
as “choice-worthy" (Cubitt and Sugden 2011a, pg. 8) (cf. also Asheim and Dufwenberg (2003)’s
“no extraneous restrictions on beliefs" property). Wlodeck Rabinovich takes this even further
and argues that from the principle of indifference, players must assign equal probability to all
choice-worthy options Rabinowicz (1992).
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We suggest that a generalization of conservative upgrade is the notion we are
looking for (see Holliday (2009) for more on this operation). The idea is to do
an upgrade with a set of propositions {ϕ1, . . . , ϕn} by letting the most plausible
worlds be the union of each of the most plausible ϕi worlds:

ϕ2

ϕ1
A B

C D
E

F G

↑{ϕ1, ϕ2} : A ∪ E ≺ B ≺ C ∪D ≺ F ∪ G

We do not give the formal definition here, but it should be clear from the
example given above. It is not hard to see that this is not the same as↑ϕ1∨· · ·∨ϕn,
since, in general, Min�([[ϕ1]] ∪ · · · ∪ [[ϕn]]) ,

⋃
i Min�([[ϕi]]). We must modify

our definition of Do(M): for each i ∈ N let:

Doi(Si(MG)) = {Pi
a | a ∈ S+

i (MG)} ∪ {¬Pi
b | b ∈ S−i (MG)}

Then define Do(S(MG)) = Doi(Si(MG))
∧

Do2(S2(MG)) · · ·
∧

Don(Sn(MG)),
where if X and Y are two sets of propositions, then let X ∧ Y := {ϕ ∧ ψ | ϕ ∈
X, ψ ∈ Y}.

Observation 2. Suppose that the categorization method is weak dominance as
explained in Section 2.3 and that Do(M) is defined as above. Then, starting with
the initial full model of the above game,14 a generalized conservative upgrade
stream does not stabilize.

The following upgrade stream illustrates this observation:

14A full model is one where it is common knowledge that each outcome of the game is equally
plausible.
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u,L u,R

d,L d,R

M0

d,L d,R

u,L u,R

M1

↑D0 d,L d,R

u,R

u,L

M2

↑D1 ↑D2

d,R

u,R

u,L d,L

M3

u,L u,R

d,L d,R

M4 =M0

↑D3

Intuitively, fromM0 toM2 the agents have reasons to exclude d and R, leading
them to the common belief that u,L is played. At that stage, however, d is
admissible for Ann, canceling the reason the agents had to rule out this strategy.
The rational response here is thus to suspend judgment on d, leading toM3. In
this new model the agents are similarly led to suspend judgment on not playing
R, bringing them back to M0. This process loops forever: the agents’ reasoning
does not stabilize.

A corollary of this observation is that common belief in admissibility is not
sufficient for the stabilization of upgrade streams. Stabilization also requires
that all and only those profiles that are most plausible are admissible.

4 Stabilization Theorem

In this section we informally state and discuss a number of abstract principles
which guarantee that a rational deliberation sequence will stabilize. The prin-
ciples ensure that the categorizations are “sensitive" to the players’ beliefs and
that the players respond to the categorizations in the appropriate way.

We start by fixing some notation. Let U be a fixed set of states and G a fixed
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strategic game. We confine our attention to transformations between models
of G whose states come from the universe of states U. Let MG be the set of all
such plausibility models. A model transformation is then a function that maps
a model of G and a finite set of formulas of LG to a model in MG:

τ : MG × ℘<ω(LG)→MG

where ℘<ω(LG) is the set of finite subsets of LG. Of course, not all transforma-
tions τ make sense in this context.

The first set of principles that τ must satisfy ensure that the categorizations
and belief transformation τ are connected in the “right way". One natural
property is that the belief transformations treat equivalent formulas the same
way. A second property we impose is that receiving exactly the same (ground)
information twice does not have any effect on the players’ beliefs. These are
general properties of the belief transformation. Certainly, there are other natural
properties that one may want to impose (for example, variants of the AGM
postulates Alchourrón et al. (1985)), but for now we are interested in the minimal
principles needed to prove a stabilization result.

The next set of properties ensure that the transformations respond “properly" to
a categorization. First, we need a property to guarantee that the categorizations
depend only on the players’ beliefs. Second, we need to ensure that all upgrade
sequences respond to the categorizations in the right way:

C2− For any upgrade sequence (Mn)n∈N in τ, if a ∈ S−i (Mn) then¬Pa
i is believed

inMn+1.

C2+ For any upgrade sequence (Mn)n∈N in τ, if a ∈ S+
i (Mn) then ¬Pa

i is not
believed inMn+1

Finally, we need to assume that the categorizations are monotonic:

Mon− For any upgrade sequence (Mn)n∈N, for all n ≥ 0, for all players i ∈ N,
S−i (Mn) ⊆ S−i (Mn+1)

Mon+ Either for all models MG, S+
i (MG) = Si − S−i (MG) or for any upgrade

sequence (Mn)n∈N, for all n ≥ 0, for all players i ∈ N, S+
i (Mn) ⊆ S+

i (Mn+1)

In particular, Mon− means that once an option for a player is classified as “not
rationally permissible", it cannot drop this classification at a later stage of the
deliberation process.
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Theorem 1. Suppose that G is a finite game and all of the above properties are satisfied.
Then every upgrade sequence (Mn)n∈N stabilizes.

The proof can be found in the full version of the paper. The role of monotonicity
of the choice has been noticed by a number of researchers (see Apt and Zvesper
(2010b) for a discussion). This theorem generalizes van Benthem’s analysis of
rational dynamics van Benthem (2007) to soft information, both in terms of
attitudes and announcements. It is also closely related to the result in Apt and
Zvesper (2010b) (a complete discussion can be found in the full paper).

5 Concluding remarks

In this paper we have proposed a general framework to analyze how “proper”
informational contexts my arise. We have provided general conditions for the
stabilization of deliberation sequences in terms of structural properties of both
the decision rule and the information update policy. We have also applied
the framework to admissibility, giving a dynamic analysis of Samuelson’s non-
existence result.

Throughout the paper we have worked with (logical) models of all out atti-
tudes, leaving aside probabilistic andgraded beliefs, even though the latter are
arguably most widely used in the current literature on epistemic foundations
of game theory. It is an important but non-trivial task to transpose the dy-
namic perspective on informational contexts that we advocate here to such
probabilistic models. This we leave for future work.

Finally, we stress that the dynamic perspective on informational contexts is a
natural complement and not an alternative to existing epistemic characteriza-
tions of solution concepts van Benthem et al. (2011), which offer rich insights
into the consequences of taking seriously the informational contexts of strategic
interaction. What we have proposed here is a first step towards understanding
how or why such contexts might arise.
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Abstract

We develop an algebraic modal logic that combines epistemic and dynamic
modalities with a view to modelling information acquisition (learning) by
automated agents in a changing world. Unlike most treatments of dynamic
epistemic logic, we have transitions that “change the state” of the underlying
system and not just the state of belief of the agents. The key novel feature
that emerges is the need to have a way of “inverting transitions” and distin-
guishing between transitions that “really happen” and transitions that are
possible.

Our approach is algebraic, rather than being based on a Kripke-style se-
mantics. The semantics are given in terms of quantales. We study a class
of quantales with the appropriate inverse operations and prove properties
of the setting. We illustrate the ideas with toy robot-navigation problems.
These illustrate how an agent learns information by taking actions.
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1 Introduction

Epistemic logic has proved very important in the analysis of protocols in dis-
tributed systems (see, for example, Fagin et al. (1995)) and, more generally
in any situation where there is some notion of cooperation or “agreement”
between agents. The original work in distributed systems, by Halpern and
Moses Halpern and Moses (2000) and several others modelled the knowledge
and belief of agents using Kripke-style models Kripke (1963) . In these models
there are a set of states (often called “possible worlds”) in which the agent
could be and, for each agent, an equivalence relation on the states. If two states
are equivalent to an agent then that agent cannot “tell them apart”. An agent
“believes” a fact ϕ in the state s if, in all states t that the agent “thinks” is
equivalent to s, the fact ϕ holds. The quoted words in the preceding sentences
are, of course, unnecessary anthropomorphisms that are intended to give an
intuition for the definitions.

A vital part of any analysis is how processes “learn” as they participate in the
protocol. The main literature on distributed systems treat this as a change in the
Kripke equivalence relations and argue about these changes only in the semantics.
For instance, the “interpreted system” setting of Fagin et al. (1995) uses runs
of protocols to model how the local and global information states of the system
change, but this kind of dynamics has no counterpart in the syntax of logic:
epistemic logic does not have the “dynamic” modalities that refer to updating
of the state of belief. On the other hand, dynamic epistemic logic has indeed
been studied; see, for example the original papers Plaza (2007), Gerbrandy and
Groeneveld (1997), Baltag and Moss (2004) and the recent book Ditmarsch et al.
(2007). In the second author’s doctoral dissertation an algebraic approach to
dynamic epistemic logic was studied in depth Baltag et al. (2007), Sadrzadeh
(2006). Relational models and logics where the temporal structure is chosen
over the dynamic one have also been studied, for example in the context of
Alternating Temporal Time Epistemic Logic (ATEL) Ågotnes (2006). But in this
paper our focus is on the structures that prefer the dynamic structure over the
temporal ones.

The bulk of the work in this area (apart from Baltag (2002), van Ditmarsch et al.
(2005), van Benthem et al. (2006), the differences with which we will discuss
below), concerns situations where the state of belief is changed by broadcasts but
not situations where the state of the system is changed. An illuminating concrete
example of such situations arises in robot navigation. A general feature of
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these protocols is that an agent is given the description of a place, but cannot
determine exactly where it is; however, it can move and as a result may acquire
information that allows it to infer its present location. Consider a robot that is
given the map of a small computing laboratory with 5 rooms accessible via 3
actions, as follows:

s2
b //

a

��

s3
c // s5

s1 a
//

b
>>

s4

c
>>

The robot cannot see the whole path in front of it; it can only see one step ahead
of itself, hence only knows about the one-step actions that he can take in each
state. Since it can do the same immediate actions in the pair s1, s2, it cannot tell
s1 and s2 apart, and similarly for the pair s3, s4. Once in s1 (similarly for s2), it
believes that it could be in s1 or s2, and once in s3 (similarly for s4), it believes
that it could be in s3 or s4. But if it is in s1 and it performs an a action, then it
reaches s4 and learns where it is and where it had been just before the a action.
So after doing an a in s1, he believes that he is in s4.

A deeper investigation of such situations reveals that it is not a question of
“patching up” the existing theory of dynamic epistemic logics and in particular
the algebraic approach in which the second author was involved Baltag and
Moss (2004). There are some interesting fundamental changes that need to
be made. First of all, one has to distinguish between transitions that exist
in the agent’s “mental model” of the system and actions that actually occur.
Second, one has to introduce a converse dynamic modality in order to correctly
formulate the axioms for updating the robot’s belief about his whereabouts1.
To see why, let us reason as we think the robot whould: when it reaches s4,
it checks with its map and reasons that the only way it could have reached s4
would be that it was originally in s1. It rules out s3 from its uncertainty set
about s4, because, according to the map, it could not have reached s3 via an
a action. We have two types of data here, the locations and actions described
on the map versus the ones in reality. The data on the map are hard-coded
in the robot and there is no uncertainty about it, the map fully describes the
system. But there is some uncertainty about the real locations. The robot is

1Note that here we are only talking about propositional belief, as we have assumed that the
robot does not have any uncertainties about the one-step actions that it can take and knows about
all of them all the time. Thus we do not fall into the problems discussed in Ågotnes (2006), where
expressing the knowledge of agents about all possible actions is impossible.
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uncertain about its location but the actions it takes change its uncertainties.
The other issue is that to be able to encode what actions could have led the
robot to where it is, it needs to look back, so we need a converse operation to
reason about the past. Now by moving from s1 to s4, the robot has changed
its uncertainty, acquired information, and learned where it is located. This is
exactly the manner in which our new uncertainty reduction axiom formalizes
the elimination of past uncertainties: after performing a certain move in the
real world, the robot consults its description, considers its possibilities and
eliminates the ones that could not have been reached as a result of the action it
just performed. Furthermore with this converse operation, we can also derive
information about the past, that the robot was in s1 before doing action a.

This paper presents an algebraic theory with these features. The advantage
of working in the algebraic setting is that it abstracts over the details of the
Kripke structures and showcases the high-level structure of the actions and
their updates. It turns out that epistemic update is the action of the quantale
of programs/actions on the module of propositions (factual and epistemic),
hence it is the left adjoint to the dynamic modality which encodes the weakest
precondition of Hoare Logic. Epistemic modalities are also encoded as an
adjoint pair: the belief modality is the right adjoint of the appearance map,
which is the lifting to subsets of the accessibility relation of the Kripke structure.
This results in a simple method of computing belief acquisition after an action:
uniform unfolding of epistemic and dynamic adjunctions, which simplifies, to
a great extent, the proofs of complex protocols and puzzles, such as the muddy
children, even the versions with dishonest children, see Baltag et al. (2007),
Sadrzadeh (2006).

Regarding related work, the reason the setting of Baltag et al. (2007) fails for
the navigation situations is that its key learning axiom is only geared towards
epistemic actions and is not powerful enough for fact-changing actions. It
requires that the uncertainty about (possible states of) a location after an action
to be included in the result of applying the action to the uncertainty about
the location beforehand, a property similar to perfect recall in protocol models
of Halpern and Moses (2000). This fails here, since after performing an a at s1
one ends up in s4, hence uncertainty about s1 after an a is the same as uncertainty
about s4, consisting of s3 and s4. But performing a on the set of uncertainties
about s1, consisting of s1 and s2, results in both s4 and s1. However, {s3, s4} is not
included in {s4, s1}. Moreover, after the robot moved to s4, it can conclude that
it was in s1 before moving; the language of Baltag et al. (2007) simply cannot
express these past tense properties. Finally, dynamic epistemic logic has been
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extended with assignments and post-conditions to model certain types of fact-
changing actions Baltag (2002), van Ditmarsch et al. (2005), van Benthem et al.
(2006). Location-changing actions have not been studied there and indeed we
faced difficulties trying to apply their setting following our own intuitions. In
a nutshell, one has to divide the transition system into two separate models:
a state model whose states are the states of the transition system and whose
accessibility relations are the uncertainties, and an action model with a labeled
superset of transitions as states and an extra notion of uncertainty about them as
accessibility relations. One loses the above simple image, but more important
is that the usual update product of these two models does not satisfy our desired
belief properties. For details and examples see Horn (2011).

We develop an algebraic setting to formalize information acquisition from such
navigation protocols. We study special cases of the past and future deterministic
action and converse action operations of the algebra and prove some of their
axiomatic properties. We apply our algebra to model a grid and a map-based
navigation protocol and use the axioms to prove that the agent learns where
he is and was after moving about. Further applications of our setting are to AI,
mobile communication, security, and control theory.

2 The Algebra of di-systems

We need to model “actions” and “formulas”. The actions are modelled by a
quantale while the propositions are a module over the quantale; i.e. actions
modify propositions.

Definition 2.1. A quantale (Q,
∨
, •, 1) is a complete sup-lattice equipped with a

unital monoid structure satisfying q•(
∨

i qi) =
∨

i(q•qi) and (
∨

i qi)•q =
∨

i(qi•q).

Instead of arbitrary complete sup-lattices, we take our complete sup-lattices
to be complete completely distributive prime-algebraic lattices. Recall that a prime
element, or simply “prime”, p in lattice has the property that for any x, y in
the lattice, p ≤ x ∨ y implies that p ≤ x or p ≤ y; “prime algebraic” means that
every element is the supremum of the primes below it. The restriction to prime
algebraic lattices, while definitely a serious restriction, includes a large class
of interesting examples, for instance all transition systems. Prime algebraicity
would be a restriction for extensions to probabilistic systems; we will address
such issues in future work. The use of algebraicity is to be able to use simple



326 Learning in a changing world

set-theoretic arguments via the representation theorem for such lattices Gehrke
and Jónsson (1994), Winskel (2009). For finite distributive lattices it is not
a restriction at all because of Birkhoff’s classical duality theory. Henceforth,
we will not explicitly state that we are working with (completely) distributive
prime-algebraic lattices.

Definition 2.2. A right-module over Q is a sup-lattice M with an action of Q
on M, denoted by − · − : M ×Q→M and satisfying the following axioms:

(m · q) · q′ = m · (q • q′)

m · (
∨

i

qi) =
∨

i

(m · qi) (
∨

i

mi) · q =
∨

i

(mi · q)

m · 1 = 1 ·m = m

We call the collection of actions and propositions a system.

Definition 2.3. A system is a pair consisting of a quantale Q and a right-module
M over Q. We write (M,Q, ·) for a system.

This is closely related to the definition of Abramsky and Vickers who have
also argued for the application to Computer Science of quantales of actions,
see Abramsky and Vickers (1993). As is usually done, we interpret elements of
the module as propositions and the order as entailment, thus m∨m′ is the logical
disjunction and ⊥ is the falsum. The elements of the quantale are interpreted
as actions and the order is the order of non-determinism, thus q∨ q′ is the non-
deterministic choice and ⊥ is crash, monoid multiplication q • q′ is sequential
composition, and its unit 1 is the action that does nothing.

Example 1. Consider the following transition system

x

a
��

a

��

y

a
��

z1 z2

We model it as a system (L(S),M(A∗), ·), where A∗ is the free monoid generated
from the set A = {a} with the multiplication being juxtaposition and its unit
the empty string. M(A∗) is the quantale generated on that monoid and L(S)
is the sup-lattice generated from the set S = {x, y, z1, z2}. The most concrete
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examples of L(S) andM(A∗) are P(S) and P(A∗). The action on atoms is given
by x · a = z1 ∨ z2 and y · a = z2, whereas z1 · a = z2 · a = ⊥. This is extended
to juxtaposition and choice (subsets of actions), as well as subsets of states
pointwise.

Example 2. The powerset P(S) of a set S is the right module of the quantale
of all the relations thereon P(S × S). Relational composition is the monoid
multiplication, the diagonal relation is its unit, and the join is set union. The
action is the pointwise image of the relation, i.e. for W ⊆ S and R ⊆ S × S

W · R =
⋃
w∈W

R[w] = {z ∈ S | ∃w ∈W, (w, z) ∈ R}

Since the action preserves all the joins of its module, the map − · q : M →

M, obtained by fixing the quantale argument, has a Galois right adjoint that
preserves all the meets. This is denoted by − · q a [q]− and defined in the
canonical way, as follows:

[q]m :=
∨
{m′ | m′ · q ≤ m}

The right adjoints stand for the “dynamic modality” of Hoare logic, encoding
the “weakest preconditions” of programs. Each of [q]m is read as “after doing
action q or running program q, proposition m holds”. This is, in effect, all the
propositions such that if true at the input of q, then at its output m holds. One
gets very nice logical properties, relating the action and its adjoint to each other
and to the ∨ and ∧ operators of the lattice and their units ⊥ and >. Some
examples are exhibited in the following proposition.

Proposition 1. The following inequalities hold in any system (M,Q, ·):
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(1) ([q]m) · q ≤ m (2) m ≤ [q](m · q)

(3) (m ∧m′) · q ≤ m · q ∧ m′ · q (4) m · (q ∧ q′) ≤ m · q ∧ m · q′

(5) [q](m ∨m′) ≥ [q]m ∨ [q]m′

(6) q ≤ q′ =⇒ [q′]m ≤ [q]m (7) [⊥]m = >

(8) [q ∨ q′]m = [q]m ∧ [q′]m (9) [q ∨ q′]m ≤ [q]m ∨ [q′]m

(10) [q ∧ q′]m ≥ [q]m ∨ [q′]m (11) [q ∧ q′]m ≥ [q]m ∧ [q′]m

(12) [
∨

i qi]m =
∧

i[qi]m

Proof. (1) and (2) are immediate consequences of the definition of [q] as a right
adjoint. (3), (4), (5) follow from monotonicity. For (6), assume q ≤ q′ and we
have to show ∨

{m′ | m′ · q′ ≤ m} ≤
∨
{m′′ | m′′ · q ≤ m}.

It suffices to show that an arbitrary element of the lhs set is in the rhs set. Take
one such element m′, we have m′ · q′ ≤ m, but since q ≤ q′, we also have that
m′ · q ≤ m′ · q′, hence m′ · q ≤ m, i.e. m′ is also in the rhs set. For (7), the direction
[⊥]m ≤ > is trivial, the other direction> ≤ [⊥]m is equivalent to>·⊥ ≤ m, which
holds since > · ⊥ = ⊥. For (8), the ≤ direction follows from (6) and definition
of meet, for the ≥ direction we have to show [q]m ∧ [q′]m ≤ [q ∨ q′]m, which is
by adjunction equivalent to ([q]m ∧ [q′]m) · (q∨ q′) ≤ m. By join preservation of
action, this is equivalent to ([q]m ∧ [q′]m) · q ∨ ([q]m ∧ [q′]m) · q′ ≤ m. To show
this, we have to show that both disjuncts are less than or equal to m. Consider
the first one, by (3) and transitivity, it suffices to show [q]m · q ∧ [q′]m · q ≤ m, by
the definition of meet and transitivity it suffices to show either of the conjuncts
satisfy the inequality, now [q]m·q ≤ m, is true by (1). The proofs of the remaining
items follow from these in a similar way, e.g. (12) follows from (7) and (8). �

Definition 2.4. Consider a quantale Q with a right action · on the sup lattice M
and the converse of the action – written ·c for the purposes of this definition. If ·c

preserves the arbitrary joins and 1 in both arguments and satisfies the following
axioms:

(i) p ≤ p′ · q⇔ p′ ≤ p ·c q p, p′ primes
(ii) m ·c (q • q′) = (m ·c q′) ·c q
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then we refer to the system as a converse di-system and denote it by (M,Q, ·, ·c).

Proposition 2. The following hold in any converse di-system, for p a prime:

(i) m · q ≤ m′ =⇒ m ≤ m′ ·c q whenever ∀p ≤ m, p · q , ⊥
(ii) m ·c q ≤ m′ =⇒ m ≤ m′ · q whenever ∀p ≤ m, p ·c q , ⊥

Proof. Consider (i) and assume the antecedent and the side condition. Take an
arbitrary prime p ≤ m, by the antecedent and monotonicity of action p · q ≤
m · q ≤ m′. By the side condition p · q , ⊥, hence there is a prime below it
p′ ≤ p · q. By axiom (i) of the above definition this is equivalent to p ≤ p′ ·c q.
Since p′ ≤ p · q ≤ m′, by monotonicity we obtain that p′ ·c q ≤ m′ ·c q, and by
transitivity it follows that p ≤ m′ ·c q. We are in a prime algebraic lattice, hence
m is the join of the primes p below it, so we obtain that m ≤ m′ ·c q. Proof of (ii)
is mutatis mutandis. �

In a non prime-algebraic lattice the side conditions can be generalized to ∀n ≤
m,n , ⊥ ⇒ n · q , ⊥. It would not have sufficed to just require this for m as it
would be false even for examples that are transition systems.

Example 3.

s1
a // s3

s2

In this example if we take the states to be primitive propositions then we have
(s1 ∨ s2) · a , ⊥, we take m = s1 ∨ s2 and m′ = s3, so m · a ≤ m′ but m′ ·c a = s1 and
clearly m � s1

2.

To avoid repeating the non-emptiness side conditions in the preceding defini-
tions and propositions, in the rest of the paper we assume that our transition
systems have a null start state and a nulll end state. There is an arrow to every
state from the null start state and arrow to the null end state from every state.
In algebraic terms, for all primes p ∈ M and all actions q ∈ Q, we have that
p · q , ⊥ and p ·c q , ⊥.

2We thank Mai Gehrke and Sam van Gool for pointing this out.
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Proposition 3. Items (i), (ii) of proposition 2 are equivalent to the following:

(i′) m ≤ (m · q) ·c q (ii′) m ≤ (m ·c q) · q

Proof. From (i) to (i′): apply (i) to m · q ≤ m · q by taking m′ to be m · q. From
(ii) to (ii′): apply (ii) to m ·c q ≤ m ·c q and take m′ to be m ·c q. From (i′) to (i):
assume the premise of (i), i.e. m · q ≤ m′ , apply the converse action to both
sides m · q ·c q ≤ m′ ·c q, from this and (i′) by transitivity obtain m ≤ m′ ·c q. From
(ii′) to (ii): assume the premise of (ii), i.e. m ·c q ≤ m′, apply the action to both
sides m ·c q · q ≤ m′ · q, from this and (ii′) by transitivity obtain m ≤ m′ · q. �

Definition 2.5. A converse di-system is past-deterministic iff m ≤ m′ · q =⇒
m ·c q ≤ m′ . It is future-deterministic iff m ≤ m′ ·c q =⇒ m · q ≤ m′ .

Example 4. Consider the transition system of example 1, this is moreover an
example of a converse di-system (L(S),M(A∗), ·, ·c), where the converse action
is given by z1 ·

c a = x, and z2 ·
c a = x ∨ y. It is easy to check that these satisfy

the inequalities of definition 2.4. It is also easy to see that they satisfy (i), (ii)
of proposition 2 but not their converses: the transition system is neither past-
deterministic nor future-deterministic. A counterexample for the converse of
part (i) is x ≤ z2·

ca but x·a � z2. If we eliminate the leftmost edge, then the system
becomes future-deterministic and the converse of (i) holds. A counterexample
for the converse of part (ii) is z2 ≤ y · a but z2 ·

c a � y. If we eliminate the
rightmost edge, then the system becomes past-deterministic and the converse
of (i) holds.

Example 5. The transition system of the introduction is a future-deterministic
converse di-system, in the same way as the above example, where S = {s1, . . . , s5}

and A = {a, b, c}. It is not past-deterministic, since s3·
cb = s1∨s2, also s5·

cc = s3∨s4.

Example 6. Consider the setting of example 2, this is also an example of a
converse di-system, where the converse action is the point wise image of the
converse relation, i.e. for W ⊆ S and Rc

⊆ S × S converse of R, we have:

W ·c R =
⋃
w∈W

Rc[w] = {z ∈W | ∃w ∈W, (w, z) ∈ Rc
}

It is easy to see that W ·c R = W · Rc. If Rc[w] is a singleton then this di-
system becomes a past-deterministic one, if R is a singleton, it becomes future-
deterministic.
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Proposition 4. The axioms of definition 2.4 are valid for any labelled transition system.

Proof. By an elementary argument, e.g. see Abramsky and Vickers (1993), there
is a canonical bijection between labelled transition systems (S,→a)a∈A and pairs
(P(S),P(A∗)) whereP(S) is the right module of quantaleP(A∗) under the direct-
image action. Given any labelled transition system, one can define the converse
of a transition as s′(→a)cs iff s →a s′. Consider axiom (i), suppose for s, s′ ∈ S
and a ∈ A we have {s} ⊆ {s′}·a, i.e. s′ →a s, by definition of converse of transition
system, this is equivalent to s(→a)cs′, i.e. {s′} ⊆ {s} ·c a. The proof for axiom (ii)
is also routine. �

The converse action preserves all the joins of the module, thus similar to the
action, it has a Galois right adjoint denoted by −·c q a [q]c

−, canonically defined
using the converse action:

[q]cm :=
∨{

m′ ∈M | m′ ·c q ≤ m
}

Similar to [q]m, we read [q]cm as “before doing action q, proposition m held”.

For the special cases of past/future deterministic systems, the action and its
converse relate to each other in stronger ways. From definition 2.5, it easily
follows that:

Proposition 5. In a past-deterministic converse di-system we have m ≤ m′ · q ⇐⇒
m ·c q ≤ m′ . In a future-deterministic converse di-system we have m ≤ m′ ·c q ⇐⇒
m · q ≤ m′ .

As a result we have that:

Proposition 6. In a past-deterministic converse di-system we have m = m · q ·c q. In
a future-deterministic converse di-system we have m = m ·c q · q.

Putting the above two propositions together, we obtain:

Proposition 7. In a past and future-deterministic converse di-system we have − ·c q a
− · q and − · q a − ·c q.

The following propositions are of particular theoretical interest, since it turns
out that in the presence of a Boolean negation on the module, the de Morgan
dual of the right adjoint to the action is the converse action, and the de Morgan
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dual of the right adjoint to the converse action is the action. In other words − · q
and [q]c

− are de Morgan duals and so are − ·c q and [q]−. Our modules need not
necessarily be Boolean, nevertheless, these connections can be expressed using
the following properties, which axiomatize de Morgan duality in the absence
of negation, see Dunn (1995).

Before the next proposition we need a lemma.

Lemma 1. If p is a prime and l is any element of the lattice of propositions we have

(p · q) ∧ l , ⊥ ⇐⇒ p ≤ l ·c q.

Proof. For the forward direction we assume that p′ is a prime less than (p · q)∧ l.
Since p′ ≤ p · q we have from (i) of Def. 2.4 that p ≤ p′ ·c q and from p′ ≤ l and
monotonicity of ·c we have p′ ·c q ≤ l ·c q hence p ≤ l ·c q.

For the reverse direction show the contrapositive, i.e. that

p ≤ l ·c q =⇒ (p · q) ∧ l , ⊥.

We note that l is the sup of the primes below it, so we can write l =
∨

i pi. Then
using distributivity of ·c over sups we calculate

p ≤ (
∨

i

pi) ·c q =
∨

i

(p′ ·c q).

Since p is a prime this means that there is some p′, a prime less than l, such that
p ≤ p′ ·c q. Using part (i) of Def. 2.4 again we get p′ ≤ p · q. Thus p′ ≤ (p · q) ∧ l
so (p · q) ∧ l , ⊥. �

Proposition 8. In any converse di-system,

[q](l ∨ l′) ≤ [q]l ∨ (l′ ·c q) and (l ·c q) ∧ [q]l′ ≤ (l ∧ l′) ·c q

Proof. We will show the inequalities by showing that any prime less than the
left hand side is also less than the right hand side. Let p be a prime such that
p ≤ [q](l∨ l′). Then p ·q ≤ l∨ l′, which implies p ≤ (l∨ l′) ·c q and by distributivity
we have p ≤ (l ·c q) ∨ (l′ ·c q). Since p is a prime, either p ≤ l ·c q or p ≤ l′ ·c q. If
p ≤ l′ ·c q we have nothing left to prove. Suppose, therefore that p � l′ ·c q; of
course, this means that p ≤ l ·c q. Now suppose p � [q]l. This implies that there
exists a prime p′ such that p′ ≤ p · q and p′ � l. Since we have assumed that
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p � l′ ·c q we can use Lemma 1 to deduce that (p · q) ∧ l′ = ⊥; thus, no prime
below p, in particular p′, can be below l′. Hence, since p′ is a prime, p′ is not
below l ∨ l′ which contradicts p′ ≤ p · q ≤ l ∨ l′. Thus p ≤ [q]l. Combining this
with the other case, we have shown that p ≤ [q]l ∨ (l′ ·c q). Since this is true for
any prime, the required inequality follows.

For the second inequality we proceed in a similar fashion. Assume that p is a
prime below [q]l ∧ (l′ ·c q). From p ≤ [q]l we get p · q ≤ l. We want to show that
p ≤ (l ∧ l′) ·c q. Using Lemma 1 this is equivalent to (p · q) ∧ (l ∧ l′) , ⊥. Since
p · q ≤ l this simplifies to showing (p · q) ∧ l′ , ⊥. Again by Lemma 1 this is
equivalent to showing p ≤ l′ ·c q which follows from the assumption on p. �

Proposition 9. In any converse di-system we have

[q]c(l ∨ l′) ≤ [q]cl ∨ (l′ · q) and (l · q) ∧ [q]cl′ ≤ (l ∧ l′) · q

Proof. Similar to the above. �

In a Boolean module, these de Morgan dualities become explicit, as follows:

Proposition 10. If the module of a past and future deterministic converse di-system
is a Boolean algebra with negation operator ¬− : M→M, we have l · q = ¬[q]c

¬l and
l ·c q = ¬[q]¬l.

Proof. Consider the first equation, we unfold the definitions of l · q as the left
adjoint to [q]− and of [q]c

¬l as the right adjoint to − ·c q, hence equivalently
show the following∧

{l′ ∈M | l ≤ [q]l′} = ¬

∨
{l′ ∈M | l′ ·c q ≤ ¬l}

Boolean negation turns joins to meets and negates the argument, hence the
rhs is equivalent to

∧
{l′ ∈ M | l′ ·c q � ¬l} =

∧
{l′ ∈ M | l′ ·c q ≤ ¬¬l}. This

equal to lhs, since Boolean negation is involutive and by adjunction l ≤ [q]l′ is
equivalent to l · q ≤ l′, which by definitions 2.4 and 2.5 is equivalent to l′ ·c q ≤ l.
Here we are using the part of the definition based on the fact that the di-system
is future-deterministic. The proof of the second equation above is similar and
uses the fact that the di-system is past-deterministic. �

Following Karger (1996), one can define a Kleene star for iteration as m ·∗ q :=
m∨m · q∨m · (q• q)∨ · · · and [q][m := m∧ [q]m∧ [q• q]m∧ · · · , and similarly for
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the converse action and its right adjoint. It easily follows that these preserve the
adjunctions − ·∗ q a [q][− and − ·c∗ q a [q]c[

−, and that in a Boolean module they
also preserve the de Morgan dualities m ·∗ q = ¬[q]c[

¬m and m ·c∗ q = ¬[q][¬m.

3 Navigation di-systems

To distinguish the “potential” actions that happen in the model used by the
agent, for example, actions described by a map, from the “real” actions that
take place in the real world, we use a formalism in which there is a family of
systems indexed by action sequences representing how the model is modified
as actions occur The protocols that we are interested in modeling have a set
of locations or states and a set of actions, so our navigation di-systems are the
concrete ones described in example 1. These states give rise to the module on
which the quantale of actions acts. Let A be a set of actions and let Q be the
free quantale generated by A, i.e. P(A∗), where A∗, is, as usual, the free monoid
generated by A, in other words the set of sequences of actions. We write α for a
typical element of A∗ and we write αa for the sequence α with a appended. We
let S be a set of states and we define M to be P(S), the powerset of S. With this
choice of M and Q we assume that we have a di-system (M,Q, ·, ·c).

Definition 3.1. A navigation pre di-system is a di-system (M,Q, ·, ·c) together
with a second action of Q and its converse ((M,Q, ·, ·c),�,�c), where s � a is an
element of the module and (s � a) � b can be regarded as s � ab and, in general
(s � α) � a = s � αa. In order to describe the action of a general member of
Q we lift the action from primes to arbitrary sets in a point wise fashion, i.e.
s � (a ∨ b) = (s � a) ∨ (s � b).

Potential and real actions have the same labels and both live in the quantale Q.
Potential actions change the state of the map via the actions · and ·c, real actions
change the state of the world via the actions � and �c. The reason potential
and real actions are distinguished from one another is that their targets have
different uncertainties. For example, consider the scenario of the introduction,
modeled as a converse di-system in example 5. There, the uncertainty of s1 · a
is s3 ∨ s4, whereas the uncertainty of s1 � a is only s4. So the real actions have an
extra significance: they also change the uncertainty of the states.

Both the potential and real changes are actions of Q on M, so they both have
right adjoints. We abuse the notation and denote both of these right adjoints
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by the squared bracket notation [ ]. In practice, there are no ambiguities, as
the properties that we are interested in only involve the right adjoints of the
real changes, that is, − � q a [q]− and − �c q a [q]c

−. The potential changes
and their converses (and not their right adjoints) are used in the proofs of these
properties.

To encode the uncertainties, we use endomorphisms of the system. We
read uM(m) : M → M as the uncertainty about proposition m, the join of all
propositions that are possibly true when in reality m is true. For example
uM(m) = m∨m′, says that in reality m is true, but the agent considers it possible
that either m or m′ might be true. Similarly, we read uQ(q) : Q → Q is the
uncertainty about action q, the join of all actions that are possibly happening
when in reality action q is happening. For example, uQ(q) = q ∨ q′ says that in
reality action q is happening but the agent considers it possible that either q or
q′ is happening.

The real action−�q changes the uncertainty of a proposition m via an uncertainty
reduction axiom. The intuition behind it is as follows: when one does actions
in reality, they change our uncertainty. In navigation systems this change is as
follows: the uncertainty after performing an action in reality uM(m � q) is the
uncertainty of performing a potential action according to the description of the
system, i.e. uM(m·q) minus the choices which one could not have reached via a q
action (according to the description). Note that, in our navigation applications
there are no uncertainties about actions, hence uQ’s are identities. Nonetheless
we introduce them to keep our setting general and to be able formally to
compare it to that of previous work. For example, uM(m · q) can be a choice of
m′ ∨m′′ and it is not possible to reach m′ via a q action, i.e. m′ ·c q = ⊥. Hence
m′ is removed from the choices in uM(m� q), hence uM(m� q) = m′′. The formal
expression of this reasoning is the following axiom:

(∗) uM(m � q) ≤
∨{

m′ ∈M | m′ ≤ uM(m · q), m′ ·c uQ(q) , ⊥
}

Lemma 2. In any converse di-system, if for all m ∈ M, q ∈ Q and a prime x we have
x ≤ m · q, then there exists a prime y ≤ m such that x ≤ y · q.

Proof. Suppose not, i.e. for all y ≤ m we have x � y · q, hence x � (
∨

y) · q, hence
we get a contradiction x � m · q, since every m is the join of the primes below
it. �
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Proposition 11. In any converse di-system the following holds:

m ∧ (m ·c q · q) =
∨
{m′ ∈M | m′ ≤ m,m′ ·c q , ⊥}

for all m ∈M, q ∈ Q.

Proof. If the lhs is⊥, then it is easy to see that the rhs is also⊥ and the other way
around, so suppose not. That is, there is a prime x ≤ m∧ (m ·c q · q), hence x ≤ m
and x ≤ m ·c q ·q by the definition of meet. From the latter and the above lemma 2
we obtain that there is a prime y ≤ m ·c q such that x ≤ y ·q, hence y ≤ x ·c q by our
converse axiom (i), hence x ·c q , ⊥, hence x ≤

∨
{m′ ∈ M | m′ ≤ m,m′ ·c q , ⊥}.

For the other direction, take a prime x to be less than or equal the rhs, hence
x ≤ m and x ·c q , ⊥, that is there is a prime y such that y ≤ x ·c q, and by
converse axiom (i) we have x ≤ y · q. Now since x ≤ m by order preservation of
action we have that x ·c q ≤ m ·c q, by transitivity since y ≤ x ·c q we obtain that
y ≤ m ·c q, again by order preservation of action we obtain y · q ≤ m ·c q · q and
since x ≤ y · q by transitivity we obtain x ≤ m ·c q · q. �

A direct corollary of this proposition is that our above (∗) axiom is equivalent
to the following (more algebraic) one:

uM(m � q) ≤ uM(m · q) ∧ (uM(m · q) ·c uQ(q) · uQ(q))

by taking m to be uM(m · q) and q to be uQ(q).

Definition 3.2. A lax endomorphism u of a navigation pre di-system consists
of a pair of endomorphisms u = (uM : M→M,uQ : Q→ Q), where uM preserves
joins of M and uQ preserves joins of Q, moreover we have

uM(m � q) ≤ uM(m · q) ∧ (uM(m · q) ·c uQ(q) · uQ(q)) (1)

uQ(q • q′) ≤ uQ(q) • uQ(q′) (2)

1 ≤ uQ(1) (3)

The reason the endomorphism axioms are inequalities has been motivated
in Sadrzadeh (2006). In a nutshell, this is done in order to be able to encode
the process of learning as a decrease in the uncertainty, hence an increase in
information. The other two inequalities are for coherence of uncertainty with
regard to composition, the motivations for these are as in Baltag et al. (2007).

Putting it all together, we define:
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Definition 3.3. A navigation di-system (Nav-diSys) is a navigation pre di-
system
((M,Q, ·, ·c),�,�c,u) endowed with a di-system lax endomorphism u = (uM,uQ).

Example 7. The transition system of example 5 is modeled in the following
Nav-diSys

((P(Σ),P(A∗), ·, ·c) ,�,�c,u)

Here, Σ is obtained by closing the set of states S under product with A, i.e.
Σ :=

⋃
i S×Ai. So it contains states s ∈ S, pairs of states and actions (s, a) ∈ S×A,

pairs of pairs of states and actions ((s, a), b) ∈ (S×A)×A) and so on. The potential
action on states s · a is given by the transitions. This is extended to pairs by
consecutive application of the action, i.e. (s, a) · b is given by (s · a) · b. The pairs
encode the real actions, i.e. s�a := (s, a), (s�a)�b := ((s, a), b), . . . for the atoms and
extend it to all the other elements pointwisely, e.g. s�(a∨b) := (s�a)∨(s�b) and
s� (a• b) := ((s, a), b). Since real actions cannot be reversed, their corresponding
converse action is taken to be the same as the converse of the potential action,
i.e. for all actions a and states s, we have that s�c a = s ·c a. The converse of real
action �c, is introduced for reasons of symmetry with the real action, so that we
can uniformly use their right adjoints to express the logical properties “after”
and “before”.

The lax di-system endomorphism on the module uM are determined by indis-
tinguishability of states as follows: s, s′ are indistinguishable iff the same action
a can be performed on them. In formal terms

uM(s) :=
∨
{s′ ∈M | ∀a ∈ A, s · a , ⊥ iff s′ · a , ⊥}

The uM of the states updated by potential actions is the uM of the image, i.e. for
the transition system of the introduction, we have uM(s1 · a) = uM(s4) = s3 ∨ s4.
The uM of states updated by the real action is determined by inequality (1) of
definition 3.2, e.g. uM(s1 � a) = uM(s1, a) ≤ s4. The uncertainties of actions, i.e.
uQ, can be set similar to that of states: by indistinguishability under application
to states. Since for our navigation applications these do not play a crucial role,
we assume them to be the identity, i.e. uQ(q) = q for all q ∈ P(A∗).

Finally, recall that since each projection of u is join preserving, it has a Galois
right adjoint, we focus on the right adjoint of uM, which we denote by the
epistemic modality �. This is canonically defined as follows

�m :=
∨
{m′ ∈M | uM(m′) ≤ m}
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We read �m as ‘according to the information available m holds in reality’.
Alternatively, one can use the belief modality of doxastic logic and read it as
‘it is believed that, or the (sole) agent believes that, m holds in reality’. Putting
these modalities together with the dynamic ones, we can express properties
such as [q]�m, read as “after action q the agent believes that m holds”, and
such as [q]�[q]cm, read as “after action q the agent believes that before action q
proposition m held”, and so on.

4 Applications to Navigation

4.1 Map-based Navigation

In the protocols of this section, the agent has a map of a place, it moves accord-
ingly to be able to find out where it is, hence if it already knows where it is,
there is no reason to move. Consider the navigation protocol of introduction,
we encode it in a Nav-diSys with the set of locations S = {s1, s2, s3, s4, s5}, the set
of actions Ac = {a, b, c} and show that after doing an a action on s1, the robot
knows where it is and where it was before moving.

Proposition 12. The following hold in a Nav-diSysN based on the above data.

s1 ≤ [a]�s4 s1 ≤ [a]�[a]cs1

Proof. Consider the first one: by the adjunction − � a a [a]−, it is equivalent to
s1� a ≤ �s4. By the adjunction uM

a �, this is equivalent to uM(s1� a) ≤ s4. Now
by the uncertainty reduction inequality, it suffices to show that

uM(s1 · a) ∧ uM(s1 · a) ·c a · a ≤ s4

By the assumptions we have that

uM(s1 · a) = uM(s4) = s3 ∨ s4

also that

uM(s1 · a) ·c a · a = (s3 ∨ s4) ·c a · a = (⊥ ∨ s1) · a = s1 · a = s4

Hence the lhs of the above is (s3 ∨ s4) ∧ s4, less than or equal to s4. Similarly,
the second inequality becomes equivalent to uM(s1 � a) �c a ≤ s1, by a series of
3 unfoldings of adjunctions. We have shown that uM(s1 � a) ≤ s4, so it suffices
to show s4 �

c a ≤ s1, which is true since s4 �
c a = s4 ·

c a = s1 ≤ s1. �
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4.2 Staircase Navigation

Navigating on the staircase is one of the simplest cases of robot navigation: if
the robot is anywhere except for the first and last floor, it does not know where
it is. But if it moves to any of these location, it learns where it is and was
before moving. We model an n-floor stair case for n ∈ N, by a set of locations
S = { fn | n ∈N}. The atomic actions available to the robot are Ac = {up, down}.

f1
up
))
f2

up
))

down
oo · · ·

up
++

down
oo fn−1

up
))

down
oo fndown

oo

The floors f2 to fn−1 are indistinguishable from one another, i.e. for 1 < i < n,
we have uM( fi) =

∨
1<i<n fi, the first and last floor and the actions have no

uncertainty.

Proposition 13. The following hold in a Nav-diSysN based on the above data

fk ≤ [upn−k]� fn fk ≤ [upn−k]�[upn−k]c fk

fk ≤ [downk−1]� f1 fk ≤ [downk−1]�[downk−1]c fk

fk ≤ [upn−k]�[downn−k] fk fk ≤ [downk−1]�[upk−1] fk

for 1<n<k, where upn−k = up • · · · • up︸        ︷︷        ︸
n−k

and similarly for others.

Proof. Consider the first one, by the adjunction − � q a [q]− it’s equivalent to

fk � (up • · · · • up︸        ︷︷        ︸
n−k

) ≤ �M fn

equivalent to the following by the associativity of � over •

fk � up � · · · � up︸         ︷︷         ︸
n−k

≤ �M fn

equivalent to the following by the adjunction uM
a �M

uM( fk � up � · · · � up︸         ︷︷         ︸
n−k

) ≤ fn
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By the uncertainty reduction axiom it suffices to show

uM( fk · up · · · · · up︸       ︷︷       ︸
n−k

) ∧ uM( fk · up · · · · · up︸       ︷︷       ︸
n−k

) ·c (up • · · · • up︸        ︷︷        ︸
n−k

) · (up • · · · • up︸        ︷︷        ︸
n−k

) ≤ fn

The left hand side above is equal to fn, since

uM( fk · up · · · · · up︸       ︷︷       ︸
n−k

) = uM( fn) = fn

and also that
fn ·c (up · · · · · up︸       ︷︷       ︸

n−k

) · (up · · · · · up︸       ︷︷       ︸
n−k

) = fn

Consider the second inequality, by adjunction and definition 3.1 it is equivalent
to

uM( fk � up � · · · � up︸         ︷︷         ︸
n−k

) �c (up �c
· · · �

c up︸           ︷︷           ︸
n−k

) ≤ fk

Since in the first inequality we have shown that uM( fk � up � · · · � up︸         ︷︷         ︸
n−k

) ≤ fn, it

suffices to show that fn �c (up �c
· · · �

c up︸           ︷︷           ︸
n−k

) ≤ fk. This is indeed the case since

fn �c (up �c
· · · �

c up︸           ︷︷           ︸
n−k

) = fk. The other inequalities are proven similarly. �

4.3 Grid Navigation

A more complex robot navigation protocol happens on the grid: a robot is in
a grid with n rows and m columns, it can go up, down, left, and right and is
supposed to move about and find out where it is. The grid cells look alike to it
as long as it can do the same movements in them, hence it knows where it is iff
it ends up in one of the four corner cells. We model this protocol in a Nav-diSys
and show that no matter where the robot is, there is always some sequence of
movements that it can do to get it to one of the corners. After doing either of
these it learns where it is and where it was beforehand.
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Each grid cell is modeled by a state si j in the i’th row and j’th column. Uncer-
tainty of corner states s11, s1m, sn1, snm is identity, i.e.

uM(s11) = s11 uM(s1m) = s1m uM(sn1) = sn1 uM(snm) = snm

For the non-corner cells of the first row and first column, we have

uM(s1 j) =
∨

1<y<m

s1y uM(si1) =
∨

1<x<n

sx1

For the non-corner cells of last row n and last column m , we have

uM(snj) =
∨

1<y<m

sny uM(sim) =
∨

1<x<n

sxm

For the rest of the cells we have uM(si j) =
∨

1 < x < n

1 < y < m

sxy. The set of actions is

Ac = {u, d, l, r}, their non-applicability is as follows

s1 j · u = s1 j ·
c d = si1 · l = si1 ·

c r = snj · d = snj ·
c u = sim · r = sim ·

c l = ⊥

All the other actions are applicable in all the other states.

Proposition 14. The following hold in a Nav-diSysN based on the above data.

si j ≤ [α]�(s11 ∨ s1m ∨ sn1 ∨ snm) si j ≤ [α]�[α]csi j

for 1 < i < n, 1 < j < m and α the following choices of sequences of movements

(ui−1
∨ dn−i) • (l j−1

∨ rm− j) ∨ (l j−1
∨ rm− j) • (ui−1

∨ dn−i)

Proof. By adjunctions − � q a [q]− and uM
a � the first inequality is equivalent

to:
uM(si j � α) ≤ s11 ∨ s1m ∨ sn1 ∨ snm

By join preservation of � and uM, the above becomes equivalent to showing a
join of 8 terms on the left to be less than or equal to the a join of 4 locations
on the right. So by definition of join, we must show that all of the following 8
cases hold
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uM(si j � (ui−1
• l j−1)) ≤ s11 uM(si j � (ui−1

• rm− j)) ≤ s1m

uM(si j � (dn−i
• l j−1)) ≤ sn1 uM(si j � (dn−i

• rm− j)) ≤ snm

uM(si j � (l j−1
• ui−1)) ≤ s11 uM(si j � (l j−1

• dn−i)) ≤ sn1

uM(si j � (rm− j
• ui−1)) ≤ s1m uM(si j � (rm− j

• dn−i)) ≤ snm

Consider the first one, by uncertainty reduction and associativity of action and
quantale multiplication it suffices to show that

uM(si j · ui−1
· l j−1) ∧ uM(si j · ui−1

· l j−1) ·c (ui−1
• l j−1) · (ui−1

• l j−1) ≤ s11

By the grid assumptions we have that

uM(si j · ui−1
· l j−1) = uM(s11) = s11

also that
s11 ·

c (ui−1
• l j−1) · (ui−1

• l j−1) = s11

Hence the left hand side is ≤ s11. Proofs of the other 7 inequalities are similar.

The second property si j ≤ [α]�[α]csi j is equivalent to uM(si j � α) �c α ≤ si j by
adjunction. Like above uM(si j � α) breaks down to 8 terms and since �c is also
join preserving, one has to show 8× 8 inequalities similar to those in the above,
but updated with the �c of the 8 combinations of composition of actions on the
left and si j on the right. That is, we have 8 inequalities of the form

uM(si j � (ui−1
• l j−1))�c ((ui−1

∨ dn−i) • (l j−1
∨ rm− j)∨ (l j−1

∨ rm− j) • (ui−1
∨ dn−i)) ≤ si j

We have shown that uM(si j � (ui−1
• l j−1)) = s11, so the above is equivalent to

s11 �
c ((ui−1

∨ dn−i) • (l j−1
∨ rm− j) ∨ (l j−1

∨ rm− j) • (ui−1
∨ dn−i)) ≤ si j

To show the above, one must show all of the following 8 inequalities

s11 �
c (ui−1

• l j−1) ≤ si j s11 �
c (ui−1

• rm− j) ≤ si j

s11 �
c (dn−i

• l j−1) ≤ si j s11 �
c (dn−i

• rm− j) ≤ si j

s11 �
c (l j−1

• ui−1) ≤ si j s11 �
c (l j−1

• dn−i) ≤ si j

s11 �
c (rm− j

• ui−1) ≤ si j s11 �
c (rm− j

• dn−i) ≤ si j
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For two of these we have s11 �
c (dn−i

• rm− j) = s11 �
c (rm− j

• dn−i) = si j, and the
rest are equal to ⊥ (by the inapplicability assumptions of the grid), which is
fine since ⊥ is less than or equal anything, in particular si j. �

5 Conclusions and future work

We have developed an algebraic framework for dynamic epistemic logic in
which the dynamic and epistemic modalities appear as right adjoints. The key
new feature in the present work relative to previous work Sadrzadeh (2006),
Baltag et al. (2007) is the presence of converse actions and the algebraic laws
that govern uncertainty reduction. The navigation protocols discussed in this
paper, as well as the three-player game in Phillips’s thesis Phillips (2009), give
examples in which the old learning inequality was violated, showing that there
were new subtleties that arise when there are actions that really change the
state of the world.

A number of directions for future work naturally suggest themselves. On the
purely theoretical side, we would like to relate boolean converse di-systems to
Kleene algebras with test and converse Desharnais et al. (2006). A logic for Nav-
diSys would be based on the positive fragment of propositional dynamic logic
with assignments Tiomkin and Makowsky (1985) and with converse Parikh
(1978), extended with epistemic modalities and related axioms. Capturing the
same reasoning in dynamic epistemic logic, e.g. with assignment van Benthem
et al. (2006), van Ditmarsch et al. (2005) or converse Aucher and Herzig (2007)
is worth further investigation. We are also particularly interested in extending
this work to apply to examples that involve security protocols where “belief”
and “learning” play evident roles. A fundamental extension, and one in which
we have begun preliminary investigations, is the extension to the probabilistic
case. Here belief and information theory may well merge in an interesting and
not obvious way.
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Abstract

In this paper, we present a general treatment of multiagent resource alloca-
tion (MARA) by means of the proof-theoretical insights provided by linear
logic. We will see how linear logic provides a versatile language to express
agents’ preferences over multisets of goods. Moreover, we will interpret the
problem of finding an optimal allocation as a proof-search problem in suit-
able fragments of linear logic. We apply this approach to two well known
paradigms in MARA, combinatorial auctions and multilateral negotiation.
This presentation is based on two joint papers with Ulle Endriss, Porello and
Endriss (2010b) and Porello and Endriss (2010a).

1 Introduction

Multiagent resource allocation is generally intended as the process of distribut-
ing a number of resources to a number of agents, Chevaleyre et al. (2006). The
type of resources and the type of agents may vary according to the domain
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of application of MARA, as similar situations occur in several problems at the
interface of AI and Economics. For example, in cooperative problem solving,
we need to find an allocation of resources to agents that will allow each agent to
complete the tasks she has been assigned; in the context of electronic commerce
applications, the system objectives will often be defined in terms of properties
of the allocations of resources that are being negotiated. Studies of resource
allocation in AI may range from the design of negotiation strategies, over the
game-theoretical analysis of allocation problems, to the complexity-theoretic
study of relevant optimisation problems. Moreover, abstract frameworks for
the precise representation and formal study of systems for MARA are important
to deal with problems of knowledge representation and reasoning concerning
a certain domain of objects. Logic is an important tool for this purpose, and
there have been a number of contributions of this kind, cf. Endriss and Pacuit
(2006), Fisher (2000), Harland and Winikoff (2002), Küngas and Matskin (2004),
Leite et al. (2009), Porello and Endriss (2010b), Sadri et al. (2002).

In this paper, we develop a framework for MARA within linear logic, Girard
(1987), a constructive approach to logic that provides a resource sensitive ac-
count of proofs. In particular, we will show how to apply proof-theoretical
methods to embed a framework for combinatorial auctions, cf. Nisan (2006), and
distributed resource allocation, cf. Chevaleyre et al. (2010), Endriss et al. (2006).
The first reason that motivates the use of linear logic is that it allows for an
intuitive representation of agents’ preference over multisets of goods. Stan-
dard applications of MARA usually implicitly refer to goods that are available
in multi-units, namely, where several indistinguishable copies of a same item
are traded by agents; however no general and logically grounded approach to
preferences defined over multisets of resources has been developed.

Moreover, the aim of our approach is to interpret preference satisfaction, al-
locations of resources, and deals between agents concerning allocations, as
reasoning tasks. In particular, we will show how to interpret several problems
in MARA as proof-search in linear logic.

Several authors have recognised that, due to its resource-sensitive nature, linear
logic is particularly suited to modelling resource allocation problems; cf. Har-
land and Winikoff (2002), Küngas and Matskin (2004). Two contributions on
logic-based approaches to resource allocation relate to the same kind of resource
allocation framework we shall be working with here: Endriss and Pacuit (2006),
develop a modal logic to study the convergence problem in distributed resource
allocation; and Leite et al. (2009) show how to map the problem of finding an
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allocation that is socially optimal (for a wide variety of fairness and efficiency
criteria) into the framework of answer-set programming.

This paper is organised as follows. In Section 2, we present the relevant back-
ground on MARA, by reviewing combinatorial auctions, distributed negotia-
tion, and by discussing them as reasoning tasks. Section 3 contains the essential
background on linear logic. Section 4 introduces our model for representing
preferences over multisets of goods. Section 5 presents our modelling of com-
binatorial auctions and the relationship between allocations and proofs in lin-
ear logic. Section 6 contains our model of distributed negotiation. Section 7
presents some possible extension and concludes.

2 Multiagent Resource Allocation

Assume agents have to allocate bundles of goods from the set S and letW be
a set of values that the agents use to express their cardinal preferences. In the
standard approach, the set of valuesW is usually R. A valuation over bundles
in S is a function v : P(S) → R. An allocation of goods to agents is a function
α : S → N∪{∗} from resources to agents; we indicate for each item who receives
it or whether it does not get allocated at all (∗): let Ai = α−1(i) and α−1(∗) are
the unallocated goods. The winner determination problem is to find an allocation
that maximizes the value of an allocation, according to the definition of the
value of α. In the next two paragraphs, we shall substantiate this definitions
by applying them to combinatorial auctions and multilateral negotiation.

2.1 Combinatorial Auctions

A combinatorial auction (CA) is a (centralized) mechanism for one agent (the
auctioneer) to sell goods to a number of other agents. In CAs, agents usually
express their valuations over bundles of goods by means of a bidding language.
Thus, agents submit bid expressions bid that specifies the price they are willing
to pay for a given bundle of goods. The value of an allocation α is usually given
by the sum of the prices associated to the satisfied bids: v(α) =

∑
i{vBIDi (Ai)} The

value of an allocation specifies the revenue that the auctioneer receives.

An atomic bid is an expression bid = (S,w) where S ⊆ S and w ∈ W is the price
associated to S. Each atomic bid defines a valuation vbid : P(S)→W by means
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of the following definition that specifies the semantics of a bid.

vbid(S′) =

w if S ⊆ S′

0 otherwise

Several languages to encode valuations have been developed in the literature
on CA. Here, we present three representative bidding languages.

Given a set of bids (S1,w1), ..., (Sl,wl), an XOR-bid is defined as follows:

(S1,w1) xor . . . xor(Sl,wl)

The intended meaning of such an expression is that bidders are willing to
obtain at most one of these bids at its specified price. Thus, the semantics of an
XOR-bid is defined as follows as follows:

vXOR(S) = max{v(Si) : Si ⊆ S}

XOR-bids generate all valuations, as basically we can express the graph of a
function. However, the size of the representation can be exponential.

An OR-bid is defined as follows:

(S1,w1) or . . .or(Sl,wl)

The intended meaning of an OR-bid is that bidders are willing to obtain any
number of disjoint atomic bids for the sum of their respective prices. Thus, the
semantics of an OR-bid is the following:

vOR(S) = max
∑

i

{v(Si) : Si ∈ F}

where F is a collection of bids such that for all i , j, Si ∩ S j = ∅ and Si ⊆ S. The
expressive power of OR-bids is characterized by the class of valuations such
that v(X ∪ Y) ≥ v(X) + v(Y), whenever X ∩ Y = ∅, cf. Nisan (2006).

Next, we introduce the goalbase languages, a family of languages based on
weighted propositional formulas; cf. Uckelman et al. (2009), Uckelman et al.
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(2009). Such languages have been widely studied in the AI literature; for the
specific use in CAs they have first been proposed by Boutilier and Hoos (2001).
A goalbase G is a set of pairs (ϕi,wi), where ϕi is a proposition (in classical logic)
and wi is a weight. G induces a valuation that maps any assignment of truth
values to atoms to the sum of the weights of the formulas that are satisfied by
that assignment (which we can think of as a bundle of goods):

vGB(S) =
∑

i

{wi | S |= ϕi}

By restricting the language of the weighted proposition and the set of weights,
goalbases characterize important classes of functions. In particular, the class
of k-additive functions is proved to be equivalent to the class of functions
generated by goalbases of positive cubes, i.e., conjunctions of positive literals,
(p1 ∧ · · · ∧ p`,w), cf. Uckelman et al. (2009).

The language of k-additive valuations, cf. Chevaleyre et al. (2008), is based on
the idea of specifying weights for the marginal valuations derived from sets of
goods, rather than directly specifying the values of full bundles.

A valuation v is called k-additive if there exists a mapping v′ : S[k] → R,
where S[k] denotes the set of all subsets with at most k elements, such that
v(X) =

∑
{v′(Y) | Y ⊆ X and Y ∈ S[k]}.

The notion of k-additivity gives rise to a bidding language: by specifying a
(marginal, possibly negative) price for each bundle of size ≤ k (as an atomic
bid) we can represent v′ and thus v. An important difference between the OR
language and goalbase languages (including k-additive languages) is that the
accepted atomic bids may overlap. For example, in G = {(p ∧ q, 5), (p, 3)}, the
allocation of p and q will satisfy both atomic bids.

2.2 Multilateral Negotiation

Combinatorial auctions provides a centralized mechanism for finding optimal
allocations by satisfying an optimal combination of bids that the agents submit.
Multilateral negotiation provides a distributed approach to the allocation prob-
lem where agents endowed with valuations over bundles of goods exchange
deals in order to reach an optimal allocation, cf. Chevaleyre et al. (2010), Endriss
et al. (2006). A deal takes us from one allocation to the next; i.e., we can think of
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it as a pair of allocations. Note that there are no restrictions as to the number of
agents or resources involved in a single deal. Of special interest are structurally
simple deals: for instance, 1-deals are deals involving the reassignment of a
single resource only.

Given an allocation α, we will concentrate on two economic efficiency criteria,
cf. Chevaleyre et al. (2006): (1) the (utilitarian) social welfare of an allocation α is
defined as swu(α) =

∑
i∈N vi(Ai) and we shall be interested in finding allocations

that maximise social welfare; (2) an allocation is Pareto optimal if no other
allocation gives higher valuation to some agents without giving less to any of
the others (this is a considerably less demanding criterion).

What kinds of allocations can be reached from a given initial allocation de-
pends on the range of deals we permit. First, we may ask whether a desirable
allocation A′ is reachable from the initial allocation A by means of a given class
of deals. A very simple result shows that, quite clearly, the class of all 1-deals
is always sufficient to take us from any A to any A′ (Sandholm 1998, Prop. 1).

A deal is called individually rational if it is possible to arrange side payments for
the agents involved such that for each agent her gain in valuation outweighs
her loss in money (or her gain in money outweighs her loss in valuation). The
payments of all agents need to add up to 0. In case we don’t allow for side
payments, rational deals are modelled by cooperative rationality: agents agree
to a deal, if this at least maintains their utility and at least one agent strictly
increases his utility.

2.3 Reasoning about types of goods

The goalbase languages show how to view the satisfaction of a demand as a
certain type of reasoning. In particular, the matching between demand and
offer is modelled as logical inference. By viewing goods as propositional atoms
and preferences over bundles as logical formulas, we have:

v{(a∧b,w)}({a, b, c}) = w iff {a, b, c} |= a ∧ b

However, if goods are available in multi-unit, or lists, classical entailment is
problematic. This is due to structural rules of sequent calculus that basically
force us to view premises as sets:



352 Reasoning about MARA in Linear Logic

{a, b} ` a ∧ b
W

{a, a, b} ` a ∧ b
{a, a} ` a ∧ a

Ca ` a ∧ a
{a, b} ` a ∧ b

E
{b, a} ` a ∧ b

For example, contraction (C) shows that a single copy of a can satisfy the
demand of two copies of a (a∧ a). The motivation of this paper is to extend the
logical treatment to other types of goods. Linear logic, as we shall see, provides
a good candidate for expressing preferences over multisets or lists of goods as
it is capable of controlling the application of structural rules.

3 Linear logic

Removing the structural rules from the classical sequent calculus, we are lead
to split the usual connectives into two classes, since, for example, the following
rules are no longer equivalent:

Γ ` A Γ′ ` B R∧
Γ,Γ′ ` A ∧ B

Γ ` A Γ ` B R∧
Γ ` A ∧ B

Without structural rules, sequents behave as multisets of formula occurrences
and we have to distinguish connectives that take the concatenation of contexts
(multiplicatives) and connectives that demand a shared context (additives).

Given a set of atomsA, the language of LL is defined as follows (where p ∈ A):

L ::= p | 1 | ⊥ | > | 0 | L⊥ | L ⊗ L | LM L | L ⊕ L | L & L | !L | ?L

Linear negation (·)⊥ is involutive and each formula in LL can be transformed
into an equivalent formula where negation occurs only at the atomic level.
The intuitive meaning of LL connective can be presented as follows. The
conjunction A⊗B (“tensor”) means that we have exactly one copy of A and one
copy of B, no more no less. Thus, e.g., A ⊗ B 0 A. We might say that in order
to sell A and B, we need someone who buys A and B, while here there is just a
buyer for A. We will not directly use the disjunction A M B (“par”); rather we
use linear implication: A ( B := A⊥ M B. Linear implication can be seen as a
form of deal: “for A, I sell you B”. The additive conjunction A & B (“with”)
introduces a form of choice: we have one of A and B and we can choose which
one. For example, A & B ` A, but we do not have them both: A & B 0 A⊗B. The
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additive disjunction A⊕ B (“plus”) means that we have one of A and B, but we
cannot choose, e.g., A ` A ⊕ B but A ⊕ B 0 A & B. The exponentials !A and ?A
reintroduce structural rules in a local way: !-formulas licence (C) and (W) on
the lefthand side of `; ?-formulas licence (C) and (W) on the right. Intuitively,
exponential formulas can be copied and erased; they are relieved from their
linear status.

We will use the intuitionistic version of linear logic (ILL), obtained by restricting
the righthand side of the sequent to a single formula, so for example we will
not have ? and M in the language. In fact, we will mostly use ILL augmented
with the global weakening rule (W). The reasons for these choices will become
clear later. The rules of the sequent calculus for ILL are shown in Table 1, cf.
Troelstra (1992).

To control complexity, we can restrict attention to certain fragments: intuition-
istic multiplicative linear logic (IMLL) using only ⊗ and (; intuitionistic multi-
plicative additive linear logic (IMALL) using only ⊗,(, & and ⊕; and Horn linear
logic (HLL). In the latter, sequents must be of the form X,Γ ` Y Kanovich (1994),
where X and Y are tensors of positive atoms, and Γ is one of the following (with
Xi, Yi being tensors of positive atoms):

(i) Horn implications: (X1 ( Y1) ⊗ · · · ⊗ (Xn ( Yn)

(ii) &-Horn implications: (X1 ( Y1) & · · ·& (Xn ( Yn)

For these fragments we can rely on the following proof-search complexity
results. MLL is NP-complete and so is MLL with full weakening (W), Lincoln
(1995). The same results apply for the intuitionistic versions. HLL is NP-
complete, and so is HLL + W, Kanovich (1994). MALL and IMALL are PSPACE-
complete, Lincoln et al. (1992).

4 Modelling preferences

There is an isomorphism between multisets and tensor formulas of atoms (up
to associativity and commutativity): {m1, . . . ,mk} � m1 ⊗ · · · ⊗ mk. Thus, we
can represent each subset X ⊆ M as a tensor product. Moreover, if M � A and
N � B, then the (disjoint) union of M and N is isomorphic to A ⊗ B.

We now want to define languages to encode valuations v : P(M)→N, mapping
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ax
A ` A

Γ,A ` C Γ′ ` A
cut

Γ,Γ′ ` C

Multiplicatives

Γ,A,B ` C
⊗L

Γ,A ⊗ B ` C
Γ ` A Γ′ ` B

⊗R
Γ,Γ′ ` A ⊗ B

Γ ` A Γ′,B ` C
(L

Γ′,Γ,A( B ` C
Γ,A ` B

(R
Γ ` A( B

Γ ` C 1L
Γ, 1 ` C

1R
` 1

Additives

Γ,Ai ` C
&L

Γ,A0&A1 ` C
Γ ` A Γ ` B &R

Γ ` A&B

Γ,A ` C Γ,B ` C
⊕L

Γ,A ⊕ B ` C
Γ ` Ai

⊕R
Γ ` A0 ⊕ A1

0L
Γ, 0 ` C >R

Γ ` >

Exponentials

Γ,A ` C
!L

Γ, !A ` C
!Γ ` A !R!Γ `!A

Structural Rules

Γ,A,B,Γ′ ` C
E

Γ,B,A,Γ′ ` C
Γ, !A, !A, ` C

!C
Γ, !A ` C

Γ ` C
!W

Γ, !A ` C
Γ ` C

W
Γ,A ` C

Table 1: Sequent Calculus for Intuitionistic LL
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subsets ofM to prices. 1

To model prices symbolically, we assume a finite set of distinct weight atoms
W = {w1, ...,wp}. In fact, often we will use just one weight atom u. We write uk

for the tensor product u ⊗ · · · ⊗ u (k times). To associate weights with numbers,
we define a function val : W → N, with val(u) = 1. LetW⊗ be the set of all
finite tensor products of atoms in W, modulo commutativity (including the
“empty” product 1). That is, W⊗ = {1,w1,w2,w1 ⊗ w2, . . .}. We extend val to
W
⊗ by stipulating val(1) = 0 and val(ϕ⊗ψ) = val(ϕ) + val(ψ). In particular, this

means that val(uk) = k.

Definition 1. An atomic bid is a formula of the form B ( w, where B is a tensor
product of atoms inA and w ∈ W.

In a CA, given a bid B ( w, we can work with two alternative assumptions:
no free disposal at the bidder’s side, meaning that the bidder will pay w if she
receives exactly B, and free disposal at the bidder’s side, meaning that the bid is
satisfied whenever the bidder receives at least B. In the sequel, unless otherwise
stated, we will always assume free disposal. To model free disposal, we will
use ILL with weakening (W). 2

Definition 2. Every bid formula bid generates a valuation vbid mapping multisets
X ⊆ M to prices:

vbid(X) = max{val(w′) | w′ ∈ W⊗ and X, bid ` w′}

Definition 2 applies to atomic bids as well as to the more powerful bidding
languages we will define in the sequel. In the case of atomic bids bid = (B( w),
it simply says that vB(w(X) = w whenever X is equal to a superset of the multiset
isomorphic to B, and vB(w(X) = 0 otherwise.

In case the only weight atom used is u, i.e., ifW = {u}, then Definition 2 can be
simplified and we obtain:3

vbid(X) = max{k | X, bid ` uk
}

1For ease of notation, we shall assume 0 ∈N.
2Alternatively, we could use the additive constant of linear logic > and write bids B⊗>( w to

make it explicit in the syntax that a bidder has free disposal.
3We can define u0 = 1. Using weakening (to represent free disposal), from ` 1 we get Γ ` 1,

for any Γ. So every bid produces u0, since it will always be satisfied by any allocation (also by
allocating nothing), e.g., p, p ⊗ q( uk

` 1 will be provable.
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4.1 XOR/&-bids

An XOR-bid 〈B1,w1〉 xor · · · xor 〈B`,w`〉 expresses that a bidder would like to
get at most one of the bundles she specifies, for the associated price Nisan
(2006). In LL, this idea can be captured via the additive conjunction (&).

Definition 3. An XOR-bid is a formula of the form

(B1 ( w1) & ... & (B` ( w`),

where each Bi is a tensor product of atoms inA and each wi is a weight atom fromW.

Definition 2 provides the semantics for XOR-bids by fixing the valuation func-
tions they generate.

Example 4. Given an XOR-bid (p ( u) & (q ( w) & (p ⊗ q ⊗ r ( z), sup-
pose the auctioneer provides {p, p, q, r, s}. Thus, it is possible to satisfy each of the
atomic bids in the XOR-bid. For example, the auctioneer can satisfy the bid producing z:

...
p, q, r, p ⊗ q ⊗ r( z ` z

Wp, p, q, r, s, p ⊗ q ⊗ r( z ` z
&Lp, p, q, r, s, (p( u) & (q( w) & (p ⊗ q ⊗ r( z) ` z

However, we have to choose which atomic bid to satisfy, according to the meaning of &.

Example 5. We define two classes of valuation functions, adapting their definitions
from Nisan (2006) to the multi-unit case. The simple additive valuation, v(X) = |X|
for X ⊆ M, can be expressed via the following formula, which is exponential in size
in the number of items inM (we slightly abuse the notation identifying the multiset
B with the corresponding tensor formula): &B⊆M(B( u|B|). The simple unit demand
valuation, v(X) = 1 for X , ∅ and v(∅) = 0, can be expressed in the XOR language
via: (p1 ( u) & · · ·& (pm ( u)

We say that a valuation v : P(M) → N is monotonic if and only if for all
X1,X2 ⊆ M, if X1 ⊆ X2, then v(X1) ≤ v(X2). Recall that we can model both free
disposal or the lack thereof simply by using `with and without weakening (W),
respectively. Following Nisan (2006) and Cerquides et al. (2007) we can easily
prove that, also in our framework, the XOR-language without free disposal
can express all valuations and the XOR language with free disposal is fully
expressive over the space of monotonic valuations.
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Proposition 6. The following hold:

1. Every valuation v : P(M) → N is generated by some XOR-bid without free
disposal.

2. XOR-bids with free disposal generate all monotonic valuations and only those.

4.2 OR/⊗-bids

An OR-bid 〈B1,w1〉or · · ·or 〈B`,w`〉 states that a bidder agrees to receive any
number of disjoint bundles at the sum of their prices Nisan (2006). The appro-
priate LL connective for modelling this kind of semantics is the tensor (⊗).

Definition 7. An OR-bid is a formula of the form

(B1 ( w1) ⊗ · · · ⊗ (B` ( w`),

where each Bi is a tensor product of atoms inA and each wi is a weight atom fromW.

The intended meaning of a tensor/OR-bid is that the bidder would pay the
sum of the corresponding wi for each bundle of goods Bi she gets. The formal
semantics of OR-bids is again given by Definition 2.

The usual condition on OR-bids, namely that the required bundles of goods do
not overlap, works well if goods are available in single unit: since we are here
considering the multi-unit case, the condition of not overlapping is replaced
by imposing that the right amount of goods is provided in order to satisfy
the atomic bids in the OR-bid. For example, the OR-bid 〈p, 1〉or〈p, 1〉 will be
fully satisfied only if the auctioneer provides two p. This is the meaning of the
provability of a sequent containing OR-bids in Definition 2.

Example 8. Given an OR-bid (p⊗q( v)⊗ (q( w), suppose the auctioneer provides
{p, q}. The OR-bid can be satisfied in two possible ways:

...
p, q, p ⊗ q( v ` v

Wp, q, p ⊗ q( v, (q( w) ` v
⊗Lp, q, (p ⊗ q( v) ⊗ (q( w) ` v

...
q, q( w ` w

Wp, q, q( w ` w
Wp, q, (p ⊗ q( v), q( w ` w
⊗Lp, q, (p ⊗ q( v) ⊗ (q( w) ` w
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The definition of the valuation generated by OR-bids then lets us take the maximum of
w and v.

Observe that the OR-language is only attractive if we do assume free disposal
(i.e., weakening); without it, it has the same expressive power as the simple
language of atomic bids. For example, without free disposal, (p( uk)⊗(q( uk′ )
and p ⊗ q( uk+k′ generate the same valuation.

It is interesting to remark that the usual characterization of the expressivity
of OR-language for single-unit CAs cannot straightforwardly be extended to
multi-unit case. Concerning the expressive power of our OR/⊗-language, the
following proposition holds.

Proposition 9. OR-bids generate valuations that satisfy v(X + Y) ≥ v(X) + v(Y)
whenever X ∩ Y = ∅.

Note that the assumption on the empty intersection amounts to assuming
that there are no restrictions, besides monotonicity, on how functions behave
on overlapping multisets. In particular, any function that is monotonic on
multisets containing just one type of good should be expressible by means
of an OR-bid. However, the converse of Proposition 9 is not true. Take for
example the following function v.

v : {p} 7→ 2

v : {p, p} 7→ 5

v : {p, p, p} 7→ 6

Suppose there is an OR-bid ϕ that generates v. As v({p}) = 2, ϕ has to include
an atomic bid p ( 2. As v({p, p}) = 5, we have two choices. We can add an
atomic bid to ϕ that specifies the marginal value of having a second copy of p,
or we can add a bid (p ⊗ p( 5). As the marginal value of having a second p in
this case is strictly greater than v({p}) (i.e. v({p, p}) − v({p}) > v({p})), we cannot
build v in the first way, because this would contradict the value of v({p}). Thus,
we have to add a bid (p ⊗ p( 5) to ϕ. The value on {p, p, p} cannot be 6, as the
maximal value we can prove by using {p, p, p}, p( 2, and (p ⊗ p( 5) has to be
at least 5 + 2.
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Thus, there is an important difference with the single-unit case. The problem is
connected with the interpretation of the marginal value that can be associated
to various copies of a same item. Moreover, since we are dealing with multisets
of finite multiplicity, the valuations generated by our languages cannot grow
arbitrarily, so at a certain point the function generated by the or expression will
provide a constant value. We leave a proper investigation of the expressivity
of our tensor language to a future work.

An important restriction of our or/⊗-language provides the class of additive
functions: add =

⊗
i∈{1,...,m}[(pi ( u) ⊗ · · · ⊗ (pi ( u)︸                         ︷︷                         ︸

M(pi) times

]

Proposition 10. add generates all additive valuations and only those.

For a proof, we refer to Porello and Endriss (2010a).

4.3 Goalbase Languages

The idea of a goalbase is that an agent is willing to pay the price associated
to the formulas satisfied by the allocated propositional atoms. Thus, an agent
views the allocation of a good a as reusable to satisfy his own goals. Namely, the
reasoning within a goalbase is classical. Thus, one way to cope with goalbase
languages is by means of formulas a(!a: they intuitively express the fact that
copies of the good a do not matter for the agent preferences. However, across
different goalbases, quantities of goods matters: we cannot allocate the same
instance of a good a to two different agents. We will discuss this point in the
next section when we present our modelling of allocations.

Definition 11. A goalbase is a formula of the form, with ai in some of the B j:

a1 (!a1 ⊗ · · · ⊗ am (!am ⊗ (B1 ( w1) ⊗ · · · ⊗ (Bl ( wl)

Note that the difference with our OR-language is precisely in the interpretation
of the goods. The semantics of our goalbase bids is given by Definition 2 as
well.

Example 12. Given an goalbase p (!p ⊗ q (!q ⊗ (p ⊗ q ( v) ⊗ (q ( w), suppose
the auctioneer provides {p, q}. The following proof shows that {p, q} is enough to satisfy
both atomic bids in the goalbase.
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q, q(!q `!q p, p(!p `!p
⊗Rp, q, p(!p, q(!q `!p⊗!q

p, q, p ⊗ q( v ` v
!L!p, q, p ⊗ q( v ` v
!L!p, !q, p ⊗ q( v ` v

q, q( w ` w
!L!q, q( w ` w
⊗R!p, !q, !q, p ⊗ q( v, q( w ` v ⊗ w

!C!p, !q, p ⊗ q( v, q( w ` v ⊗ w
⊗L!p⊗!q, p ⊗ q( v, q( w ` v ⊗ w
cutp, q, p(!p, q(!q, p ⊗ q( v, q( w ` v ⊗ w

⊗L and Ep, q, p(!p ⊗ q(!q ⊗ (p ⊗ q( v) ⊗ (q( w) ` v ⊗ w

The right hand side of the proof shows that reusable resources can satisfy both atomic
bids. The left hand side shows that within the goalbase the goods are interpreted in a
set-theoretic way by means of the formulas ai (!ai. The last step in the proof shows
that {p, q} are enough to satisfy the goalbase bid.

Note that we can also mix different types of bids, e.g., bids that do and do not
consume goods (OR- and goalbase bids). We will discuss in more detail the
relationship between different types of resources later.

Regarding the expressivity of our goalbase bids, it is possible to adapt the
relevant results of Uckelman et al. (2009) to the case of multiple units and to
our LL framework.

Remark 13 (Classical and linear reasoning). Intuitionistic (and classical) logic can
be translated into LL. cf. Girard (1995). Define the translation (·)∗ as follows: p∗ = p,
(A∧ B)∗ = A∗ & B∗, A→ B = !(A∗)( B∗, (A∨ B)∗ = A∗ ⊕ B∗. We have that: Γ `IL A
if and only if !Γ∗ `LL A∗. So we can translate any goalbase into a LL formula with
the same logical behaviour, in the sense that they will be satisfied by the same sets of
resources. However, the full power of exponentials makes LL with weakening, though
decidable, cf. Kopylov (1995), exponential-space hard Urquhart (2000), while full LL
is undecidable, cf. Lincoln et al. (1992).

Note that if bidder demands are expressed by “classical” formulas, then the auctioneer
has to provide any number of required goods. e.g., !(p & q) ( w can be satisfied
only by providing any number of p and q, i.e., !p and !q. Vice versa, if the auctioneer
provides “sets” of goods, e.g. !p, !q, namely arbitrary quantities of each type of goods,
the auctioneer would satisfy bidders’ demands , e.g. p⊗ q( w. While in principle one
can model the interaction of bounded and unbounded resources (sets and multisets) in
LL, the price to pay is complexity.
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The use of exponentials for modelling goalbases sets us outside the Horn frag-
ment (and MALL). Anyway, it is possible to define a bounded form of exponen-
tial as !`ϕ, meaning that we can use ϕ at most ` times, cf. Girard et al. (1992).
The upper bound for l in our model would be the maximal demand of a given
type of good a. Thus, in order to provide a version of the goalbase language
that lies within the Horn fragment, we can modify our definition as follows.

a1 ( ah1
1 ⊗ · · · ⊗ am ( ahm

m ⊗ (B1 ( w1) ⊗ · · · ⊗ (Bl ( wl)

Here ahi
i denotes the tensor of ai hi-times, where hi is the number of ai that the

agent’s atomic bids actually demand.

5 Modelling Allocations

In this section, we formulate the problem of computing an allocation producing
a certain amount of revenue as the problem of finding a proof for a LL sequent.
This allows us, at least in principle, to model the winner determination problem
as a series of calls to a LL theorem prover.

LetM again be a multiset of goods owned by the auctioneer, and letN = {1, ...,n}
be the set of bidders. We add to the set of atoms A = {p1, . . . , pm} all atoms p j

i
to express that the good pi is allocated to the individual j. From now on, we
will assume that bids are defined using these indexed names of goods, i.e.,
bidder j ∈ N must express her bid using the set of atoms {p j

1, . . . , p
j
m}.

In order to express that each (copy of) a good may be allocated to any of the
bidders (but not to more than one), we shall use the following formula: 4

map :=
⊗
p∈A

[& j∈N (p( p j)]M(p) (1)

We now define the concept of allocation sequent, which is intended to capture
the problem, faced by the auctioneer, of finding a feasible allocation returning

4Formula (1) is required in order for our approach to work with goalbase languages, since here
we have to model that, on the one hand, goods are reusable within the bid of a single bidder and,
on the other, goods are not shareable across the bids of distinct bidders.
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a particular revenue. We restrict ourselves to the case ofW = {u}. We takeM
andN to be fixed, and map to be defined accordingly.

Definition 14. The allocation sequent for revenue k and bids bid1, . . . , bidn is defined
as the following LL sequent:

M,map, bid1, . . . , bidn ` uk

Example 15. Supposes the auctioneer sells {p, p, q, r}. Suppose that three bidders
express their preferences by means of an XOR bid, a goalbase bid and an or-bid.

b1 : (p1 ⊗ q1 ( 4) & (p1 ⊗ r1 ( 3)

b2 : p1 (!p1 ⊗ q1 (!q1 ⊗ (p( 2) ⊗ (p ⊗ q( 5) ⊗ (q( 2)

b3 : (q ⊗ r( 5) ⊗ (r( 2)

The optimal allocation gives p and q to agent 2, thus satisfying the three atomic bids in
b2, and the remaining p and r to bidder 1, thus satisfying (p1 ⊗ r1 ( 3). Agent 3 gets
nothing. The proof in LL is presented in Table 2.

We are now ready to state the relationship between proofs and actual alloca-
tions.

Theorem 16. Given n bids in any of the bidding languages introduced (XOR, OR,
Goalbase), every allocation αwith revenue k provides a proof π of an allocation sequent
for k, and vice versa, every proof π of an allocation sequent for k provides an allocation
α with revenue k.

For the proof, we refer to Porello and Endriss (2010b). The proof shows how
it is possible to retrieve the goods allocated to the bidders from the sequent
calculus proof as A j = {a j | a j ` a j is an axiom in π}, those are the goods actually
used to satisfy the bids in π.

The reason why we choose to model allocation in the intuitionistic fragment
is that any intuitionistic sequent has just one conclusion, thus we can always
pinpoint the revenue formula in the allocation sequent.

Our result shows that we could import known algorithms for winner deter-
mination for CAs into our framework. On the other hand, given a proof π in
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the fragments we saw, we can transform it into a cut-free proof in polynomial
time Girard et al. (1992). In a cut-free proof, each connective is visited exactly
once, so given a proof of the allocation sequent, we can retrieve an allocation
in polynomial time.

For the three languages presented, allocation sequents belong to HLL, so the
complexity of checking whether revenue k is attainable is in NP Kanovich
(1994), meaning that our form of modelling the problem does not increase
complexity with respect to the standard approach Cramton et al. (2006). Of
course, Theorem 16 only provides a method for solving the decision variant of
the WDP. In practice, we will want to find the maximal revenue k such that uk

is provable. This can be achieved by using binary search over possible values
of k and checking the corresponding allocation sequents in turn.

6 Modelling Multilateral Negotiation

Given an allocation α, by Theorem 16, we can associate a proof π that satisfies
(some of) the agents’ preferences. Let A be the tensor formula corresponding
to the multiset of goodsM. Define Ai ⊆ A to be the multiset of atoms allocated
to agent i. We can state the definitions of social welfare within our framework
as follows. Let vali be a formula, in one of the language we have introduced,
that expresses a valuation function.

Definition 17 (Utilitarian social welfare).

swu(A) = max{k | A, val1, . . . , valn ` uk
}

We can consider a particular proof π of an allocation sequent and define the
value of the allocation in that proof as swπ

u (A) = uk, where A, val1, . . . , valn ` uk

is in π. The value of the allocation for a certain agent i is given by: uπi (A) = wi,
where A, vali ` wi is in π. So, for example, the utilitarian social welfare of a
given allocation sequent is given by the sum of the individual utilities:

uπ1 (A) ⊗ · · · ⊗ uπn (A) = swπ
u (A)

Slightly abusing the notation, we identify the value swu(A′) with the value k of
the tensor formula uk. Given two allocations A and A′, since we are using LL
with (W), we have that swu(A) ≤ swu(A′) iff swu(A′) ` swu(A). In order to define
a strict order, we put swu(A) < swu(A′) iff swu(A′) ` swu(A) ⊗ u.



D. Porello 365

We can present now the definition of Pareto optimality.

Definition 18 (Pareto optimality). An allocation A is Pareto optimal iff there is no
allocation A′ such that sw(A′) ` sw(A) ⊗ u and for all i, ui(A) ` ui(A′).

6.1 Modelling deals

In this section, we define a general language to express deals, then in the next
section we will see what it means for an agent to be willing to accept a deal.
The language we define will be more general than one would expect, since we
consider any kind of formula to be a deal.

We will not put structural constraints on the formula expressing deals; rather,
the condition we will put on the feasibility of the negotiation will provide the
expected meaning of deals, namely that they transform an allocation A into and
allocation A′.

Definition 19. A deal is any formula of linear logic built over the indexed alphabet
A

j.

So for example a single atom p j means that p goes to agent j. The meaning of a
deal of the form p1 ( q3 is simply the agent 1 loses p and the agent 3 gets q.

Definition 20. We say that an allocation A′ is obtained from A by a deal iff

A,deal ` A′

The fact that we use provability to model the passage from a A to A′ amounts to
assuming that the deals are feasible in the sense that they concern the resources
in A. For example, take p1 ( p2; if agent 1 does not own p in A, then such a
deal will not be used.

Remark 21. There are some situations we are excluding. The valuations we are
considering are defined on multisets that are represented in our language by tensor
formulas. We will not consider here valuations defined on other types of formulas, as
options like a&b (agent has the choice) or a⊕b (agent doesn’t have the choice): it would
require a rather different definition of valuation functions. We leave such extensions to
future work.

We discuss some examples. Deals that simply move a single resource p from
one agent to another (1-deals) can be modelled as implications of the form
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pi ( p j. A swap deal Sandholm (1998) between individuals is defined by the
following formula (pi ( p j) ⊗ (q j ( qi), which means that i gives p to j and j
gives q to i. For example, let A = {p1, q2, r3

}, we can get A′ = {p2, q1, r3
} by the

swap:

p1, q2, r3, (p1 ( p2) ⊗ (q2 ( q1) ` p2
⊗ q1
⊗ r3

Note that, according to this definition, there might be deals that change nothing,
e.g., pi ( pi. Moreover, we can also consider deals that simply provide a
resource p to a certain agent i, pi. In this way, we can for example model, as a
form of negotiation, the passage form a partial allocation, in which some goods
were not allocated, to a total one:

p1, q2︸︷︷︸
A

, p1 ( p2, q3︸       ︷︷       ︸
deal

` p2
⊗ q2
⊗ q3︸       ︷︷       ︸

A′

Cluster deals Sandholm (1998), where agents exchange more then one item, can
be modelled using tensors: pi

⊗ qi
⊗ ri ( p j

⊗ q j
⊗ r j, meaning that i gives one p,

one q and one r to j.

The language of LL allows for expressing deals that entail some forms of choice.
Let us call them optative deals. So, for example, (p1 ( p3) & (p2 ( p3) means that
3 would get p from 1 or from 3 (but not from both), or (p1 ( p2) & (p1 ( p2)
means that 1 would give p to 2 or to 3 (but not to both).

Using the distributivity law of LL, AM (B&C) a` (AMB)&(AMC),we can write
optative deals in the following forms. We can express deals like “someone
gives p to i” as follows: (p1

⊕ · · · ⊕ pn) ( pi. Symmetrically, we can express “i
gives p to someone”: pi ( (p1 & · · ·& pn). In an analogous way, we can consider
“i gives something to j” and “i gets something from j”.

Taking the language of deals in its full generality, we can also define transfor-
mations of deals, for example (pi ( p j) ( (r j ( ri), the intuitive meaning of
which is that j would give r to i if the deal (pi ( p j) has been accepted in the
negotiation.

Example 22. Let A be {p1, r3, p1, q2
} and the deals p1 ( p2 and q2 ( q3, meaning

that 1 gives on p to 2 and 2 gives one q to 3.

The following proof shows that A′ = {p1, r3, p2, q3
} is obtained from A:
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p1, r3
` p1
⊗ r3

p1, p1 ( p2
` p2 q2, q2 ( q3

` q3

⊗ L
p1, q2, p1 ( p2, q2 ( q3

` p2
⊗ q3

⊗ L
p1, r3, p1, q2, p1 ( p2, q2 ( q3

` p1
⊗ r3
⊗ p2
⊗ q3

We can prove that the language of deals is sufficiently powerful to express every
transformation of allocations A, A′.

Proposition 23. Let A and A′ be two allocations. Then there exists a formula deal
in the deal language such that

A,deal ` A′

The proof is obvious in the sense that it is enough to consider the formula
A( A′ as a deal. We can define a general notion of negotiation as follows.

Definition 24. A negotiation is a sequent A,deal1, . . . ,deall ` A′ where deal1, ...,
deall are accepted deals according to some criterion.

We can also consider the feasibility of an allocation with respect a given multiset
of resources as follows:

M,map ` A (2)

Here, map is the formula defined as in (1). The provability of (2) entails that,
given the actual multiset of resourcesM, A is a feasible way to assign goods.

6.2 Rationality of Deals

In this section, we present some conditions that specify when an agent would
accept a deal. Basically, according to the relevant literature, cf. Endriss et al.
(2006), we distinguish two cases, one with side payments and one without. A
payment function is a function p : N → Z such that∑

i∈N

p(i) = 0

Using side payments, the notion of individual rationality can be defined as
follows. A deal is individually rational iff whenever A′ is obtained by A by
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means of that deal, then there exist a payment function p such that for all i ∈ N :

vi(A′) > p(i) + vi(A)

We rephrase the notion of payment function considering formulas in our lan-
guage as side payments. The requirement that the prices actually paid must
sum up to zero is here interpreted as the provability of the sequent contain-
ing positive and negative payments. Intuitively, there should be a matching
between who pays and who gets payments.

Definition 25. A side payment is a sequent X a` Y, where X and Y are tensors of u,
that is provable in LL. We call the formulas on the left negative payments and those on
the right positive payments.

We could also consider more general formulas as side payments. As an example
of possible generalisation, we can consider an individual i who would accept
to face a loss of three units of her utility for getting one q; it can be modelled
using the formula u3 ( qi.

Using payment sequents we can rephrase the notion of individual rationality
as follows.

Definition 26. Given a deal deal such that A′ is obtained by A by means of deal
and a side payment X a` Y, we say that deal is individually rational iff for all i,
ui(A′i ),Xi ` ui(Ai) ⊗ Yi and there exists a j such that: u j(A′),X j ` u j(A j) ⊗ u ⊗ Y j,
where X1 ⊗ · · · ⊗ Xn � X and Y1 ⊗ · · · ⊗ Yn � Y.

Note that, since we are working with integers, we do not require all agents to
experience a (possibly infinitesimally small) improvement, but rather ask that
no agent suffers a loss, and at least one of them gains one full unit u. We can
derive the case without side payments, by taking the payment sequent to be
1 ` 1, yielding the following definition of cooperative rationality,cf. Endriss et al.
(2006):

Definition 27. A deal formula deal such that A,deal ` A′ is cooperatively rational
iff for all i, ui(A′) ` ui(A) and there exists a j such that u j(A′) ` u j(A) ⊗ u.

In what follows, w.l.o.g., we will consider payments in which, for each i, (at
least one of) Xi or Yi is the tensor unit 1.

Example 28. Suppose we want to determine whether a deal taking us from allocation
A to A′ is individually rational. Let u1(A′) = u15, u2(A′) = u10, u3(A′) = u5 and
u1(A) = u2, u2(A) = u1, u3(A) = u6. We can define Xi and Yi as follows:
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u15
` u2
⊗ u6 Y1 = u6

u10
` u1
⊗ u2 Y2 = u2

u5,u8
` u6 X3 = u8

We have that positive and negative payments match: u8
a` u6

⊗ u2.

We can now state the relationship between individual rationality and social
welfare by means of the following theorems. The next result corresponds to
(Endriss et al. 2006, Lemma 1), except that we get a more precise characterisation
in the context of integer valuations: a deal is individually rational if and only
if it increases social welfare by at least one unit.

Theorem 29 (Rational deals and social welfare). A deal formula deal with
A,deal ` A′ is individually rational iff swu(A′) ` swu(A) ⊗ u.

For a proof we refer to Porello and Endriss (2010a). In a similar way we can
prove a result linking cooperative rationality and Pareto improvements Endriss
et al. (2006).

The following result shows that allocations with maximal utilitarian social wel-
fare can be reached from any (suboptimal) allocation A by means of individually
rational deals.

Theorem 30. Let A∗ be an allocation with maximal social welfare. Then for any
allocation A with lower social welfare there exists an individually rational deal deal
such that A,deal ` A∗.

The proof relies on the fact that there always exists a deal to reach A∗ from A,
by Proposition 23. Since social welfare improves, by Theorem 29 such a deal is
individually rational.

It is interesting to remark that, since we are dealing with integer valuations, if
we consider any set of rational deals, each of them must make social welfare
increase by at least one unit. Thus, if k is the difference between the maximal
social welfare and the social welfare of the initial allocation, then we will always
reach an optimal allocation by means of any sequence of at most k individually
rational deals.
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7 Conclusion

We have introduced a model of MARA based on linear logic and we have
applied it to model combinatorial auctions and negotiation over multisets of
goods. In particular, we have stressed how linear logic allows for understand-
ing MARA problems as reasoning tasks: we have discussed the relationship
between types of goods and suitable reasoning rules. In particular, agents can
reason by means of classical logic about sets of objects, while we have to drop
contraction in order to reason about multisets of goods. Moreover, we have in-
terpreted the free disposal assumption as a matter of accepted reasoning rules,
namely weakening.

Linear logic allows also for describing different types of goods. The idea that LL
may be useful in designing bidding languages that can distinguish shareable
from nonsharable goods has already been hinted at by Boutilier and Hoos
(2001). We can define the full availability of a good for the bidders as !`p where
` is big enough, so !`p can be shared by all bidders demanding it. In order to
express the reusability of a good for a single bidder j, we can write !`p j, which
will satisfy only bidder j’s bids. In order to make explicit that j can reuse p as
much as she likes, we can add the formula p j ( !`p j to j’s bid formula as we did
for modelling the goalbase languages. We presented here a treatment of MARA
on sets and multisets of goods. We can easily extend our approach to lists of
goods, namely bundles of goods such that the order in which they are sold
matters. In order to do it, we need to drop (E). The logic we obtain is then the
well known Lambek calculus, cf. Pentus (2003). In principle, all the languages
we have developed can be adapted to the non-commutative case. Moreover,
the interaction of multisets and lists of goods can be modelled by using the
partially commutative linear logic, cf. de Groote (1996). Such extensions are
left for future work.

Acknowledgements I would like to thank the participants of the LIRa seminar
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Abstract

The paper presents a new consequentialist deontic logic in which the relation
of preference over sets of possible worlds and the relation of conditional
dominance are both transitive. This logic validates the principle that
absolute ought can be derived from conditional ought in case the conditional
statement is the agent’s absolute ought. Ought about conditionals is not
implied by conditional ought in this logic. Next, we show how this logic
at work in the following two settings: first, we we look at a recent paradox
that has been presented in Kolodny and MacFarlane (2010) and provide
our solution. Second, we revisit Anderson’s six deontic principles of
conditional ought and show their validity or invalidity in our framework.
In addition, we propose a more proper interpretation for the notion of
permission after reviewing the latest work in multi-agent deontic action logic.



X. Sun and F. Liu 375

1 Introduction

Let us introduce an example from game theory right away:

Example 1 (matching pennies). Ann is playing a matching pennies game with
Bob. They choose, simultaneously, whether to show the head or the tail of a
coin. If they show the same side, Ann receives one dollar from Bob. If they
show different sides, Bob receives one dollar from Ann. The situation can be
depicted in Figure 1:

-1,1w3

γ
1,-1w4

1,-1w1
-1,1w2

head tail

head

tail
Ann

Bob

Figure 1

Obviously, under the condition of Bob showing the head, Ann ought to see to
it that she shows the head. The question we would ask here is the following,
does Ann ought to see to it that if Bob shows the head then she shows the head?
The answer seems to be positive at first sight. However, we claim here that
the answer is negative. Here is how we reason: Denote the situation in which
Ann shows the tail and Bob shows the head as γ. First note that to Ann, both
showing the head and showing the tail are optimal, which implies that Ann is
permitted to show the tail. Since Ann showing the tail may lead to the situation
γ, Ann is permitted to act towards the situation γ. Next, assume the answer is
positive, that is, Ann ought to see to it that if Bob shows the head, then Ann
shows the head. This means Ann ought to prohibit the following outcome:
Bob shows the head but Ann shows the tail. Hence Ann ought to prohibit the
situation γ. Contradiction.

A decision theoretical example of the same sort can be found at the end of
Chapter 5 of Horty (2001) and we re-state it here:

Example 2 (swerve or continue?). Two drivers are traveling toward each other
on a one-lane road, with no time to stop or communicate, and with a single
moment at which each must choose, independently, either to swerve or to
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continue along the road. There is only one direction in which the drivers might
swerve, and so a collision can be avoided only if one of the drivers swerves and
the other does not; if neither swerves, or both do, a collision occurs. We can
depict this situation in Figure 2:

0w3
1w4

1w1
0w2

continue swerve

swerve

continue
Driver A

Driver B

Figure 2

Given the above situation, under the condition that Driver B swerves, Driver
A ought to see to it that he continues. Similarly, we can ask the same question:
does Driver A ought to see to it that if Driver B swerves then he continues?
Again, our answer to this question is No. The reason is the following: If Driver
A ought to see to it that if Driver B swerves, then he continues. Then he ought
to prohibit the situation in which both Driver B and he himself swerve. In
order to prohibit that situation, Driver A has to see to it that he continues. This
means, Driver A ought not to choose to swerve. But this contradicts to our
intuition.

In what follows, we will refer sentences of the form “under the condition of
ϕ, agents ought to see to it that ψ” as conditional ought, and we use ought about
conditionals to name sentences of the form “agents ought to see to it that if
ϕ then ψ”. Anderson (1959) suggested that a desired theory of conditional
ought should include the principle that conditional ought implies ought about
conditionals. In Aqvist (1994), this principle is presented as a valid axiom in
the strongly normal system G. However, the above two examples have both
suggested that this principle is doubtable. Similar scenarios abound in real
life. In this paper, we are going to investigate around this issue and propose
a consequentianlist deontic logic, in which ought about conditionals is not
implied by conditional ought.

The structure of the paper is as follows: Section 2 is an introduction to our new
consequentianlist deontic logic, including the language and semantics. We
then show the system at work in the following two settings: moral dilemma
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and deontic logic tradition. In Section 3 we study a recent widely-discussed
paradox that has appeared in Kolodny and MacFarlane (2010) and provide our
solution by using ideas from our new framework. In Section 4 we analyze the
six deontic principles concerning conditional ought first proposed by Anderson
and prove their validity and invalidity in our logic. Finally, in Section 5 we
look at the related works, in particular, we propose a new notion of permission
for the latest work on multi-agent deontic action logic presented in Tamminga
(2011 Nov. 24). We end up with some conclusions and future work in Section
6.

2 A New Consequentianlist Deontic Logic

2.1 Language

Definition 2.1 (language). The language of the consequentianlist deontic logic
is built from a finite set A of agents and a countable set P of atomic propositions.
We will use p and q as variables for atomic propositions in P, and use F and G,
where F, G ⊆ A, as groups of agents. The consequentianlist deontic language
L is given by the following Backus-Naur Form:

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | ♦ϕ | [G]ϕ |
⊙F

G ϕ |
⊙F

G(ϕ/ϕ)

Intuitively, ♦ϕ can be read as “ It is possible thatϕ”. [G]ϕ can be read as “Group
G sees to it that ϕ”.

⊙F
G ϕ can be read as “In the interest of group F, group G

ought to see to it that ϕ”.
⊙F

G(ϕ/ψ) can be read as “In the interest of group
F, group G ought to see to it that ϕ under the condition of ψ”. We use P F

Gϕ as
an abbreviation of ¬

⊙F
G ¬ϕ, which can be read as ‘In the interest of group F,

group G is permitted to lead to a situation in which ϕ is true.”

2.2 Consequentialist Frame

The semantics of consequentianlist deontic logic is based on the consequen-
tianlist frames. Similar to Kooi and Tamminga (2008a), our definition of conse-
quentianlist frame is as follows:
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Definition 2.2 (consequentianlist frame). A consequentianlist f rame F is a
quadruple 〈W,A,Choice, {ValueF}F⊆A〉, where W is a nonempty set of possible
worlds, A is a finite set of agents, Choice is a choice function, and ValueF, repre-
sents the preference of some group of agents F ⊆ A and a function from W to
the set of real numbers R . Formally, ValueF : W → R .

The choice function Choice is a function from the power set of A to the power
set of the power set of W, i.e. Choice : ℘(A) 7→ ℘(℘(W)). Choice is built from the
individual Choice function IndChoice: A 7→ ℘(℘(W)). IndChoice must satisfy the
following three conditions:

(1) for each agent i∈A it holds that IndChoice(i) is a partition of W;

(2) for each selection function s that assigning to each agent i ∈ A a set of
possible worlds s(i) ∈ IndChoice(i), it holds that

⋂
i∈A s(i) in nonempty;

(3) for each i ∈ A, the set IndChoice(i) is finite.

Let Select be the set of all selection functions, then

Choice(G) = {
⋂

i∈G s(i) : s ∈ Select}

if G is nonempty. Otherwise, Choice(G) = {W}. For any two world w and w′, if
there exists a K ∈ Choice(G) such that w ∈ K and w′ ∈ K, we denote it as w ∼G w′.
Intuitively, w ∼G w′ means the choice of group G cannot distinguish w from w′.

In order to better understand this definition, take the Prisoner’s Dilemma from
Osborne and Rubinstein (1994) as an example.

Example 3 (Prisoner’s Dilemma). The Prisoner’s Dilemma can be represented
by the following figure:

4, 0w3
1, 1w4

3, 3w1
0, 4w2

quiet fink

quiet

fink
player α

player β
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Figure 3

In this example, A={α, β},W = {w1,w2,w3,w4}, IndChoice (α)={{w1, w2},{w3,w4}},
IndChoice(β) ={{w1, w3},{w2,w4}}. Apparently, both IndChoice(α) and IndChoice(β)
are partitions of W. And there are four selection functions, Select ={s1, s2, s3, s4},
where:

s1(α) = {w1, w2}, s1(β) = {w1, w3}

s2(α) = {w1, w2}, s2(β) = {w2, w4}

s3(α) = {w3, w4}, s3(β) = {w1, w3}

s4(α) = {w3, w4}, s4(β) = {w2, w4}

So we have for each s ∈ Select,
⋂

i∈A s(i) is not empty. Therefore the two con-
ditions of individual choice are both satisfied. Then we have Choice(A) =
{
⋂

i∈A s(i) : s ∈ Select}= {{w1}, {w2}, {w3}, {w4}}.

Having defined consequentianlist frames, we are ready to define preferences over
sets of worlds. 1

Definition 2.3 (preferences over sets of worlds; ≤F, <F). Let X ⊆ W, Y ⊆ W be
two sets of worlds, F a group of agents from a consequentialist frame. Then
X ≤F Y(Y is weakly pre f erred to X) if and only if
(1) for each w ∈ X, for each w′ ∈ Y, ValueF(w) ≤ ValueF(w′) and
(2) there exists some v ∈ X, v′ ∈ Y, ValueF(v) ≤ ValueF(v′). X <F Y (Y is stongly
pre f erred to X) if and only if X ≤F Y and it is not the case that Y ≤F X.

Given Definition 2.3, we can obtain some useful lemmas and propositions,
listed below. Note that in what follows we will omit some obvious proofs and
present the important ones only with details.

Lemma 1. Let X and Y be two sets of worlds, F a group of agents from a consequentialist
frame. Then X ≤F Y if and only if Value(w) ≤ Value(w′) for each w ∈ X, for each
w′ ∈ Y and X , ∅, Y , ∅.

1The definition in Horty (2001) has some flaw, hence cannot ensure the transitivity of the
preference relation, see more details in Sun (2011).
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Lemma 2. Let X and Y be two sets of worlds, F a group of agents from a consequentialist
frame. Then X <F Y if and only if
(1) ValueF(w) ≤ ValueF(w′) for each w ∈ X, for each w′ ∈ Y,
(2) ValueF(w) < ValueF(w′) for some w ∈ X, for some w′ ∈ Y.

Proof. Left to right. Assume X <F Y, then we have X ≤F Y and it is not the case
that Y ≤F X. X ≤F Y plus Lemma 1 implies (1) and X , ∅, Y , ∅. By it is not the
case that Y ≤F X, we have either X = ∅ or Y = ∅ or for some w′ ∈ Y, for some
w ∈ X, ValueF(w′) > ValueF(w). But we already have X , ∅ and Y , ∅. Hence
for some w′ ∈ Y, for some w ∈ X ValueF(w′) > ValueF(w), then (2) is true.

Right to left. By (2) we know X , ∅ and Y , ∅. This plus (1) implies X ≤F Y.
So it’s sufficient to prove the following: it is not the case that Y ≤F X. Suppose
Y ≤F X, then for each w′ ∈ Y and for each w ∈ X, ValueF(w′) ≤ ValueF(w). But
according to (2), for some w′ ∈ Y and for some w ∈ X, ValueF(w′) > ValueF(w).
Contradiction. �

Proposition 1. Let X and Y be sets of worlds, F a group of agents from a consequen-
tialist frame. Then:

1. If X ≤F Y and Y ≤F Z, then X ≤F Z.

2. If X ≤F Y and Y <F Z, then X <F Z.

3. If X <F Y and Y ≤F Z, then X <F Z.

4. If X <F Y and Y <F Z, then X <F Z.

Proof. Here we just prove Clause 1. Assume X ≤F Y and Y ≤F Z, then X , ∅,
Y , ∅ and Z , ∅. Let w be an arbitrary history in X, w′′ be an arbitrary
history in Z. By Y , ∅ we have that there exists some w′ ∈ Y. By X ≤F Y
and Y ≤F Z we have ValueF(w) ≤ ValueF(w′), ValueF(w′) ≤ ValueF(w′′), hence
ValueF(w) ≤ ValueF(w′′). Therefore X ≤F Z. �

Proposition 1 states that the relation of preference over sets of worlds is tran-
sitive.2 This property is what has been assumed in Horty (2001) and our
semantics. And it is crucial in that only with this transitive relation, we can
properly define the concept of dominance and optimal.

2Though we are aware of the long-standing discussions on whether transitivity should be taken
as the property of preference. We take it in this context to conform to Horty’s spirit.



X. Sun and F. Liu 381

Definition 2.4 (dominance relation; ≤F
G). Let F be a consequentialist frame. Let

F, G ⊆ A and K, K′ ∈ Choice(G). Then

K ≤F
G K′ iff for all S ∈ Choice(A − G), K ∩ S ≤F K′ ∩ S.

K ≤F
G K′ can be read as “in the interest of group G, K′ weakly dominates K".

From a game theoretical perspective, K ≤F
G K′ means that no matter how other

agents act, the agent’s payoff of choosing K′ is no less than that of choosing K.
We use K <F

G K′ as an abbreviation of K ≤F
G K′ but K′ ≤F

G K does not hold. If
K <F

G K′, we then say K′ strongly dominate K.

Lemma 3. Let F, G be groups of agents from a consequentialist frame, and let K,
K′ ∈ Choice(G). Then K <F

G K′ if and only if
(1) K ∩ S ≤F K′ ∩ S for each S ∈ Choice(A − G), and
(2) K ∩ S <F K′ ∩ S for some S ∈ Choice(A − G).

Proof. Left to right. Assuming K <F
G K′, then K ≤F

G K′ and it is not the case that
K′ ≤F

G K. (1) directly follows from K ≤F
G K′. By it is not the case that K′ ≤F

G K,
we have for some state S ∈ Choice(A −G), it is not the case that K′ ∩ S ≤F K ∩ S.
But according to (1) we already have K ∩ S ≤F K′ ∩ S. Hence K ∩ S <F K′ ∩ S.
Which means (2) is true.

Right to left. By (1) we know K ≤F
G K′. So we only need to prove it is not that

K′ ≤F
G K. That is, for some state S ∈ Choice(A−G), it is not that K′∩S ≤F K∩S. This

is implied by (2), because (2) means for some S ∈ Choice(A−G), K∩ S ≤F K′ ∩ S
and it is not the case that K′ ∩ S ≤F K ∩ S. �

Proposition 2. Let F, G be groups of agents from a consequentialist frame, and let K,
K′, K′′ ∈ Choice(G). Then:

1. If K ≤F
G K′ and K′ ≤F

G K′′, then K ≤F
G K′′.

2. If K ≤F
G K′ and K′ <F

G K′′, then K <F
G K′′.

3. If K <F
G K′ and K′ ≤F

G K′′, then K <F
G K′′.

4. If K <F
G K′ and K′ <F

G K′′, then K <F
G K′′.

Proof. Similar to the proof of Proposition 4.7 in (Horty 2001). �
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Proposition 2 states that the dominance relation is transitive. This transitivity
is actually still true even if we delete the existential clause in Definition 2.3.
Because the definition of choice function ensures that for any K ∈ Choice(G), for
any S ∈ Choice(A−G), K∩ S , ∅. However, the transitivity of conditional dom-
inance (Definition 2.6 below) does rely on the existential clause of Definition
2.3. The conditional dominance is defined on restricted choice sets, which we
will give below.

Definition 2.5 (restricted choice sets). Let F, G be groups of agents from a
consequentialist frame, X a set of worlds in the frame. Then

Choice(G/X) = {K : K ∈ Choice(G) and K ∩ X , ∅}

Intuitively, Choice(G/X) is the collection of group G’s choice which is consistent
with condition X. We can further define conditional dominance relation over
agent’s choice. The intuition is this: to compare whether the agent’s choice K is
dominated by K′ under the condition X, we only need to consider other agents’
choices which are consistent with the condition X and one of K and K′.

Definition 2.6 (conditional dominance; ≤F
G/X). Let F, G be groups of agents from

a consequentialist frame, X a set of worlds in the frame. Let K, K′ ∈ Choice(G/X).
Then

K ≤F
G/X K′ iff for all S ∈ Choice((A−G)/(X∩(K∪K′))), K∩X∩S ≤F K′∩X∩S.

K ≤F
G/X K′ can be read as “in the interest of group F, K′ weakly dominates K

under the condition of X". The intuition behind this definition is this: when
we want to know whether our action K dominates action K′ under some con-
dition X, other agents’ choices which are inconsistent with the condition X or
inconsistent with neither K nor K′ are treated as irrelevant.

And we will use K <F
G/X K′, which reads as “in the interest of group F, K′

strongly dominates K under the condition of X", to express K ≤F
G/X K′ and it is

not the case that K′ ≤F
G/X K.

Lemma 4. Let F, G be groups of agents from a consequentialist frame, X a set of worlds
in the frame. Let K, K′ ∈ Choice(G/X). Then K <F

G/X K′ if and only if
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(1) K ∩ X ∩ S ≤F K′ ∩ X ∩ S for each S ∈ Choice((A − G)/(X ∩ (K ∪ K′))), and

(2) K ∩ X ∩ S <F K′ ∩ X ∩ S for some S ∈ Choice((A − G)/(X ∩ (K ∪ K′))).

Proof. Similar to the proof of Lemma 3. �

Proposition 3. Let F, G be groups of agents from a consequentialist frame, X a set of
worlds in the frame. Let K, K′, K′′ ∈ Choice(G/X). Then the following holds,

1. If K ≤F
G/X K′ and K′ ≤F

G/X K′′, then K ≤F
G/X K′′.

2. If K ≤F
G/X K′ and K′ <F

G/X K′′, then K <F
G/X K′′.

3. If K <F
G/X K′ and K′ ≤F

G/X K′′, then K <F
G/X K′′.

4. If K <F
G/X K′ and K′ <F

G/X K′′, then K <F
G/X K′′.

Proof. To prove Proposition 3, we first prove two lemmas:
Lemma A Let F, G be groups of agents from a consequentialist frame, X
a set of worlds in the frame. Let K, K′ ∈ Choice(G/X). If K ≤F

G/X K′, then
Choice((A − G)/(X ∩ K))=Choice((A − G)/(X ∩ K′)).

Proof of Lemma A We are going to prove Choice((A−G)/(X∩K)) ⊆ Choice((A−
G)/(X ∩ K′)) and Choice((A − G)/(X ∩ K)) ⊇ Choice((A − G)/(X ∩ K′)).

For Choice((A−G)/(X∩K)) ⊆ Choice((A−G)/(X∩K′)), assume there exists some
S ∈ Choice(A−G) such that S ∈ Choice((A−G)/(X∩K)) but S < Choice((A−G)/(X∩
K′)). Then S ∩ X ∩ K , ∅ and S ∩ X ∩ K′ = ∅. Therefore S ∩ X ∩ (K ∪ K′) , ∅
and S ∈ Choice((A−G)/(X∩ (K∪K′))). Now by K ≤F

G/X K′ we have K∩X∩ S ≤F

K′ ∩ X ∩ S. This plus Lemma 1 implies K′ ∩ X ∩ S , ∅. Contradiction. Hence
Choice((A − G)/(X ∩ K)) ⊆ Choice((A − G)/(X ∩ K′)).

The case for Choice((A − G)/(X ∩ K)) ⊇ Choice((A − G)/(X ∩ K′)) is similar.

Lemma B Let G be a group of agents, X and Y be sets of worlds from
a consequentialist frame. If Choice((A − G)/X) = Choice((A − G)/Y), then
Choice((A − G)/X) = Choice((A − G)/(X ∪ Y)).

Proof of Lemma B For Choice((A − G)/X) ⊆ Choice((A − G)/(X ∪ Y)). If
S ∈ Choice((A − G)/X), then S ∈ Choice((A − G)/Y) and S ∩ X , ∅, S ∩ Y , ∅.
Hence (S∩X)∪(S∩Y) , ∅, S∩(X∪Y) , ∅. So we have S ∈ Choice((A−G)/(X∪Y)).
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For Choice((A −G)/X) ⊇ Choice((A −G)/(X ∪ Y)). If S ∈ Choice((A −G)/(X ∪ Y)),
then S ∩ (X ∪ Y) , ∅, (S ∩X) ∪ (S ∩ Y) , ∅. Now assume S < Choice((A −G)/X),
then S < Choice((A − G)/Y). Hence S ∩ X = ∅ and S ∩ Y = ∅. So we have
(S ∩ X) ∪ (S ∩ Y) = ∅. Contradiction.

Proof of Proposition 3 Here we just prove clause 1. Other clauses are similar.
Assume K ≤F

G/X K′ and K′ ≤F
G/X K′′. By Lemma A,

Choice((A − G)/(X ∩ K))=Choice((A − G)/(X ∩ K′)) =Choice((A − G)/(X ∩ K′′)).
By Lemma B, we now have

Choice((A−G)/(X∩K))=Choice((A−G)/((X∩K)∪ (X∩K′))) =Choice((A−G)/(X∩
(K ∪ K′))),

Choice((A−G)/(X∩K))=Choice((A−G)/((X∩K)∪ (X∩K′′))) =Choice((A−G)/(X∩
(K ∪ K′′))),

Choice((A−G)/(X∩K′))=Choice((A−G)/((X∩K′)∪(X∩K′′))) =Choice((A−G)/(X∩
(K′ ∪ K′′))).
Hence for each S ∈ Choice((A−G)/(X∩(K∪K′′))), we have S ∈ Choice((A−G)/(X∩
(K ∪ K′))) and S ∈ Choice((A − G)/(X ∩ (K′ ∪ K′′))). Therefore by K ≤F

G/X K′ we
have K ∩X ∩ S ≤F K′ ∩X ∩ S, by K′ ≤F

G/X K′′ we have K′ ∩X ∩ S ≤F K′′ ∩X ∩ S.
Since the relation ≤F is transitive, we have K ∩ X ∩ S ≤F K′′ ∩ X ∩ S. Therefore
K ≤F

G/X K′′. �

Proposition 3 corresponds to Proposition 5.4 in Horty (2001). Notice that to
make Proposition 3 true, the existential condition in Definition 3 is necessary. 3

3In Horty (2001)≤F is defined with the universal clause in Definition 3 only. K ≤F
G/X K′ is defined

as: for all S ∈ Choice(A − G), K ∩ X ∩ S ≤F K′ ∩ X ∩ S. In that case we can construct the following
counterexample to falsify the transitivity of ≤F

G/X:

(3)
w5

(1)
w6 X

X

(3)

(2)
w1

w3 X
(1)

(0)
w2

w4

S1 S2

K1

K2

K3

Figure 4
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In Kooi and Tamminga (2008b), the definitions of restricted choice set and
conditional dominance are different from ours. See the following:

Definition 2.7. Let F, G be groups of agents from a consequentialist frame, X a
set of worlds in the frame. Then

Choice(G/X) = {K ∩ X : K ∈ Choice(G) and K ∩ X , ∅}

Definition 2.8. Let F, G be groups of agents from a consequentialist frame, X a
set of worlds in the frame. Let k, k′ ∈ Choice(G/X). Then

k ≤F
G/X k′ iff for all S ∈ Choice(A − G) and for all w and w′ ∈ W it holds

that if w ∈ k∩ S and w′ ∈ k′ ∩ S, then ValueF(w) ≤ ValueF(w′)

Look at Figure 4 again, it’s easy to verify that according to above defini-
tions, Choice(G/X) = {{w2}, {w3}, {w6}} and {w6} ≤

F
G/X {w3}, {w3} ≤

A
{α}/X {w2},

but {w6} ≤
A
{α}/X {w2} does not hold. In other words, this version of conditional

dominance is not transitive.

2.3 Semantics

As in traditional modal logic, a model is a frame plus a valuation function.

Definition 2.9 (consequentialist model). A consequentialist model M is an
ordered pair 〈F ,V〉 where F is a consequentialist frame and V a valuation
function that assigns to each atomic proposition p ∈ P a set of worlds V(p) ⊆W.

In our semantics, we use the optimal choice and conditional optimal choice
to interpret the deontic operators. The definition of optimal (Definition 2.10)
and conditional optimal (Definition 2.11) is rather simple, we will show it very
soon.

Definition 2.10 (OptimalFG). Let F, G be groups of agents from a consequentialist
frame,

Here W = {w1, ...,w6}, A = {α, β}, Choice({α}) = {K1,K2,K3}, Choice({β}) = {S1,S2}, K1 = {w1,w2},
K2 = {w3,w4}, K3 = {w5,w6}, S1 = {w1,w3,w5}, S2 = {w2,w4,w6}, X = {w2,w3,w6}, and the number
in the brackets represents the value of the world in the interest of group A. According to Horty’s
definition, we have K3 ≤

A
{α}/X K2 and K2 ≤

A
{α}/X K1 but we don’t have K3 ≤

A
{α}/X K1. Therefore, in

Horty (2001) the ≤F
G/X relation is not transitive and Proposition 5.4 is mistaken.
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OptimalFG = {K ∈ Choice(G) : there is no K′ ∈ Choice(G) such that K <F
G K′}.

Proposition 4. Let F, G be groups of agents from a consequentialist frame, then for
each K ∈ Choice(G) −OptimalFG, there exists some K′ ∈ OptimalFG such that K <F

G K′.

Proof. Similar to the proof of Proposition 4.11 in (Horty 2001) �

Definition 2.11 (OptimalFG/X). Let F, G be groups of agents from a consequen-
tialist frame,

OptimalFG/X = {K ∈ Choice(G/X) : there’s no K′ ∈ Choice(G/X) such that
K <F

G/X K′}.

Proposition 5. Let F, G be groups of agents from a consequentialist frame, for each
K ∈ Choice(G/X) −OptimalFG/X, there exists K′ ∈ OptimalFG/X such that K <F

G/X K′.

Proof. Similar to the proof of Proposition 5.7 in Horty (2001). �

Here again to ensure the truth of Proposition 5, the existential condition in
Definition 2.3 is necessary. Otherwise we would have a counterexample as
follows:

(2)w7 w8X

X

X X

X

(3)w1

w4

X

(1) (4)

(5)

(0)w2 w3

w6

w9

w5

S1 S3S2

K1

K2

K3

Figure 5

In the above case, W = {w1, ...,w9}, A = {α, β}, Choice({α}) = {K1,K2,K3},
Choice({β}) = {S1,S2,S3}, K1 = {w1,w2,w3}, K2 = {w4,w5,w6}, K3 =
{w7,w8,w9}, S1 = {w1,w4,w7}, S2 = {w2,w5,w8}, S3 = {w3,w6,w9}, and X =
{w1,w2,w5,w6,w7,w9}, the numbers in the brackets represent the value of the
world in the interest of A. If Definition 3 did not have the existential con-
dition, we would have K1 <A

{α}/X K2, K2 <A
{α}/X K3, and K3 <A

{α}/X K1. Hence
OptimalA

{α}/X = ∅, which contradicts to Proposition 5.
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Definition 2.12 (truth conditions). Let M = 〈F ,V〉 be consequentialist model.
Let w ∈W rand let ϕ,ψ ∈ L. Then

(1) M,w |= p iff w ∈V(p);

(2) M,w |= ¬ϕ iff it is not that M,w |= ϕ;

(3) M,w |= ϕ ∧ ψ iff M,w |= ϕ and M,w |= ψ;

(4) M,w |= ♦ϕ iff there is a w′ such that M,w′ |= ϕ;

(5) M,w |= [G]ϕ iff for all w′ with w ∼G w′ it holds that M,w′ |= ϕ;

(6) M,w |=
⊙F

G ϕ iff K ⊆ ||ϕ|| for each K ∈ OptimalFG;

(7) M,w |=
⊙F

G(ϕ/ψ) iff K ⊆ ||ϕ|| for each K ∈ OptimalFG/ψ.

Here ‖ϕ‖ = {w ∈W : M,w |= ϕ}. OptimalFG/ψ is a shorthand for OptimalFG/||ψ||.

We say ϕ is true in the world w of a consequentialist model M if M,w |= ϕ.
Just like in the standard modal logic (for instance, P. Blackburn and Venema
(2001)), we introduce the concept of validity as following: a formula ϕ is valid
in a world w of a consequentialist frame F (notation: F ,w |= ϕ) if ϕ is true at
w in every model 〈F ,V〉 based on F ; ϕ is valid in a consequentialist frame F
(notation: F |= ϕ) if it is valid at every world of F ; ϕ is valid (notation: |= ϕ) if
it is valid in the class of all consequentialist frames.

Let us summarize what we have done so far. Motivated by the two scenarios
that are prevalent in ordinary life, we have proposed a new logic characterizing
the process of decision making, in which our new definition of preference over
sets of worlds ensures its property of transitivity. We have explored its logical
properties in details.

3 A Solution to the Ten Miners Paradox by “Sure-
thing Reasoning"

Having defined our logic, now it’s time to test it by dealing with puzzles and
paradoxes. A well-circulated paradox involved conditional ought is presented
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by Kolodny and MacFarlane (2010). It goes as follows:

Ten miners are trapped either in shaft A or in shaft B, but we don’t know which.
Flood waters threaten to flood the shafts. We have enough sandbags to block
one shaft, but not both. If we block one shaft, all the water will go into the other
shaft, killing any miners insider it. If we block neither shaft, both shafts will fill
halfway with water, and just one miner, the lowest in the shaft, will be killed.

From a consequentianlist’s perspective, we take it as obvious that

(1) We ought to block neither shaft.

However, the following two statements also seems plausible:

(2) If the miners are in shaft A, we ought to block shaft A.
(3) If the miners are in shaft B, we ought to block shaft B.

Since the miners must be either in shaft A or in shaft B, we can conclude either
we ought to block shaft A or we ought to block shaft B. Furthermore,

(4) We ought to block at least one shaft.

Here (1) and (4) contradict to each other.

Kolodny and MacFarlane (2010) has extensively discussed some possible so-
lutions to the paradox. Here we simply present another solution using ideas
from our new logic. First, we reformulate the above statement (1)-(4) with our
consequentianlist deontic language.

Let ϕ denote the miners are in shaft A, then ¬ϕ denote the miners are in shaft
B. Let ψ′ denote we block shaft A, ψ′′ denote we block shaft B. Let ψ denote
we block at least one of the two shafts. Then
(2) can be formulated as

⊙F
G(ψ′/ϕ).

(3) can be formulated as
⊙F

G(ψ′′/¬ϕ).

(4) can be formulated as
⊙F

G ψ.

The reasoning from the premiss (2) and (3) to the conclusion (4) is the following:

From
⊙F

G(ψ′/ϕ) we infer that
⊙F

G(ψ/ϕ), from
⊙F

G(ψ′′/¬ϕ) we infer that⊙F
G(ψ/¬ϕ). From

⊙F
G(ψ/ϕ) and

⊙F
G(ψ/¬ϕ) we infer that

⊙F
G ψ.

We are going to solve this paradox by proving that the deduction from
⊙F

G(ψ/ϕ)
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and
⊙F

G(ψ/¬ϕ) to
⊙F

G ψ is not valid. According to our semantics, it’s not hard

to verify that the formula (
⊙F

G(ψ/ϕ) ∧
⊙F

G(ψ/¬ϕ))→
⊙F

G ψ is not valid. For
illustration, we can easily construct the following model:

ψ

ψ

(10)w1

w4

ψ

ψ

ϕ ϕ ϕ

¬ϕ ¬ϕ ¬ϕ
(10)(0) (9)

(9)(0)w2 w3

w6w5

block A block neitherblock B

In A

In B

Figure 6

In Figure 6, we let group G have three choices: block shaft A, block shaft B or
block neither shaft. And we view nature as an agent and let it have two choices:
set miners in shaft A or set miners in shaft B. Let the numbers in the brackets
represent group F’s preference (no matter what Group F is).

According to the above model, OptimalFG/ϕ={{w1,w4}}, OptimalFG/¬ϕ ={{w2,w5}}.

Hence {w1,w4} ⊆ ||ψ||,{w2,w5} ⊆ ||ψ||. Therefore both (
⊙F

G(ψ/ϕ) and
⊙F

G(ψ/¬ϕ))
are true in this model. But we also have {w3,w6} ∈ OptimalFG and {w3,w6} is

not a subset of ||ψ||. So
⊙F

G ψ is not true in this model. Therefore the formula

(
⊙F

G(ψ/ϕ) ∧
⊙F

G(ψ/¬ϕ))→
⊙F

G ψ is not valid.

In Horty (2001), deductions of the above form are called “sure-thing reason-
ing". Although sure-thing reasoning seems plausible at first sight, Horty (2001)
pointed out that it is correct only if the conditional statement is independent from
the action statement. Otherwise strange situation will arise. As we have seen,
this condition is indeed crucial for us to underpin the real problem of the Ten
Miners Paradox. To even better illustrate this point, we give one more example
in terms of games.
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ψ

ψ

(10)w1

w4
(10)(-10) (0)

(0)(-10)w2 w3

w6w5

Guess H RefrainGuess T
Agent 2

Head
Agent 1

Tail

Figure 7

The background of Figure 7 is a gambling game. Agent 1 flips a coin. If
agent 2 refrain from guessing which side is the up side, then agent 2 receives
nothing meanwhile loses nothing. If agent 2 guesses one side then she wins 10
dollars when her answer is right and loses 10 dollars otherwise. According to
our intuitions, we can not blame agent 2 if she chooses to refrain. However,
applying the principle of sure-thing reasoning we will arrive at the conclusion
that agent 2 ought to guess. Here is the reasoning: If the up side is head, then
agent 2 should guess head, which implies she should guess. If the up side is
tail, then agent 2 should guess tail, which also implies she should guess. Now
use the sure-thing reasoning, we know agent 2 ought to guess.

4 Revisit Anderson’s Six Principles of Conditional
Ought

Anderson (1959) suggested that the logic of commitment or conditional ought
should satisfy six principles, and we state them in our language as follows:

(1) (ψ ∧
⊙F

G(ϕ/ψ))→
⊙F

G ϕ.

(2) (
⊙F

G ψ ∧
⊙F

G(ϕ/ψ))→
⊙F

G ϕ.

(3)(P F
Gψ ∧

⊙F
G(ϕ/ψ))→ P F

Gϕ.

(4) (
⊙F

G(ϕ/ψ) ∧
⊙F

G(χ/ϕ))→
⊙F

G(χ/ψ)



X. Sun and F. Liu 391

(5)
⊙F

G(ϕ/ψ)→
⊙F

G(ψ→ ϕ)

(6)
⊙F

G(ϕ/¬ϕ)→
⊙F

G ϕ

The strongly normal system G in Aqvist (1994) excludes the principle (1)
and (4), but includes the rest. In our logic, however, only principle (2)
and (6) are valid. The invalidity of principle (1) and (4) and the validity of
principle (6) are easy to prove, here we skip it. As for the rest, the following hold:

Theorem 1. The statement (
⊙F

G ψ ∧
⊙F

G(ϕ/ψ))→
⊙F

G ϕ is valid.

Proof. Assume this formula is not valid, then there is a consequentialist frame
F and a world w in F such that for some model M based on F , M,w |=

⊙F
G ψ ∧⊙F

G(ϕ/ψ) but M,w 2
⊙F

G ϕ. Hence there must be some K ∈ OptimalFG such that
K * ||ϕ|| but K ⊆ ||ψ||.

As K ⊆ ||ψ||, for arbitrary S ∈ Choice(A−G), for arbitrary K′ ∈ Choice(G), we must
have S∩ (||ψ|| ∩ (K ∪K′)) , ∅ because S∩K ⊆ S∩ (||ψ|| ∩ (K ∪K′)) and S∩K , ∅
by the definition of choice function. Hence S ∈ Choice((A −G)/(||ψ|| ∩ (K ∪ K′)))
and Choice(A − G) = Choice((A − G)/(||ψ|| ∩ (K ∪ K′))).

Obviously either K ∈ OptimalFG/ψ or K < OptimalFG/ψ. If K ∈ OptimalFG/ψ, then by

M,w |=
⊙F

G(ϕ/ψ), K ⊆ ||ϕ||. Contradiction. Therefore K < OptimalFG/ψ. Then by
Proposition 5 there exists some K′ ∈ Choice(G/ψ) with K <F

G/ψ K′. It must be
either K′ ∈ OptimalFG or K′ < OptimalFG. We can show both these two cases imply
contradictions.

For the first case, assume K′ ∈ OptimalFG. Then by M,w |=
⊙F

G ψ, K′ ⊆ ||ψ||.
According to K <F

G/ψ K′, for each S ∈ Choice((A−G)/(||ψ||∩(K∪K′))), K∩S∩||ψ|| ≤F

K′ ∩ S ∩ ||ψ||. Since K ⊆ ||ψ|| and K′ ⊆ ||ψ||, we know K ∩ S ∩ ||ψ|| = K ∩ S,
K′ ∩ S∩ ||ψ|| = K′ ∩ S. Therefore K ∩ S ≤F K′ ∩ S. Note we have already proved
Choice(A−G) = Choice((A−G)/(||ψ||∩ (K∪K′))), hence for each S ∈ Choice(A−G),
K ∩ S ≤F K′ ∩ S. That is, K ≤F

G K′. By Lemma 4, K <F
G/ψ K′ also implies that for

some S ∈ Choice((A−G)/(||ψ||∩(K∪K′))) = Choice(A−G), K∩S∩||ψ|| <F K′∩S∩||ψ||.
Use K ∩ S ∩ ||ψ|| = K ∩ S, K′ ∩ S ∩ ||ψ|| = K′ ∩ S one more time we have the
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conclusion that for some S ∈ Choice(A − G), K ∩ S <F K′ ∩ S. Now by Lemma 3
we know K <F

G K′, which contradicts to K ∈ OptimalFG.

For the second case, assume K′ < OptimalFG. Then there exists some K′′ ∈
Choice(G) with K′ <F

G K′′. So we have for each S ∈ Choice(A − G) = Choice((A −
G)/(||ψ|| ∩ (K∪K′))), K′ ∩S ≤F K′′ ∩S. By K <F

G/ψ K′, K∩S∩ ||ψ|| ≤F K′ ∩S∩ ||ψ||.
It then follows from Lemma 1 that K′ ∩ S ∩ ||ψ|| , ∅. This plus K′ ∩ S ≤F
K′′ ∩ S implies K′ ∩ S ∩ ||ψ|| ≤F K′′ ∩ S. Note that K ∩ S = K ∩ S ∩ ||ψ|| since
K ⊆ ||ψ||, therefore K ∩ S ≤F K′ ∩ S ∩ ||ψ||. Now by Proposition 1 we have
K∩ S ≤F K′′ ∩ S. Hence K ≤F

G K′′. By Lemma 4, K <F
G/ψ K′ also implies for some

S ∈ Choice((A−G)/(||ψ|| ∩ (K∪K′))) = Choice(A−G), K∩S∩ ||ψ|| <F K′ ∩S∩ ||ψ||.
Use K∩S = K∩S∩||ψ|| again we have K∩S <F K′∩S∩||ψ||. Since K′∩S ≤F K′′∩S
and K′ ∩ S∩ ||ψ|| , ∅, we have K′ ∩ S∩ ||ψ|| ≤F K′′ ∩ S. By Proposition 1 we now
have K ∩ S <F K′′ ∩ S. It then follow from Lemma 3 that K <F

G K′′, contradict to
K ∈ OptimalFG. �

Theorem 2. The statement (PF
Gψ ∧

⊙F
G(ϕ/ψ))→ PF

Gϕ is not valid.

Proof. It’s sufficient to construct a model M such that for some world w in M,
M,w |= P F

Gψ ∧
⊙F

G(ϕ/ψ) but M,w 2 P F
Gϕ.

As illustrated by Figure 5. Let M = 〈W,A,Choice, {ValueF}F⊆A,V〉, W =
{w1, ...,w6}, A = {α, β}, Choice({α}) = {{w1,w2}, {w3,w4}, {w5,w6}}, Choice ({β}) =
{{w1,w3,w5}, {w2,w4,w6}}, Value{α} (w1) = 100, Value{α}(w2) = 0, Value{α}(w3) =
20, Value{α}(w4) = 30, Value{α}(w5) = 50, Value{α} (w6) = 50. Let F = {α},
G = {α}, ||ϕ|| = {w3,w4}, ||ψ|| = {w2,w4}. Then OptimalFG = {{w1,w2}, {w5,
w6}}, OptimalFG/ψ = {{w3,w4}}. Note that M,w |= P F

Gϕ if and only if for some

K ∈ OptimalFG, K ∩ ||ϕ|| , ∅. Hence by the semantics we have M,w1 |= P F
Gψ and

M,w1 |=
⊙F

G(ϕ/ψ). But as {w1,w2} ∩ ||ϕ|| = ∅ and {w3,w4} ∩ ||ϕ|| = ∅, we have
M,w1 2 P F

Gϕ. �

Theorem 3. The statement
⊙F

G(ϕ/ψ)→
⊙F

G(ψ→ ϕ) is not valid.

Proof. It’s sufficient to construct a model M such that for some world w in M,
M,w |=

⊙F
G(ϕ/ψ) but M,w 2

⊙F
G(ψ→ ϕ).
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-1,1w3 ψ
γ

1,-1w4

1,-1w1 ψ
ϕ ϕ

-1,1w2

head tail

head

tail
Ann

Bob

Figure 8

Look at Figure 8. Let M = 〈W,A,Choice, {ValueF}F⊆A,V〉, W = {w1, ...,w4},
A = {α, β}, Choice ({α}) = {{w1,w2}, {w3,w4}}, Choice({β}) = {{w1,w3}, {w2, w4}},
Value{α}(w1) = 1, Value{α} (w2) = −1, Value{α}(w3) = −1, Value{α}(w4) = 1. Let
F = {α}, G = {α}, ||ϕ|| = {w1,w2}, ||ψ|| = {w1,w3}. In this situation, OptimalFG/ψ =

{{w1,w2}}, hence M,w1 |=
⊙F

G(ϕ/ψ). As OptimalFG = {{w1,w2}, {w3,w4}} but

{w3,w4} * ||ψ→ ϕ||, we have M,w1 2
⊙F

G(ψ→ ϕ). �

The invalidity of principle (3) can be clearly illustrated by a variation of the
matching pennies game.

Example 4 (matching pennies: a variation). In this new game, Ann has three
choices, showing the head, showing the tail and refraining from showing. If
Ann refrains from showing, then no matter how Bob acts, Ann will receive 50
dollars. The payoff of Ann is indicated by numbers in brackets in Figure 9.

(50)w5
(50)w6

ψ

(20)

(100)w1

w3 ψ
ϕϕ (30)

(0)w2

w4

Head Tail

Head

Tail

Refrain

Figure 9

Denote the situation in which Ann shows one side of her penny and Bob shows
the tail as situation ψ. Ann is permitted to lead to situation ψ, since showing
the head is one of Ann’s optimal actions and this action could lead to situation
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ψ. Apparently, in situation ψ, Ann ought to see to it that she shows the tail.
But Ann is not permitted to show the tail because this action is dominated by
refraining.

5 Related Works and Comparison

In this section we will briefly compare our framework with other related works
in the literature. Horty (2001) developed a new stit-based deontic logic and
provided a uniformed view on many interesting issues from moral theory.
Inspired by it, Kooi and Tamminga (2008a) and Kooi and Tamminga (2008b)
proposed a consequentianlist deontic logic which can be used to analyze moral
conflicts between different groups of agents with different moral codes. Our
proposal is directly based on those works. We have shown in the previous
sections that our new development fits well with the real-life examples and
games, some potential technical problems of conditional ought that existed in
those previous works can be solved in our new framework, and our logic can be
best used to solve some new moral dilemma. In addition, we have also looked
at how our framework is related to the original ideas on conditional ought in
Anderson’s work. In what follows we look at the latest work Tamminga (2011
Nov. 24) on consequentianlist deontic logic and provide some discussion from
our point of view.

The logic presented in Tamminga (2011 Nov. 24) is called multi-agent deontic
action logic. We will briefly review the main notions of that work and compare
it with ours.

In that logic, actions of agents are treated as atomic and conditions are restricted
to atomic action propositions. More exactly, the language of multi-agent deontic
action logic is built from a finite set A of agents, a countable set P of atomic
propositions and another countable set A = {αn

G : G ⊆ A and n is a nature
number } of atomic actions. Again, we use p and q as variables for atomic
propositions in P, use F and G, where F, G ⊆ A, as groups of agents, use αG,
αF as variables for atomic atomic propositions in A. The multi-agent deontic
action language La is given by the following Backus-Naur Form:

ϕ ::= p | αG | ¬ϕ | ϕ ∧ ϕ | ♦ϕ | [G]ϕ |
⊙F

G αG | PF
GαG |

⊙F
G(αG/αH) | PF

G(αG/αH)

Here αG can be read as “Group G performs action αG”. In the formula
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⊙F
G(αG/αH), it is required that G ∩H = ∅.

The semantics of multi-agent deontic action logic is different from our con-
sequentianlist deontic logic. In that logic, the author’s intuition of a group’s
action K being obligatory is “it is the single best thing the group can do” and
one action being permitted if and only if it is “among the best thing the group
can do.” This intuition makes sense to us. However, it seems that the formal
definition of the permission operator causes some unwilling results. We will
show it now.

In Tamminga (2011 Nov. 24), PF
GαG is true if and only if for every group G’s

action K which is different from αG, K ≤F
G αG holds. This means that an action

is permitted if and only if it weakly dominates every other action. But in
fact, we may have more than one optimal choices. For example, in Figure 2
both swerve and continue are the driver’ optimal choices. If we analyze this
situation by using the semantics given by Tamminga (2011 Nov. 24). Driver
1’s action swerve is not permitted because his action ‘continue’ is not weakly
dominated by ‘swerve’. For the same reason, ‘continue’ is also not permitted.
Which contradicts to our intuition. So in our opinion, the formal definition of
permission in multi-agent deontic action logic does not express its background
intuition very well.

However, it turns out that if we restrict deontic operators to action statements,
then our logic can be viewed as another version of multi-agent deontic action
logic and it can express our intuition even better. In our semantics, PF

Gϕ is true
if and only if for some K ∈ OptimalFG, K ∩ ||ϕ|| , ∅. If we constrain ourselves to
action statements, then PF

GαG is true if and only if αG ∈ OptimalFG. This means
an action is permitted if and only if it is “among the best thing the group can
do." Since there may be many optimal actions in a model, we can avoid the
unpleasant result arisen from Figure 2.

6 Conclusion and Future Work

In this paper we started with two examples to motivate the idea that the prin-
ciple that conditional ought implies ought about conditionals is not right. We
then introduced a new consequentianlist deontic logic, with a new definition
of preference over sets of worlds, the definition of conditional dominance rela-
tion was defined too, they both are transitive. We have shown that our logic
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supports the principle that absolute ought can be derived from conditional
ought whenever the conditional statement is the agent’s absolute ought. And,
according to our semantics, conditional ought does not imply ought about con-
ditionals. To apply the ideas and results of our logic, we looked at a recent
paradox and provided our solution. We then studied the six principles pro-
posed by Anderson and proved that some of them are valid in our framework
and some are not. Finally, we have compared our work with the very recent
work on multi-agent deontic action logic and proposed a better interpretation
for the notion of permission in that logic.

There are several issues we would like to explore in the future. First, we have
proved many results in the context of semantic frames, and we want to see
whether we can find a complete axiomatic system for the consequentianlist
deontic logic. Next, introducing epistemic modality in the current framework
to express the uncertainties seems to be a natural direction, one can see already
from our above discussions. Related ideas can be found in E. Pacuit and
Cogan (2006) and Loohuis (2009). Finally, we only looked at the ∀∀-version
of the preference relation in this paper, a question arises naturally here, are
other options (say, ∀∃-version) suitable, and how to make use of them game
theoretically? Here again, notable references are van der Torre (1997), Halpern
(1997), van Benthem et al. (2010), and Roy (2011), we would like to connect the
current work to theirs.
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Abstract

Epistemic logic and its possible worlds semantics is a powerful and compact
framework that allows us to represent an agent’s information not only about
propositional facts, but also about her own information. Nevertheless, agents
represented in this framework are logically omniscient: their information is
closed under logical consequence. This property, useful in some applica-
tions, is an unrealistic idealization in some others. And though most of the
proposals to solve this problem focus on weakening the properties of the
agent’s information (usually by distinguishing between implicit and explicit
information), some authors have argued that solutions of this kind are not
completely adequate because they do not look at the heart of the matter: the
actions that allow the agent to reach such omniscient state.

Recent works have explored how acts of observation, inference, consider-
ation and forgetting affect an agent’s implicit and explicit knowledge. The
present work focusses on acts that affect the notions of implicit and explicit
beliefs. We start by proposing a framework in which we can represent these
two notions, and then we look into their dynamics, first by reviewing the
existing notion of belief revision, and then by introducing a rich framework
that allow us to represent diverse forms of inference that involve not only
knowledge but also beliefs.
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1 Introduction

Classical epistemic logic (EL; Hintikka (1962)) and its possible worlds semantics
is a powerful framework that allows us to represent an agent’s information not
only about propositional facts but also about her own information.

Nevertheless, agents represented in this framework are logically omniscient:
their information is closed under logical consequence. This property, useful
in some applications, is an unrealistic idealization in some others. Many pro-
posals to solve this issue are based on weakening the properties of the agent’s
information, most of them based on distinguishing between the agent’s poten-
tial implicit information, describing what she can eventually get, and her actual
explicit information, describing what she currently has (cf. Konolige (1984),
Levesque (1984), Lakemeyer (1986), Vardi (1986), Fagin and Halpern (1988)).

But some authors (Drapkin and Perlis (1986), Duc (1995), van Benthem and
Velázquez-Quesada (2010) among others) have argued that solutions of this
kind are not completely adequate. First, an agent’s information can be weak-
ened in many ways, and there is no clear method to decide which restrictions
produce reasonable agents and which ones make them too strong/weak. Sec-
ond, and more important, these approaches do not look at the heart of the
matter: they still describe the agent’s information at a single (probably final)
stage, without looking at how such state is reached. In other words, what is
needed is not a representation of ideal or non-ideal agents: what is needed is a
representation of the actions that allow an agent to change her information.

Recent works have combined a distinction between the agent’s implicit and
explicit information with a representation of the actions that change them.
In a propositional dynamic logic style (PDL; Harel et al. (2000)), some of them
have explored how the act of inference modifies an agent’s explicit knowledge
(Duc 2001, Jago 2006, Ågotnes and Alechina 2007). In a dynamic epistemic logic
style (DEL; van Ditmarsch et al. (2007)), some others have explored how the
acts of observation, inference, consideration and forgetting affect implicit and
explicit knowledge (van Benthem 2008, Grossi and Velázquez-Quesada 2012, van
Benthem and Velázquez-Quesada 2010, van Ditmarsch et al. 2009). But in our
daily life we usually work with incomplete information, and therefore very few
things are completely certain for us. Most of our behaviour is leaded not by
what we know, but rather by what we believe.

The present work studies the notions of implicit and explicit beliefs and their
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dynamics. We recall frameworks for representing non-ideal agents and beliefs
in an EL style (Section 2) and then we combine them in a setting for representing
implicit and explicit beliefs (Section 3). Then we look into the dynamics of these
notions; first, by adapting the existing notion of belief revision in DEL to put
it in harmony with our non-omniscient approach (Section 4), and then by
introducing a new action our non-omniscient agents can perform: inferences
involving not only knowledge but also beliefs (Section 5). We close with a list
of further interesting questions that deserve additional investigation (Section
6). The extended version of this work (including proofs of Propositions) can be
found in Velázquez-Quesada (2011).

2 Preliminaries

This section recalls two frameworks: one for representing implicit and explicit
information and another for representing beliefs. By combining them, we will
get our model for representing implicit and explicit beliefs. But before going
into their details, we recall the framework on which all the others are based.

Epistemic logic The frameworks of the present work are based on that of EL.
Given a set of atomic propositions P, the EL language extends the propositional
one with formulas of the form �ϕ, read as “the agent is informed about ϕ”.
The classical semantic model for EL-formulas is a possible worlds model, a tuple
M = 〈W,R,V〉 with W a non-empty set of possible worlds, R ⊆ (W × W) an
accessibility relation and V : W → ℘(P) an atomic valuation function.

Formulas are evaluated on pointed models (M,w) with M a possible worlds model
and w ∈W (the evaluation point). Boolean connectives are interpreted as usual,
and the key clause is the one for �ϕ: the agent is informed about ϕ at w iff ϕ is
true in all the worlds she considers possible from w:

(M,w)  �ϕ iff for all u ∈W, Rwu implies (M,u)  ϕ

2.1 Modelling implicit and explicit information

The formula � (ϕ→ ψ) → (�ϕ → �ψ) is valid in Kripke models: the agent’s
information is closed under logical consequence. It has been argued that this
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is not reasonable for ‘real’ agents since even computational ones, lacking the
needed resources (space and/or time) to derive all the logical consequences of
their information, may not have this property (Ågotnes and Alechina 2009).

One of the most influential solutions to this omniscience problem is awareness logic
(Fagin and Halpern 1988), which follows the idea of distinguishing between
implicit and explicit information. This approach makes crucial use of the concept
of awareness: ϕ is explicit information iff it is implicit information and the agent
is aware of it.

Syntactically, awareness logic extends the EL language with formulas of the
form Aϕ, read as “the agent is aware of ϕ”. Semantically, it extends possible
worlds models with an awareness function A that indicates the set of formulas
the agent is aware of at each possible world. The new formulas are evaluated
in the following way:

(M,w)  Aϕ iff ϕ ∈ A(w)

Implicit information about ϕ is given by �ϕ, but explicit information of ϕ
corresponds to �ϕ ∧ Aϕ. Implicit information is still closed under logical
consequence, but explicit information is not: the A-sets do not need to have any
closure property ({ϕ→ ψ,ϕ} ⊆ A(w) does not imply ψ ∈ A(w)).

This idea has produced models for representing implicit and explicit knowl-
edge and their dynamics (e.g., Duc (1995), Jago (2006), van Benthem (2008),
Velázquez-Quesada (2009a), van Ditmarsch et al. (2009), Grossi and Velázquez-
Quesada (2012), van Benthem and Velázquez-Quesada (2010)). But the notion
of belief is different, as we discuss below.

2.2 Plausibility models

Beliefs are different from knowledge. We do not believe something because it
is true in all possible situations; we believe it because it is true in the ones we
consider most likely to be the case (Grove 1988, Segerberg 2001). This suggests
that the worlds an agent considers possible should be given not just by a plain
set (what we get when we use equivalence relations for representing knowledge
in EL); there should be also a plausibility order among them, indicating which
worlds the agent considers more likely to be the case. This idea has led to the
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development of variants of possible worlds models (Board 2004, van Benthem
2007) similar to those used for conditional logics (Lewis 1973, Veltman 1985,
Lamarre 1991, Boutilier 1994). The models we will use, a small modification of
the plausibility models of Baltag and Smets (2008), are introduced below.

A plausibility model is a possible worlds model in which the accessibility
relation is interpreted as a plausibility relation, indicating the plausibility order
of the posssible worlds from the agent’s point of view. Different conditions can
be imposed in this plausibility relation; in this work we will ask for it to be,
using the terminology of Baltag and Smets (2008) a locally well-preorder or, as
we will call it, a locally-well preorder.

Definition 2.1 (Locally-well preorder). Let R be a binary relation over some
non-empty domain W.

• For every w ∈ W, denote its comparability class by CR(w), that is, CR(w) :=
{u ∈W | Rwu or Ruw }.

• For every U ⊆ W, denote its set of R-maximal elements as MaxR(U), that
is, MaxR(U) := { v ∈ U | for every u ∈ U, Ruv }.

The relation R is said to be a locally-well preorder iff it is a preorder such that,
for each comparability class CR(w) and every non-empty U ⊆ CR(w), the set of
R-maximal elements of U is non-empty, that is, MaxR(U) , ∅. 1

A locally-well preorder over a non-empty W partitions it into one or more
comparability classes, each one of them being a connected preorder that has
maximal elements (thus creating, inside each comparability class, one or more
layers of equally-plausible elements with the layers themselves ordered accord-
ing to their plausibility). Also that, because of local connectedness, the notion
of maximal is global inside each comparability class: the maximal elements in
each comparability class are the same from the perspective of any element be-
longing to it. In fact, a locally-well preorder is nothing but a locally connected2

and conversely well-founded3 preorder. This equivalence will be used when

1A well preorder is then a preorder in which there are maximal elements in every subset of the
whole domain instead of just every subset of every comparability class.

2A binary relation R over W is locally connected iff, for every comparability class CR(w), every
two elements w1,w2 ∈ CR(w) are R-comparable, that is, Rw1w2 or Rw2w1 or both.

3A binary relation R over W is conversely well-founded if there is no infinite R|-ascending chain of
elements in W, where R|, the strict version of R, is given by R|wu iff Rwu and not Ruw.
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arguing for certain properties, and for proving that certain model operations
preserve locally-well preorders.

Now we can define formally what a plausibility model is.

Definition 2.2 (Plausibility model (Baltag and Smets 2008)). A plausibility model
is a possible worlds model M = 〈W,≤,V〉 in which the accessibility relation,
denoted by ≤ and called the plausibility relation, is a locally-well preorder over
W. If we have w ≤ u we will say that “u is at least as plausible as w”. We will also
use the following abbreviations:

u is more plausible than w, w < u iff w ≤ u and u 6≤ w
w is comparable to u, w ∼ u iff w ≤ u or u ≤ w

w is equally-plausible to u, w ' u iff w ≤ u and u ≤ w

For the language we use two modalities, one for the plausibility relation ≤, and
another for the comparability relation ∼. Their interpretation is standard:

(M,w)  〈≤〉ϕ iff there is a u ∈W such that w ≤ u and (M,u)  ϕ
(M,w)  〈∼〉ϕ iff there is a u ∈W such that w ∼ u and (M,u)  ϕ

Observe that comparability is actually epistemical indistinguishability: if a
world is at least as plausible as another then, given one of them, the agent
cannot rule out the other. Hence, we can use the relation ∼, an equivalence
relation, to define the notion of knowledge: [∼]ϕ is read as “the agent knows ϕ”.

For the notion of belief, recall that each comparability class is in fact a connected
preorder that has maximal elements. Then, as observed in Stalnaker (2006) and
Baltag and Smets (2008), we can express that a given formula is true in the
≤-maximal (i.e., the most plausible) worlds of a given comparability class in
the following way.

Fact 1. Let (M,w) be a pointed plausibility model with M = 〈W,≤,V〉. The formula
ϕ is true in the ≤-maximal worlds from w iff w has a ≤-successor from which all
≤-successors satisfy ϕ. In symbols,

(M,u)  ϕ for every u ∈Max≤(CR(w)) iff (M,w)  〈≤〉 [≤]ϕ
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3 The plausibility acknowledgement framework

Our framework for representing implicit and explicit beliefs combines the de-
scribed framework for representing implicit and explicit information with the
described plausibility models for representing beliefs.

Formulas of our language are given by a propositional language extended,
first, with formulas of the form Aϕ where ϕ is a formula, and second, with
modalities 〈≤〉 and 〈∼〉. The formal definition is as follows.

Definition 3.1 (Language L). Given a set of atomic propositions P, formulas
ϕ,ψ of the plausibility acknowledgement (PA) language L are given by

ϕ ::= p | Aϕ | ¬ϕ | ϕ ∨ ψ | 〈≤〉ϕ | 〈∼〉ϕ

where p ∈ P. Formulas of the form Aϕ are read as “the agent has acknowledged ϕ
as true”. For the modalities, 〈≤〉ϕ is read as “there is an at least as plausible world
where ϕ holds”, and 〈∼〉ϕ as “there is an epistemically indistinguishable world where
ϕ holds”. Other boolean connectives as well as the universal modalities [≤] and
[∼] are defined as usual ([≤]ϕ := ¬〈≤〉 ¬ϕ and [∼]ϕ := ¬〈∼〉 ¬ϕ for the latter).

Here is important to emphasize the interpretation of formulas of the form
Aϕ. Different from the awareness logic, they are not interpreted as “the agent is
aware ofϕ” (i.e., conscious, but without any inclination about it); rather, they are
interpreted as “the agent has acknowledged ϕ as true” (i.e., conscious and positive
about it). In fact, the awareness of notion plays no role in this framework, as any
agent represented with it is aware of every involved atomic propositions and,
in general, aware of every formula of the language. An agent in this framework
is not omniscient not because of lack of awareness, but because she does not
need to acknowledge as true all the (infinite number of) formulas that are so
in each possible world. The difference is important because it will justify our
choice for the definitions of explicit knowledge/beliefs (Section 3.1).

Note how, as a consequence of this interpretation, an agent within this frame-
work has in general uncertainty not only about which one is the real world,
but also about what holds in each one of them. Even if she considers possible
a single world where some ϕ holds, she may not recognize it as a ϕ-world
because she may not have acknowledged that it indeed satisfies ϕ. From her
perspective, there are not only worlds she identifies as ϕ-ones and worlds she
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identifies as ¬ϕ-worlds: there are also worlds that are uncertain for her with
respect to ϕ.

For the semantic model, a plausibility acknowledgement model extends the plau-
sibility model with a function indicating the formulas the agent has acknowl-
edged as true in each world. Such function is technically identical to the
awareness function of awareness logic, but their contents are interpreted not as
what the agent is aware of (i.e., what she entertains) but rather what she is
aware that (i.e., what she acknowledges as true).

Definition 3.2 (Plausibility acknowledgement model). Let P be a set of atomic
propositions. A plausibility acknowledgement (PA) model is a tuple M = 〈W,≤
,V,A〉where 〈W,≤,V〉 is a plausibility model over P (Definition 2.2) and

• A : W → ℘(L) is the acknowledgement set function, indicating the formulas
the agent has acknowledged as true at each possible world.

The epistemic indistinguishability relation, ∼, is defined as before: w ∼ u iff w ≤ u
or u ≤ w (or, equivalently, w ∼ u iff u ∈ CR(w)). A pointed PA model (M,w) is a
PA model with a distinguished world w ∈W.

For the semantic interpretation, formulas of the form Aϕ are interpreted with
the acknowledgement set function, and the modalities 〈≤〉 and 〈∼〉 are inter-
preted via their corresponding relation.

Definition 3.3 (Semantic interpretation). Let (M,w) be a pointed PA model with
M = 〈W,≤,V,A〉.

(M,w)  Aϕ iff ϕ ∈ A(w)
(M,w)  〈≤〉ϕ iff there is a u ∈W such that w ≤ u and (M,u)  ϕ
(M,w)  〈∼〉ϕ iff there is a u ∈W such that w ∼ u and (M,u)  ϕ

For an axiom system we use Theorem 2.5 of Baltag and Smets (2008): the axiom
system of Table 1 is sound and weakly complete for formulas ofLwith respect
to PA models.

3.1 Implicit and explicit beliefs, and their basic properties

Now we will provide the definitions of implicit and explicit knowledge/beliefs.
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Prop ` ϕ for ϕ a propositional tautology MP If ` ϕ→ ψ and ` ϕ, then ` ψ

K≤ ` [≤] (ϕ→ ψ)→ ([≤]ϕ→ [≤]ψ) K∼ ` [∼] (ϕ→ ψ)→ ([∼]ϕ→ [∼]ψ)

Dual≤ ` 〈≤〉ϕ↔ ¬[≤]¬ϕ Dual∼ ` 〈∼〉ϕ↔ ¬[∼]¬ϕ

Nec≤ If ` ϕ, then ` [≤]ϕ Nec∼ If ` ϕ, then ` [∼]ϕ

T≤ ` [≤]ϕ→ ϕ T∼ ` [∼]ϕ→ ϕ

4≤ ` [≤]ϕ→ [≤] [≤]ϕ 4∼ ` [∼]ϕ→ [∼] [∼]ϕ

B∼ ` ϕ→ [∼] 〈∼〉ϕ

LC (〈∼〉ϕ ∧ 〈∼〉ψ)→
(
〈∼〉 (ϕ ∧ 〈≤〉ψ) ∨ 〈∼〉 (ψ ∧ 〈≤〉ϕ)

)
Inc 〈≤〉ϕ→ 〈∼〉ϕ

Table 1: Axiom system for Lwith respect to PA models.

Defining the ‘implicit’ notions is simple. Most works about the logical omni-
scient problem agree that what the classical epistemic logic framework gives
us is actually the agent’s implicit information, the best that she can do. Then,
we will define implicit knowledge as what is true in all the worlds the agent
considers epistemically possible, [∼]ϕ, and implicit beliefs as what is true in
the maximal worlds according to the agent’s plausibility relation (i.e., the most
plausible worlds), 〈≤〉 [≤]ϕ.

For the ‘explicit’ notions there is no total consensus, even in similar frameworks.
In the case of explicit knowledge, Duc (1995), Jago (2006), van Benthem (2008)
and Velázquez-Quesada (2009a) define it directly as Aϕ; some other approaches
combine A with the modality for the epistemic relation, like the [∼]ϕ ∧ Aϕ of
Fagin and Halpern (1988), van Ditmarsch and French (2009) or the [∼] Aϕ of
Velázquez-Quesada (2009b).

In our case, we interpret the set A(w) as the formulas the agent has acknowl-
edged as true in w. Each possible world provides an infinite amount of infor-
mation (the infinite number of formulas that are true at it), so establishing a
direct relation between what is true in a given world and what the agent iden-
tifies as true in it gives us an omniscient agent. But a more ‘real’ agent might
fail to recognize as true in w a formula that indeed holds at it. The A function
gives us the information the agent has acknowledged at each world, so we can
define explicit information as what is true and the agent has acknowledged as true
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in such set of worlds (cf. van Benthem and Velázquez-Quesada (2010), Grossi
and Velázquez-Quesada (2012)).

Definition 3.4 (Implicit and explicit knowledge/beliefs). The notions of implicit
and explicit knowledge/beliefs are defined in Table 2.

Implicit knowledge: KImϕ := [∼]ϕ Implicit belief: BImϕ := 〈≤〉 [≤]ϕ
Explicit knowledge: KExϕ := [∼] (ϕ ∧Aϕ) Explicit belief: BExϕ := 〈≤〉 [≤] (ϕ ∧Aϕ)

Table 2: Implicit and explicit knowledge/beliefs.

The agent knows ϕ implicitly iff ϕ is true in all the epistemically indistinguish-
able worlds, and she knows ϕ explicitly if, in addition, she acknowledges it as
true in all these worlds. Similarly, the agent believes ϕ implicitly iff ϕ is true
in the most plausible worlds, and she believes ϕ explicitly if, in addition, she
acknowledges it as true in these ‘best’ worlds.

We can also define the duals of these notions. The agent considers ϕ possible
implicitly, K̂Imϕ, iff there is an epistemically possible ϕ-world, 〈∼〉ϕ; she consid-
ers ϕ possible explicitly, K̂Exϕ, iff there is an epistemically possible ϕ-world that
she has identified, 〈∼〉 (ϕ ∧Aϕ). For beliefs, she considers a ϕ-situation very
likely implicitly, B̂Imϕ, iff among the most plausible worlds there is a ϕ-one,
[≤] 〈≤〉ϕ; she considers a ϕ-situation very likely explicitly, B̂Exϕ, iff among the
most plausible worlds there is a ϕ-one that she has identified, [≤] 〈≤〉 (ϕ ∧Aϕ).

Implicit and explicit knowledge imply implicit and explicit beliefs.

Proposition 1. KImϕ→ BImϕ and KExϕ→ BExϕ are valid in PA models.

Properties of implicit and explicit knowledge under similar definitions have
been already studied (Grossi and Velázquez-Quesada 2012). Here we will
present some properties of the notions of implicit and explicit belief.

The notions are global Note how the notions of implicit and explicit beliefs
are global in each comparability class.

Proposition 2. BImϕ→ [∼] BImϕ and BExϕ→ [∼] BExϕ are valid PA models.

Basic properties Explicit beliefs are obviously implicit beliefs.
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Proposition 3. BExϕ→ BImϕ is valid in PA models.

Neither implicit nor explicit beliefs have to be true (e.g., BExp∧¬p is satisfiable
in PA models) because the real world does not need to be among the most
plausible ones. Nevertheless, implicit (and hence explicit) beliefs are consistent
because any comparability class has always maximal elements.

Proposition 4. ¬BIm⊥ is valid in PA models.

Omniscience Implicit beliefs are omniscient.

Proposition 5. BIm(ϕ→ ψ)→ (BImϕ→ BImψ) is valid, and if ϕ is valid so is BImϕ.

But explicit beliefs do not need to have these properties because the A-sets do
not need to have any closure property.

Introspection Now let us review the introspection properties. First, implicit
beliefs are positively and negatively introspective.

Proposition 6. In PA models, implicit beliefs have the positive and the negative
introspection property, that is, BImϕ→ BImBImϕ and ¬BImϕ→ BIm¬BImϕ are valid.

Explicit beliefs do not have these properties in the general case, again because
the A-sets do not need to have any closure property. Nevertheless, we can get
introspection by asking for additional requirements.

For positive introspection, we need that if the agent has acknowledged that ϕ
is true, then she has also acknowledged that she believes explicitly in it.

Proposition 7. In PA models in which Aϕ → A BExϕ is valid, explicit beliefs have
the positive introspection property, that is, BExϕ→ BExBExϕ is valid.

For negative introspection, suppose the agent does not believe explicitly a given
ϕ. This may be becauseϕ is not even implicitly believed, but also because while
ϕ is implicitly believed the agent has not acknowledgedϕ in the most plausible
worlds. In the second case, ϕ implicitly but not explicitly believed, the agent
is negatively introspective about this lack of explicit belief if she acknowledges
¬BExϕ in all the best worlds every time she does not acknowledge ϕ in all of
them.
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Proposition 8. In PA models in which¬BImAϕ→ BImA¬BExϕ is valid, the formula
(¬BExϕ ∧ BImϕ) → BEx¬BExϕ is also valid.

Though in the general case explicit beliefs do not have neither positive nor
negative introspection, they do have them in a weak form.

Proposition 9. The formulas BExϕ→ BImBExϕ and ¬BExϕ→ BIm¬BExϕ are valid.

After defining a framework for representing implicit and explicit forms of
beliefs, we will now turn our attention to processes that transform them.

4 Belief revision

We start with belief revision, the act of changing beliefs in order to incorporate
new external information in a consistent way (Gärdenfors 1992, Gärdenfors
and Rott 1995, Williams and Rott 2001, Rott 2001). The study of this process
and its properties can be traced back to the early 1980s, with AGM theory of
Alchourrón et al. (1985) considered to mark the birth of the field.

Traditionally, there have been two approaches to study belief revision. The
postulational approach analyses belief change without committing to any fixed
mechanism, proposing instead abstract general principles that a “rational”
belief revision process should satisfy. Most of the initial work on the field
follows this approach, with the AGM theory being the most representative one.

Other works have approached belief revision in a more constructive way, pre-
senting concrete mechanisms that change an agent’s beliefs. An early ‘syntacti-
cally flavoured’ example is the epistemic entrenchment functions of Gärdenfors
and Makinson (1988), based on an ordering among formulas. On the other side
there are the approaches that represent beliefs in a different way, like Grove
(1988) which uses a structure called a system of spheres (based on the earlier
work of Lewis (1973)) to construct revision functions. Like an epistemic en-
trenchment, a system of spheres is essentially a preorder, but now the ordered
objects are no longer formulas, but complete theories.

On its most basic form, belief revision involves an agent with her beliefs, and
study the way these beliefs change when new information appears. Then, it is
very natural to look for a belief revision approach within the DEL framework.
Here we briefly review the main idea behind the most relevant proposals.
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4.1 The DEL approach

The main idea behind plausibility models is that the set of worlds the agent
considers possible has an order indicating the plausibility of each world; then,
an agent believes what is true in the most plausible worlds (those she considers
more likely to be the case). If beliefs are represented by a plausibility order, then
changes in beliefs can be represented by changes in this order (van Ditmarsch
2005, van Benthem 2007, Baltag and Smets 2008). In particular, the act of
revising beliefs in order to accept a given χ can be seen as an operation that puts
χ-worlds at the top of the order. Of course, such a new order can be defined in
several ways, but each one of them can be seen as a different policy for revising
beliefs. The definition given below is just one of the many possibilities.

Definition 4.1 (Upgrade operation). Let M = 〈W,≤,V,A〉 be a PA model and
let χ be a formula in L. The upgrade operation produces the PA model Mχ⇑ =
〈W,≤′,V,A〉, differing from M just in the plausibility order, given now by

≤
′:= (≤;χ?)︸ ︷︷ ︸

(1)

∪ (¬χ?;≤)︸   ︷︷   ︸
(2)

∪ (¬χ?;∼;χ?)︸        ︷︷        ︸
(3)

The new plausibility relation is given in a PDL style. It states that, after an
upgrade with χ, “all χ-worlds become more plausible than all ¬χ-worlds, and within
the two zones, the old ordering remains” (van Benthem 2007). More precisely, in
Mχ⇑ we will have w ≤′ u iff in M (1) w ≤ u and u is a χ-world, or (2) w is a
¬χ-world and w ≤ u, or (3) w ∼ u, w is a ¬χ-world and u is a χ-world.

There are two important observations to make here. First, as said before, there
are many definitions for a new plausibility relation that put χ-worlds at the top
(see, e.g., (van Benthem 2007, van Eijck and Wang 2008)). But not all relation-
changing operations are technically adequate. We are interested in those that
preserve the required model properties, and therefore keep us in the relevant
class of models. In other words, we are interested in operations that preserve
locally-well preorders.

Proposition 10. If M is a PA model, so is Mχ⇑.

The second observation is related to the worlds that should be lifted by this
operation. The idea behind an upgrade with χ is that χwill become more plau-
sible than ¬χ for the agent; the lifted worlds should be those the agent recognizes
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as χ-worlds. In classical DEL this boils down to lifting worlds satisfying χ,
but in our approach our agents may not have direct access to all the informa-
tion each possible world provides. Hence, for our agent, an upgrade with χ
should not move to the top worlds satisfying χ, but rather those she identifies
as satisfying χ, that is, those satisfying χ ∧Aχ.

Now for the operation’s effect. It puts on top worlds that satisfy χ ∧Aχ in the
original model M (if there are none, the plausibility order will stay the same),
but these worlds do not need to satisfy χ ∧ Aχ in the resulting model M(χ∧Aχ)⇑.
Then, an upgrade with χ does not necessarily make the agent believe in χ, even
implicitly. This is a phenomena inherited from the ‘omniscient’ plausibility
models, analogous to the well-known Moore-like sentences (“p is the case and
the agent does not know it”) in public announcement logic (Plaza 1989, Gerbrandy
1999) that become false after being announced, and therefore cannot be known
(Holliday and Icard 2010). For a simple example in the omniscient setting,
assume that an upgrade with χ lifts worlds satisfying χ, and consider a PA
model M with two worlds, w1 in which an atom p is true, and the strictly more
plausible w2 in which p fails. Suppose we perform an upgrade with “p is the
case but the agent does not believe it (implicitly)”, p ∧ ¬BImp. Since w1 satisfies the
formula but w2 does not, after the upgrade w1 will be strictly more plausible
than w2. But in the new model the agent does not believe (implicitly) the
upgraded statement p ∧ ¬BImp; it fails at the unique most plausible world w1
because the second conjunct is false: now the agent does believe (implicitly) p!

Consider now the cases in which the upgradedχ is just a propositional formula.
An upgrade with it moves to the top of the ordering those worlds satisfying χ
in M. Since χ is propositional, every world satisfying it in M will also satisfy it
in Mχ⇑, so after an upgrade with χ the agent will believe χ. This also extends
to our non-omniscient setting. An upgrade with χmoves to the top the worlds
satisfying χ ∧Aχ in M. Because χ is propositional and the operation does not
affect A-sets, these worlds will still satisfyχ∧Aχ in the new model. Hence, after
an upgrade with χ, our non-omniscient agent will believe χ not only implicitly
but also explicitly.

For the language we add the existential modality 〈χ ⇑〉 (its universal version
[χ⇑] defined in the standard way). Formulas of the form 〈χ⇑〉ϕ are read as “it
is possible for the agent to upgrade her beliefs with χ in such a way that after doing it
ϕ is the case”; their semantic interpretation is as follows.

Definition 4.2 (Semantic interpretation). Let M = 〈W,≤,V,A〉 be a PA model
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` 〈χ⇑〉 p ↔ p ` 〈χ⇑〉Aϕ ↔ Aϕ

` 〈χ⇑〉¬ϕ ↔ ¬〈χ⇑〉ϕ ` 〈χ⇑〉 (ϕ ∨ ψ) ↔ 〈χ⇑〉ϕ ∨ 〈χ⇑〉ψ

` 〈χ⇑〉 〈≤〉ϕ ↔ 〈≤〉

(
χ ∧ 〈χ⇑〉ϕ

)
∨

(
¬χ ∧ 〈≤〉 〈χ⇑〉ϕ

)
∨

(
¬χ ∧ 〈∼〉 (χ ∧ 〈χ⇑〉ϕ)

)
` 〈χ⇑〉 〈∼〉ϕ ↔ 〈∼〉 〈χ⇑〉ϕ If ` ϕ, then ` [χ⇑]ϕ

Table 3: Axioms and rule for the upgrade modality.

and χ a formula in L. Then,

(M,w)  〈χ⇑〉ϕ iff (Mχ⇑,w)  ϕ

The upgrade operation is a total function: it can always be executed (there is
no precondition) and it always yields one and only one model. It can be also
argued that for the agent to upgrade her beliefs with χ she needs to consider χ
possible. For this, we just need to indicate this requirement as a precondition
for the operation. For an omniscient agent, this is given by the formula 〈∼〉χ;
in our non-omniscient case, this is given by 〈∼〉 (χ ∧Aχ).

For an axiom system for the language with the new modality, we present
reduction axioms: valid formulas that indicate how to translate a formula with the
new modality 〈χ⇑〉 into a provably equivalent one without them. Soundness
follows from the validity of the these new axioms; completeness follows from
the completeness of the basic system. We refer to Chapter 7 of van Ditmarsch
et al. (2007) for an extensive explanation of this technique.

Theorem 1 (Reduction axioms for the upgrade modality). The valid formulas of
the language L plus the upgrade modality in PA models are exactly those provable by
the axioms and rules for the static base language (Table 1) plus the reduction axioms
and modal inference rules listed in Table 3.

Atomic valuation and acknowledgement sets are not affected by an upgrade,
and the reduction axioms for p and Aϕ reflect this. Reduction axioms for ¬
and ∨ are standard, and that for the indistinguishability modality 〈∼〉 indicates
that the operation just changes the order within each comparability class: after
an upgrade there will be a comparable ϕ-world iff before the upgrade there is
a comparable world that will satisfy ϕ after the upgrade.
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The interesting axiom is the one for the plausibility modality 〈≤〉 . It simply
translates the three-cases PDL definition of the new plausibility relation: after
an upgrade with χ there will be a ≤-reachable world where ϕ holds iff before
the operation (1) there is a ≤-reachable χ-world that will satisfy ϕ after the
upgrade, or (2) the current world satisfies ¬χ and can ≤-reach a world that
will satisfy ϕ after the operation, or (3) the current world satisfies ¬χ and can
∼-reach one that satisfies χ and will satisfy ϕ after the upgrade.

5 Belief-based inference

The act of revision has been borrowed from standard DEL. But our non-omnis-
cient agent can perform more actions that change her information; in particular,
she can perform inference. Before going into inferences that involve beliefs, let
us review the main ideas behind inferences that involve only knowledge.

The intuition behind an action of knowledge-based inference is that, if the agent
knows explicitly an implication and its antecedent, then a modus ponens step will
make her know explicitly the implication’s consequent. In our setting, this action
can be semantically defined as an operation adds the implication’s consequent
to the A-set of those worlds in which the agent knows explicitly the implication
and its antecedent (Grossi and Velázquez-Quesada 2012).

But take a closer look at the operation. What it actually does is discard those
worlds in which the agent knows explicitly the implication and its antecedent,
and replace them with copies that are almost identical, the only difference
being that their A-sets now contain the consequent of the applied implication.
And this is reasonable because, under the assumption that knowledge is true
information, knowledge-based inference is simply deduction: the antecedent is
true and the implication preserves truth, so the implication’s consequent must
be true. Moreover, situations where the implication and its antecedent are true
but the consequent is not are not possible.

The case is different when the inference involve beliefs. For example, if the
antecedent of an implication is explicitly known but the implication is only
explicitly believed, then, though it is reasonable to consider very likely a sit-
uation in which the implication, its antecedent and its consequent hold, the
agent should not discard a situation where the antecedent holds but the conse-
quent (and hence the implication) fails. An operation representing such action
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should split the current possibilities into two: one of them, the most plausible
one, standing for the case in which the implication’s consequent holds; the
other, the less plausible one, standing for the case in which the implication’s
consequent (and hence the implication) fails.

More generally, an inference involving beliefs creates new possibilities, and
an operation representing it should be faithful to this. Our proposal will be
based in the plausibility version (Baltag and Smets 2008) of the action models
and product update of Baltag et al. (1999).

5.1 Plausibility acknowledgement action models

The intuition behind the action models of Baltag et al. (1999) is that, just as
the agent can be uncertain about which one is the real world, she can also be
uncertain about which event has taken place. In such situations, her uncer-
tainty about the event can be represented with a model similar to that used for
representing her uncertainty about the situation. Action models are possible-
worlds-like structures in which the agent considers different events as possible;
then her uncertainty after the action is an even combination of her uncertainty
about the situation before the action and her uncertainty about the action.

This idea has been extended in order to match richer structures that indicate not
only possible worlds but also a plausibility order among them. A first approach
was made in van Ditmarsch (2005) using orders based on plausibility ordinals
for expressing degrees of belief. In contrast, the plausibility action models of
Baltag and Smets (2008) are purely qualitative, and therefore provide a more
natural extension to be used with the matching plausibility models.

In this section we will extend these plausibility action models in order to deal
with our acknowledgement set function. Here is the formal definition.

Definition 5.1 (Plausibility acknowledgement action model). A plausibility ac-
knowledgement (PA) action model is a tuple O = 〈E,4,Pre,PosA〉where

• 〈E,4,Pre〉 is a plausibility action model (Baltag and Smets 2008) with
E a finite non-empty set of events, 4 a plausibility order on E (with the
same requirements as those for a plausibility order in PA models) and
Pre : E→ L a precondition function indicating the requirement each event
should satisfy in order to take place. This requirement is given in terms of
a formula in our language L.
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• PosA : (E×℘(L))→ ℘(L) is the new acknowledgement set function, indicating
the set of formulas the agent will acknowledge after the action, based on
what she acknowledged before it and the event that has taken place.

Again, we define three new relations: strict plausibility, ≺ :=4 ∩ < , epistemic
indistinguishability (i.e., comparability), ≈ :=4 ∪ <, and equal plausibility, u :=4
∩ <. A pointed PA action model (O, e) has a distinguished event e ∈ E.

The effect of a PA action model over a PA model is given by the product update.
Both the static and the action model are preorders with further properties, so
there are two natural ways of building a preorder of their combination: to give
priority to either the preorder of the static model, or else to that of the action
model. The second option is closer to the intended spirit in which it is the
action the one that will modify the agent’s static plausibility order. The formal
definition of this case is as follows.

Definition 5.2 (Product update). Let M = 〈W,≤,V,A〉 be a PA model and O =
〈E,4,Pre,PosA〉 be a PA action model. The product update operation ⊗ yields
the PA model M ⊗O = 〈W′,≤′,V′,A′〉 given by

• W′ :=
{
(w, e) ∈ (W × E) | (M,w) |= Pre(e)

}
• (w1, e1) ≤′ (w2, e2) iff

(
e1 ≺ e2 and w1 ∼ w2

)
︸                      ︷︷                      ︸

(1)

or
(
e1 u e2 and w1 ≤ w2

)
︸                      ︷︷                      ︸

(2)

and, for every (w, e) ∈W′,

• V′(w, e) := V(w) • A′(w, e) := PosA(e,A(w))

The domain of the new PA model is the restricted cartesian product of W and
E: a pair (w, e) is a world in the new model iff event e can be executed at world
w. For the atomic valuation, a world in the new model inherits the atomic
valuation of its static component: an atom p holds at (w, e) iff p holds at w. For
our syntactic component, the agent’s acknowledgement set at world (w, e) is
given by the function PosA with the event e and her original acknowledgement
set at w as parameters (the use of the old acknowledgement set allows us to
deal with dependence of the new set with respect to the old one).
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The plausibility order of the new model is built following the ‘action-priority’
rule: (w2, e2) is more plausible than (w1, e1) iff either (1) e2 is strictly more plau-
sible than e1 and w1,w2 are already epistemically indistinguishable, or else (2)
e1, e2 are equally plausible and w2 is more plausible than w1.

The product update operation preserves PA models.

Proposition 11. If M is a PA model and O a PA action model, M ⊗O is a PA model.

Our PA action models can mimic pure plausibility action models (just define
PosA(e,X) := X for every event e ∈ E), but they can do more. Thanks to the new
acknowledgement set function we can truly represent acts that change not only
the situations the agent considers possible, but also what she has acknowledged
as true in each one of them, as we will see in Subsection 5.2.

Syntactically, we extend our language with modalities for each pointed PA ac-
tion model (O, e) in order to build formulas of the form 〈O, e〉ϕ. Their semantic
interpretation is given below.

Definition 5.3 (Semantic interpretation). Let (M,w) be a pointed PA model and
let (O, e) be a pointed PA action model with Pre its precondition function.

(M,w)  〈O, e〉ϕ iff (M,w)  Pre(e) and (M ⊗O, (w, e))  ϕ

Now we will introduce inferences that can be portrayed with PA action models.

5.2 Examples of PA action models

Just like a public announcement corresponds to a single-event action model of
Baltag et al. (1999), the action of knowledge-based inference corresponds to a
single-event PA action model.

Definition 5.4 (Inference with known implication and known antecedent). Let
η→ χ be an implication. The action of inference with known implication and known
antecedent is given by the PA action model Oη→χ

KK whose definition (left) and
diagram showing events, plausibility relation and the way acknowledgement
sets are affected (right) appear below.
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• E := {e} • Pre(e) := KEx(η→ χ) ∧ KExη

• 4:= {(e, e)} • PosA(e,X) := X ∪ {χ}

e

X ∪ {χ}

This action model has a single event, and its precondition is for the agent to
know explicitlyη→ χ andη. In the resulting model, the agent will acknowledge
χ in all worlds satisfying the precondition. Note how, since both η → χ and η
are true in all epistemically indistinguishable worlds, χ must be true in all of
them in M. But since the action only adds χ to the A-sets, only the truth-value
of formulas containing Aχ is affected; hence χ itself cannot be affected and will
still be true in all epistemically indistinguishable worlds in M ⊗ Oη→χ

KK . Hence,
the agent will know explicitly χ. We can look at this from the perspective of
the truth-table of an implication: η→ χ and η are true so χ must be the case.

But our PA action models can represent more. Following our previous discus-
sion, here is an action model for an inference in which the antecedent is known
but the implication is just believed.

Definition 5.5 (Inference with believed implication and known antecedent).
Let η→ χ be an implication. The action of inference with believed implication and
known antecedent is given by the PA action model Oη→χ

BK , defined as

• E := {e1, e2} • 4:= {(e1, e1), (e1, e2), (e2, e2)} • Pre(ei) := BEx(η→ χ) ∧ KExη

•

 PosA(e1,X) :=
(
X \ {η→ χ}

)
∪ {¬(η→ χ),¬χ}

PosA(e2,X) := X ∪ {χ}

The diagram below shows this two-event action model. The event on the
right, the most plausible one, corresponds to the case in which the implication
holds (and therefore so its consequent); hence the agent acknowledges χ. The
one on the left, the less plausible one, corresponds to the case in which the
implication fails (and therefore so its consequent, since the antecedent is true);
hence the agent discards η → χ, acknowledging its negation and the negation
of its consequent. In both events the precondition is the same: the agent should
believe explicitly the implication and know explicitly its antecedent.
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e1 e2(
X \ {η→ χ}

)
∪ {¬(η→ χ),¬χ} X ∪ {χ}

From the perspective of the truth-table of an implication, this case corresponds
to the situations in which the antecedent η is true. There are two possibilities:
either the implication η → χ (and hence its consequent χ) are the case, or else
the implication (and hence its consequent) fails.

We can also represent an analogous situation in which the implication is known
but the antecedent is only believed. In the best scenario the believed antecedent
is true, but the situations in which it fails should be also considered.

Definition 5.6 (Inference with known implication and believed antecedent).
Let η → χ be an implication. The action of inference with known implication and
believed antecedent is given by the PA action model Oη→χ

KB , defined as

• E := {e1, e2, e3} • 4:= (E × E) \ {(e3, e1), (e3, e2)}

• Pre(ei) := KEx(η→ χ) ∧ BExη •


PosA(e1,X) :=

(
X \ {η}

)
∪ {¬η,¬χ}

PosA(e2,X) :=
(
X \ {η}

)
∪ {¬η, χ}

PosA(e3,X) := X ∪ {χ}

The diagram below shows this three-event action model. The most plausible
event, e3, corresponds the case in which the believed antecedent η is indeed the
case, and hence the agent acknowledges the consequent χ. But since η → χ
holds (it is known), if η fails there are still two possibilities for χ: one in which it
fails (event e1), and another in which it does not (event e2). Here we have defined
these two situations as equally plausible, but other orderings are possible.

e1

e2

e3

(
X \ {η}

)
∪ {¬η,¬χ}

(
X \ {η}

)
∪ {¬η, χ}

X ∪ {χ}
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Again, from the perspective of a truth-table for implication, this corresponds
to the three cases that are left when the implication is assumed as true.

We can even represent a fourth scenario in which both the implication and the
antecedent are just believed. In this case there is yet another possibility: the
antecedent is indeed true, but the implication and the consequent fails.

The previous PA action models act ‘globally’, extending the agent’s explicit
information based on what she has in a set of worlds (the epistemically indis-
tinguishable ones for knowledge; the most plausible ones for beliefs). But
we can also represent ‘local’ inferences in which the agent extends what she
acknowledges in some world based only on the information she has about it.

Definition 5.7 (Weak local inference). Let η→ χ be an implication. Define the
abbreviation Pre(η→χ) := A (η→ χ) ∧ A η, stating that the agent has acknowl-
edged it and its antecedent. The action of weak local inference is given by the
following PA action model Oη→χ

W :

• E := {e1, e2}

•

 Pre(e1) := Pre(η→χ)

Pre(e2) := ¬Pre(η→χ)

• 4:= E × E

•

 PosA(e1,X) := X ∪ {χ}

PosA(e2,X) := X

With this action the agent works locally. Any given world satisfies either the
precondition of e1 or the precondition of e2, but not both, so after the operation
we will get a model that differs from the original static one only in that the
agent will have acknowledged the implication’s consequent exactly in those
worlds in which she already acknowledged the implication and its antecedent.
The diagram of this PA action model appears below.

e1 e2

Pre(η→χ) ¬Pre(η→χ)

X ∪ {χ} X

A stronger form of local inference can be obtained by strengthening the precon-
dition of e1 into Pre(η→χ) := (η∧A η)∧ ((η→ χ)∧A (η→ χ)), requiring now not
only for the agent to acknowledge the implication and its antecedent, but also
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for them to be true. If the precondition of e2 is defined as ¬Pre(η→χ), then after
the operation the acknowledgement sets of worlds satisfying Pre(η→χ)will be
extended with the implication’s consequent, and those of the rest of the worlds
will remain the same.

5.3 Completeness

Let us now turn to the syntactic characterization of validities involving the PA
action model modalities. Just like in the upgrade case, we will provide reduction
axioms, and here is our strategy. First, we will extend our static language to deal
with what we will call set expressions, providing their semantic interpretation
and their corresponding axioms. These expressions will allow us to look for
formulas not only in A-sets, but also at more complex ones. Then, with their
help we will provide reduction axioms for the class of PA action models in
which the PosA functions are definable by means of these expressions.

Definition 5.8 (Extended L). Given a set of atomic propositions P, formulas
ϕ,ψ and set expressions over formulas Φ,Ψ of the extended PA language L are
given, respectively, by

ϕ ::= p | bΦcϕ | ¬ϕ | ϕ ∨ ψ | 〈∼〉ϕ | 〈≤〉ϕ

Φ ::= A | {ϕ} | Φ | Φ ∪Ψ

with p an atomic proposition in P.

Formulas of the form Aϕ have disappeared, leaving their place to formulas of
the form bΦcϕwhere Φ is what we call a set expression. While the Aϕ formulas
allowed us to look only at the content of the A-sets, formulas of the form bΦcϕ
allow us to look at the content of more complex sets Φ that are built from A and
singletons {ϕ} by means of complement and union. Even though our syntax
for set expressions may suggest some strong semantic content, they are just a
way of making syntactic comparisons between formulas, as it is fixed by their
semantic interpretation.

Definition 5.9 (Semantic interpretation). Let (M,w) be a pointed PA model with
A its acknowledgement sets function. The semantic interpretation for the new
formulas is given by
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(M,w)  bAcϕ iff ϕ ∈ A(w) (M,w)  b{ψ}cϕ iff ϕ is ψ

(M,w)  bΦcϕ iff ϕ ∈ Φ (M,w)  bΦ ∪Ψcϕ iff ϕ ∈ (Φ ∪Ψ)

So bAcϕ is equivalent to the earlier Aϕ. Also, we can even look at the contents of
sets built with the intersection and difference operations following the standard
definitions:

Φ ∩Ψ := Φ ∪Ψ Φ \Ψ := Φ ∩Ψ

The earlier ‘static’ axiom system is not enough anymore: set expressions have
special behaviour, characterized by the following extra axioms.

Theorem 2 (Extra axioms for extendedLw.r.t. PA models). The axiom system of
Table 1, together with the axioms from Table 4 is sound and (weakly) complete for the
extended language L with respect to PA models.

SE{ }A ` b{ψ}cψ SE{ }A ` ¬b{ψ}cϕ for ϕ , ψ

SEA ` bΦcϕ ↔ ¬bΦcϕ SE∪A ` bΦ ∪Ψcϕ ↔
(
bΦcϕ ∨ bΨcϕ

)

Table 4: Axiom system for extended Lw.r.t. PA models.

The new axioms reflect the behaviour of these sets operations. Axioms SE{ }A
indicate that ψ and only ψ is an element of {ψ}. Axiom SEA says that ϕ is in the
complement of a set iff it is not in the set; axiom SE∪A says that ϕ is in the union
of two sets iff it is in at least one of them.

Moreover, the axioms for complement and union tell us that bΦcϕ and
bΦ ∪Ψcϕ are not really needed: they can be defined as¬bΦcϕ and bΦcϕ∨bΨcϕ,
respectively. All we really need are expressions to verify syntactic identity be-
tween formulas, like formulas of the form b{ψ}cϕ do. With such extension, our
original PA language L is enough for defining these new expressions. Never-
theless, we will keep this ‘syntactic sugar’ in order to simplify the reduction
axioms that will be provided.

Let us define formally the class of PA action models whose new acknowledge-
ment set in terms of set expressions.
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Definition 5.10 (SE-definable PA action model). A set expression (SE) definable
PA action model is a PA action model in which, for each event e, the new acknowl-
edgement set function PosA(e) is given by a set expression over formulas. Note
how all the PA action models presented in Subsection 5.2 are SE definable.

Now we can provide reduction axioms for the modalities that involve SE-
definable PA action models.

Theorem 3. The axiom system built from Tables 1, 4 and Table 5 (with > and ⊥
the always true and always false formula, respectively) provide a sound and (weakly)
complete axiom system for formulas in the extended language L plus modalities for
action models with respect to PA models and SE-definable PA action models.

` 〈O, e〉p ↔ Pre(e) ∧ p

` 〈O, e〉¬ϕ ↔ Pre(e) ∧ ¬〈O, e〉ϕ

` 〈O, e〉(ϕ ∨ ψ) ↔
(
〈O, e〉ϕ ∨ 〈O, e〉ψ

)
` 〈O, e〉〈≤〉ϕ ↔

(
Pre(e) ∧

(∨
e≺ e′〈∼〉 〈O, e′〉ϕ ∨

∨
eu e′′〈≤〉 〈O, e′′〉ϕ

))
` 〈O, e〉〈∼〉ϕ ↔

(
Pre(e) ∧

∨
e≈ e′〈∼〉 〈O, e′〉ϕ

)
If ` ϕ, then ` [O, e]ϕ

` 〈O, e〉bAcϕ ↔ Pre(e) ∧ bPosA(e)cϕ

` 〈O, e〉b{ψ}cψ ↔ Pre(e) ∧ >

` 〈O, e〉b{ψ}cϕ ↔ Pre(e) ∧ ⊥ for ϕ , ψ

` 〈O, e〉bΨcϕ ↔ 〈O, e〉¬bΨcϕ

` 〈O, e〉bΨ ∪Φcϕ ↔ 〈O, e〉(bΦcϕ ∨ bΨcϕ)

Table 5: Axioms and rules for SE-definable action models.

On the first block, the first three axioms are standard: (O, e) does not affect
atomic valuations, commute with negations (modulo the precondition) and
distributes over disjunctions. The fourth, inherited from Baltag and Smets
(2008), states that an (O, e) product update after which there is a more plausible
ϕ-world can be performed iff the evaluation point satisfies e’s precondition and
in the original model there is an epistemically indistinguishable world that will
satisfyϕ after a product update with a strictly more plausible e′, or there is a more
plausible world that will satisfyϕ after a product update with an equally plausible
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e′′. Finally, the fifth reduction axiom indicates that the comparability class does
not change: an (O, e) product update after which there is an epistemically
indistinguishable ϕ-world can be performed iff the evaluation point satisfies
e’s precondition and there is an epistemically indistinguishable world that will
satisfy ϕ after a product update with an indistinguishable e′.

The second block contains the axioms for set expressions over formulas, with
the first one being the key: after an (O, e) product update, ϕ will be in the
agent’s acknowledgement set iff e’s precondition is satisfied an ϕ is in the set
expression that defines the new acknowledgement set at event e:

〈O, e〉bAcϕ ↔ Pre(e) ∧ bPosA(e)cϕ

The simplicity of the axiom takes advantage of the fact that our extended L
language can deal with set expressions. As mentioned before, the original lan-
guage L plus expressions for syntactic identity is powerful enough to express
the membership of a given formula in a set defined from A-sets and singletons
by means of complement and union. Then, reduction axioms without set ex-
pressions can be provided, but we would need an inductive translation from
PosA(e) to the formula that express the membership of ϕ in it. The remaining
axioms for set expressions over formulas simply unfold the static axioms for
the remaining set-expressions over formulas.

6 Conclusions and Further Work

We have provided a representation for implicit and explicit beliefs by combining
ideas for representing non-omniscient agents with ideas for representing beliefs
in a possible worlds setting. Then, we have reviewed the DEL approach for the
act of belief revision, discussing what we need to take into account to implement
it in our non-omniscient setting faithfully, and we have also defined PA action
models, a powerful tool that allows us to represent different forms of inference
that involve not only knowledge but also beliefs.

Like most research works, ours has provided some answers, but has also raised
interesting questions. Here are the ones that we consider most appealing. (1)
Long-term behaviour. We have defined the effect of a single execution of infor-
mational actions, but the result of their iterative application is also important.
More precisely, fixed-point operators would allow us express the effect of itera-
tive application of the defined actions, analogous to the Kleene star operator in
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propositional dynamic logic. (2) Multi-agent notions of information. We have
dealt with finer single-agent notions of information. But agents are usually not
isolated, and in such settings, group notions of information, like group knowl-
edge/beliefs and, more interestingly, common knowledge/beliefs, become im-
portant. In our fine-notions-of-information setting, this amounts to the study
of implicit and explicit forms of group and common knowledge/beliefs.
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Abstract

Although it seems intuitively clear that acts of requesting are different from
acts of commanding, it is not very easy to sate their differences precisely in
dynamic terms. In this paper we show that it becomes possible to charac-
terize, at least partially, the effects of acts of requesting and compare them
with the effects of acts of commanding by combining dynamified deontic
logic with epistemic logic. One interesting result is the following: each act of
requesting is appropriately differentiated from an act of commanding with
the same content, but for each act of requesting, there is another act of com-
manding with much more complex content which updates models in exactly
the same way as it does. We will also consider an application of our charac-
terization of acts of requesting to acts of asking yes-no questions. It yields
a straightforward formalization of the view of acts of asking questions as
requests for information.
[Keywords] request, command, yes-no question, dynamified deontic logic,
epistemic logic
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1 Introduction

Acts of requesting seem undoubtedly different from acts of commanding. As
Searle and Vanderveken have clearly stated, a request “allows for the possibility
of refusal” (Searle and Vanderveken 1985, p. 199), but a command “commits the
speaker to not giving him [= the commandee (the present author’s clarification)]
the option of refusal” (ibid., p. 201). Of course this does not mean that it is
impossible to refuse to obey a command; but “when one refuses to obey an
order or command, one cannot say that one refuses the order or command but
rather that one refuses to obey it” because “[s]trictly speaking, one can only
accept or refuse a speech act that allows for the option of acceptance or refusal”
(ibid., p. 195). Thus “one can say literally ‘I refused the offer’ or ‘I refused the
invitation’ ”(ibid.), but one cannot say “I refused the command.”

But what does this difference amount to in dynamic terms? In what way is
the situation after an act of requesting different from the situation after an act
of commanding? And what effects does an act of requesting bring about if
it does not exclude the possibility of refusal? The purpose of this paper is to
answer these and other related questions concerning the distinction between
requesting and commanding by developing a dynamic logic in which effects
of acts of requesting and commanding can be compared. For this purpose
we will extend DMDL+III (“Dynamified” Multi-agent Deontic Logic + alethic
modality III) developed in Yamada (2008a), by adding epistemic operators to
it. Since an act of requesting allows for the possibility of refusal, an agent
who makes a request will be in need of knowing whether it will be granted or
refused, and an appropriate response to a request should address this question.
One interesting result is the following: each act of requesting is appropriately
differentiated from an act of commanding with the same content, but for each
act of requesting, there is another act of commanding with much more complex
content which updates models in exactly the same way as it does. We will also
consider an application of our analysis of acts of requesting to acts of asking
yes-no questions. It yields a straightforward formalization of the view of acts
of asking questions as requests for information.

The structure of this paper is as follows. In Section 2, we review the devel-
opment of dynamified deontic logics that leads to DMDL+III closely, and show
how acts of commanding and acts of promising are modeled in DMDL+III. In
Section 3, we add epistemic operators to DMDL+III, and briefly examine what
more can be said about acts of commanding and promising with their help.
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We then show how the workings of acts of requesting can be captured in the
extended logic DMEDL (Dynamified Multi-agent Epistemic Deontic Logic) in
Section 4. In Section 5, we first compare acts of requesting with acts of com-
manding further in order to show how each act of requesting is differentiated
from an act of commanding with the same content (this illustrates the first
part of the above mentioned result), and then show how our analysis of acts
of requesting can be applied to the formalization of the notion of questions
as requests for information by modeling acts of asking yes-no questions. In
Section 6, we prove the second part of the above mentioned result: for each act
of requesting, there is another act of commanding with much more complex
content which updates models in exactly the same way as it does. Then we
conclude with a brief discussion of the implications of this result and further
research possibilities in Section 7.

Before proceeding to the next section, we would like to make a disclaimer
here in order to make our goal clear. When we talk about acts of requesting
and commanding in this paper, we have acts of commanding and requesting
performed in a natural language in mind. But we will not deal directly with
the semantics of natural language sentences used in performing these acts, but
rather with the dynamic nature of the performed acts themselves. We will try
to characterize what acts of commanding and acts of requesting are in terms
of the effects they bring about. In doing so, we will not aim to capture the
pragmatic mechanisms that explain, for example, how the utterance of one
and the same sentence of natural language counts as the performance of an
act of commanding in one context and that of an act of requesting in another,
either. We will rather aim to capture what the act of commanding and the act
of requesting accomplish when they are performed in the respective contexts,
and retrospectively elucidate each act as the kind of act that accomplishes those
kinds of things.

2 Acts of commanding and acts of promising in
DMDL+III

DMDL+III is one of the “dynamified” logics inspired by the development of
systems of DEL (Dynamic Epistemic Logic). In this section, we first give a brief
look at PAL (Public Announcement Logic), the simplest system that falls under
DEL, and illustrate how it dynamifies static epistemic logic. Then we closely
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review the development of ECL (Eliminative Command Logic), the simplest
logic that deals with acts of commanding. It dynamifies static deontic logic just
like DEL dynamifies static epistemic logic. As DMDL+III is a refinement of ECL,
most of the concepts necessary for understanding DMDL+III can be explained in
simpler forms in reviewing the development of ECL. After that, we will show
how DMDL+III refines ECL in two steps.

2.1 A brief look at PAL

The development of PAL is illustrated in Figure 1 on Page 431 in the form of
a diagram. As the upward arrow in Figure 1 indicates, PAL is obtained by
adding dynamic modalities, which represent public announcements, to EL. EL
is a multi-agent variant of the standard epistemic logic, and the formula of the
form Kiϕmeans that the agent i knows that ϕ. The formula of the form [ϕ!]ξ of
PAL means that ξ holds after every truthful public announcement that ϕ, and
thus the formula of the form [ϕ!]Kiψ means that the agent i knows that ψ after
every truthful public announcement that ϕ.

Multi-agent Epistemic Logic EL
Kiϕ

adding dynamic

modalities

Public Announcement Logic PAL
[ϕ!]Kiψ

translation along

reduction axioms

Figure 1: The development of PAL

Given a model M for EL and a world w of M, the public announcement modality
[ϕ!] is interpreted by the following clause in the truth definition for the language
of PAL:

M,w |=PAL [ϕ!]ξ iff M,w |=PAL ϕ implies Mϕ!,w |=PAL ξ ,

where Mϕ! is the “updated” model for EL obtained from M by replacing the
epistemic accessibility relation Ri for each agent i with its subset Ri − {〈x, y〉 ∈
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Ri | M, x |=PAL ϕ and M, y |=PAL ¬ϕ} − {〈x, y〉 ∈ Ri | M, x |=PAL ¬ϕ and M, y |=PAL
ϕ}.1 Note that the truth of the formula of the form [ϕ!]ξ at w in M is defined
in terms of the truth of the content ϕ of the announcement ϕ! at w in M and
the truth of its subformula ξ at w in the updated model Mϕ!. Thus the public
announcement of the formϕ! is interpreted as the type of the events that change
the situation (M,w) into (Mϕ!,w). If ϕ is a formula of EL and no operator of
the form Ki occurs in ϕ, the formula of the form ϕ → [ϕ!]Kiϕ is valid. This
means that if ϕ is a non-modal formula, everyone comes to know that ϕ after
every truthful public announcement that ϕ.2 An interesting counterexample
to the unqualified version of this principle is an announcement of the so-called
“Moore formula” (ϕ ∧ ¬Kiϕ).

PAL is axiomatized by adding a set of so called “reduction axioms” and the
necessitation rule for each announcement modality to the proof system of EL.
As the downward arrow in Figure 1 indicates, the reduction axioms enable us
to define translation function t that takes any formula ϕ from PAL and yields
a formula t(ϕ) of EL that is provably equivalent to ϕ. This translation in turn
enables us to derive the completeness of PAL from the completeness of EL.

2.2 Acts of commanding in ECL

Inspired by the development of PAL and other dynamic epistemic logics, a series
of dynamified deontic logics including DMDL+III are developed. Eliminative
Command Logic ECL developed in Yamada (2007a) is the simplest one in the
series. Figure 2 on Page 433 shows the diagram of the development of ECL. Just
like PAL, ECL is obtained by adding dynamic modalities, which represent types
of acts of commanding, to the static base logic MDL+ (Multi-agent Deontic Logic
+ alethic modality) and is axiomatized by adding a set of reduction axioms and

1This way of updating is usually called “link-cutting”. Another way of updating, called “world
elimination”, eliminates every non-ϕ worlds from the domain of the model and restricts Ri to the
new domain. For more on PAL and DEL, see van Ditmarsch, van der Hoek, and Kooi (2007). It
gives a detailed state-of-the-art textbook exposition of the major systems of DEL as well as a useful
historical overview of their development.

2Although there can be various artificial agents to which this applies, it seems too strong to be
true of agents like us, as there is a possibility of disbelief on the side of the audience. There may
be people who are so sceptical that they do not always believe public announcements. This gap,
which is a gap between an illocutionary act (announcing that ϕ) and a perlocutionary act (getting
addressees to know that ϕ, or convincing them that ϕ), can be avoided if we reinterpret ϕ! as a type
of event in which agents simultaneously and publicly learn that ϕ. Then we can be said to have a
theory of (group) learnability in the form of DEL. For more on the gap, see Yamada (2008b).
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necessitation rules for command modalities to the proof system of MDL+.

Multi-agent Deontic Logic with Alethic Modality MDL+

Oiϕ

adding dynamic

modalities

Eliminative Command Logic ECL
[!iϕ]Oiψ

translation along

reduction axioms

Figure 2: The development of ECL

The formula of the form Oiϕ means that it is obligatory upon agent i to see
to it that ϕ. Although indexing of deontic operators with a set of agents is
not standard in deontic logic, we need to be able to distinguish agents to
whom commands are given from other agents if we are to use deontic logic
to reason about how acts of commanding change situations. For this purpose,
the language of MDL+ has a separate deontic operator Oi for each agent i. The
language and the models of MDL+ are defined as follows.3

Definition 2.1. Take a countably infinite set Aprop of proposition letters and a
finite set I of agents, with p ranging over Aprop and i over I. The multi-agent
deontic language LMDL+ is given by:

ϕ ::= > | p | ¬ϕ | (ϕ ∧ ψ) | �ϕ | Oiϕ .

We use standard abbreviations ∨, →, ↔, and ^. In addition, we abbreviate
Oi¬ϕ as Fiϕ, and ¬Oi¬ϕ as Piϕ.

Definition 2.2. By an LMDL+ -model, we mean a tuple M = 〈WM, AM, {DM
i | i ∈

I}, VM
〉where:

1. WM is a non-empty set (heuristically, of ‘possible worlds’ or ‘states’)

2. AM
⊆WM

×WM

3The definition of the models in this paper is slightly different from that of Yamada (2007a), but
there is no substantial difference.
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3. DM
i ⊆ AM for each agent i ∈ I

4. VM is a function that assigns a subset VM(p) of WM to each proposition
letter p ∈ Aprop.

Based on these definitions, the truth definition for the formulas of LMDL+ is
given in a completely standard way by associating alethic modality �with AM

and each deontic modality Oi with DM
i . Thus the formula of the form Oiϕ, for

example, is interpreted by the following clause:

M,w |=MDL+ Oiϕ iff for any v such that 〈w, v〉 ∈ DM
i , M, v |=MDL+ ϕ .

Note that the following axiom, called “Mix” is shown to be valid according to
these definitions:

Piϕ→ ^ϕ .

This means that what is permitted is possible. The so-called axiom D of the
following form, however, is not valid:

Oiϕ→ Piϕ .

Since we may receive conflicting commands from different authorities, we
cannot assume D axiom to be valid, as we will see later.

Note also that no restrictions are imposed upon the alethic accessibility AM.
Since further restrictions do not affect the discussion in this paper, we will not
bother to add them. Thus,

Definition 2.3. The proof system for MDL+ contains the following axioms and
rules:

(Taut) all instantiations of propositional tautologies over the present language

(�-Dist) �(ϕ→ ψ)→ (�ϕ→ �ψ) (�-distribution)

(Oi-Dist) Oi(ϕ→ ψ)→ (Oiϕ→ Oiψ) (Oi-distribution)

(Mix) Piϕ→ ^ϕ (Mix Axiom)

(MP)
ϕ ϕ→ ψ

ψ
(Modus Ponens)

(�-Nec) If ϕ is proved, infer �ϕ (�-necessitation)

(Oi-Nec) If ϕ is proved, infer Oiϕ . (Oi-necessitation)
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The soundness and the completeness of this proof system can be proved in an
entirely standard way.

Now let’s move on to ECL. As we have seen in Figure 2, the language of ECL
is obtained by adding dynamic modalities, which represent types of acts of
commanding, to the language of the static base logic MDL+. Thus,

Definition 2.4. Take the same countably infinite set Aprop of proposition letters
and the same finite set I of agents as before, with p ranging over Aprop and i
over I. The language of eliminative command logic LECL is given by:

ϕ ::= > | p | ¬ϕ | (ϕ ∧ ψ) | �ϕ | Oiϕ | [π]ϕ
π ::=!iϕ .

An expression of the form !iϕ, which we will call a command term, represents
the type of acts of commanding given to a commandee i to the effect that i
should see to it that ϕ, and the formula of the form [!iϕ]ψ means that ψ holds
after i is commanded to see to it that ϕ. Note that command terms are not
formulas.

The truth definition for this language is given with reference to anLMDL+ -model
by extending the truth definition forLMDL+ mutatis mutandis with the following
clause for the new formulas:

M,w |=ECL [!iϕ]ψ iff M!iϕ,w |=ECL ψ ,

where M!iϕ is the updatedLMDL+ -model obtained from M by replacing only the

deontic accessibility relation DM
i for the agent i with its subset D

M!iϕ

i = {〈x, y〉 ∈
DM

i | M, y |=ECL ϕ}. Thus, the update by the act of commanding of the type
!iϕ only cuts the arrows of deontic accessibility for the agent i which arrive in
non-ϕ-worlds in M; it does not cut any arrows of deontic accessibility for other
agents.

Note that the truth of the formula of the form [!iϕ]ψ at w in M is defined in
terms of the truth of its subformula ψ at w in the updated model M!iϕ. This
fits the intended meaning of [!iϕ]ψ, namely that ψ holds after i is commanded
to see to it that ϕ. Note also that D

M!iϕ

i ⊆ DM
i . This guarantees that updated

models will always be LMDL+ -models.

Figure 3 on Page 436 gives an image of how an act of commanding works in
an example taken from Yamada (2007a). Imagine the following situation. You
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are working in an office shared with your boss and a few other colleagues on
a hot day in summer. There is a window, but it is closed now. There is an air
conditioner, but it is not running now. The temperature is rising and it now is
at 30 degrees Celsius. The model-state pair (M, s0) represents this situation.

M

p
s1

q
s2

[!ap]Oap
^p ∧^q ∧^r

s0

r
s3

M!ap

p
s1

q
s2

^p ∧^q ∧^r
Oap

s0

r
s3

!ap

Figure 3: Your boss’s command

Let p stand for the proposition that the window is open, q for the proposition
that the air conditioner is running, and r for the proposition that the temperature
is above 30 degree Celsius. The presence of formulas near the states indicates
that they hold in these states, and the absence of proposition letters near the
states (but not the absence of non-atomic formulas) indicates that they do not
hold in these states. The solid arrows represent the alethic accessibility, and the
dotted arrows represent the deontic accessibility for you, here represented by
a.4 Thus you can open the window, or turn on the air conditioner, or even ignore
the heat by concentrating on your work. All these alternatives are possible and
permitted for you in (M, s0).

But now you hear your boss’s voice. She commanded you to open the win-
dow. The pair (M!ap, s0) represents the situation you are in after your boss’s act
commanding. All the alternatives that were possible in (M, s0) are still possible
in (M!ap, s0). But in order to obey your boss’s command, you have to open the
window. It becomes the only permissible alternative to you now. This effect of
her command is modeled by cutting the arrows of deontic accessibility for you

4For the sake of simplicity, arrows of deontic accessibility relations for other people and the
reflexive arrows for alethic accessibility are omitted.
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that arrive in non-p-states in M. Thus we have M!ap, s0 |=ECL Oap, and this in
turn means that we have M, s0 |=ECL [!ap]Oap. The thick arrow from (M, s0) to
(M!ap, s0) is an imaginary arrow in the sense that it is neither in M nor in M!ap,
but it helps us to understand your boss’s command of the form !ap as the event
that takes you from (M, s0) to (M!ap, s0).

Note that the treatment of acts of commanding in ECL is based on a simpli-
fying assumption that command issuing agents have suitable authority over
commandees. We follow this treatment in this paper.5 With the help of this
simplifying assumption, the following result is obtained:

Proposition 1 (The CUGO Principle). Ifϕ is a formula of MDL+ and is free of modal
operators of the form Oi, [!iϕ]Oiϕ is valid.

This principle means that, though not without exceptions, commands usually
generate obligations (hence “CUGO”). It partially characterizes the effects of
acts of commanding.6 As we have said in Section 1, the purpose of this paper
is to give a similar kind of characterization to acts of requesting by extending a
refinement DMDL+III of ECL.

Note that the unqualified version of the CUGO principle is not valid. A bit of
terminology is of some help here. Let O be some modal operator. We call the
pair 〈x, y〉 of worlds an O-arrow and say y is O-accessible from x if 〈x, y〉 is in
the accessibility relation R that interprets O. Then we can say that the update
by an act of commanding of the type !iϕ cuts every Oi-arrow that arrives in
¬ϕ-worlds in M. This guarantees that every Oi-arrow that remains after this
update arrives in a world in which ϕ holds in M. But this does not guarantee
that ϕ holds there in the updated model M!iϕ. If Oi occurs in ϕ, ϕmight be false
at some world Oi-accessible from w in M!iϕ.

ECL is axiomatized by adding a set of so-called “reduction axioms” and the
necessitation rule for each command operator to the proof system of MDL+.
Thus,

Definition 2.5. The proof system for ECL contains all the axioms and all the
rules of the proof system for MDL+, and in addition the following reduction
axioms and rules:

5The standard method used in order to treat preconditions for action like this is to introduce a
function pre that assigns to each event term e its precondition pre(e). For more on this, see Baltag,
Moss, and Solecki (1998) or van Ditmarsch, van der Hoek, and Kooi (2007).

6This characterization is partial because acts of commanding involve other effects as well. For
more on this, see Sections 6 and 7.
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(RA1) [!iϕ]p↔ p where p ∈ Aprop

(RA2) [!iϕ]> ↔ >

(RA3) [!iϕ]¬ψ↔ ¬[!iϕ]ψ

(RA4) [!iϕ](ψ ∧ χ)↔ ([!iϕ]ψ ∧ [!iϕ]χ)

(RA5) [!iϕ]�ψ↔ �[!iϕ]ψ

(RA6) [!iϕ]O jψ↔ O j[!iϕ]ψ where i , j

(RA7) [!iϕ]Oiψ↔ Oi(ϕ→ [!iϕ]ψ)

([!iϕ]-Nec) If ψ is proved, infer [!iϕ]ψ .

The crucial axiom here is RA7. The formula on the left hand side, [!iϕ]Oiψ,
states that Oiψ holds after the update. The formula on the right hand side
specifies the necessary and sufficient condition for this in terms of what holds
before the update. Take an arbitrary LMDL+ -model M and a world w of M. In
order for Oiψ to hold in w in the updated model M!iϕ, ψ must hold in every
world Oi-accessible from w in M!iϕ. But those worlds are exactly the ϕ-worlds
in M that are Oi-accessible from w in M. In order for ψ to hold in those worlds
after the update, [!iϕ]ψ has to hold in those world before the update. Thus
Oi(ϕ→ [!iϕ]ψ) has to hold in w in M.

Note that the first two axioms enable us to eliminate command operators pre-
fixed to proposition letters and >. The remaining axioms enable us to reduce
the length of the subformula to which command operators are prefixed step
by step. Thus these axioms enable us to define translation function that takes
any formula of ECL and yields a formula of MDL+ which is provably equiva-
lent to the original formula. This translation in turn enables us to derive the
completeness of ECL from that of MDL+.

2.3 Conflicting commands in ECL and ECLII

Now we can move on to refinements. The following results about ECL are
reported in Yamada (2007a):

Proposition 2 (The Dead End Principle). [!i(ϕ ∧ ¬ϕ)]Oiξ is valid.

Proposition 3 (The Restricted Sequential Conjunction Principle). If ϕ and ψ are
formulas of MDL+ and free of modal operators of the form Oi, [!iϕ][!iψ]ξ↔ [!i(ϕ∧ψ)]ξ
is valid.
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The dead end principle means that if an agent receives a command with contra-
dictory content, everything comes to be obligatory upon him. The situation of
this kind is usually called “deontic explosion”. Since the updated by !i(ϕ∧¬ϕ)
cuts every Oi-arrow that arrives in a ¬(ϕ ∧ ¬ϕ)-world, it cuts every Oi-arrow,
and so DM!i (ϕ∧¬ϕ)

i becomes empty. Thus Oiξ becomes vacuously true in every
world after the update by !i(ϕ ∧ ¬ϕ).

If we put ¬ϕ in the place of ψ in the restricted sequential conjunction principle,
we get deontic explosion again. Situations of this kind can arise in real life as an
agent might receive such a pair of commands from different command issuing
authorities.7

MDL+II and ECLII refine MDL+ and ECL respectively in order to deal with
conflicting commands in a more satisfactory way by indexing deontic operators
and deontic accessibility relations by the set I × I of pairs of agents (Yamada
2007b). Thus the formula of the form O(i, j)ϕ from the static base logic MDL+II
means that it is obligatory upon an agent i with respect to the authority j to see
to it that ϕ, and the formula of the form [!(i, j)ϕ]ψ of the dynamified logic ECLII
means that ψ holds after an authority j’s act of commanding an agent i to see
to it that ϕ. The definitions of the languages, the models, the relations of truth
in models, and the proof systems for MDL+II and ECLII are given in the same
way as those for MDL+ and ECL except for the indexing by I × I.

Since I is a finite set, indexing by I × I is just an instance of indexing by a finite
set. Thus MDL+II and ECLII are just another instantiations of MDL+ and ECL
respectively, hence all the results obtained for MDL+ and ECL apply to MDL+II
and ECLII mutatis mutandis. In particular, the CUGO principle now reads:

Proposition 4 (The CUGO Principle). If ϕ is a formula of MDL+II and is free of
modal operators of the form O(i, j), [!(i, j)ϕ]O(i, j)ϕ is valid.

With the help of this principle, we now have:

(M!(a,b)p)!(a,c)¬p,w |=ECLII (O(a,b)p ∧O(a,c)¬p) .

This is the situation a will be in after a receives a command from an authority c to
the effect that a should see to it that ¬p after a receives a command from another
authority b to the effect that a should see to it that p. Since it is not possible to
obey both commands in this example, a has to decide which command to obey.

7Thus D Axiom cannot be included in the proof system of MDL+.
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Note that this combination of incompatible commands does not generally pro-
duce deontic explosion. In (M!(a,b)p)!(a,c)¬p, p-worlds that are O(a,b)-accessible in
M (if any) and ¬p-worlds that are O(a,c)-accessible in M (if any) will remain
O(a,b)-accessible and O(a,c)-accessible respectively, since the update by !(a,b)p only
cuts O(a,b)-arrows arriving in¬p-worlds in M and the update by !(a,c)¬p only cuts
O(a,c)-arrows arriving in p-worlds in M. Deontic explosions occur only when
incompatible commands are given to one and the same agent by one and the
same authority or an authority issues a command having contradictory content.
If the command issuing authority is rational, such a situation will be avoided;
otherwise, obedience could not be expected.

Note also that similar conflicts can arise between requests as well as between
a request and a command. So, we will follow this treatment in developing our
system later.

2.4 DMDL+III

DMDL+III refines ECLII further in order to model acts of promising along with
acts of commanding (Yamada 2008a). In the case of acts of commanding, obli-
gations commandees owe are created by command issuing authorities (com-
manders, for short).But in the case of acts of promising, obligations owed by
agents who give promises (promisers, for short) are created by promisers them-
selves. Moreover, agents to whom promises are given (promisees, for short)
will be entitled to rely on promisers to do what they have promised to do. In
order to deal with this complexities, deontic operators and their corresponding
accessibility relations are indexed by the set I × I × I in the static base logic
MDL+III. As before, indexing by I× I× I is just indexing by a finite set, and thus
MDL+III is yet another instantiation of MDL+. But this time DMDL+III includes
more than ECL does. It deals not only with acts of commanding but also with
acts of promising.

In MDL+III and in DMDL+III, the formula of the form O(i, j,k)ϕ means that it is
obligatory upon agent i with respect to j in the name of k to see to it that ϕ. The
agent i here is the agent who owes the obligation (sometimes called an obligor),
j is the agent to whom the obligation is owed (sometimes called an obligee),
and k is the creator of the obligation. As we will see shortly, they need not be
distinct.

In DMDL+III, the formula of the form [Com(i, j)ϕ]ψ means that ψ holds after an
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agent i commands an agent j to see to it that ϕ, and the formula of the form
[Prom(i, j)ϕ]ψ means that ψ holds after an agent i promises an agent j that she
(i) will see to it that ϕ. Note that the order of the parameters in the command
term Com(i, j)ϕ is changed from that of the term !(i, j)ϕ of ECLII. In Com(i, j)ϕ, i is
the commander and j is the commandee.

In the truth definition for the language of DMDL+III, the added dynamic for-
mulas are interpreted by the following clauses:

M,w |=DMDL+III [Com(i, j)ϕ]ξ iff MCom(i, j)ϕ,w |=DMDL+III ξ

M,w |=DMDL+III [Prom(i, j)ϕ]ξ iff MProm(i, j)ϕ,w |=DMDL+III ξ,

where

1. MCom(i, j)ϕ is the LMDL+III-model obtained from M by replacing DM
( j,i,i) with its

subset {〈x, y〉 ∈ DM
( j,i,i) |M, y |=DMDL+III ϕ}, and

2. MProm(i, j)ϕ is theLMDL+III-model obtained from M by replacing DM
(i, j,i) with its

subset {〈x, y〉 ∈ DM
(i, j,i) |M, y |=DMDL+III ϕ}.

Thus the update by Com(i, j)ϕ only cuts O( j,i,i)-arrows arriving in¬ϕ-worlds in the
original model M, and the update by Prom(i, j)ϕ only cuts O(i, j,i)-arrows arriving
in ¬ϕ-world in the original model M.

Again, we have:

Proposition 5. The CUGO Principle: If ϕ is a formula of MDL+III and is free of
modal operators of the form O( j,i,i), [Com(i, j)ϕ]O( j,i,i)ϕ is valid.

And in addition to this, we have:

Proposition 6. The PUGO Principle: If ϕ is a formula of MDL+III and is free of
modal operators of the form O(i, j,i), [Prom(i, j)ϕ]O(i, j,i)ϕ is valid.

These principles partially capture how acts of commanding and promising
work.

Note the differences between the obligations generated. In the case of the
obligation generated by an act of commanding the commandee j owes the
obligation created by the commander i, but in the case of the obligation gen-
erated by an act of promising the promiser i owes the obligation created by
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the promiser i herself, and the promisee j is the agent whom the obligation is
owed. This difference enables us to consider the obligations created by acts of
promising as representing the commitments of the promisers. This will be of
some importance when we analyze acts of requesting. 8

We are now in a position to extend MDL+III and DMDL+III.

3 The securing of uptake in DMEDL

We add epistemic operators to MDL+III. For the sake of simplicity, we ignore
alethic modality. Thus we define:

Definition 3.1. Take a countably infinite set Aprop of proposition letters, and a
finite set I of agents, with p ranging over Aprop, and i, j, k over I. The language
LMEDL of the Multi-agent Epistemic Deontic Logic MEDL is given by:

ϕ ::= > | p | ¬ϕ | (ϕ ∧ ψ) | Kiϕ | O(i, j, k)ϕ

Definition 3.2. By an LMEDL-model, we mean a tuple
M = 〈WM, {EM

i | i ∈ I}, {DM
(i, j, k) | i, j, k ∈ I}, VM

〉where:

1. WM is a non-empty set (heuristically, of ‘possible worlds’ or ‘states’)
2. EM

i is an equivalence relation such that EM
i ⊆WM

×WM

3. DM
(i, j, k) ⊆WM

×WM

4. VM is a function that assigns a subset VM(p) of WM to each proposition
letter p ∈ Aprop.

The truth definition (defining the relation |=MEDL) and the definition of the proof
system (defining the relation `MEDL) can be given in an entirely standard way.
Since MEDL is a simple fusion of the deontic fragment of MDL+III and the multi-
agent variant of the standard epistemic logic, there is a complete axiomatization
of it.

We dynamify MEDL into DMEDL (Dynamified MEDL) by adding the dynamic
modalities indexed by action terms of the forms Com(i, j)ϕ, Prom(i, j)ϕ and Req(i, j)ϕ.

8There may be room for disagreement over whether the notion of the agent whom the obligation
is owed make sense with respect to the obligation created by an act of commanding. But we will
not pursue this point here.
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The formula of the form [Com(i, j)ϕ]ψ and the formula of the form [Prom(i, j)ϕ]ψ
are interpreted in exactly the same way as in DMDL+III, except with reference
toLMEDL-models and with |=DMDL+III replaced with |=DMEDL. Thus we again have
the DMEDL versions of the CUGO principle and the PUGO principle.

Before moving on to the analysis of acts of requesting, we take a brief look at
what more we can say about acts of commanding and promising in DMEDL.
One immediate consequence of having epistemic operators is the fact that we
can now talk about the knowledge agents have about effects of speech acts.
When a command is successfully given, for example, the commandee must
know what command she has been given. Unless the force and the content is
understood, no illocutionary act can be successfully performed, since the effects
of illocutionary acts depend on the agreement on (and so the understanding
of) what has been performed. Surprisingly, the following principles are valid
in DMEDL:

Proposition 7. The CUGU Principle: If ϕ is a formula of DMEDL and is free of
modal operators of the form O( j,i,i), [Com(i, j)ϕ]K jO( j,i,i)ϕ is valid.

Proposition 8. The PUGU Principle: If ϕ is a formula of DMEDL and is free of
modal operators of the form O(i, j,i), [Prom(i, j)ϕ]K jO(i, j,i)ϕ is valid.

These principles state that acts of commanding and acts of promising usually
generate knowledge of the effects captured in the CUGO principle and the
PUGO principle respectively on the side of addressees.

We call these principles “CUGU” and “PUGU” because we believe that these
principles characterize what Austin calls “the securing of uptake”. According
to Austin, “the securing of uptake” means “bringing about the understand-
ing of the meaning and of the force of the locution”. It is the “effect” that
“must be achieved on the audience if the illocutionary act is to be carried
out.” And so,“the performance of an illocutionary act involves the securing
of uptake”(Austin 1975, pp. 117-118). In the case of an act of commanding,
the understanding of the force means the understanding of the commander’s
locution as an act of commanding and the understanding of the meaning of her
locution includes the understanding of what is commanded. The CUGU prin-
ciple partially characterizes what these understanding amount to. The same
thing can be said of the PUGU principle as well.

We said “surprisingly” above because no epistemic update operation is required
for these results. Take any model M, any world w of M, and any proposition let-
ter p for example. After an act of commanding of the form Com(i, j)p is performed
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in a situation (M,w), O( j,i,i)p holds in any world v in the updated model MCom(i, j)p
as every O( j,i,i)-arrow arriving in a non-p-world of M is eliminated in MCom(i, j)p,
and every p-world of M remains to be a p-world in MCom(i, j)p. But if O( j,i,i)p holds
in any world in the updated model MCom(i, j)p, it holds in any world K j-accessible
from any world of M. Thus K jO( j,i,i)p holds in any world in MCom(i, j)p.

We need to note, however, that the same thing holds for any agent i ∈ I. It means
that everyone comes to know that O( j,i,i)p in w in MCom(i, j)p. This is natural when
we consider a small everyday situation like the situation of the shared office
on the hot summer day we considered earlier. But even in a small everyday
situations like this, there are many ways in which only some of the agents come
to know what speech act is performed by a particular person at a particular
time.

Here it is important to understand how everyone comes to know O( j,i,i)p in w
in MCom(i, j)p. Although the update by Com(i, j)p does not affect any epistemic
accessibility relations, it makes O( j,i,i)p true in any worlds epistemically acces-
sible for each agent. In that sense, the independence of each agent’s epistemic
accessibility relation from that of others does not fully model the privacy of
knowledge in the context of dynamified modal logics. The standard way to
model the distinction between agents who know what happens and those who
do not is to introduce the so-called “event models”, in which (un)certainty of
each agent as regards what has happened is modeled, and define the update
operation called “product update”. If we do this for MEDL, our current update
by Com(i, j)ϕ will be modeled as the special case of product update by the event
model in which every agent knows that an event of the type Com(i, j)ϕ happens.
Although it is possible to extend MEDL by introducing event models and prod-
uct update, we will not pursue this possibility here as there are many things
yet to be done before making life more complicated.9

4 Acts of requesting in DMEDL

Now we move on to the analysis of acts of requesting. As we have seen in
Section 1, an act of requesting allows the possibility of refusal. As a consequence
of this, the following principle is not valid even if no operators of the form O( j,i,i)

9I have benefitted from a discussion with Johan van Benthem on this point. For more on the
product update, see Baltag, Moss, and Solecki (1998) or van Ditmarsch, van der Hoek, and Kooi
(2007).
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occur in ϕ:
[Req(i, j)ϕ]O( j,i,i)ϕ .

In this respect, acts of requesting stand in sharp contrast to acts of commanding,
for which we have the CUGO principle. But it is also clear that it would not be
without any problems if an agent who has been requested to do something (a
requestee, for short) gives no response. Although it is not obligatory upon the
requestee to do what is requested, it is obligatory upon her to decide whether
she should do what is requested. Moreover, she has to let the agent who has
made the request (the requester, for short) know her decision.

If the requestee j decides that she should do what is requested, and the requested
action is not the kind of thing to be done on the spot, she can promise the
requester i that she ( j) will do what is requested. As the PUGU principle
indicates, the requester i will know that O( j,i, j)ϕ. If the requestee j decides that
she ( j) should reject the request, she ( j) should let the requester i know that
¬O( j,i, j)ϕ.

Now what about the case in which what is requested can be done on the spot.
If the requestee j decides that she should do what is requested, she might do
it on the spot without saying anything. Whether we should count this as the
third alternative way of responding to an act of requesting, or consider it as
skipping to the sequel of an implicit promise might be a matter of opinion. We
take the formulation with the three options.10 Thus the clause for the formula
of the form [Req(i, j)ϕ]ξ reads:

M,w |=DMEDL [Req(i, j)ϕ]ξ iff MReq(i, j)ϕ,w |=DMEDL ξ ,

where MReq(i, j)ϕ is theLMEDL-model obtained from M by replacing DM
( j,i,i) with its

subset {〈x, y〉 ∈ DM
( j,i,i) |M, y |=DMEDL (ϕ ∨ KiO( j,i, j)ϕ ∨ Ki¬O( j,i, j)ϕ)}.11

This interpretation supports the following principles.

Proposition 9. The RUGO Principle: If ϕ is a formula of MEDL and is free of modal
operators of the form O( j,i,i), [Req(i, j)ϕ]O( j,i,i)(ϕ ∨ KiO( j,i, j)ϕ ∨ Ki¬O( j,i, j)ϕ) is valid.

10 Traum (1999, p. 195) also talks about similar obligations as effects of acts of requesting, but he
includes only the options of accepting or refusing.

11The formulation with two options can be obtained by using {〈x, y〉 ∈ DM
( j,i,i) |M, y |=DMEDL

(KiO( j,i, j)ϕ ∨ Ki¬O( j,i, j)ϕ)} instead.
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Proposition 10. The RUGU Principle: If ϕ is a formula of MEDL and is free of
modal operators of the form O( j,i,i), [Req(i, j)ϕ]K jO( j,i,i)(ϕ ∨ KiO( j,i, j)ϕ ∨ Ki¬O( j,i, j)ϕ) is
valid.

We are now in a position to define the proof system for DMEDL. We first list
three sets of reduction axioms.

Theorem 1 (Reduction axioms for acts of commanding). The following axioms
are valid in DMEDL.

(C1) [Com(i, j)ϕ]p↔ p

(C2) [Com(i, j)ϕ]> ↔ >

(C3) [Com(i, j)ϕ]¬ψ↔ ¬[Com(i, j)ϕ]ψ

(C4) [Com(i, j)ϕ](ψ ∧ χ)↔ [Com(i, j)ϕ]ψ ∧ [Com(i, j)ϕ]χ

(C5) [Com(i, j)ϕ]Klψ↔ Kl[Com(i, j)ϕ]ψ

(C6) [Com(i, j)ϕ]O(l,m,n)ψ↔ O(l,m,n)[Com(i, j)ϕ]ψ if 〈l,m,n〉 , 〈 j, i, i〉

(C7) [Com(i, j)ϕ]O( j,i,i)ψ↔ O( j,i,i)(ϕ→ [Com(i, j)ϕ]ψ)

Theorem 2 (Reduction axioms for acts of Promising). The following axioms are
valid in DMEDL.

(P1) [Prom(i, j)ϕ]p↔ p

(P2) [Prom(i, j)ϕ]⊥ ↔ ⊥

(P3) [Prom(i, j)ϕ]¬ψ↔ ¬[Prom(i, j)ϕ]ψ

(P4) [Prom(i, j)ϕ](ψ ∧ χ)↔ [Prom(i, j)ϕ]ψ ∧ [Prom(i, j)ϕ]χ

(P5) [Prom(i, j)ϕ]Klψ↔ Kl[Prom(i, j)ϕ]ψ

(P6) [Prom(i, j)ϕ]O(l,m,n)ψ↔ O(l,m,n)[Prom(i, j)ϕ]ψ if 〈l,m,n〉 , 〈i, j, i〉

(P7) [Prom(i, j)ϕ]O(i, j,i)ψ↔ O(i, j,i)(ϕ→ [Prom(i, j)ϕ]ψ)

Theorem 3 (Reduction axioms for acts of Requesting). The following axioms are
valid in DMEDL.

(R1) [Req(i, j)ϕ]p↔ p

(R2) [Req(i, j)ϕ]⊥ ↔ ⊥

(R3) [Req(i, j)ϕ]¬ψ↔ ¬[Req(i, j)ϕ]ψ

(R4) [Req(i, j)ϕ](ψ ∧ χ)↔ [Req(i, j)ϕ]ψ ∧ [Req(i, j)ϕ]χ
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(R5) [Req(i, j)ϕ]Klψ↔ Kl[Req(i, j)ϕ]ψ
(R6) [Req(i, j)ϕ]O(l,m,n)ψ↔ O(l,m,n)[Req(i, j)ϕ]ψ if 〈l,m,n〉 , 〈 j, i, i〉
(R7) [Req(i, j)ϕ]O( j,i,i)ψ↔ O( j,i,i)((ϕ ∨ KiO( j,i, j)ϕ ∨ Ki¬O( j,i, j)ϕ)→ [Req(i, j)ϕ]ψ)

As before, the first two axioms of each group enable us to eliminate dynamic
operators prefixed to proposition letters and >. The remaining axioms enable
us to reduce the length of the subformula to which dynamic operators are
prefixed step by step.

Now we define:

Definition 4.1 (The proof system for DMEDL). The proof system for DMEDL is
comprised of

1. all the axioms and rules of the proof system for MEDL,
2. all the reduction axioms for acts of commanding,
3. all the reduction axioms for acts of promising,
4. all the reduction axioms for acts of requesting, and in addition,
5. the necessitation rules for the dynamic operators [Com(i, j)ϕ], [Prom(i, j)ϕ], and

[Req(i, j)ϕ].

Since the above three sets of reduction axioms jointly enable us to define trans-
lation function that takes any formula from the language of DMEDL and yields
the formula of MEDL that is provably equivalent to the original formula, we
can derive the completeness of DMEDL from the completeness of MEDL. Thus
we have:

Theorem 4 (The completeness of DMEDL). The proof system defined above com-
pletely axiomatizes DMEDL.

5 Commanding, requesting, and asking questions
in DMEDL

In this section, we first review the CUGO principle and the RUGO principle.

The CUGO Principle If ϕ is a formula of MEDL and is free of modal operators
of the form O( j,i,i), [Com(i, j)ϕ]O( j,i,i)ϕ is valid.
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The RUGO Principle If ϕ is a formula of MEDL and is free of modal operators
of the form O( j,i,i), [Req(i, j)ϕ]O( j,i,i)(ϕ ∨ KiO( j,i, j)ϕ ∨ Ki¬O( j,i, j)ϕ) is valid.

In the following discussions, we assume that ϕ is a formula of MEDL and is
free of modal operators of the form O( j,i,i), unless stated otherwise.

As we have seen, the CUGO principle is valid while [Req(i, j)ϕ]O( j,i,i)ϕ is not. This
fact enables us to understand clearly the sense in which acts of commanding
do not allow for the the option of refusal. It becomes obligatory upon the agent
j to see to it that ϕ after the act of commanding of the form Com(i, j)ϕ as the
CUGO principle states, but not after the act of requesting of the form Req(i, j)ϕ.
Moreover, the RUGO principle enables us to understand in what sense the
option of refusal is allowed for in the act of requesting of the form Req(i, j)ϕ.
Seeing to it that Ki¬O( j,i, j)ϕ is one of the three ways of meeting the obligation of
the form O( j,i,i)(ϕ ∨ KiO( j,i, j)ϕ ∨ Ki¬O( j,i, j)ϕ). In that sense refusal is a legitimate
response to an act of requesting but not to an act of commanding.

We then move on to acts of asking yes-no questions and examine how the
RUGO principle works in modeling them. The notion of question as a kind
of imperative or request can be found in various authors including Åqvist
(1975), Searle (1979), Hintikka (1981), and Searle and Vanderveken (1985).12

Our analysis can be applied to the formalization of the notion of questions as
requests for information in a straightforward manner. Thus we can define the
term that represents the type of the acts in which i asks j whether ϕ is the case
or not, Ask-if (i, j)ϕ, as an abbreviation for Req(i, j)(Kiϕ ∨ Ki¬ϕ).13

Then by the RUGO principle, we have:

[Ask-if (i, j)ϕ]O( j,i,i)((Kiϕ ∨ Ki¬ϕ) ∨ KiO( j,i, j)(Kiϕ ∨ Ki¬ϕ) ∨ Ki¬O( j,i, j)(Kiϕ ∨ Ki¬ϕ)).

Here i is the agent who asks the question and j the agent whom the question is
asked. We will refer to them as “the requester” and “requestee”, and examine
how well we can treat the situation after the act of this type as the situation in
which information is requested.

12There are various approaches to questions. Groenendijk and Stokhof (1997) offers a detailed
survey of the field, and argues against Searle and Vanderveken’s approach, arguing for the semantic
approach to imperative sentences. Since we are not dealing with the semantics of natural language
imperative sentences, “a priori there is no clash between” their semantic approach and our analysis
as they notes (ibid., p. 1074). For more recent works, see Minică (2011).

13The author owes this idea to the discussion with Berislav Žarnić.
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Now, after the requester i’s act of asking, if the requestee j knows the answer
and is willing to answer, she ( j) can meet the generated obligation by saying
“yes” or “no” immediately, since doing so is to see to it that (Kiϕ∨Ki¬ϕ). Then
the requester i will know that ϕ or know that ¬ϕ accordingly. If the requestee j
is willing to answer but needs to consult books, maps, databases, or whatever
in order to do so, she ( j) can promise the requester i that she ( j) will answer it
later. Then, as the PUGU principle indicates, the requester i will know that the
requestee j has committed herself ( j) to letting her (i) know that ϕ or know that
¬ϕ. Thus the requestee j has seen to it that KiO( j,i, j)(Kiϕ∨Ki¬ϕ). If the requestee
j cannot answer or decides not to answer for some reason or other, she ( j) has
to let the requester i know that she ( j) will not commit herself ( j) to letting her
(i) know the answer. Doing so is to see to it that Ki¬O( j,i, j)(Kiϕ ∨ Ki¬ϕ). Thus
the RUGO principle captures what j has to do after an yes-no question is asked
in a natural way.14

6 Requesting and commanding again

So far, we have seen that the CUGO principle and the RUGO principle captures
how differently acts of commanding and acts of requesting change situations
fairly well. But now observe that the following principle is an instantiation of
the CUGO principle:

Proposition 11. If ϕ is a formula of MEDL and is free of modal operators of the form
O( j,i,i), the following formula is valid:

[Com(i, j)(ϕ ∨ KiO( j,i, j)ϕ ∨ Ki¬O( j,i, j)ϕ)]O( j,i,i)(ϕ ∨ KiO( j,i, j)ϕ ∨ Ki¬O( j,i, j)ϕ).

Moreover, we can prove the following result:

Theorem 5. For each act of requesting, there is an act of commanding with much more
complex content which updates models of DMEDL in exactly the same way as it does.

14As Grice’s discussion of the examinee’s answer (Grice 1969, p. 106) suggests, however, this
model does not work nicely for questions asked by the examiner in an oral exam. If we combine
DMEDL with the dynamic logic of propositional commitments developed in Yamada (2012), we
will be able to model such a question as a command to the effect that the commandee should
commit herself to the truth or falsity of ϕ.



450 Acts of Requesting in Dynamic Logic of Knowledge and Obligation

Proof. By the definitions of updated models, we have:

MReq(i, j)ϕ = MCom(i, j)(ϕ∨KiO( j,i, j)ϕ∨Ki¬O( j,i, j)ϕ) .

�

Does this mean that acts of requesting are acts of commanding?

We do not think so. As we have seen, an act of requesting of the form Req(i, j)ϕ
and an act of commanding of the form Com(i, j)ϕ change the situation in clearly
different ways from each other. The identity of the model updated by the
act of requesting of the form Req(i, j)ϕ and the model updated by the act of
commanding of the form Com(i, j)(ϕ ∨ KiO( j,i, j)ϕ ∨ Ki¬O( j,i, j)ϕ) just means that it
is possible to mimic each act of requesting by an act of commanding which has
a related but carefully crafted much more complex content. But even an act of
commanding of the form Com(i, j)(ϕ ∨ KiO( j,i, j)ϕ ∨ Ki¬O( j,i, j)ϕ) is different from
an act of requesting of the form Req(i, j)ϕ in that seeing to it that Ki¬O( j,i, j)ϕ is a
way of obeying Com(i, j)(ϕ∨KiO( j,i, j)ϕ∨Ki¬O( j,i, j)ϕ) while it is a way of refusing
Req(i, j)ϕ.15

This consideration, however, reminds us of the following fact:

Observation 1. There are other differences between acts of requesting and acts
of commanding, and DMEDL does not deal with them.

This is not surprising. As Sbisà (2001, p. 1792) points out, the use of language in
communication is “multi-dimensional · · · , ranging from cognitive to emotional
facets, from actional to affective ones, from social to the subjective”, and DMEDL
is not meant to give a comprehensive account of such a complex phenomenon.

As Searle and Vanderveken (1985, p. 201) point out, for example, an agent who
issues a command invokes a position of institutional authority, whereas an
agent who makes a request does not. This difference enables us to understand
why it is sometimes wise for a person not to issue a command but to make a
request even in a situation in which she is in a suitable position of authority over
the addressee. Invoking her position of authority overtly can be impolite and
offensive.16 In order to deal with the differences of this kind we need to extend

15“Commands” of the form Com(i, j)(ϕ ∨ KiO( j,i, j)ϕ ∨ Ki¬O( j,i, j)ϕ) could be used as a way of
pretending that a commander has control of his men, but requests of the form Req(i, j)ϕ could not.

16Geis (1995) emphasizes the importance of the matters of “face” in criticizing the standard
theory of speech acts.
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our language and models. To do so, however, will not amount to abandoning
what we have developed but to extending it, and we believe that DMEDL has
successfully isolated one important dimension in which the workings of acts of
requesting, commanding, and promising are compared.

7 Concluding remarks

Observation 1 seems to require us to further reflect on what are captured by the
CUGO principle, the PUGO principle, and the RUGO principle. The existence
of other differences DMEDL ignores suggests a possibility that there is a class
of illocutionary acts whose members are differentiated from each other only
by those differences. According to Searle and Vanderveken (1985, p. 201),
the difference between acts of commanding and acts of ordering consists in
the fact that the position of power an act of ordering invokes need not be
institutionalized while the position of power an act of commanding invokes
must be institutionally authorized. This in turn suggests that the characteristic
the CUGO principle captures, though stated in reference to acts of commanding,
is not specific to acts of commanding but is shared by acts of commanding
and acts of ordering. And indeed there seems to be a sub-class of directive
acts that share this characteristic, namely the class of directive illocutionary
acts that do not allow for the option of refusal. This class seems to include
at least telling in the directive sense, requiring, and demanding as well as
commanding and ordering. Similarly, the characteristic the RUGO principle
captures seems to be shared by acts of asking in the directive sense. Whether
there are any commissive acts other than promising that share the characteristic
the PUGO principle captures, however, does not seem clear and requires further
investigation.

The CUGU principle, the PUGU principle, and the RUGU principle, on the other
hand, seem to capture the common characteristic shared by all illocutionary acts
in their respective specific forms, namely the necessity of the securing of uptake.
The understanding to be secured is often considered as the understanding of
the intention of the speaker, but the above principles requires something more
objective or public, namely the understanding of the changes brought about in
the deontic aspects of the situations.

The way these principles are shown to hold was, however, slightly too easy. As
we have seen, we need to model the differences in the (un)certainty of agents as
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regards what has happened. Since standard technique of doing this is available,
our next step will be to extend DMEDL by introducing the product update.

The above reflection also suggests another interesting possibility of further
research. The CUGO principle and other principles of “command logic” in
fact enable us to reason at the level of higher generality than that of acts of
commanding. We can reason generally about the class of directive acts that do
not allow for the option of refusal. Other classes of illocutionary acts, of course,
may be studied in this way as well.
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