
Temporal Logics for Concurrent Recursive

Programs: Satisfiability and Model Checking!

Benedikt Bollig, Aiswarya Cyriac, Paul Gastin, and Marc Zeitoun

LSV, ENS Cachan, CNRS & INRIA, France
{bollig,cyriac,gastin,zeitoun}@lsv.ens-cachan.fr

Abstract. We develop a general framework for the design of temporal
logics for concurrent recursive programs. A program execution is modeled
as a partial order with multiple nesting relations. To specify properties of
executions, we consider any temporal logic whose modalities are definable
in monadic second-order logic and that, in addition, allows PDL-like path
expressions. This captures, in a unifying framework, a wide range of logics
defined for ranked and unranked trees, nested words, and Mazurkiewicz
traces that have been studied separately. We show that satisfiability and
model checking are decidable in EXPTIME and 2EXPTIME, depending
on the precise path modalities.

1 Introduction

It is widely acknowledged that linear-time temporal logic (LTL) [18] is a yardstick
among the specification languages. It combines high expressiveness (equivalence
to first-order logic) with a reasonable complexity of decision problems such as
satisfiability and model checking. LTL has originally been considered for finite-
state sequential programs. As real programs are often concurrent or rely on
recursive procedures, LTL has been extended in two directions.

First, asynchronous finite-state programs (or Zielonka automata) [10] are
a formal model of shared-memory systems and properly generalize finite-state
sequential programs. Their executions are no longer sequential (i.e., totally or-
dered) but can be naturally modeled as graphs or partial orders. In the literature,
these structures are known as Mazurkiewicz traces. They look back on a long list
of now classic results that smoothly extend the purely sequential setting (e.g.,
expressive equivalence to first-order logic) [10,9].

Second, in an influential paper, Alur and Madhusudan extend the finite-state
sequential model to visibly pushdown automata (VPA) [3]. VPA are a flexible
model for recursive programs, where subroutines can be called and executed
while the current thread is suspended. The execution of a VPA is still totally
ordered. However, it comes with some extra information that relates a subroutine
call with the corresponding return position, which gives rise to the notion of
nested words [3]. Alur et al. recently defined versions of LTL towards this infinite-
state setting [2,1] that can be considered as canonical counterparts of the classical
logic introduced by Pnueli.

! Supported by ARCUS, DOTS (ANR-06-SETIN-003), and DIGITEO LoCoReP.

To model programs that involve both recursion and concurrency, one needs
to mix both views. Most approaches to modeling concurrent recursive programs,
however, reduce concurrency to interleaving and neglect a behavioral semantics
that preserves independencies between program events [19,15,4]. A first model
for concurrent recursive programs with partial-order semantics was considered in
[5]. Executions of their concurrent VPA equip Mazurkiewicz traces with multiple
nesting relations. Temporal logics have not been considered, though, and there is
for now no canonical merge of the two existing approaches. It must be noted that
satisfiability is undecidable when considering multiple nesting relations, even
for simple logics. Yet, it becomes decidable if we restrict to system behaviors
that can be executed within a bounded number of phase switches, a notion
introduced in [15]. A phase switch consists of a transfer of control from one
process to another. This allows for the discovery of many errors, since they
typically manifest themselves after a few phase switches [19].

In this paper, we present linear-time temporal logics for concurrent recursive
programs. A temporal logic is parametrized by a finite set of modalities that are
definable in monadic second-order logic (cf. [12]). In addition, it provides path
expressions similar to those from PDL [11] or XPath [17], which are orthogonal
to the modalities. This general framework captures temporal logics considered
in [2,1,8] when we restrict to one process, and it captures those considered in
[9,12,13] when we go without recursion. Our decision procedures for the (bounded
phase) satisfiability problem are optimal in all these special cases, but provide a
unifying proof. They also apply to other structures such as ranked and unranked
trees. We then use our logics for model checking. To do so, we provide a system
model whose behavioral semantics preserves concurrency (unlike the models from
[19,4,15]). The complexity upper bounds from satisfiability are preserved.

Outline In Section 2, we introduce graphs, trees, and nested traces as our model
of program executions. Section 3 provides a range of related temporal logics.
Sections 4 and 5 address satisfiability and model checking, resp. The full version
of this paper is available at: http://hal.archives-ouvertes.fr/hal-00591139/

2 Graphs, Nested Traces, and Trees

To model the behavior of distributed systems, we consider labeled graphs, each
representing one single execution. A node of a graph is an event that can be
observed during an execution. Its labeling reveals its type (e.g., procedure call,
return, or internal) or some processes that are involved in its execution. Edges
reflect causal dependencies: an edge (u, v) from node u to node v implies that u
happens before v. A labeling of (u, v) may provide information about the kind
of causality between u and v (e.g., successive events on some process).

Accordingly, we consider a signature, which is a pair S = (Σ,Γ) consisting of
a finite set Σ of node labelings and a finite set Γ of edge labelings. Throughout
the paper, we assume |Σ| ≥ 1 and |Γ | ≥ 2. An S-graph is a structureG = (V,λ, ν)
where V is a non-empty set of countably many nodes, λ : V → 2Σ is the node-
labeling function, and ν : (V × V) → 2Γ is the edge-labeling function, with the

2

http://hal.archives-ouvertes.fr/hal-00591139/

intuitive understanding that there is an edge between u and v iff ν(u, v) $= ∅.
For σ ∈ Σ, Vσ := {u ∈ V | σ ∈ λ(u)} denotes the set of nodes that are labeled
with σ. Moreover, for γ ∈ Γ , Eγ := {(u, v) ∈ V × V | γ ∈ ν(u, v)} denotes the
set of edges with labeling γ. Then, E :=

⋃

γ∈Γ Eγ is the set of all the edges.
We require that the transitive closure E+ of E is a well-founded (strict) partial
order on V . We write ≺G or simply ≺ for E+, and we write (G or (for E∗.

Nested Traces To model executions of concurrent recursive programs that
communicate via shared variables, we introduce graphs with multiple nesting re-
lations. We fix non-empty finite sets Proc and Act , and let Type = {call, ret, int}.
Then, Σ = Proc ∪ Act ∪ Type is the set of node labelings. Its component Type
indicates whether an event is a procedure call, a return, or an internal action. A
nesting edge connects a procedure call with the corresponding return, and will
be labeled by cr ∈ Γ . In addition, we use succp ∈ Γ to label those edges that
link successive events of process p ∈ Proc. Thus, Γ = {succp | p ∈ Proc}∪ {cr}.
We obtain the signature S = (Σ,Γ). Formally, a nested (Mazurkiewicz) trace
over Proc and Act is an S-graph G = (V,λ, ν) such that the following hold:

T1 V = Vcall * Vret * Vint =
⊎

a∈Act
Va =

⋃

p∈Proc
Vp

T2 for all processes p, q ∈ Proc with p $= q, we have Vp ∩ Vq ⊆ Vint

T3 for all p ∈ Proc, Esuccp is the direct successor relation of a total order on Vp

T4 Ecr ⊆ (Vcall × Vret) ∩
⋃

p∈Proc
(Vp × Vp)

T5 for all (u, v), (u′, v′) ∈ Ecr, we have u = u′ iff v = v′

T6 for all p ∈ Proc and u ∈ Vcall ∩ Vp and v′ ∈ Vret ∩ Vp, if u ≺ v′ then either
there exists v (v′ with (u, v) ∈ Ecr or there exists u′ - u with (u′, v′) ∈ Ecr

Intuitively, each event has exactly one type and one action and belongs to at
least one process (T1), synchronizing events are always internal (T2), along any
process the events are totally ordered (T3), a nesting edge is always between a
call and a return of the same process (T4), and cr-edges restricted to any process
are well nested (T5 and T6). Note that we may have unmatched calls or returns.

For u ∈ V , we let Proc(u) = λ(u) ∩ Proc. When |Proc| = 1, then a nested
trace is a nested word in the classical sense [3]. The set of nested traces over
Proc and Act is denoted by Traces(Proc,Act). Figure 1 depicts a nested trace
over Proc = {p, q} and Act = {c, r, sv}. Action c denotes a call, r a return, and
sv reveals some synchronization via a shared variable. Node labelings from Proc
are given by the gray-shaded regions, i.e., sv -events involve both p and q. Edge
labelings succp and succq are abbreviated by p and q, resp.

We introduce a restricted class of nested traces over Proc and Act . It is
parametrized by an (existential) upper bound k ≥ 1 on the number of phases that
a trace needs to be executed. In each phase, return events belong to one dedicated
process. Let us first introduce the notion of linearization. A linearization of a
nested trace G = (V,λ, ν) is any structure (V,λ,≤) such that ≤ is a total order
extending (. Fig. 2 depicts a linearization of the nested trace from Fig. 1. We
identify isomorphic structures so that a linearization can be considered as a
word over 2Σ. Note that, for every word w ∈ (2Σ)

∗
, there is at most one (up to

isomorphism) nested trace G such that w is a linearization of G [10].

3

q

p

sv sv

c

c

sv

c

sv

r

sv

r r

r

r

p, q

q

p

q

p p p

q

q

p

q

p

q

p p

cr
cr

cr

int int

call

call int call int

ret

int ret ret

ret

ret

Fig. 1. A nested trace over Proc = {p, q} and Act = {c, r, sv}

q

p

sv sv

c

c

sv

c

sv

r

sv

r r

r

r

int int

call

call int call int

ret

int ret ret

ret

ret

Fig. 2. A 2-phase linearization

For k ≥ 1, a word w ∈ (2Σ)
∗
is a k-phase word if it can be written as w1 · · ·wk

where, for all i ∈ {1, . . . , k}, there is p ∈ Proc such that for each letter a of wi we
have ret ∈ a implies p ∈ a. A nested trace is called a k-phase nested trace if at
least one of its linearizations is a k-phase word. The set of k-phase nested traces
over Proc and Act is denoted by Tracesk(Proc,Act). We denote by Link(G) the
set of linearizations of nested trace G that are k-phase words. In particular, G is
a k-phase nested trace iff Link(G) $= ∅. The nested trace from Fig. 1 is a 2-phase
trace: its linearization from Fig. 2 schedules returns of q before all returns of p.

Ranked Trees Let S = (Σ,Γ). An S-tree is an S-graph t = (V,λ, ν). We
require that there is a “root” u0 ∈ V such that for all u, v, v′ ∈ V and γ, γ′ ∈ Γ :

(i) (u0, u) ∈ E∗, and (v, u), (v′, u) ∈ E implies v = v′

(ii) (u, v), (u, v′) ∈ Eγ implies v = v′, and (u, v) ∈ Eγ ∩ Eγ′ implies γ = γ′

Note that Γ can be seen as a set of directions. Thus, Γ = {left, right} yields
binary trees. The set of all S-trees is denoted Trees(S).

Ordered Unranked Trees Each node in an ordered unranked tree can have
a potentially unbounded number of children, and the children of any node are
totally ordered. Formally it is an S-graph t = (V,λ, ν) over S = (Σ,Γ) where
Γ = {child, next}. Again, there is a “root” u0 ∈ V such that for all u, v, v′ ∈ V :

(i) (u0, u) ∈ E∗ and (u0, u) /∈ Enext

(ii) (v, u), (v′, u) ∈ Echild implies v = v′, and (v, u), (v′, u) ∈ Enext implies
v = v′

(iii) (u, v), (u, v′) ∈ Enext implies v = v′ and (u, v) ∈ Eγ ∩ Eγ′ implies γ = γ′

(iv) (u, v) ∈ Echild implies that there exists v0 ∈ V such that (u, v0) ∈ Echild

and, (u, v′) ∈ Echild if and only if (v0, v′) ∈ E∗
next.

The set of all ordered unranked trees over S is denoted o.u.Trees(S).

4

3 Temporal Logic

In this section, let S = (Σ,Γ) be any signature. We study temporal logics whose
modalities are defined in the monadic second-order (MSO) logic over S-graphs,
which we recall in the following. We use x, y, . . . to denote first-order variables
which vary over nodes of the graphs, and X,Y, . . . to denote second-order vari-
ables which vary over sets of nodes. The syntax of MSO(S) is given by the gram-
mar ϕ ::= σ(x) | γ(x, y) | x = y | x ∈ X | ¬ϕ | ϕ∨ϕ | ∃xϕ | ∃Xϕ where σ ranges
overΣ, γ ranges over Γ , x and y are first-order variables, andX is a second-order
variable. We use ≺, the transitive closure of the relations induced by Γ , freely
as it can be expressed in MSO(S). For an S-graph G = (V,λ, ν) and a formula
ϕ(x1, . . . , xn, X1, . . . , Xm) with free variables in {x1, . . . , xn, X1, . . . , Xm}, we
write G |= ϕ(u1, . . . , un, U1, . . . , Um) if ϕ is evaluated to true when interpreting
the variables by u1, . . . , un ∈ V and U1, . . . , Um ⊆ V , respectively.

For m ∈ N = {0, 1, 2, . . .}, we call ϕ ∈ MSO(S) an m-ary modality if its free
variables consist of m set variables X1, . . . , Xm and one first-order variable x.

A temporal logic over S is given by a triple L = (M, arity , [[−]]) including
a finite set M of modality names, a mapping arity : M → N, and a mapping
[[−]] : M→ MSO(S) such that, for M ∈M with arity(M) = m, [[M]] is an m-ary
modality. Its syntax, i.e., the set of formulas ϕ ∈ Form(L) is given by

ϕ ::= σ | ¬ϕ | ϕ ∨ ϕ | M(ϕ, . . . ,ϕ
︸ ︷︷ ︸

arity(M)

) | ∃π

π ::= ?ϕ | γ | γ−1 | π ∪ π | π ∩ π | π ◦ π | π∗

where σ ranges over Σ, M ranges over M, and γ ranges over Γ . We call ϕ a
node formula and π a path formula (or path expression). Their semantics wrt. an
S-graph G = (V,λ, ν) is defined inductively: for subformulas ϕ, we obtain a set
[[ϕ]]G ⊆ V , containing the nodes of G that satisfy ϕ. Accordingly, [[π]]G ⊆ V ×V
is the set of pairs of nodes linked with a path defined by π. Then, ∃π is the set
of nodes that admit a path following π. Formally, [[−]]G is given in Fig. 3 where
⊗ ∈ {∪,∩, ◦} (◦ denotes the product of two relations). We may write G, u |= ϕ
if u ∈ [[ϕ]]G and G, u, v |= π if (u, v) ∈ [[π]]G. We also use π+ := π ◦ π∗.

An intersection free temporal logic over S is defined as expected: path expres-
sions do not contain subformulas of the form π1∩π2. Moreover, a path-expression
free temporal logic does not contain formulas of the form ∃π.

Example 1. We consider the path-expression free temporal logic CTL over (Σ,Γ)
(interpreted over (Σ,Γ)-trees) [7]. The modalities are M = {EX,EG,EU} with
EX and EG being unary and EU being binary. Node formula EXϕ holds at a
node if there is a child satisfying ϕ. Thus, [[EX]](x,X) = ∃y (x ≺· y ∧ y ∈ X)
where x ≺· y :=

∨

γ∈Γ γ(x, y). Formula EGϕ means that there is an infinite path
starting from the current node where ϕ always holds. Formula ϕ EU ψ means
that there is a path starting from the current node satisfying ϕ until ψ :

[[EG]](x,X) = ∃Y (Y ⊆ X ∧ x ∈ Y ∧ ∀z (z ∈ Y → ∃z′ (z′ ∈ Y ∧ z ≺· z′)))

[[EU]](x,X1, X2) = ∃z (x (z ∧ z ∈ X2 ∧ ∀y (x (y ≺ z → y ∈ X1))

5

[[σ]]G := Vσ [[¬ϕ]]G := V \ [[ϕ]]G [[ϕ1 ∨ ϕ2]]G := [[ϕ1]]G ∪ [[ϕ2]]G

[[M(ϕ1, . . . ,ϕm)]]G := {u ∈ V | G |= [[M]](u, [[ϕ1]]G, . . . , [[ϕm]]G)}

[[∃π]]G := {u ∈ V | there is v ∈ V such that (u, v) ∈ [[π]]G}

[[?ϕ]]G := {(u, u) | u ∈ [[ϕ]]G} [[γ]]G := Eγ [[γ−1]]G := E−1
γ

[[π ⊗ τ]]G := [[π]]G ⊗ [[τ]]G [[π∗]]G := [[π]]∗G

Fig. 3. Semantics of temporal logic

Example 2. Our approach captures various logics over unranked trees (see [17]
for an overview). E.g., the intersection free temporal logic L−

0 with no modalities
over ordered unranked trees is precisely regular XPath [6].

Example 3. We give a property over nested traces using a path expression: ϕ =
¬∃(cr ∩ (?q ◦ (

⋃

γ∈Γ γ)
+ ◦ ?(call ∧ p) ◦ (

⋃

γ∈Γ γ)
+)) means that process p is not

allowed to call a new procedure when it is in the scope of an active procedure
call from q. The first call node along q in Fig. 1 does not satisfy this property.

Example 4. We present a path-expression free temporal logic over nested traces,
NTrLTL = (M, arity , [[−]]). The unary modalities are {Xcr,Ycr} ∪ {Xp,Yp | p ∈
Proc}. Intuitively, Xp ϕ means that ϕ holds at the next p-position and X

cr claims
that we are at a call position whose return position satisfies ϕ. The dual past
modalities are Yp and Y

cr. The semantics of the future modalities is given by

[[Xp]](x,X) = ∃y (p(y) ∧ x ≺ y ∧ y ∈ X ∧ ∀z (p(z) ∧ x ≺ z → y (z))

[[Xcr]](x,X) = ∃y (cr(x, y) ∧ y ∈ X)

The binary modalities are {AU,AS,EUs,ESs}. Here, ϕ AU ψ means that in the
partial order G there is a future node satisfying ψ, and ϕ should hold on all nodes
in between: [[AU]](x,X1, X2) = ∃z (x (z ∧ z ∈ X2 ∧ ∀y (x (y ≺ z → z ∈ X1)).
Modality EU

s refers to the summary path in G, which may freely use cr-edges.
Formally, the semantics [[EUs]](x,X1, X2) is defined as

∃z∃Y (z ∈ X2 ∧ Y ⊆ X1 ∧ ∀y (y ∈ Y ∨ y = z)→ (y = x ∨

∃y′ (y′ ∈ Y ∧ (cr(y′, y) ∨
∨

q∈Proc
succq(y′, y)))))

The modalities AS,ESs are the past-time counterparts of AU,EUs. When we
drop AU,AS and assume |Proc| = 1, our logic is precisely NWTL defined in [1].

4 Satisfiability: From Trees to Nested Traces

Consider any signature S = (Σ,Γ) and temporal logic L over S. The following
decision problem is well known.

Problem 5. Tree-Sat(L):
Given ϕ ∈ Form(L), are there t ∈ Trees(S) and node u of t such that t, u |= ϕ ?

6

Theorem 6 ([14,16,11,20]). Let L0 be the temporal logic over S with M = ∅.
The problem Tree-Sat(L0) is 2EXPTIME-complete [14,16]. For the intersection
free fragment L−

0 , the problem Tree-Sat(L−
0) is EXPTIME-complete [11,20].

We will extend these results to logics L and L− including MSO modalities.
For this, we need the notion of an alternating 2-way tree automaton (A2A)
over S = (Σ,Γ) of index r ∈ N, which is a tuple A = (Q, δ, q0,Acc) where Q
is a finite set of states, q0 ∈ Q is the initial state, Acc : Q → N is a parity
acceptance condition with r = max(Acc(Q)), and δ : Q× 2Σ× 2D → B+(D×Q)
is the transition function where D = Γ ∪ {stay, up} and B+(D × Q) is the
set of positive boolean formulas over D × Q. We only give an intuition of the
semantics of A2A and refer to [20,14] for details. An A2A walks in an S-tree
t = (V,λ, ν). A configuration is a set of “threads” (q, u) where q ∈ Q and u ∈ V
is the current node. For every thread (q, u), we have to choose some model
{(d1, q1), . . . , (dn, qn)} of δ(q,λ(u), D′) where D′ is the set of directions available
at u. Then, we replace (q, u) with n new threads (qi, ui) for 1 ≤ i ≤ n where ui is
obtained from u by following direction di (if di = stay, then ui = u). The parity
acceptance condition has to be applied to all infinite paths when we consider the
run as a tree, threads (qi, ui) being the children of (q, u). For u ∈ V , a run over
(t, u) is a run that starts in the single configuration (q0, u). The semantics [[A]]t
contains all nodes u of t such that there is an accepting run of A over (t, u).

Theorem 7 ([21]). Given an A2A A of index r with n states, one can check
in time exponential in n · r if there is a tree t such that [[A]]t $= ∅.

The main ingredient of the proof of Theorem 6 is the construction of an A2A
from a given formula, whose existence is given by the following lemma. Using
the lemma and Theorem 7, we can then extend Theorem 6 towards Theorem 9.

Lemma 8 ([14]). Consider the temporal logic L0 over S with M = ∅. For every
formula ϕ ∈ Form(L0), we can construct an A2A Bϕ over S of exponential size
such that, for all S-trees t, we have [[ϕ]]t = [[Bϕ]]t. Moreover, if ϕ ∈ Form(L−

0) is
intersection free, then Bϕ is of polynomial size.

Theorem 9. For any temporal logic L, Tree-Sat(L) is 2EXPTIME-complete.
For the intersection free fragment L−, Tree-Sat(L−) is EXPTIME-complete.

Proof. The lower bounds follow from Theorem 6. We show the upper bounds.
Let ϕ be any L formula. Let Subf(ϕ) denote the set of subformulas of ϕ and let
top(ξ) denote the topmost symbol of ξ ∈ Subf(ϕ) which could be ∃ or a modality
M ∈ M ∪ Σ ∪ {¬,∨}: below, we treat atomic propositions σ ∈ Σ, negation ¬,
and disjunction ∨ as modalities of arities 0, 1, and 2 resp.

For each modality M ∈ M ∪ Σ ∪ {¬,∨} of arity m, we define an MSO(S)
formula ψM with free variables X0, . . . , Xm by ψM (X0, X1, . . . , Xm) := ∀x (x ∈
X0 ←→ [[M]](x,X1, . . . , Xm)). Let Sm = (Σ∪{X0, . . . , Xm},Γ) so that the node
labeling encodes the valuations of the free set variables as usual. By Rabin’s
theorem, there is a non-deterministic (N1A) tree automaton AM recognizing all
Sm-trees satisfying ψM . Note that AM for M ∈ Σ ∪ {¬,∨} has only one state.

7

Let ∃π(ξ1, . . . , ξm) ∈ Subf(ϕ) where ξ1, . . . , ξm are the node formulas checked
in path π. Replacing ξ1, . . . , ξm by set variables X1, . . . , Xm (or new predicates)
we will construct using Lemma 8 an A2A A∃π accepting all Sm-trees satisfy-
ing the “formula” ψ∃π(X0, X1, . . . , Xm) := ∀x (x ∈ X0 ←→ ∃π(X1, . . . , Xm)).
By Lemma 8, we can construct automata B1 and B2 for ∃π(X1, . . . , Xm) and
¬∃π(X1, . . . , Xm), resp., which are L0 formulas. Let ι1 and ι2 be the initial states
of B1 and B2. The automaton A∃π includes the disjoint union of B1 and B2 plus
a new initial state ι and, for σ ⊆ Σ ∪ {X0, . . . , Xm} and D′ ⊆ D, the transition
δ(ι,σ, D′) =

∧

γ∈Γ (γ, ι) ∧ (stay, θ) where θ = ι1 if X0 ∈ σ, and θ = ι2 other-
wise. By Lemma 8, the size of A∃π is exponential (resp. polynomial) in the size
of π(X1, . . . , Xm) (resp. if this path expression is intersection free).

The final automaton A runs over Sϕ-trees t where Sϕ = (Σ ∪ Subf(ϕ),Γ),
i.e., the node labeling includes the (guessed) truth values for Subf(ϕ). To check
that these guesses are correct, A runs an automaton Aξ for each ξ ∈ Subf(ϕ).

For each ξ0 = M(ξ1, . . . , ξm) ∈ Subf(ϕ) with M ∈ M ∪ Σ ∪ {¬,∨}, we
define an automaton Aξ0 over Sϕ-trees by taking a copy of AM which reads a
label σ ⊆ Σ ∪ Subf(ϕ) of t as if it was σ ∩ (Σ ∪ {ξ0, . . . , ξm}) with ξi further
replaced by Xi. Similarly, for each ξ0 = ∃π(ξ1, . . . , ξm) ∈ Subf(ϕ), we define
an automaton Aξ0 over Sϕ-trees by taking a copy of A∃π which reads a label
σ ⊆ Σ ∪ Subf(ϕ) of t as above.

Finally, A is the disjoint union of all Aξ for ξ ∈ Subf(ϕ) together with a
new initial state ι which starts all the automata Aξ with the initial transitions
δ(ι,σ, D′) =

∧

ξ∈Subf(ϕ)(stay, ιξ) for all D
′ ⊆ D. We can check that an Sϕ-tree

t = (V,λ, ν) is accepted by A iff its projection t′ = (V,λ′, ν) on Σ is an S-tree
and for each node u ∈ V we have λ(u)\Σ = {ξ ∈ Subf(ϕ) | t′, u |= ξ}. Therefore,
satisfiability of ϕ over S-trees is reduced to emptiness of the conjunction of A
with a two state automaton checking that ϕ ∈ λ(u) for some node u of the tree.

The size of A is at most exponential (resp. polynomial) in the size of ϕ.
Indeed, each Aξ with top(ξ) $= ∃ is of constant size since the MSO modalities
are fixed and not part of the input. If ξ = ∃π(ξ1, . . . , ξm) then the size of Aξ is
exponential in |π(X1, . . . , Xm)| (note that ξi is replaced by Xi so that its size
does not influence the size of Aξ). Moreover, if π is intersection free then the
size of Aξ is polynomial in |π(X1, . . . , Xm)|. We deduce from Theorem 7 the
2EXPTIME upper bound for Tree-Sat(L) and the EXPTIME upper bound for
Tree-Sat(L−), the intersection free case. 78

From Ordered Unranked Trees to Binary Trees We recall that an ordered
unranked tree can be encoded as a binary tree by removing the edges (u, v) ∈
Echild whenever v is not a first-child. Note that Echild can be retrieved from
the binary encoding by the path expression child ◦ next∗. Hence any path
expression over ordered unranked trees can be converted to a path expression
over binary trees (with only a linear blowup in the size), and any MSO(S)-
formula over ordered unranked trees can be translated to an MSO(S)-formula
over binary trees. Thus, Theorem 9 holds for ordered unranked trees as well:

Problem 10. O-U-Tree-Sat(L):
Given ϕ ∈ Form(L), are there t ∈ o.u.Trees(S) and node u such that t, u |= ϕ ?

8

q

p

sv sv

c

c

sv

c

sv

r

sv

r

r r r

right
right

right

left
left

left

left

left left

left left

left

int int

call

call int call int

ret

int ret ret

ret

ret

Fig. 4. The tree encoding of a 2-phase linearization

Theorem 11. O-U-Tree-Sat(L) is 2EXPTIME-complete. For the intersection
free fragment L−, the problem O-U-Tree-Sat(L−) is EXPTIME-complete.

The 2EXPTIME lower bound follows from [16]. The EXPTIME lower bound is
inherited from regular XPath [6] (cf. Example 2).

From Nested Traces to Trees Now, we transform a temporal logic over
nested traces into a temporal logic over their tree encodings that “simulates” the
original logic. This allows us to solve the following problem, which is parametrized
by Proc, Act , k ≥ 1, and a temporal logic L over the induced signature:

Problem 12. Nested-Trace-Sat(L, k): Given ϕ ∈ Form(L), are there G ∈
Tracesk(Proc,Act) and node u such that G, u |= ϕ ?

Theorem 13. Nested-Trace-Sat(L, k) is in 2EXPTIME. For the intersection
free fragment L−, Nested-Trace-Sat(L− , k) is EXPTIME-complete.

The proof of Theorem 13 will be developed in the following. In order to exploit
Theorem 9, we interpret a k-phase nested trace G = (V,λ, ν) in a (binary) S′-
tree (where S′ := (Σ * {1, . . . , k}, {left, right})) using the encoding from [15],
extended to infinite trees. Actually, [15] does not consider nested traces but
k-phase words. Therefore, we will use linearizations of nested traces. Let w =
(V,λ,≤) ∈ Link(G). By !, we denote the direct successor relation of ≤. Suppose
that V = {u0, u1, u2, . . .} and that u0 ! u1 ! u2 ! . . . is the corresponding total
order. For 0 ≤ i < |V |, we let phasew(ui) = min{j ∈ {1, . . . , k} | λ(u0) . . .λ(ui)
is a j-phase word}. Intuitively, this provides a “tight” factorization of w. We
associate with w the S′-tree twk = (V,λ′, ν′) where the node labeling is given by
λ′(ui) = λ(ui) ∪ {phasew(ui)} and the sets of edges are defined by E′

right = Ecr

and E′
left = ! \ {(u, v) ∈ ! | there is u′ such that (u′, v) ∈ Ecr}. That is,

the tree encoding is obtained from the linearization by adding the cr-edges as
right children and removing the superfluous linear edges to return nodes having
a matching call. Figure 4 depicts the tree tw2 for the linearization w that was
illustrated in Fig. 2. The edges removed from the linearization are shown in
dotted lines. The newly added edges are labelled right. All !-nodes are phase
1 and the ©-nodes are phase 2.

By Treesk(Proc,Act), we denote the set {twk | w ∈ Link(G) for some G ∈
Tracesk(Proc,Act)} of valid tree encodings. The following was proved in [15] for
finite structures, and extends easily to infinite structures.

9

Lemma 14 ([15]). There is a formula TreeEnck ∈ MSO(S′) defining the set
Treesk(Proc,Act). Also, there is lessk(x, y) ∈ MSO(S′) such that for all k-phase
words w = (V,λ,≤) and all u, v ∈ V , we have u < v in w iff twk |= lessk(u, v).

Lemma 14 will be used to reduce nested-trace modalities to tree modalities
in the proof of Theorem 13. We also need to deal with path expressions:

Lemma 15. There exists a path expression succ≤k over S′ such that, for all k-
phase linearizations w = (V,λ,≤), we have [[succ≤k]]tw

k
= {(u, v) ∈ V 2 | u! v}.

Moreover, the length of succ≤k is exponential in k.

Proof (of Theorem 13). Let S = (Σ,Γ) be the signature induced by Proc and
Act , and let L = (M, arity , [[−]]) be the considered temporal logic over nested
traces. For S′ = (Σ * {1, . . . , k}, {left, right}), we define a new temporal logic
L′ = (M′, arity ′, [[−]]′) over S′-trees and give an inductive, linear-time com-
putable translation T of formulas over L to “equivalent” formulas over L′. By
“equivalent”, we mean that for all G ∈ Tracesk(Proc,Act) and all k-phase lin-
earizations w of G, we have [[ϕ]]G = [[T (ϕ)]]tw

k
for each node formula ϕ over L

and [[π]]G = [[T (π)]]tw
k
for each path formula π over L.

We set M′ = M ∪ {Enc} where Enc is a new modality with arity ′(Enc) = 0
that characterizes valid tree encodings: the semantics [[Enc]]′ is given by the for-
mula TreeEnck from Lemma 14. We also change the semantics of the modalities
from M: for each M ∈M, the new semantics [[M]]′ ∈ MSO(S′) is obtained from
[[M]] ∈ MSO(S) by replacing each occurrence of cr(x, y) by right(x, y) and each
occurrence of succp(x, y) by p(x) ∧ lessk(x, y) ∧ p(y) ∧ ¬∃z (lessk(x, z) ∧ p(z) ∧
lessk(z, y)) where lessk is the formula from Lemma 14. Note that these transfor-
mations only depend on L and on k (which are not part of the input) and not
on the formula for which we want to check satisfiability.

The translation T from formulas over L to “equivalent” formulas over L′

is defined inductively for node formulas by T (σ) = σ, T (M(ϕ1, . . . ,ϕm)) =
M(T (ϕ1), . . . , T (ϕm)), etc., and for path formulas by T (?ϕ) = ?T (ϕ), T (cr) =
right, T (cr−1) = right−1, T (succp) = ?p ◦ succ≤k ◦ (?¬p ◦ succ≤k)∗ ◦ ?p, and
T (succ−1

p) = ?p ◦ succ−1
≤k ◦ (?¬p ◦ succ

−1
≤k)

∗ ◦ ?p. The other cases are straightfor-
ward. Here, succ≤k is defined in Lemma 15. Note that the transformation T (π)
of a path formula π is linear in |π| since k is not part of the input.

Finally, a formula ϕ ∈ Form(L) is satisfiable over k-phase nested traces iff
the formula Enc∧ T (ϕ) ∈ Form(L′) is satisfiable over S′-trees. Using Theorem 9
we get the upper bounds stated in Theorem 13. To obtain the lower bound, one
can show that Nested-Trace-Sat(L−, k) is EXPTIME-hard. This is done by a
reduction from the EXPTIME-complete logic NWTL [1] to the temporal logic L−

0

with no modalities and only one process. 78

Remark 16. If k is given as part of the input, the above method for modalities
does not work: the new semantics [[M]]′ over trees depend on k and are no more
fixed and independent of the input. However, if we consider the fragment L0 with
no MSO modalities, we get a 3EXPTIME procedure even if k is part of the input
since the length of the path expression T (π) is linear in |π| and exponential in k.
Moreover, for the intersection free fragment L−

0 , we get a 2EXPTIME procedure.

10

5 Model Checking

Our approach extends to model checking. We can define a model of concurrent
recursive programs, called concurrent recursive Kripke structures (CRK), that
generates nested traces. It is similar to the model from [5].

Definition 17. A concurrent recursive Kripke structure (CRK) over finite sets
Proc and Act is a tuple K = ((Sp)p∈Proc,∆, ι). The Sp are disjoint finite sets of
local states (Sp containing the local states of process p). Given a set P ⊆ Proc, we
let SP :=

∏

p∈P Sp. The tuple ι ∈ SProc is a global initial state. Finally, ∆ pro-

vides the transitions, which are divided into four sets: ∆ = (∆call,∆1
ret,∆

2
ret,∆int)

where ∆call ⊆
⋃

p∈Proc
(Sp × Act × Sp), ∆1

ret ⊆
⋃

p∈Proc
(Sp × Act × Sp), ∆2

ret ⊆⋃

p∈Proc
(Sp × Sp ×Act × Sp), and ∆int ⊆

⋃

P⊆Proc
(SP ×Act × SP).

Let S =
⋃

P⊆Proc
SP . For s ∈ S and p ∈ Proc, we let sp be the p-th compo-

nent of s (if it exists). A run of the CRK K is an S′-graph G = (V,λ, ν) where
S′ = (Σ *

⊎

p∈Proc
Sp,Γ) with Σ = Proc ∪ Act ∪ Type and Γ = {cr} ∪ {succp |

p ∈ Proc}, and the following conditions hold:

– The graph G without the labelings from
⋃

p∈Proc
Sp is a nested trace, i.e.,

nt(G) := (V,λ′, ν), with λ′(u) = λ(u) ∩ Σ, is contained in Traces(Proc,Act).
– Every node u is labeled with one, and only one, state from Sp for each

process p ∈ Proc(u). This state is denoted ρ(u)p. The label of a node u does
not contain any state from Sp if p /∈ Proc(u). That is, for all p ∈ Proc and
all u ∈ V , λ(u) ∩ Sp = {ρ(u)p} if p ∈ λ(u), and λ(u) ∩ Sp = ∅ otherwise.
This defines a mapping ρ : V → S by ρ(u) = (ρ(u)p)p∈Proc(u).

– Let us determine another mapping ρ− : V → S as follows: for u ∈ V , we
let ρ−(u) = (ρ−(u)p)p∈Proc(u) where ρ

−(u)p = ρ(u′)p if (u′, u) ∈ Esuccp , and
ρ−(u)p = ιp if there is no u′ such that (u′, u) ∈ Esuccp . The following hold,
for every u, u′ ∈ V and a ∈ Act :
• (ρ−(u), a, ρ(u)) ∈ ∆call if u ∈ Vcall ∩ Va

• (ρ−(u), a, ρ(u)) ∈ ∆1
ret if u ∈ Vret ∩Va and there is no v with (v, u) ∈ Ecr

• (ρ(u′), ρ−(u), a, ρ(u)) ∈ ∆2
ret if u ∈ Vret ∩ Va and (u′, u) ∈ Ecr

• (ρ−(u), a, ρ(u)) ∈ ∆int if u ∈ Vint ∩ Va

We are only interested in maximal runs. We say that a run G of a CRK K is
maximal if G is not a strict prefix of another run of K. The language L(K) of K
is the set {nt(G) | G is a maximal run of K}. By Lk(K), we denote its restriction
L(K) ∩ Tracesk(Proc,Act) to k-phase nested traces.

Let Proc and Act be non-empty finite sets inducing signature S, let k ≥ 1
and L be a temporal logic over S. We consider the following decision problem.

Problem 18. Model-Checking(L, k): Given CRK K and ϕ ∈ Form(L), do we
have K |=k ϕ, i.e., for all G ∈ Lk(K), is there a node u of G such that G, u |= ϕ ?

Theorem 19. The problem Model-Checking(L, k) is in 2EXPTIME. For the
intersection free fragment L−, Model-Checking(L−, k) in EXPTIME.

11

References

1. R. Alur, M. Arenas, P. Barceló, K. Etessami, N. Immerman, and L. Libkin. First-
order and temporal logics for nested words. Log. Meth. Comput. Sci., 4(4), 2008.

2. R. Alur, K. Etessami, and P. Madhusudan. A temporal logic of nested calls and
returns. In K. Jensen and A. Podelski, editors, TACAS 2004, volume 2988 of
LNCS, pages 467–481. Springer, 2004.

3. R. Alur and P. Madhusudan. Adding nesting structure to words. Journal of the
ACM, 56:16:1–16:43, 2009.

4. M. F. Atig. Global Model Checking of Ordered Multi-Pushdown Systems. In
FSTTCS 2010, volume 8, pages 216–227, 2010.

5. B. Bollig, M.-L. Grindei, and P. Habermehl. Realizability of concurrent recursive
programs. In L. de Alfaro, editor, FOSSACS 2009, volume 5504 of LNCS, pages
410–424. Springer, 2009.

6. D. Calvanese, G. De Giacomo, M. Lenzerini, and M. Vardi. An Automata-Theoretic
Approach to Regular XPath. In Ph. Gardner and F. Geerts, editors, DBPL 2009,
volume 5708 of LNCS, pages 18–35, 2009.

7. E. M. Clarke and E. A. Emerson. Design and synthesis of synchronization skeletons
using branching-time temporal logic. In Logic of Programs, pages 52–71, 1981.

8. C. Dax and F. Klaedtke. Alternation elimination for automata over nested words.
In M. Hofmann, editor, FOSSACS 2011, LNCS, pages 168–183. Springer, 2011.

9. V. Diekert and P. Gastin. Pure future local temporal logics are expressively com-
plete for Mazurkiewicz traces. Information and Computation, 204(11):1597–1619,
2006.

10. V. Diekert and G. Rozenberg, editors. The Book of Traces. World Scientific,
Singapore, 1995.

11. M. Fischer and R. Ladner. Propositional dynamic logic of regular programs. Jour-
nal of Computer and System Sciences, 18(2):194–211, 1979.

12. P. Gastin and D. Kuske. Satisfiability and model checking for MSO-definable tem-
poral logics are in PSPACE. In R. Amadio and D. Lugiez, editors, CONCUR’03,
volume 2761 of LNCS, pages 222–236. Springer, 2003.

13. P. Gastin and D. Kuske. Uniform satisfiability problem for local temporal logics
over Mazurkiewicz traces. Information and Computation, 208(7):797–816, 2010.

14. S. Göller, M. Lohrey, and C. Lutz. PDL with intersection and converse: satisfiability
and infinite-state model checking. J. Symb. Log., 74(1):279–314, 2009.

15. S. La Torre, P. Madhusudan, and G. Parlato. A robust class of context-sensitive
languages. In LICS’07, pages 161–170. IEEE Computer Society Press, 2007.

16. M. Lange and C. Lutz. 2-ExpTime lower bounds for Propositional Dynamic Logics
with Intersection. J. Symb. Log., 70(5):1072–1086, 2005.

17. L. Libkin. Logics for Unranked Trees: An Overview. Log. Meth. Comput. Sci.,
2(3), 2006.

18. A. Pnueli. The temporal logic of programs. In Proceedings of FOCS 1977, pages
46–57. IEEE, 1977.

19. S. Qadeer and J. Rehof. Context-bounded model checking of concurrent software.
In N. Halbwachs and L. Zuck, editors, TACAS 2005, volume 3440 of LNCS, pages
93–107. Springer, 2005.

20. M. Y. Vardi. The taming of converse: Reasoning about two-way computations. In
Proc. of the Conference on Logic of Programs, pages 413–423. Springer, 1985.

21. M. Y. Vardi. Reasoning about the past with two-way automata. In K. Larsen,
S. Skyum, and G. Winskel, editors, ICALP’98, LNCS, pages 628–641. Springer,
1998.

12

	Temporal Logics for Concurrent Recursive Programs: Satisfiability and Model Checking

