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Abstract. A method for forcing norms onto individual agents in a multi-agent system is presented.
The agents under study are supersoft agents: autonomous artificial agents programmed to represent
and evaluate vague and imprecise information. Agents are further assumed to act in accordance with
advice obtained from a normative decision module, with which they can communicate. Norms act
as global constraints on the evaluations performed in the decision module and hence no action that
violates a norm will be suggested to any agent. Further constraints on action may then be added
locally. The method strives to characterise real-time decision making in agents, in the presence of
risk and uncertainty.
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1. Introduction

Artificial agents have been making decisions for some years now, the fact that
questions of responsibility and other judicial matters are still open notwithstand-
ing. Their guiding principle has usually been that of maximising their expected
utility (PMEU, for short). Wherever there is room for cooperation and coordina-
tion, social issues must also come into play. In our immediate future lie artificial
decision makers facing sequences of heterogeneous and complex decision situa-
tions, perhaps even in real-time. It is reasonable to believe that utterances like “Our
anti-sniffer agent decided to classify your agent as harmful” will have meaning
in the near future. Just as professional decision makers today often make use of
the computational power in the PC sitting on their desk, an option unavailable to
them only ten years ago, artificial decision making agents part of a multi-agent
system (MAS) will make use of the computational power and tools made available
to them. Their rationality might be explicated by their capacity for synthesising
results from evaluations that employ different evaluation functions (Boman and
Ekenberg, 1995), and not merely by their use of PMEU. The extent to which their

1 The author gratefully acknowledges the ISES Project (in particular, Rune Gustavsson) at the
University of Karlskrona/Ronneby, within which this research was in part carried out.
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analyses govern their behaviour will vary, but the representation and modelling of
their social context (in terms of their place in the MAS, in their particular coalition,
and their alignments) is central.

This article deals with autonomous agents which at least partly adhere to norms.
We make the following two provisos, more concise motivations for which are
available in (Boman, 1997) and (Ekenberg, 1996) respectively.

Proviso 1: Agents act in accordance with advice obtained from their individual
decision module, with which they can communicate.

Proviso 2: The decision module contains algorithms for efficiently evaluating su-
persoft decision data concerning probability, utility, credibility, and reliability.

The first proviso makes our presentation clearer, because every change of prefer-
ence (or belief revision, or assessment adjustment) of the agent is thought of as
adequately represented in the so-called decision module. This gives us freedom
from analysing the entire spectrum of reasoning capabilities that an agent might
have, and its importance to the use of the decision module. The communication
requirement presents only a lower bound on the level of sophistication of agent
reasoning, by stating that the agent must be able to present its decision situation to
the decision module, and that the agent can represent this information in the form of
an ordinary decision tree.2 The proviso also lets us separate the important problem
of agents failing to obey social norms from the other problems discussed in this
paper. Finally, the proviso makes explicit that no nonconsequentialist decision bias
affects the choice (Baron, 1994). In the eyes of a consequentialist, artificial agents
are closer to the perfect decision maker than human agents can ever hope to be.

The second proviso also requires some explanations.Supersoft decision theory
is a variant of classical decision theory in which assessments are represented by
vague and imprecise statements, such as “The outcomeo is quite probable” and
“The outcomeo is most undesirable” (Malmnäs, 1995). Supersoft agents need
not know the true state of affairs, but can describe their uncertainty by a set of
probability distributions. In such decisions with risk, the agent typically wants a
formal evaluation to result in a presentation of the action (in some sense) optimal
with respect to its assessments, together with measures indicating whether the op-
timal action ismuchbetter than any other action, using a distance measure. The
basic requirement for normative use of such measures is that (at least) probability
and utility assessments have been made, and that these can be evaluated by an
evaluation function, e.g., PMEU, cf. Boman (1997).

2 That the decision module is seen as customised is inessential: it is a metaphor for a situation
where all agents utilise an oracle, but where the computations of the oracle depend on the individual
agent input. In other words, the oracle acts as a decision tree evaluator, and the size of the oracle (in
the case of the decision module discussed here, about 6000 lines of C code) is the only thing that
might make it inconvenient for the agent to carry it around.
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Section 2 discusses problems with representing and evaluating policy. These
ideas are then used in Section 3, in which the basic ways of norms acting as
normative constraints are introduced. Section 4 consists of a spacious but simple
example. The final section offers conclusions and further research.

2. Implementing Policy

Herbert Simon led what could be called a crusade against the implementation of
ideal rationality, see, e.g., (Simon, 1982), and that prompted Savage to suggest
(Savage, 1954) that decision analytic tools should be applied tosmall worlds,
today often referred to asdecision frames, only. How such models can be made
congruent with observation has been studied, e.g, in (Laskey and Lehner, 1994).
Computational procedures for artificial decision making can be sketched in the
form of the list below, which hopefully gives an intuitive feel for a plausible work
cycle more useful for agent programming than similar listings made within the
economics literature; see, e.g., Lavoie (1992, p. 56).

1. Formulate exclusive and exhaustive action strategies.
2. Select decision frame.
3. Select agents to trust as information sources.
4. Assess a credibility to each reporting agent.
5. Import selected utility assessments from trusted agents.
6. Evaluate the decision frame using a decision module.
7. Act on, or analyse, the output of the evaluation.
8. Perform sensitivity analyses.

Figure 1. A work cycle for artificial agent decision making.

Working with human decision makers managing departments or entire companies,
we have found that constraining utility assessments is a convenient way of enforc-
ing company (or government) norms, often calledpolicy, on decisions. There are
two ways to proceed, both of which are relevant to norms in MAS. The assessment
of credibilities to the reports of agents (item 4 in the list in Figure 1) is pivotal.

One way to proceed is to eliminate actions with disastrous consequences, see,
e.g., (Ekenberg, Boman, and Linnerooth-Bayer, 1997). An artificial agent, e.g., a
robot should not choose to turn left at a corner inside a mine, for instance, if that
could lead to it being destroyed as a result of falling down a shaft, even if the
probability for it actually falling is very small. If information is obtained from
another agent, the credibility of that agent affects the probability. With numerically
precise assessments, action elimination is easily achieved by specifying security
levels using two parameters – one for the maximal credibility and one for the
minimal utility. An action could then be eliminated if, for instance, an agent with a
credibility above 0.75 (relative to this action) reports that the utility of the strategy
is below 0.1. The more difficult numerically imprecise case is formalised in (Eken-
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berg, Danielson, and Boman, 1997), in which credibility is a functional mapping
onto the reals, normalised to 1 if the function is total, and thus interpreted similarly
to a relative weight.

A much more controversial way of issuing policy restrictions is to manipulate
the utilities on the lowest level, i.e. to adjust the assessments by having an overly
positive (or negative) attitude towards some consequences. This can be viewed as
a deliberate revision of one’s risk attitude. For human decision makers, there are
different reasons for such adjustments, ranging from pure fraud to letting invisible
consequences come into play. An example of the former would be to accept a bribe
for overestimating the gain from making a deal with a particular competitor. An
example of the latter could be a manager that wants a deal to be made with a
particular competitor but does not want to expose this desire to his employees. The
reason could be, for instance, that the manager is in possession of secret informa-
tion about a future merge with that particular competitor. Sometimes the decision
maker is even unaware of this kind of skewness. This is not a problem for artificial
agents. For instance, for modelling the actions of market-based agents (Wellman,
1996), analytical game theory (Rasmusen, 1994) with only equally distributed
probabilities seems to be sufficient.

Note that PMEU alone cannot model all kinds of risk attitude, see Ekenberg,
Boman, and Linnerooth-Bayer (1997). To present a theory that is neither too strong,
nor too weak for modelling uncertainty and risk is very difficult even in small
worlds, see Boman and Ekenberg (1995). Problems with implementing company
or government policy in tools for normative decision analysis are in many ways
similar to the problem of constraining agent action in an MAS in order to comply
with norms. We now begin our exploitation of these similarities.

3. A Model for Action Constraints

What is missing from the work cycle in Figure 1 is norms. In this section, we
will combine the two established and well-known ways of implementing policy of
the previous section with an idea developed for MAS. The model in Figure 2 is
general in that it makes relatively few assumptions about the agent architecture,
language, sensors, and communication protocols. This is not to say that these mat-
ters are unimportant. Some choices of agent language would be incompatible with
the model, for example. The ambition is to let the model admit a unifying view,
and we therefore encourage that it be complemented by additional components as
appropriate. Not even the concept of goal is necessary.

Bootstrapping does not present a problem, since no restrictions apply to neither
sense data, nor communication data. The only requirement is that the contents of
the four bases conform to Proviso 2 above. The concept of agent credibility as
used here in imprecise and uncertain domains, cf. (Baron, 1993) was defined in
(Danielson and Ekenberg, 1997) and that of reliability in Ekenberg, Danielson,
and Boman (1997), in which the four different bases were formalised.
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Figure 2. Constraining autonomous agent action.

Before taking an action, an agent might have used its means of communicating
with other agents in the MAS, its sensors, as well as the computational power of
the decision module. If there are no norms present in the MAS, the four bases in
the decision module are non-linear systems of equations representing (typically
subjectively assessed) supersoft data about

• probabilities of the occurrence of different consequences of actions
• utilities of outcomes of different consequences of actions
• credibilities of the reports of other agents on different assessments
• reliabilities of other agents on different agent ability assessments

The preferences of the agents can be stated as intervals of quantitative measures
or by partial orderings. Credibility values are used for weighting the importance of
relevant assessments made by other agents in the MAS. Reliability values mirror
the reliability of another agent as it in turn assesses the credibility of a third agent,
see Ekenberg (1996). All bases except the utility base are normalised. Note that an
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MAS without norms is treated is this paper as a social structure where group utility
is irrelevant to the individual agent. The presence of norms can manifest itself in at
least three ways, each representing a different level of abstraction:

1. Through skewing of the equations in the four bases.
2. By filtering normative advice before it is received by the agent.
3. By disqualifying certain actions by referring to their negative impact on the

global utility in the MAS.

The first way of constraining action through norms is by manipulation of the util-
ities on the lowest level, i.e. to skew assessments to have an overly positive (or
negative) attitude towards some consequences (in comparison to the actual beliefs
of the agent). The agent might first make assessments true to its own beliefs, and
then revise these assessments to better cope with the given situation.

The second way proceeds via the elimination of actions with disastrous conse-
quences. Both ways were discussed in the previous section, and will be thoroughly
examined in the following example.

The third item in the above list requires that a global utility measure is avail-
able on the local level. It is quite possible that the agent has first skewed some
of its assessments to comply with a set of norms, second that it has rejected the
recommended action because it was deemed too risky (and there might be a norm
stating that agents should avoid actions that violate certain preset security levels),
and third that it, when considering the second best alternative, finds that even this
alternative cannot be chosen. The reason is that although this action is the rational
choice of the agent in view of the norms present, another kind of threshold value
is violated, viz. the extent to which the global utility of the MAS is reduced should
the action be taken. This form of social norm adoption was implicitly suggested in
Ekenberg (1996), in which global utility among autonomous agents is formalised.
This problem has emerged as one of the critical points of MAS research, see,
e.g., Conte and Castelfranchi (1995), Ekenberg, Danielson, and Boman (1996),
Jennings and Campos (1997), Kalenka and Jennings (1997).

Our model is highly individualistic. In open systems, this position is easily
defended by noting that agents are less inclined to work toward group goals. We
claim, however, that the model applies equally to cooperating agents, thanks to the
three ways of affecting agent action just explained. Jennings and Campos (1997)
identify the third form of social norm adoption above as a basic requirement for
autonomous agent systems that they call theindividual-community balance. It is
a constructive and computationally efficient way of attaining socially responsible
behaviour (Jennings, 1992) and an attempt at describing thesocial levelof agents.

The first two kinds of norm adoption have already been implemented, see Daniel-
son and Ekenberg (1997), but their functionalities relative to the third kind of
norm adoption (the group utility constraint) is yet to be examined. A technical
but important note is that all norms cannot be described as linear constraints, see
Ekenberg, Boman, and Linnerooth-Bayer (1997). As we have seen, however, such
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norms can play the same role as risk attitudes in that they affect security level
settings, sensitivity analyses, and other ways of extending PMEU.

4. Example

This example is intended to ground our abstract claims in a hopefully realistic
scenario of a real-time MAS in which decision modules as well as social norms
play a role.

Assume a very sophisticated two-legged robotR. The robot is moving around
in a room, looking for radioactive material. There are other robots in the room with
the same ultimate goal asR. RobotR holds partial, vague, imprecise, and uncertain
(possibly false) data about the room, about the abilities of the other robots, and
about its own abilities. This information can be partitioned into:

(i) statistical information,
(ii) sensor information, and
(iii) normative advice.

Assume further thatR experiences a malfunction in one of its legs. The fault is pre-
classified as serious, andR has been programmed not to take any physical action
before a serious error has been rectified. Instead,R will seek help from the environ-
ment and its inhabitants. In its environment,R has a decision module ever ready to
assist, given thatR can formulate its problem as a decision tree. This is extremely
difficult, but R can be thought of as following a template developed for serious
errors, something which makes the procedure viable. Aside from being recognised
byR as serious, the fault leads to a repair type template, i.e. a decision situation in
which R must decide upon a repair action that ultimately leads to the fault being
corrected.3 The very least way in which cooperation with other agents will affect
R is through its subjective assessments. If one is less defensive in describing the
skills of R, one may easily imagine a vast range of more interesting ways of other
agents influencingR, but we will try in this example to make as few assumptions
aboutR as possible.

The first thingR has to do in any repair situation is to formulate a number of
alternative actions. The template yields two alternatives: forR to repair the leg
itself, or for R to seek assistance from another agent in the room. For the latter
alternative, a prerequisite is that there is another agent capable of carrying out
the repair. Whether this condition is fulfilled or not is up toR. For each agent
thatR thinks is in the room,R must be the judge of the appropriateness of that
particular agent carrying out the repair. If this value of appropriateness is larger
than zero for an agentR2, choosingR2 represents an alternative. Note that the

3 Note that in order for the example to be realistic, one should imagine an inheritance hierarchy
of faults and further that R (perhaps in conjunction with other agents) can determine the exact place
of the leg fault in the hierarchy, and thus the proper procedure for rectification.
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reflexive case whereR = R2 need not be treated separately. The value results from
a combination of values in the subjective assessments ofR. Those assessments
can be made using probabilities, utilities, credibilities, and reliabilities. To keep
this example moderate, we take only the first two kinds into consideration here.
A simpler example that does deal with credibility assessments can be found in
Boman (1996). We also leave aside the important knowledge acquisition problem.
After considering the ability of all the agents,R formulates the following three
alternatives.

A1: R will do the repair on its own leg.
It has the ability to carry out the repair, but not to replace the entire leg with a
better one. Instead,R is forced to use spare parts customised for this older type
of leg. The customised parts are more expensive and less reliable than those
parts that would repair a new kind of leg, should it be necessary. Moreover,
after R has repaired the broken parts of its old leg, other parts of the leg
will probably break in the near future, a process speeded up by the partial
mismatch (with respect to age and material) caused by the customised parts.

A2: T will do the repair onR’s leg.
AgentT , a robot in the room, will carry out the repair by replacing the entire
leg with a leg of the same type and quality as the old one.R has limited
experience ofT , but R believes thatT is unfamiliar with leg replacements
and also that it is unlikely thatT could be committed to returning later to
make minor adjustments to the leg, should such become necessary.

A3: V will do the repair onR’s leg.
AgentV , a robot in the room, will carry out the repair by replacing the entire
leg with a new kind of leg. This leg has several extra features thatR as of now
is not capable of using, but shouldR modernise itself further in the future,
it could make full use of the new leg.R has plentiful experience ofV , and
believes that V is highly capable of replacing the leg.R also believes that
V could be committed to return later to make minor adjustments to the leg,
should such become necessary.

The consequences of each alternative must be phrased as exhaustive and exclusive.
To think that an artificial agent would completely master the kind of modelling
necessary for using this form of representation, and to do it in real-time, seems
extremely optimistic. Again, one should picture streamlined decision situations.
Robots such as R could perhaps master fault diagnosis and rectification situations,
but little else. The templates mentioned earlier could make the transition from
sense data to subjective assessments as smooth as possible. Moreover, subjectively
assessed probabilities could in fact be little more than typed (to the agent, that is)
facts from a statistical database and hence close to objectively true. If we allow
ourselves the abstract view in which such steps have been taken, we can perhaps
imagine the identification of the following consequences in our example.
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A1C1: The leg will be inoperable for a significant portion of the following
three months, and will not function well when in operation.R will be slower
and less adequate in handing in its reports of radioactive findings than before
the leg failure.

A1C2: The leg will be inoperable for a small portion of the following three
months, and will not function well when in operation.R will be as fast as
before, but less adequate in handing in its reports of radioactive findings than
before the leg failure.

A1C3: The leg will be inoperable for a small portion of the following three
months, and will function almost perfectly when in operation.R will be as
fast and as adequate in handing in its reports of radioactive findings as before
the leg failure.

A2C1: The leg will be inoperable for a small portion of the following three
months, but will not function well when in operation.R will be as fast as
before, but less adequate in handing in its reports of radioactive findings than
before the leg failure.

A2C2: The leg will be inoperable for a small portion of the following three
months, and will function almost perfectly when in operation.R will be as
fast and as adequate in handing in its reports of radioactive findings as before
the leg failure.

A3C1: The leg will be inoperable for a small portion of the following three
months, and will function perfectly (better than before the replacement of the
leg) when in operation.R will be as fast and as adequate in handing in its
reports of radioactive findings as before the leg failure.

A3C2: The leg will be inoperable for a small portion of the following three
months, and will function perfectly (better than before the replacement of
the leg) when in operation.R will be as fast and as adequate in handing in
its reports of radioactive findings as before the leg failure. In addition,R is
(thanks to its state-of-the-art leg) able to walk through a part of the room
which was not available to it before. Due toR’s inexperience in that part of its
environment, however,R will not function as well there as in the rest of the
room.

A3C3: The leg will be inoperable for a small portion of the following three
months, and will function perfectly (better than before the replacement of the
leg) when in operation.R will be as fast and as adequate in handing in its
reports of radioactive findings as before the leg failure. In addition,R is able
to walk through a part of the room which was not available to it before, in
whichR will function as well as in the rest of the room.
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In the domain at hand, utility is measured by the number of hazardous pieces of
metal found. The estimated numbers of such pieces for the respective consequences
are the following.

A1C1 20–40 A1C2 35–50 A1C3 50–60
A2C1 35–50 A2C2 50–60
A3C1 50–60 A3C2 60–80 A3C3 70–100

Note that the representation allows for partial and imprecise data. If the utilities
involved are based on precise sense data, they are linearly transformed to real
values in the interval [0, 1].4

Each alternative action takes time to carry out, and this time varies with the
alternative. During this time,R must be idle. The negative effects of this idle time
can be measured in terms of pieces missed, and are estimated as follows.

Alternative 1 5–15
Alternative 2 10–12
Alternative 3 25–30

This leaves us with the following set of intervals for the utility of the different
consequences.

A1C1 5–35 A1C2 20–45 A1C3 35–55
A2C1 23–40 A2C2 38–50
A3C1 20–45 A3C2 30–55 A3C3 40–75

The above numbers reflect utilities, with 0 representing the lowest utility.5 The
utilities above will be mapped onto intervals represented by linear inequalities.
The interval representation is very powerful. Note, for instance, how the degree of
uncertainty affects the size of the intervals. Naturally, precise numbers can be used
if such information is available: The utility value 37, for instance, is represented by
the interval [37, 37].

For the probabilities, we will again neglect the important problems related to
knowledge acquisition. The probability base is harder to model than the utility base,
since the assessments are normalised to a [0, 100] scale (hence the requirement
of exhaustive and exclusive consequences). Still, the representation is extremely
powerful, not least because of the possibility to state consequences of the kind

4 For simplicity, we will stick to one decision frame. One could otherwise imagine, e.g., one frame
that concentrated on energy aspects of robot movements in a room, another frame on temperature in
the room, and a third frame on environmental aspects chiefly concerning increased radioactivity
induced from the activities in the room. Details of multi-frame evaluation can be found in Danielson
and Ekenberg (1997).

5 The underlying method does not require that the user of a decision module has expressed
opinions on every consequence, as is the case here. Sometimes, this is even undesirable from a
computational viewpoint.
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“none of the other consequences of this alternative”. Such catch-all consequences
can be assigned a utility and a probability as any other consequence, and this in a
sense allows the agent to sidestep the frame problem. Just as for the utilities, we
imagine a set of assessed intervals out of the blue, and we again stress that values
could be left out – this would just be interpreted as a “0–100%” assessment.

A1C1 5–25% A1C2 10–30% A1C3 45–70%
A2C1 25–45% A2C2 50–80%
A3C1 60–80% A3C2 5–15% A3C3 5–10%

Before we turn to the evaluation of these assessments, we should mention that
R is free to induce any partial ordering on the utility or probability values, as a
complement or as a replacement for the interval statements. A sophisticated form
of comparison between different values without stating their numerical range are
so-calledcomparative statements, or links. To first illustrate utility links, consider
the following estimated differences in utility between consequences.

A1C2–A1C1 5–15
A1C3–A1C2 10–25
A2C1–A2C2 10–25
A3C2–A3C1 10–20
A3C3–A3C2 10–30

To illustrate probability links, consider the two identical consequences A1C3 and
A2C2 above. Now, assume that the probability ofR functioning that good is at
least 15 per cent higher ifT carries out the repair than ifR carries out the repair
itself. That would result in a link of the kindp(A2C2)− p(A1C3)≥ 15%.6

Evaluating this decision tree, we get the output shown in Figure 3. In this output,
the first alternative (that hadR repair its own leg) is treated as the base case for
comparison to the other two alternatives. Put simply, A1 lies on the axis of abscissa,
and is the second best alternative. The best alternative is A2: to letT carry out the
repair. The worst alternative is A3: To letV carry out the repair. The difference
between A1 and A3 is very small. The numbers on the axis of abscissa denote the
contraction of the original intervals by an increasing percentage. On the value of
100, we have full contraction and at this stage each interval has been reduced to a
single point. By contrast, on the axis of ordinate, we have more or less the original
intervals. Here we can see that the difference A2–A1 is about four times bigger than
A1–A3, but even A2–A1 is not a big difference, since the difference of 4 should
be read on a [0, 100] scale. Hence, if humans were carrying out the analysis, they
should carry out a stability analysis of the result: Could there be sensitive variables,

6 The tree is presented in Figure 4 as it appears in the DELTA Decision Tool (Walter, 1997), the
GUI to DELTA (Danielson, 1997). The upper bound added is called asanity limit in the terminology
of DELTA.
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Figure 3. Evaluation output, as shown in the Delta Decision Tool.

small changes to which could have dramatic effects on the outcome?7 Presumably,
some humans would find this result counter-intuitive. However,R is not human
and would merely be sent the output consisting of the message: “Choose A2!”. We
now turn to the illustration of how the other agents in the room could affect this
situation through norms.

In Figure 2, norms are pictured as being separate from the decision module. In
fact, DELTA contains features for revision of assessments, and for the setting of,
and calculating with, security levels. In other words, the first two kinds of norm de-
scribed in Section 3 can be represented within the decision module. Conceptually,
however, it might be convenient to think of the decision module as containing only
procedures that implement PMEU. At any rate, we will illustrate these two kinds
of norm here, as a continuation of our example. The third kind of norm has not yet
been implemented, so let us comment on that first.

The pure PMEU evaluation recommendedR to letT carry out the repair. Now,
assume that there are six robots in the room, and that several of them have experi-
enced leg failures of a similar kind to the one thatR is currently having. RobotT
has for some time carried out almost all the repairs and hence has a fine reputation
within the MAS:T is a responsible and reliable agent. A problem is thatT is very
much in demand. RobotV has just recently announced its capability of repairing
legs and does not have a good reputation. In addition,R is the only agent capable
of repairing its own legs. It has no reputation because it has not announced its
capability, as it is unaware of its potential use to others. Currently, one of the other
robots, call itW , is idle because of a leg failure. RobotW has so far been the most
efficient robot in the room. Therefore, its idle time considerably affects the group
utility negatively. It could therefore be the case that from the point of view of the

7 As it turns out, these results are quite stable.
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5 88 10

Probabilities

10 30 Quality perfect, quantity 
OK, new bad terrain 

40 5757 75

Utilities

Quality perfect, quantity OK, new good terrain

5 1313 15

Probabilities

30 10 Quality perfect, quantity 
OK, new good terrain 

10 20 Quality perfect, quantity 
OK 

30 4343 55

Utilities

Quality perfect, quantity OK, new bad terrain

60 7878 80

Probabilities

20 10 Quality perfect, quantity 
OK, new bad terrain 

20 3333 45

Utilities

Quality perfect, quantity OK

15 30 Quality and quantity OK 

50 6868 80

Probabilities

10 25 Quality OK, quantity too 
low 

38 4444 50

Utilities

Quality and quantity OK

25 3232 45

Probabilities

25 10 Quality and quantity OK 

23 3232 40

Utilities

Quality OK, quantity too low

30 15 Quality and quantity OK 

45 5353 70

Probabilities

10 25 Quality too low, quantity 
OK 

35 4545 55

Utilities

Quality and quantity OK

10 2626 30

Probabilities

25 10 Quality and quantity OK 

5 15 Quality and quantity too 
low 

20 3333 45

Utilities

Quality too low, quantity OK

5 2121 25

Probabilities

15 5 Quality too low, quantity 
OK 

5 2020 35

Utilities

Quality and quantity too low

Repair by V 

Repair by T 

Repair by R 

Leg Repair

Figure 4. The decision tree with links for the example.
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group,R should not makeT commit to helpingR with the repair at this stage.
Instead,R should repair itself and allowT to helpW instead.8

It is easier to be explicit regarding the first and second kind of norm. Let us
assume first thatR has a reason (that in mentalistic terms could be called adesire)
to repair its own leg. It could then use DELTA to look for critical variables in the
decision situation. As was noted earlier, such variables are scarce in this example:
the example is stable. SoR will either have to skew several variable values, or to
skew one (and then the best choice is A2C2) considerably. It could, for example,
change the probability link valuep(A2C2)− p(A1C3) = [0.15, 0.30] top(A2C2)
− p(A1C3) = [−0.15, 0]. If this admittedly highly visible change in input (see
Figure 5) is complemented by a relatively minor change to the upper bound of the
utility of consequence A2C2, the output of Figure 4 would be substituted by the
one in Figure 6. Since the output consists of a non-qualified recommendation of
action alternative, the slight superiority of A1 to A2 shown in Figure 6 suffices for
R to fulfil its concealed goal. Its actual possibility of manipulating the result in
this way will depend on its own reasoning capabilities, as well as the elements of
control available to the group. We cannot pursue these important matters here.

The second kind of norm is related to the risk profile ofR. Let us assume thatR
is sensitive to the level of adequacy of finding material that is actually radioactive.
In particular, one wishes to avoid cases whereR passes radioactive material by
without reporting it. The consequences that include expectations of diminished
adequacy and their probabilities and utilities are:

A1C1 5–25% 5–35
A1C2 10–30% 20–45
A2C1 25–45% 23–40
A2C2 50–80% 38–50

The interval representation makes these assessments complicated to use in cal-
culations by hand, but DELTA offers assistance in the form of itssecurity level
settingfunction. This function allows the user to specify a maximum deficiency
in utility tolerated for an alternative. In the example, the agent could have set a
level that would filter away A1, A2, or both on the grounds that the alternative that
got weeded out had a risky consequence. Risky means that the alternative has a
consequence the utility of which is unacceptably low.9

Since A2 was the best alternative and does contain consequences that could be
deemed risky, it is interesting to investigate under which circumstances A2 would
be filtered out. An attempt to explain the semantics of Delta output begins with
noting that in Figure 7, the security level has been set to 30 in the utility base.

8 To actually carry out the evaluation using the explicit rule given in Ekenberg (1996), we would
need to say more about the situation; to describe the ternary relationship between pairs of agents and
the time required for a repair, to describe the binary repair ability relation, etc.

9 What is unacceptable is set by the user, but depending on the level of sophistication of the agents
involved, it is perhaps more natural to think of these border values as preset.
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5 88 10

Probabilities

10 30 Quality perfect, quantity 
OK, new bad terrain 

40 5757 75

Utilities

Quality perfect, quantity OK, new good terrain

5 1313 15

Probabilities

30 10 Quality perfect, quantity 
OK, new good terrain 

10 20 Quality perfect, quantity 
OK 

30 4343 55

Utilities

Quality perfect, quantity OK, new bad terrain

60 7878 80

Probabilities

20 10 Quality perfect, quantity 
OK, new bad terrain 

20 3333 45

Utilities

Quality perfect, quantity OK

15 0 Quality and quantity OK 

50 6363 80

Probabilities

10 25 Quality OK, quantity too 
low 

38 4343 48

Utilities

Quality and quantity OK

25 3838 45

Probabilities

25 10 Quality and quantity OK 

23 3131 40

Utilities

Quality OK, quantity too low

0 15 Quality and quantity OK 

45 6363 70

Probabilities

10 25 Quality too low, quantity 
OK 

35 4545 55

Utilities

Quality and quantity OK

10 2121 30

Probabilities

25 10 Quality and quantity OK 

5 15 Quality and quantity too 
low 

20 3333 45

Utilities

Quality too low, quantity OK

5 1616 25

Probabilities

15 5 Quality too low, quantity 
OK 

5 2020 35

Utilities

Quality and quantity too low

Repair by V 

Repair by T 

Repair by R 

Leg Repair

Figure 5. The decision tree with consequence A2C2 skewed.
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Figure 6. Skewed evaluation output of the DELTA Decision Tool.

Figure 7. The sensitivity of A2 to a security level set to 30.

Analysing how risky A2 is relative to this level, we can see from the diagram
that there is a 40 per cent risk of an unacceptably bad consequence occurring: We
have just defined unacceptably bad as having a utility less than 30. The risk drops
slightly with the percentage of contraction of the original intervals.

What is shown in Figure 7 is a worst case analysis. The interval representation
makes many consistent pointwise assignments possible. Such situations are often
studied using Monte-Carlo simulations, in which the interval ranges are bombarded
with consistent points. Our method instead uses a deductive technique. The dia-
gram actually has two more graphs plotted, but these are invisible since they lie on
the axis of abscissa. These two graphs represent the average case and the best case.
In the average case, A2 is thus risk-free with the security level set to 30. Whether
it should still be filtered out is again a matter of how risk-prone the agent is, or put
differently: a matter of how conservative the set of norms is, as preset by the de-
signer of the MAS. Similarly, a more conservative view on adopting new strategies
could be manifested by raising the security level to 40. This results in the diagram
shown in Figure 8, which is easier to comprehend than Figure 7. It shows that up to
about 20 per cent contraction, A2 will (with absolute certainty) not pass the grade
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Figure 8. The sensitivity of A2 to a security level set to 40.

of being risk-free in the worst case. Even on average, the risk of A2 resulting in a
consequence with a utility lower than 40 is more than 30 per cent. The important
point is not the figures particular to this example, of course, but the potential for
control that a set of norms might offer for autonomous consequentialistic agents.

5. Conclusions and Further Research

We have presented a model for constraining action using norms. The model con-
strains normative advice provided by a decision module and operates on three
levels of abstraction. The lowest level deals with manipulation by non-benevolent
(even malicious) agents, with modifications of assessments as a result of sensitivity
analyses, and with more or lessad hocadoption to social norms by means of
very delicate belief revision. The middle level deals with the filtering of certain
actions in accordance with the risk profile of the agent. This is the natural level for
a coordinator of a group of agents to use if the coordinator wishes to implement
policy. An agent that strives to become part of a coalition may also let the norms
adhered to within the coalition act as filters on this level, but if the agent has reasons
not to make its desires public, it should revise its assessments on the lowest level
instead. Once it is part of the coalition it will probably have to adhere to the social
norms of the group. The highest level of abstraction deals with the acceptance of
social norms. Since the basis of our evaluation is PMEU, we do not allow agents to
diminish the utility of the group that they belong to by their choice of action. This is
a constructive interpretation of the principle of social rationality. For systems that
utilise other rules for generating rational behaviour, this rule could be modified,
but the important idea is that social norms usually affect rational choice only at the
highest (social) level.

Given that the advice received by the agent is actually followed, i.e. if the agents
are consequentialistic, the three levels together constitute ametanorm(Axelrod,
1986), a formalised procedure for enforcing norms. This is interesting in itself,
since many researchers have claimed that such models are of philosophical interest
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only because of their high computational complexity. We have given here the first
pieces of evidence that this is not the case. The procedures already implemented
help in the difficult transition from precise and unrealistic quantitative decision
making by artificial agents to qualitative analyses.
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