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Abstract

Since belief revision deals with the interaction of belief and informa-
tion over time, branching-time temporal logic seems a natural setting for
a theory of belief change. We propose two extensions of a modal logic
that, besides the next-time temporal operator, contains a belief opera-
tor and an information operator. The first logic is shown to provide an
axiomatic characterization of the first six postulates of the AGM theory
of belief revision, while the second, stronger, logic provides an axiomatic
characterization of the full set of AGM postulates.

Keywords: information, belief, branching time, belief revision, AGM the-
ory

1 Introduction

There is an unsatisfactory lack of uniformity in the literature between how static
beliefs and changes in beliefs are modeled. Starting with Hintikka’s [12] seminal
contribution, the notion of static belief has been studied mainly within the
context of modal logic. On the syntactic side a belief operator B is introduced,
with the intended interpretation of Bφ as “the individual believes that φ”.
Various properties of beliefs are then expressed by means of axioms (for example,
the positive introspection axiom Bφ→ BBφ, which says that if the individual
believes φ then she believes that she believes φ.). On the semantic side Kripke
structures (Kripke [15]) are used, consisting of a set of states (or possible worlds)
Ω together with a binary relation B on Ω, with the interpretation of αBβ as

∗I am grateful to two anonymous reviewers for helpful and constructive comments. An ear-
lier version of this paper was presented at the Seventh conference on Logic and the Fundations
of Game and Decision Theory (LOFT7), Liverpool, July 2006.
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“at state α the individual considers state β possible”. The connection between
syntax and semantics is then obtained by means of a valuation that associates
with every atomic proposition p the set of states at which p is true. Rules
are given for determining the truth of an arbitrary formula at every state of a
model; in particular, the formula Bφ is true at state α if and only if φ is true
at every ω such that αBω, that is, if φ is true at every state that the individual
considers possible at α. Often one can show that there is a correspondence
between a syntactic axiom and a property of the accessibility relation, in the
sense that every instance of the axiom is true at every state of every model
whose accessibility relation satisfies the property and vice versa (for example,
the positive introspection axiom Bφ→ BBφ corresponds to transitivity of the
relation B.)

On the other hand, in their seminal contribution on belief revision, Alchour-
rón, Gärdenfors and Makinson [1] model beliefs as sets of formulas in a given
syntactic language and belief revision is construed as an operation that asso-
ciates with every belief set K (thought of as the initial beliefs) and formula φ
(thought of as new information) a new belief set K∗

φ representing the revised
beliefs. Several requirements are imposed on this operator in order to capture
the notion of “rational” belief change. Their approach has become known as
the AGM theory of belief revision and has stimulated a large literature.

The purpose of this paper is to bridge the gap between these two strands
of the literature, by representing the AGM postulates as axioms in a modal lan-
guage. Since belief revision deals with the interaction of belief and information
over time, temporal logic seems a natural starting point. Besides the next-time
operator© our language contains a belief operator B and an information opera-
tor I. The information operator is not a normal operator and is formally similar
to the “all I know” operator introduced by Levesque [16]. On the semantic side
we consider branching-time frames to represent different possible evolutions of
beliefs. For every date t, beliefs and information are represented by binary re-
lations Bt and It on a set of states Ω. As in the static setting, the link between
syntax and semantics is provided by the notion of valuation and model. The
truth of a formula in a model is defined at a state-instant pair (ω, t).

The first logic that we propose provides an axiomatic characterization of
the first six AGM postulates (the so-called “basic set”), in the following sense
(Proposition 11):

(1) if K is the initial belief set, φ is a Boolean (i.e. non-modal) formula
and K∗

φ is the revised belief set that satisfies the first six AGM postulates, then
there is a model of the logic, a state α ∈ Ω and instants t1 and t2 such that:
(i) t2 is an immediate successor of t1, (ii) the set of Boolean formulas that the
individual believes at (α, t1) coincides with K, (iii) the individual at time t2
and state α is informed that φ and (iv) the set of Boolean formulas that the
individual believes at (α, t2) coincides with K

∗
φ, and

(2) for every model that validates the logic, every state α and every instants
t1 and t2 such that t2 is an immediate successor of t1, if at time t2 and state
α the individual is informed that φ (where φ is a consistent Boolean formula,
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which is true at some state-instant pair) then K and K∗
φ defined as the sets of

Boolean formulas that the individual believes at (α, t1) and (α, t2), respectively,
satisfy the first six AGM postulates. (Furthermore, for every Boolean formula φ
there exists a a model and a state-instant pair where the individual is informed
that φ.)

The remaining two AGM postulates deal with comparing how the individual
revises his beliefs after learning first that φ and then that ψ with how he would
revise his beliefs if he learned that φ ∧ ψ. This is where the branching-time
structure that we use becomes important, since two different evolutions of beliefs
need to be compared. The second logic that we propose extends the first by
adding two axioms, which correspond to the last two AGM postulates. We show
(Proposition 12) that the stronger logic provides an axiomatic characterization
of the full set of AGM axioms, in a sense analogous to the previous result.

The paper is organized as follows. In Section 2 we start with the semantics
of temporal belief revision frames. In Section 3 we introduce the basic logic and
two extensions of it, which - in Section 4 - are proved to provide an axiomatic
characterization of the first six and full set of AGM postulates, respectively.
Related literature is discussed in Section 5. Section 6 concludes.

2 The semantics

On the semantic side we consider branching-time structures with the addition
of a belief relation and an information relation for every instant t.

Definition 1 A next-time branching frame is a pair 〈T,֌〉 where T is a (pos-
sibly infinite) set of instants or dates and ֌ is a binary “precedence” relation
on T satisfying the following properties: ∀t1, t2, t3 ∈ T,

(1) uniqueness if t1֌ t3 and t2֌ t3 then t1 = t2,
(2) acyclicity if 〈t1, ..., tn〉 is a sequence with ti֌ ti+1

for every i = 1, ..., n− 1, then tn �= t1.

The interpretation of t1 ֌ t2 is that t2 is an immediate successor of t1
or t1 is the immediate predecessor of t2 : every instant has at most a unique
immediate predecessor but can have several immediate successors.

Definition 2 A temporal belief revision frame is a quintuple
〈T,֌,Ω, {Bt}t∈T , {It}t∈T 〉 where 〈T,֌〉 is a next-time branching frame, Ω is
a set of states (or possible worlds) and, for every t ∈ T , Bt and It are binary
relations on Ω.

The interpretation of ωItω
′ is that at state ω and time t - according to the

information received - it is possible that the true state is ω′. On the other
hand, the interpretation of ωBtω

′ is that at state ω and time t - in light of
the information received (if any) - the individual considers state ω′ possible (an
alternative expression is “ω′ is a doxastic alternative to ω at time t”). We shall
use the following notation:
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Bt(ω) = {ω′ ∈ Ω : ωBtω′} and, similarly, It(ω) = {ω′ ∈ Ω : ωItω′}.

Thus Bt(ω) is the set of states that are reachable from ω according to the relation
Bt and similarly for It(ω).

Temporal belief frames can be used to describe either a situation where the
objective facts describing the world do not change − so that only the beliefs
of the agent change over time − or a situation where both the facts and the
doxastic state of the agent change. In the computer science literature the first
situation is called belief revision, while the latter is called belief update (Katsuno
and Mendelzon [13]). In this paper we restrict attention to belief revision.1

We consider a propositional language with five modal operators: the next-
time operator © and it inverse ©−1, the belief operator B, the information
operator I and the “all state” operator A. The intended interpretation is as
follows:

©φ : “at every next instant it will be the case that φ”
©−1φ : “at every previous instant it was the case that φ”
Bφ : “the agent believes that φ”
Iφ : “the agent is informed that φ”
Aφ : “it is true at every state that φ”.

The “all state” operator A is needed in order to capture the non-normality of
the information operator I (see below). For a thorough discussion of the “all
state” operator see Goranko and Passy [11].

Given a temporal belief revision frame 〈T,֌,Ω, {Bt}t∈T , {It}t∈T 〉 one ob-
tains a model based on it by adding a function V : S → 2Ω (where S is the set
of atomic propositions and 2Ω denotes the set of subsets of Ω) that associates
with every atomic proposition q the set of states at which q is true. Note that
defining a valuation this way is what frames the problem as one of belief revi-
sion, since the truth value of an atomic proposition depends only on the state
and not on the time.2 Given a model, a state ω, an instant t and a formula
φ, we write (ω, t) |= φ to denote that φ is true at state ω and time t. Let ‖φ‖
denote the truth set of φ, that is, ‖φ‖ = {(ω, t) ∈ Ω× T : (ω, t) |= φ} and let
⌈φ⌉t ⊆ Ω denote the set of states at which φ is true at time t, that is, ⌈φ⌉t =
{ω ∈ Ω : (ω, t) |= φ}. Truth at a pair (ω, t) is defined recursively as follows.

1For example, our analysis would be appropriate to model the evolving beliefs of an ar-
chaeologist who is trying to learn what truly happened several thousand years ago. New
archaeological discoveries provide clues and information about the past, which the scientist
uses to update his beliefs. However, the facts he is trying to learn do not change: their truth
value was fixed in the distant past.

2Belief update would require a valuation to be defined as a function V : S → 2Ω×T .
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if q ∈ S, (ω, t) |= q if and only if ω ∈ V (q).
(ω, t) |= ¬φ if and only if (ω, t) � φ.
(ω, t) |= φ ∨ ψ if and only if either (ω, t) |= φ or (ω, t) |= ψ (or both).
(ω, t) |=©φ if and only if (ω, t′) |= φ for every t′ such that t֌ t′.

(ω, t) |=©−1φ if and only if (ω, t
′′

) |= φ for every t
′′

such that t
′′

֌ t.
(ω, t) |= Bφ if and only if Bt(ω) ⊆ ⌈φ⌉t, that is,

if (ω′, t) |= φ for all ω′ ∈ Bt(ω).
(ω, t) |= Iφ if and only if It(ω) = ⌈φ⌉t, that is, if (1) (ω

′, t) |= φ
for all ω′ ∈ It(ω), and (2) if (ω′, t) |= φ then ω′ ∈ It(ω).

(ω, t) |= Aφ if and only if ⌈φ⌉t = Ω, that is, if (ω
′, t) |= φ for all ω′ ∈ Ω.

Note that, while the truth condition for the operator B is the standard one,
the truth condition for the operator I is non-standard: instead of simply requir-
ing that It(ω) ⊆ ⌈φ⌉t we require equality: It(ω) = ⌈φ⌉t. Thus our information
operator is formally similar to the “all I know” operator introduced by Levesque
[16], although the interpretation is different.

A formula φ is valid in a model if ‖φ‖ = Ω× T , that is, if φ is true at every
state-instant pair (ω, t). A formula φ is valid in a frame if it is valid in every
model based on it.

3 The basic logic and two extensions

The formal language is built in the usual way (see [4]) from a countable set of
atomic propositions, the connectives ¬ and ∨ (from which the connectives ∧,
→ and ↔ are defined as usual) and the modal operators ©, ©−1, B, I and A.

Let ♦φ
def
= ¬© ¬φ, and ♦−1φ

def
= ¬©−1 ¬φ. Thus the interpretation of ♦φ is

“at some next instant it will be the case that φ ” while the interpretation of
♦−1φ is “at some previous instant it was the case that φ”.

We denote by L0 the basic logic of belief revision defined by the following
axioms and rules of inference.

AXIOMS:

1. All propositional tautologies.

2. Axiom K for ©, ©−1, B and A:

(�φ ∧�(φ→ ψ))→ �ψ for � ∈ {©,©−1,B,A} (K)

3. Temporal axioms relating © and ©−1:

φ→©♦−1φ (O1)
φ→©−1♦φ (O2)

4. Backward Uniqueness axiom:

♦−1φ→©−1φ (BU)
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5. S5 axioms for A:

Aφ→ φ (TA)
¬Aφ→ A¬Aφ (5A)

6. Inclusion axiom for B (note the absence of an analogous axiom for I):

Aφ→ Bφ (InclB)

7. Axioms to capture the non-standard semantics for I:

(Iφ ∧ Iψ)→ A(φ↔ ψ) (I1)
A(φ↔ ψ)→ (Iφ↔ Iψ) (I2)

RULES OF INFERENCE:

1. Modus Ponens: φ, φ→ψ
ψ

(MP )

2. Necessitation for A, © and ©−1:

φ
�φ

for � ∈ {©,©−1, A} (Nec).

Note that fromMP , InclB and Necessitation for A one can derive necessita-
tion for B ( φ

Bφ
). On the other hand, necessitation for I is not a rule of inference

of this logic (indeed it is not validity preserving).

Remark 3 By MP, axiom K and Necessitation, the following is a derived rule
of inference for the operators©,©−1, B and A: φ→ψ

�φ→�ψ for � ∈ {©,©−1, B,A}.
We call this rule RK. On the other hand, rule RK is not a valid rule of infer-
ence for the operator I (despite the fact that axiom K for I can be shown to be
a theorem of L0).

The proof of the following proposition is standard and is relegated to the
Appendix.3

Proposition 4 Logic L0 is sound with respect to the class of temporal belief
revision frames (see Definition 2), that is, every theorem of L0 is valid in every
model based on a temporal belief frame

Our purpose is to model how the factual beliefs of an individual change
over time in response to factual information. Thus the axioms we introduce
are restricted to Boolean formulas, which are formulas that do not contain any
modal operators. That is, Boolean formulas are defined recursively as follows:
(1) every atomic proposition is a Boolean formula, and (2) if φ and ψ are Boolean
formulas then so are ¬φ and (φ ∨ ψ). As the following proposition shows, the
truth value of a Boolean formula does not change over time: it is only a function
of the state. We denote by ΦB the set of Boolean formulas.

3Completeness issues are not relevant for the results of this paper and are dealt with in a
separate paper that studies several extensions of L0 besides the two considered here.
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Proposition 5 Let φ ∈ ΦB. Fix an arbitrary model. Then, for every ω ∈ Ω
and t, t′ ∈ T , (ω, t) |= φ if and only if (ω, t′) |= φ. Hence, for all t, t′ ∈ T ,
⌈φ⌉t = ⌈φ⌉t′ .

Proof. Fix arbitrary ω ∈ Ω and t, t′ ∈ T . The proof is by induction on the
complexity of φ. If φ = q, where q is an atomic proposition, then (ω, t) |= q if
and only if ω ∈ V (q) if and only if (ω, t′) |= q. Suppose now that the statement
is true for ψ1 and for ψ2, that is, (ω, t) |= ψ1 if and only if (ω, t′) |= ψ1, and
similarly for ψ2. We want to show that the statement is true for ¬ψ1 and
for (ψ1 ∨ ψ2). By definition, (ω, t) |= ¬ψ1 if and only if (ω, t) � ψ1. By the
induction hypothesis (ω, t) � ψ1 if and only if (ω, t′) � ψ1. Hence (ω, t) |= ¬ψ1
if and only if (ω, t′) |= ¬ψ1. By definition, (ω, t) |= ψ1 ∨ψ2 if and only if either
(ω, t) |= ψ1 or (ω, t) |= ψ2. By the induction hypothesis, (ω, t) |= ψ1 if and only
if (ω, t′) |= ψ1, and (ω, t) |= ψ2 if and only if (ω, t′) |= ψ2. Thus (ω, t) |= ψ1∨ψ2
if and only if (ω, t′) |= ψ1 ∨ ψ2.
Fix an arbitrary ω′ ∈ Ω. By definition of ⌈φ⌉t, ω

′ ∈ ⌈φ⌉t if and only if (ω′, t) |= φ;
by the result just proved, (ω′, t) |= φ if and only if (ω′, t′) |= φ and, by definition
of ⌈φ⌉t′ , (ω

′, t′) |= φ if and only if ω′ ∈ ⌈φ⌉t′ . Thus ⌈φ⌉t = ⌈φ⌉t′ .

We now introduce two sets of axioms that provide two extensions of logic L0,
one of which will be shown to correspond to the basic set of AGM postulates
and the other to the full set. Note that all of the following axioms apply only to
Boolean formulas.

The first axiom says that factual information is believed. This is known in
the literature as Success or Acceptance (‘A’ stands for ‘Acceptance’): if φ is a
Boolean formula,

Iφ→ Bφ. (A)

The second axiom requires the individual not to drop any of his current
factual beliefs at any next instant where he is informed of some fact that he
currently considers possible (‘ND’ stands for ‘Not Drop’): if φ and ψ are Boolean
formulas

(¬B¬φ ∧Bψ)→©(Iφ→ Bψ). (ND)

The third axiom requires that if the individual considers it possible that
(φ∧¬ψ) then at any next instant where he is informed that φ he does not believe
that ψ, that is, he cannot add new factual beliefs, unless they are implied by
the old beliefs and the information received (‘NA’ stands for ‘Not Add’):4 if φ
and ψ are Boolean formulas,

4Axiom NA can alternatively be written as ¬B(φ→ ψ)→©(Iφ→ ¬Bψ), which says that
if the individual does not believe that whenever φ is the case then ψ is the case, then - at any
next instant - if he is informed that φ then he cannot believe that ψ. Another, propositionally
equivalent, formulation of NA is the following: ♦(Iφ ∧ Bψ)→ B(φ→ ψ), which says that if
there is a next instant at which the individual is informed that φ and believes that ψ, then
he must now believe that whenever φ is the case then ψ is the case.
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¬B¬(φ ∧ ¬ψ)→©(Iφ→ ¬Bψ). (NA)

The fourth axiom says that if the individual receives consistent information
then his beliefs are consistent, in the sense that he does not simultaneously
believe a formula and its negation (‘WC’ stands for ‘Weak Consistency’): if φ
is a Boolean formula,

(Iφ ∧ ¬A¬φ)→ (Bψ → ¬B¬ψ). (WC)

Turning back to the semantics, we call the following property of temporal
belief frames “Qualitative Bayes Rule” (QBR): ∀ω ∈ Ω,∀t1, t2 ∈ T,

if t1֌ t2 and Bt1(ω) ∩ It2(ω) �= ∅ then Bt2(ω) = Bt1(ω) ∩ It2(ω). (QBR)

The expression “Qualitative Bayes Rule” is motivated by the following observa-
tion (see [5]). In a probabilistic setting, let Pω,t1 be the probability measure over
a set of states Ω representing the individual’s beliefs at state ω and time t1, let
F ⊆ Ω be an event representing the information received by the individual at a
later date t2 and let Pω,t2 be the posterior probability measure representing the
revised beliefs at state ω and date t2. Bayes’ rule requires that, if Pω,t1(F ) > 0,

then, for every event E ⊆ Ω, Pω,t2(E) =
Pω,t1(E∩F )

Pω,t1 (F )
. Bayes’ rule thus implies

the following (where supp(P ) denotes the support of the probability measure
P ):

if supp(Pω,t1) ∩ F �= ∅, then supp(Pω,t2) = supp(Pω,t1) ∩ F.

If we set Bt1(ω) = supp(Pω,t1), F = It2(ω), with t1 ֌ t2, and Bt2(ω) =
supp(Pω,t2) then we get the Qualitative Bayes Rule as stated above. Thus in a
probabilistic setting the proposition “at date t the individual believes φ” would
be interpreted as “the individual assigns probability 1 to the event ⌈φ⌉t ⊆ Ω”.

Let Lb be the logic obtained by adding the above four axioms to the basic
logic L0. We denote this by writing Lb = L0 + A + ND + NA + WC (the
subscript ‘b’ was chosen because, as shown later, logic Lb provides an axiomatic
characterization of the basic set of AGM postulates).

Definition 6 An Lb-frame is a temporal belief revision frame that satisfies the
following properties:

(1) the Qualitative Bayes Rule,
(2) ∀ω ∈ Ω, ∀t ∈ T , Bt(ω) ⊆ It(ω),
(3) ∀ω ∈ Ω, ∀t ∈ T , if It(ω) �= ∅ then Bt(ω) �= ∅.

An Lb-model is a model based on an Lb-frame.
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Proposition 7 Logic Lb is sound with respect to the class of Lb-frames. That
is, every theorem of Lb is valid in every Lb-model.

Proof. By Proposition 4 it is enough to show that the four axioms A, ND,
NA and WC are valid in an arbitrary model based on a frame that satisfies the
three properties of Definition 6. Fix an arbitrary such model.

Validity of A. Fix arbitrary α ∈ Ω, t ∈ T and φ ∈ ΦB and suppose that
(α, t) |= Iφ. Then It(α) = ⌈φ⌉t. Hence, by property (2) of Definition 6,
Bt(α) ⊆ ⌈φ⌉t, that is, (α, t) |= Bφ.

Validity of ND. Fix arbitrary α ∈ Ω, t1 ∈ T and φ, ψ ∈ ΦB and suppose
that (α, t1) |= ¬B¬φ ∧ Bψ. Fix an arbitrary t2 ∈ T such that t1 ֌ t2 and
suppose that (α, t2) |= Iφ. Then It2(α) = ⌈φ⌉t2 . Since (α, t1) |= ¬B¬φ, there
exists a β ∈ Bt1(α) such that (β, t1) |= φ. Since φ is Boolean, by Proposition
5, (β, t2) |= φ so that β ∈ It2(α). Thus Bt1(α) ∩ It2(α) �= ∅ and, by QBR,
Bt2(α) ⊆ Bt1(α). Fix an arbitrary ω ∈ Bt2(α). Then ω ∈ Bt1(α) and, since
(α, t1) |= Bψ, (ω, t1) |= ψ. Since ψ is Boolean, by Proposition 5, (ω, t2) |= ψ.
Hence, since ω ∈ Bt2(α) was chosen arbitrarily, (α, t2) |= Bψ.

Validity of NA. Fix arbitrary α ∈ Ω, t1 ∈ T and φ, ψ ∈ ΦB and suppose
that (α, t1) |= ¬B¬(φ ∧ ¬ψ). Fix an arbitrary t2 ∈ T such that t1 ֌ t2 and
suppose that (α, t2) |= Iφ. Then It2(α) = ⌈φ⌉t2 . Since (α, t1) |= ¬B¬(φ ∧ ¬ψ),
there exists a β ∈ Bt1(α) such that (β, t1) |= φ∧¬ψ. Since φ and ψ are Boolean,
by Proposition 5, (β, t2) |= φ∧¬ψ. Thus β ∈ It2(α), so that β ∈ Bt1(α)∩It2(α).
By QBR, β ∈ Bt2(α). Thus, since (β, t2) |= ¬ψ, (α, t2) |= ¬Bψ.

Validity of WC. Fix arbitrary α ∈ Ω, t ∈ T and φ ∈ ΦB and suppose
that (α, t) |= Iφ ∧ ¬A¬φ. Then It(α) = ⌈φ⌉t and there exists a β such that
(β, t) |= φ. Thus It(α) �= ∅ and, by property (3) of Definition 6, Bt(α) �= ∅.
Fix an arbitrary formula ψ and suppose that (α, t) |= Bψ. Since Bt(α) �= ∅,
there exists a γ ∈ Bt(α). Thus (γ, t) |= ψ and hence (α, t) |= ¬B¬ψ.

We now strengthen logic Lb by adding two more axioms.

The first axiom says that if there is a next instant where the individual is
informed that φ ∧ ψ and believes that χ, then at every next instant it must
be the case that if the individual is informed that φ then he must believe that
(φ∧ψ)→ χ (we call this axiomK7 because, as we will show later, it corresponds
to AGM postulate (K*7)): if φ, ψ and χ are Boolean formulas,

♦(I(φ ∧ ψ) ∧Bχ)→©(Iφ→ B ((φ ∧ ψ)→ χ)). (K7)

The second axiom says that if there is a next instant where the individual
is informed that φ, considers φ ∧ ψ possible and believes that ψ → χ, then at
every next instant it must be the case that if he is informed that φ∧ψ then he
believes that χ (we call this axiomK8 because it corresponds to AGM postulate
(K*8)): if φ, ψ and χ are Boolean formulas,

♦(Iφ ∧ ¬B¬(φ ∧ ψ) ∧B(ψ → χ))→©(I(φ ∧ ψ)→ Bχ). (K8)
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Let LAGM be the logic obtained by adding the above two axioms to Lb. Thus
LAGM = L0+A+ND+NA+WC+K7+K8 (the subscript ‘AGM’ was chosen
because, as shown later, logic LAGM provides an axiomatic characterization of
the full set of AGM postulates).

Definition 8 An LAGM -frame is an Lb-frame (see Definition 6) that satisfies
the following additional property: ∀ω ∈ Ω, ∀t1, t2, t3 ∈ T ,

if t1 ֌ t2, t1֌ t3, It3(ω) ⊆ It2(ω) and It3(ω) ∩ Bt2(ω) �= ∅
then Bt3(ω) = It3(ω) ∩ Bt2(ω).

(CAB)

An LAGM -model is a model based on an LAGM -frame.5

Proposition 9 Logic LAGM is sound with respect to the class of LAGM-frames.
That is, every theorem of LAGM is valid in every LAGM -model.

Proof. By Proposition 7 and Definition 8 it is sufficient to show that axioms
K7 and K8 are valid in an arbitrary model based on an Lb frame that satisfies
CAB. Fix an arbitrary such model.

Validity of K7. Fix arbitrary α ∈ Ω and t1 ∈ T and suppose that (a, t1) |=
♦(I(φ∧ψ)∧Bχ), where φ, ψ and χ are Boolean formulas. Then there exists a
t3 such that t1֌ t3 and (α, t3) |= I(φ∧ψ)∧Bχ. Then It3(α) = ⌈φ ∧ ψ⌉t3 . Fix
an arbitrary t2 such that t1֌ t2 and suppose that (α, t2) |= Iφ. Then It2(α) =
⌈φ⌉t2 . Since φ and ψ are Boolean, by Proposition 5 ⌈φ ∧ ψ⌉t3 = ⌈φ ∧ ψ⌉t2 .
Thus, since ⌈φ ∧ ψ⌉t2 ⊆ ⌈φ⌉t2 , It3(α) ⊆ It2(α). If It3(α) ∩ Bt2(α) = ∅, then,
for every ω ∈ Bt2(α), (ω, t2) |= ¬(φ∧ψ) and thus (ω, t2) |= (φ∧ψ)→ χ, so that
(α, t2) |= B ((φ ∧ ψ)→ χ). If, on the other hand, It3(α) ∩ Bt2(α) �= ∅, then,
by CAB, Bt3(α) = It3(α) ∩ Bt2(α). Fix an arbitrary β ∈ Bt2(α). If (β, t2) |=
¬(φ∧ψ) then (β, t2) |= (φ∧ψ)→ χ. If (β, t2) |= φ∧ψ, then, by Proposition 5,
(β, t3) |= φ∧ψ and, therefore, β ∈ It3(α). Hence β ∈ Bt3(α). Since (α, t3) |= Bχ,
(β, t3) |= χ and, therefore, (β, t3) |= (φ∧ψ)→ χ. Since (φ∧ψ → χ) is Boolean
(because φ, ψ and χ are), by Proposition 5, (β, t2) |= (φ ∧ ψ)→ χ. Thus, since
β ∈ Bt2(α) was chosen arbitrarily, (α, t2) |= B((φ ∧ ψ)→ χ).

Validity of K8. Fix arbitrary α ∈ Ω and t1 ∈ T and suppose that (α, t1) |=
♦(Iφ∧¬B¬(φ∧ψ)∧B(ψ → χ)), where φ, ψ and χ are Boolean formulas. Then
there exists a t2 such that t1 ֌ t2 and (α, t2) |= Iφ∧¬B¬(φ∧ψ)∧B(ψ → χ).
Thus It2(α) = ⌈φ⌉t2 and there exists a β ∈ Bt2(α) such that (β, t2) |= φ∧ψ. Fix
an arbitrary t3 such that t1 ֌ t3 and suppose that (α, t3) |= I(φ ∧ ψ). Then
It3(α) = ⌈φ ∧ ψ⌉t3 . Since φ ∧ ψ is a Boolean formula and (β, t2) |= φ ∧ ψ, by
Proposition 5 (β, t3) |= φ∧ψ and therefore β ∈ It3(α). Hence It3(α)∩Bt2(α) �=

5 ‘CAB’ stands for ‘Comparison Across Branches’. This property says that if t2 and t3 are
immediate successors of t1 and the set of states that are possible according to the information
received at (state ω and) time t3 is a subset of the set of states that are possible according to
the information received at (state ω and) time t2 and, furthermore, the information received
at time t3 is compatible with the beliefs held at time t2, then the beliefs at time t3 must
coincide with the intersection of the information at time t3 and the beliefs at time t2.
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∅. Furthermore, since φ is Boolean, by Proposition 5 ⌈φ⌉t3 = ⌈φ⌉t2 . Thus, since
⌈φ ∧ ψ⌉t3 ⊆ ⌈φ⌉t3 it follows that It3(α) ⊆ It2(α). Hence, by CAB, Bt3(α) =
It3(α) ∩ Bt2(α). Fix an arbitrary γ ∈ Bt3(α). Then γ ∈ Bt2(α) and, since
(α, t2) |= B(ψ → χ), (γ, t2) |= (ψ → χ). Since (ψ → χ) is a Boolean formula,
by Proposition 5 (γ, t3) |= (ψ → χ). Since Bt3(α) ⊆ It3(α) (by definition of
Lb-frame) and It3(α) = ⌈φ ∧ ψ⌉t3 , (γ, t3) |= ψ. Thus (γ, t3) |= χ. Hence, since
γ ∈ Bt3(α) was chosen arbitrarily, (α, t3) |= Bχ.

We end this section with a Lemma that will be used later.

Lemma 10 In any logic where B is a normal operator (that is, it satisfies
axiom K and the rule of necessitation) the following is a theorem:

(Bφ ∧ ¬B¬ψ)→ ¬B¬(φ ∧ ψ).

Proof. (‘PL’ stands for ‘Propositional Logic’)
1. Bφ ∧B(φ→ ¬ψ)→ B¬ψ Axiom K
2. Bφ→ (B(φ→ ¬ψ)→ B¬ψ) 1, PL
3. (B(φ→ ¬ψ)→ B¬ψ)→ (¬B¬ψ → ¬B(φ→ ¬ψ)) tautology
4. Bφ→ (¬B¬ψ → ¬B(φ→ ¬ψ)) 2, 3, PL
5. (Bφ ∧ ¬B¬ψ)→ ¬B(φ→ ¬ψ) 4, PL
6. ¬(φ ∧ ψ)→ (φ→ ¬ψ) tautology
7. B¬(φ ∧ ψ)→ B(φ→ ¬ψ) 6, RK (see Remark 3)
8. ¬B(φ→ ¬ψ)→ ¬B¬(φ ∧ ψ) 7, PL
9. (Bφ ∧ ¬B¬ψ)→ ¬B¬(φ ∧ ψ) 5, 8, PL.

4 Axiomatic characterization of AGM

The AGM theory of belief revision was developed within the framework of belief
sets. Let Γ be the set of formulas in a propositional language. Given a subset
F ⊆ Γ, its PL-deductive closure [F ]PL is defined as follows: ψ ∈ [F ]PL if and
only if there exist φ1, ..., φn ∈ F such that (φ1 ∧ ... ∧ φn) → ψ is a tautology
(that is, a theorem of Propositional Logic). A set F ⊆ Γ is consistent if [F ]PL �=
Γ (equivalently, if there is no formula φ such that both φ and ¬φ belong to

[F ]PL). A set F ⊆ Γ is deductively closed if F = [F ]PL. Given a consistent and
deductively closed set K (thought of as the initial beliefs of the individual) and
a formula φ (thought of as a new piece of information), the revision of K by φ,
denoted by K∗

φ, is a subset of Γ that satisfies the following conditions, known
as the AGM postulates:
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(K*1) K∗
φ is deductively closed

(K*2) φ ∈ K∗
φ

(K*3) K∗
φ ⊆ [K ∪ {φ}]PL

(K*4) if ¬φ /∈ K, then [K ∪ {φ}]PL ⊆ K∗
φ

(K*5) K∗
φ = Γ if and only if φ is a contradiction

(K*6) if φ↔ ψ is a tautology then K∗
φ = K

∗
ψ

(K*7) K∗
φ∧ψ ⊆

[
K∗
φ ∪ {ψ}

]PL

(K*8) if ¬ψ /∈ K∗
φ, then

[
K∗
φ ∪ {ψ}

]PL
⊆ K∗

φ∧ψ.

(K*1) requires the revised belief set to be deductively closed. In our frame-
work this corresponds to requiring the B operator to be a normal operator, that
is, to satisfy axiom K and the inference rule Necessitation.

(K*2) requires that the information be believed. In our framework, this
corresponds to the Acceptance axiom (for Boolean φ): Iφ→ Bφ.

(K*3) says that beliefs should be revised minimally, in the sense that no new
belief should be added unless it can be deduced from the information received
and the initial beliefs. As shown below, this requirement corresponds to our
axiom NA (for Boolean φ and ψ): ¬B¬(φ ∧ ¬ψ)→©(Iφ→ ¬Bψ).

(K*4) says that if the information received is compatible with the initial be-
liefs, then any formula that can be deduced from the information and the initial
beliefs should be part of the revised beliefs. As shown below, this requirement
corresponds to our axiom ND (for Boolean φ and ψ): (¬B¬φ∧Bψ)→©(Iφ→
Bψ).

(K*5) requires the revised beliefs to be consistent, unless the information
φ is contradictory (that is, ¬φ is a tautology). This corresponds to our axiom
WC (for Boolean φ): (Iφ ∧ ¬A¬φ)→ (Bψ → ¬B¬ψ).

(K*6) is automatically satisfied in our framework, since if φ ↔ ψ is a tau-
tology then ‖φ‖ = ‖ψ‖ in every model and therefore the formula Iφ ↔ Iψ is
valid. Hence revision based on φ must coincide with revision based on ψ.

(K*7) and (K*8) are a generalization of (K*3) and (K*4) that

“applies to iterated changes of belief. The idea is that if K∗
φ is a

revision of K and K∗
φ is to be changed by adding further sentences,

such a change should be made by using expansions of K∗
φ whenever

possible. More generally, the minimal change of K to include both φ
and ψ (that is, K∗

φ∧ψ) ought to be the same as the expansion of K∗
φ

by ψ, so long as ψ does not contradict the beliefs inK∗
φ” (Gärdenfors

[10], p. 55).6

We will show below that (K*7) corresponds to our axiom K7 and (K*8) to
axiom K8.

6The expansion of K∗

φ
by ψ is

[
K∗

φ
∪ {ψ}

]PL
.
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The set of postulates (K*1) through (K*6) is called the basic set of postulates
for belief revision (Gärdenfors, [10] p. 55).The following proposition shows that
logic Lb characterizes this basic set.

Proposition 11 Logic Lb provides an axiomatic characterization of the set of
basic AGM postulates (K*1)-(K*6), in the sense that both (A) and (B) below
hold (recall that ΦB denotes the subset of Boolean formulas):

(A) Let K ⊆ ΦB be a consistent and deductively closed set and φ ∈ ΦB. If
K∗
φ ⊆ Φ

B satisfies AGM postulates (K*1)-(K*6) then there exist an Lb-model,
t1, t2 ∈ T and α ∈ Ω such that

(A.1) t1 ֌ t2
(A.2) K =

{
ψ ∈ ΦB : (α, t1) |= Bψ

}

(A.3) (α, t2) |= Iφ
(A.4) K∗

φ =
{
ψ ∈ ΦB : (α, t2) |= Bψ

}

(A.5) if φ is consistent then (β, t) |= φ for some β ∈ Ω and t ∈ T .

(B) Fix an Lb-model such that (1) for some t1, t2 ∈ T , α ∈ Ω and φ ∈ ΦB,
t1 ֌ t2 and (α, t2) |= Iφ and (2) if φ is not a contradiction, then (β, t) |=
φ, for some β ∈ Ω and t ∈ T .7 Define K =

{
ψ ∈ ΦB : (α, t1) |= Bψ

}
and

K∗
φ =

{
ψ ∈ ΦB : (α, t2) |= Bψ

}
. Then K∗

φ satisfies AGM postulates (K*1)-

(K*6). Furthermore, for every φ ∈ ΦB, there exists an Lb-model such that (1)
(α, t0) |= Iφ, for some α ∈ Ω and t0 ∈ T , and (2) if φ is not a contradiction
then (β, t) |= φ, for some β ∈ Ω and t ∈ T .

Proof. (A) First we prove that if K ⊆ ΦB is a consistent and deductively
closed set, φ ∈ ΦB and K∗

φ ⊆ ΦB satisfies AGM postulates (K*1)-(K*6) then
there is an Lb-model, t1, t2 ∈ T and α ∈ Ω such that (A.1)-(A.5) are satisfied.
Let MPL

B be the set of maximally consistent sets of formulas for a propositional
logic whose set of formulas is ΦB. For any F ⊆ ΦB let MF = {ω ∈M

PL
B : F ⊆

ω}. By Lindenbaum’s lemma, MF �= ∅ if and only if F is a consistent set, that
is, [F ]PL �= ΦB. To simplify the notation, for ψ ∈ ΦB we write Mψ rather than
M{ψ}.
Define the following belief revision frame: T = {t1, t2}, ֌ = {(t1, t2)}, Ω =
M
PL
B and, for every ω ∈ Ω,

Bt1(ω) = It1(ω) =MK

It2(ω) =

{
∅ if φ is a contradiction
Mφ otherwise

Bt2(ω) =






∅ if φ is a contradiction
Mφ ∩MK if φ is consistent and Mφ ∩MK �= ∅
MK∗

φ
if φ is consistent and Mφ ∩MK = ∅.

7 In an arbitrary model, if φ is not a contradiction, there is not guarantee that (β, t) |= φ

for some (β, t). However, as shown below, for every consistent Boolean formula, there exists
an Lb-model where the formula is true at some state-instant pair (β, t). Given a consistent
Boolean formula φ, let Mφ be such a model. Let M be an arbitrary Lb-model. By taking the
union of M and Mφ one can transform the former into a model that satisfies the hypothesis
that φ is true at some state-instant pair (β, t).
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First we show that this frame is an Lb-frame (see Definition 6).
The Qualitative Bayes Rule is clearly satisfied, since Bt1(ω) ∩ It2(ω) �= ∅ if

and only if Mφ ∩MK �= ∅, in which case Bt2(ω) =Mφ ∩MK = It2(ω)∩Bt1(ω).
The property that Bt(ω) ⊆ It(ω) (for every ω and t) is also satisfied: the

only case where, possibly, Bt(ω) �= It(ω) is when t = t2 and φ is a consistent
formula. In this case, there are two possibilities: (1) Mφ ∩MK �= ∅ and (2)
Mφ ∩MK = ∅. In case (1) Bt2(ω) = Mφ ∩MK ⊆ Mφ = It2(ω). In case (2)
Bt2(ω) =MK∗

φ
and It2(ω) =Mφ. Now, if ω

′ ∈MK∗

φ
then K∗

φ ⊆ ω
′ and, since by

AGM postulate (K*2), φ ∈ K∗
φ, it follows that φ ∈ ω

′, that is, ω′ ∈Mφ. Hence
MK∗

φ
⊆Mφ.

Finally, the property that, for every ω and t, Bt(ω) �= ∅ whenever It(ω) �= ∅
is also satisfied. If t = t1, trivially because Bt1(ω) = It1(ω). If t = t2, It2(ω) �= ∅
if and only if φ is a consistent formula; in this case either Bt2(ω) =Mφ∩MK , if
Mφ ∩MK �= ∅, or Bt2(ω) = MK∗

φ
, in which case by AGM postulate (K*5) K∗

φ

is a consistent set and therefore, by Lindenbaum’s lemma, MK∗

φ
�= ∅.

Now define the following model based on this frame: for every atomic propo-
sition q, for every ω ∈ Ω and for every t ∈ T , (ω, t) |= q if and only if q ∈ ω.
First we prove that, for every ψ ∈ ΦB,

∀t ∈ T, ⌈ψ⌉t =Mψ, that is, ∀ω ∈ Ω, (ω, t) |= ψ if and only if ψ ∈ ω. (1)

The proof is by induction on the complexity of ψ. If ψ = q, for some atomic
proposition q, then the statement is true by construction. Now suppose that the
statement is true of ψ1, ψ2 ∈ Φ

B; we want to show that it is true for ¬ψ1 and
for (ψ1 ∨ ψ2). By definition, (ω, t) |= ¬ψ1 if and only if (ω, t) � ψ1 if and only
if (by the induction hypothesis) ψ1 /∈ ω if and only if (by definition of MCS)
¬ψ1 ∈ ω. By definition, (ω, t) |= (ψ1 ∨ ψ2) if and only if either (ω, t) |= ψ1, in
which case, by the induction hypothesis, ψ1 ∈ ω, or (ω, t) |= ψ2, in which case,
by the induction hypothesis, ψ2 ∈ ω. By definition of MCS, (ψ1 ∨ ψ2) ∈ ω if
and only if either ψ1 ∈ ω or ψ2 ∈ ω.
Note also the following (see Theorem 2.20 in Chellas, [6], p. 57): ∀F ⊆ ΦB ,∀ψ ∈
ΦB,

ψ ∈ [F ]PL if and only if ψ ∈ ω, ∀ω ∈MF . (2)

Now, fix an arbitrary α ∈ Ω. We want to show that properties (A.1)-(A.5) are
satisfied.

(A.1): t1֌ t2 by construction.

(A.2): we need to show that K =
{
ψ ∈ ΦB : (α, t1) |= Bψ

}
. First we show that

K ⊆
{
ψ ∈ ΦB : (α, t1) |= Bψ

}
. Let ψ ∈ K. Then ψ ∈ ω for every ω ∈ MK ,

that is, MK ⊆ Mψ. Thus, since, by construction, Bt1(α) = MK and, by (1),
Mψ = ⌈ψ⌉t1 it follows that Bt1(α) ⊆ ⌈ψ⌉t1 , that is, (α, t1) |= Bψ. Next we show

that
{
ψ ∈ ΦB : (α, t1) |= Bψ

}
⊆ K. Let ψ ∈ ΦB be such that (α, t1) |= Bψ.

Then Bt1(α) ⊆ ⌈ψ⌉t1 . Since, by construction, Bt1(α) = MK , and, by (1),
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Mψ = ⌈ψ⌉t1 it follows that MK ⊆Mψ, that is, ψ ∈ ω for every ω ∈MK ; hence,

by (2), ψ ∈ [K]PL. By hypothesis, K is deductively closed, that is, K = [K]PL.
Hence ψ ∈ K.

(A.3): we need to show that (α, t2) |= Iφ. By (1) ⌈φ⌉t2 = Mφ. Since, by
construction, It2(α) =Mφ, it follows that (α, t2) |= Iφ.

(A.4): we need to show that K∗
φ =

{
ψ ∈ ΦB : (α, t2) |= Bψ

}
. There are several

cases to be considered.

(4.i) φ is a contradiction. Then, by AGM postulate (K*5), K∗
φ = Φ

B and, by
construction, Bt2(α) = ∅, so that (α, t2) |= Bψ for every formula ψ. Hence{
ψ ∈ ΦB : (α, t2) |= Bψ

}
= ΦB = K∗

φ.

(4.ii) φ is consistent and Mφ∩MK = ∅. In this case, by construction, Bt2(α) =
MK∗

φ
. If ψ ∈ K∗

φ then MK∗

φ
⊆ Mψ. By (1) Mψ = ⌈ψ⌉t2 . Thus Bt2(α) ⊆ ⌈ψ⌉t2 ,

that is, (α, t2) |= Bψ. Conversely, if (α, t2) |= Bψ then Bt2(α) ⊆ ⌈ψ⌉t2 , and,
since Bt2(α) = MK∗

φ
and, by (1), ⌈ψ⌉t2 = Mψ, it follows that MK∗

φ
⊆ Mψ, that

is, ψ ∈ ω for all ω ∈ MK∗

φ
, so that, by (2), ψ ∈

[
K∗
φ

]PL
. By AGM postulate

(K*1), K∗
φ =

[
K∗
φ

]PL
. Thus ψ ∈ K∗

φ.

(4.iii) φ is consistent and Mφ ∩MK �= ∅, in which case Bt2(α) = Mφ ∩MK .
First of all, note that Mφ ∩MK =MK∪{φ}. Secondly, it must be that ¬φ /∈ K
(if ¬φ ∈ K then ¬φ ∈ ω for every ω ∈ MK and therefore Mφ ∩MK = ∅).
Hence, by AGM postulates (K*3) and (K*4), K∗

φ = [K ∪ {φ}]PL. By (2),

for every Boolean formula ψ, ψ ∈ [K ∪ {φ}]PL if and only if ψ ∈ ω, for all
ω ∈ MK∪{φ}. Thus ψ ∈ K∗

φ = [K ∪ {φ}]PL if and only if ψ ∈ ω for all
ω ∈MK∪{φ} =Mφ ∩MK = Bt2(α). By (1), for every ω ∈ Ω, ψ ∈ ω if and only

if (ω, t2) |= ψ. Hence K
∗
φ =

{
ψ ∈ ΦB : (α, t2) |= Bψ

}
.

(A.5): we need to show that, if φ is consistent, then (β, t) |= φ for some β ∈ Ω
and t ∈ T . If φ is consistent, then, by Lindenbaum’s lemma, there exists a
β ∈MPL

B such that φ ∈ β. By (1), (β, t) |= φ for all t ∈ T .

(B) Fix an Lb-model such that (1) for some t1, t2 ∈ T , α ∈ Ω and φ ∈ ΦB,
t1 ֌ t2 and (α, t2) |= Iφ and (2) if φ is not a contradiction, then (β, t) |= φ,
for some β ∈ Ω and t ∈ T . Let K =

{
ψ ∈ ΦB : (α, t1) |= Bψ

}
and K∗

φ ={
ψ ∈ ΦB : (α, t2) |= Bψ

}
. We need to prove that AGM postulates (K*1)-(K*6)

are satisfied.

(K*1): we need to show thatK∗
φ is deductively closed, that is,K

∗
φ =

[
K∗
φ

]PL
.

If ψ ∈ K∗
φ then ψ ∈

[
K∗
φ

]PL
, because ψ → ψ is a tautology. Now let ψ ∈

[
K∗
φ

]PL
. Then there exist φ1, ..., φn ∈ K

∗
φ such that (φ1 ∧ ... ∧ φn) → ψ is a

tautology, hence a theorem of Lb. Then, by necessitation for B and Proposition
7, (α, t2) |= B ((φ1 ∧ ... ∧ φn)→ ψ). By definition of K∗

φ, since φ1, ..., φn ∈ K
∗
φ,

(α, t2) |= B (φ1 ∧ ... ∧ φn) . By axiom K for B and Proposition 7, (α, t2) |=
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B ((φ1 ∧ ... ∧ φn)→ ψ) ∧ B (φ1 ∧ ... ∧ φn) → Bψ. Thus (α, t2) |= Bψ, that is,
ψ ∈ K∗

φ.

(K*2): we need to show that φ ∈ K∗
φ, that is, (α, t2) |= Bφ. By Axiom A

and Proposition 7, (α, t2) |= Iφ → Bφ and by hypothesis (α, t2) |= Iφ. Thus
(α, t2) |= Bφ.

(K*3): we need to show that K∗
φ ⊆ [K ∪ {φ}]

PL. Let ψ ∈ K∗
φ, i.e. (α, t2) |=

Bψ. First of all, note that axiom NA is propositionally equivalent to ♦(Iφ ∧
Bψ)→ B(φ→ ψ). Thus, by Proposition 7, (α, t1) |= ♦(Iφ∧Bψ)→ B(φ→ ψ).
By hypothesis, t1 ֌ t2 and (α, t2) |= Iφ∧Bψ. Thus (α, t1) |= ♦(Iφ∧Bψ) and,
therefore, (α, t1) |= B(φ → ψ), that is (φ → ψ) ∈ K. Hence {φ, (φ→ ψ)} ⊆
K ∪ {φ} so that, since (φ ∧ (φ→ ψ))→ ψ is a tautology, ψ ∈ [K ∪ {φ}]PL.

(K*4): we need to show that if ¬φ /∈ K then [K ∪ {φ}]PL ⊆ K∗
φ. Suppose

that ¬φ /∈ K, that is, (α, t1) |= ¬B¬φ. First of all, note that axiom ND
is propositionally equivalent to ¬B¬φ → (Bψ → ©(Iφ → Bψ)). Thus, by
Proposition 7, (α, t1) |= ¬B¬φ→ (Bψ →©(Iφ→ Bψ)). Hence

(α, t1) |= Bψ →©(Iφ→ Bψ), for every Boolean formula ψ. (3)

Let χ ∈ [K ∪ {φ}]PL, that is, there exist φ1, ..., φn ∈ K ∪ {φ} such that
(φ1 ∧ ... ∧ φn)→ χ is a tautology. We want to show that χ ∈ K∗

φ, i.e. (α, t2) |=
Bχ. Since (φ1 ∧ ... ∧ φn)→ χ is a tautology, by necessitation for B and Propo-
sition 7, (α, t1) |= B ((φ1 ∧ ... ∧ φn)→ χ). If φi ∈ K for every i = 1, ..., n,
then (α, t1) |= B (φ1 ∧ ... ∧ φn) and therefore (using axiom K for B and Propo-
sition 7) (α, t1) |= Bχ. Thus, by (3), (α, t1) |= ©(Iφ → Bχ) so that, since
t1 ֌ t2, (α, t2) |= Iφ → Bχ. Since, by hypothesis, (α, t2) |= Iφ, it fol-
lows that (α, t2) |= Bχ, i.e. χ ∈ K∗

φ. If φi �∈ K, for some i = 1, ..., n
then we can assume (renumbering the formulas, if necessary) that φn �∈ K,
which implies (since φi ∈ K ∪ {φ} for all i = 1, ..., n) that φn = φ, and
φ1, ..., φn−1 ∈ K, so that (α, t1) |= B

(
φ1 ∧ ... ∧ φn−1

)
. Since, by hypoth-

esis,
(
φ1 ∧ ... ∧ φn−1 ∧ φ

)
→ χ is a tautology and is propositionally equiv-

alent to
(
φ1 ∧ ... ∧ φn−1

)
→ (φ→ χ), by necessitation for B and Proposi-

tion 7 (α, t1) |= B
((
φ1 ∧ ... ∧ φn−1

)
→ (φ→ χ)

)
. Thus (α, t1) |= B (φ→ χ)

(appealing, once again, to axiom K for B and Proposition 7). Hence, by
(3) (with ψ = (φ→ χ)), (α, t1) |= ©(Iφ → B (φ→ χ)). Since t1 ֌ t2,
(α, t2) |= Iφ → B (φ→ χ). By hypothesis, α |= Iφ and by (K*2) (proved
above), (α, t2) |= Bφ. Thus (α, t2) |= B (φ→ χ)∧Bφ. By axiom K and Propo-
sition 7, (α, t2) |= (B (φ→ χ) ∧Bφ)→ Bχ. Hence (α, t2) |= Bχ, i.e. χ ∈ K

∗
φ.

(K*5): we have to show that K∗
φ �= ΦB unless φ is a contradiction (that

is, ¬φ is a tautology). If φ is a contradiction, then ‖φ‖ = ∅ and therefore,
since, by hypothesis, (α, t2) |= Iφ, It2(α) = ∅. By definition of Lb-model,
Bt2(α) ⊆ It2(α). Thus Bt2(α) = ∅ so that (α, t2) |= Bψ for every formula
ψ. Hence K∗

φ = ΦB. If φ is not a contradiction, then by hypothesis, (β, t) |=
φ, for some (β, t). Since φ is Boolean, by Proposition 5, (β, t2) |= φ. Thus
(α, t2) |= ¬A¬φ. By hypothesis, (α, t2) |= Iφ. Thus (α, t2) |= Iφ ∧ ¬A¬φ. By
axiom WC and Proposition 7, (α, t2) |= (Iφ ∧ ¬A¬φ)→ (Bψ → ¬B¬ψ). Thus
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(α, t2) |= Bψ → ¬B¬ψ for every formula ψ, that is, if ψ ∈ K∗
φ then ¬ψ /∈ K∗

φ.

Since, by (K*2), φ ∈ K∗
φ, it follows that ¬φ /∈ K

∗
φ and therefore K∗

φ �= Φ
B.

(K*6): we have to show that if φ ↔ ψ is a tautology then K∗
φ = K∗

ψ. If
φ ↔ ψ is a tautology, then ‖φ↔ ψ‖ = Ω × T , so that ⌈φ⌉t2 = ⌈ψ⌉t2 . Thus
It2(α) = ⌈φ⌉t2 if and only if It2(α) = ⌈ψ⌉t2 , that is, (α, t2) |= Iφ if and only if

(α, t2) |= Iψ. Hence, by definition, K∗
φ = K

∗
ψ.

8

It remains to show that, for every φ ∈ ΦB, there exists an Lb-model such that
(1) (α, t0) |= Iφ, for some α ∈ Ω and t0 ∈ T and (2) if φ is not a contradiction
then (β, t) |= φ, for some β ∈ Ω and t ∈ T . Fix an arbitrary φ ∈ ΦB. Define
the following belief revision frame: T = {t0}, ֌= ∅, Ω = MPL

B and, for every
ω ∈ Ω, Bt0(ω) = It0(ω) = Mφ. This is an Lb frame, since the properties of
Definition 6 are trivially satisfied. Define the following model based on this
frame: for every atomic proposition q and for every ω ∈ Ω, (ω, t0) |= q if and
only if q ∈ ω. As shown in part (A) (see (1)), ⌈φ⌉t0 = Mφ. Fix an arbitrary
α ∈ Ω. By construction, It0(α) = Mφ. Thus (α, t0) |= Iφ. Furthermore, if φ
is not a contradiction, then, by Lindenbaum’s Lemma, Mφ �= ∅ so that there
exists a β ∈MPL

B with φ ∈ β. Thus, by (1), (β, t0) |= φ.

The following proposition shows that logic LAGM characterizes the full set
of AGM postulates.

Proposition 12 Logic LAGM provides an axiomatic characterization of the full
set of AGM postulates (K*1)-(K*8), in the sense that both (A) and (B) below
hold:

(A) Let K ⊆ ΦB be a consistent and deductively closed set and φ,ψ ∈ ΦB.
If K∗

φ,K
∗
φ∧ψ ⊆ Φ

B satisfy AGM postulates (K*1)-(K*8) then there is an LAGM-
model, t1, t2, t3 ∈ T and α ∈ Ω such that

(A.1) t1 ֌ t2
(A.2) K =

{
χ ∈ ΦB : (α, t1) |= Bχ

}

(A.3) (α, t2) |= Iφ
(A.4) K∗

φ =
{
χ ∈ ΦB : (α, t2) |= Bχ

}

(A.5) if φ is consistent then (β, t) |= φ for some β ∈ Ω and t ∈ T
(A.6) t1 ֌ t3
(A.7) (α, t3) |= I(φ ∧ ψ)
(A.8) K∗

φ∧ψ =
{
χ ∈ ΦB : (α, t3) |= Bχ

}

(A.9) if (φ ∧ ψ) is consistent then (γ, t′) |= (φ ∧ ψ) for some γ ∈ Ω and
t′ ∈ T .

(B) Fix an LAGM-model such that (1) for some t1, t2, t3 ∈ T , α ∈ Ω and
φ, ψ ∈ ΦB, t1 ֌ t2, t1 ֌ t3, (α, t2) |= Iφ and (α, t3) |= I(φ ∧ ψ), (2) if φ
is not a contradiction then (β, t) |= φ, for some β ∈ Ω and t ∈ T and (3) if
(φ ∧ ψ) is not a contradiction then (γ, t′) |= (φ ∧ ψ), for some γ ∈ Ω and t′ ∈
T . Define K =

{
χ ∈ ΦB : (α, t1) |= Bχ

}
, K∗

φ =
{
χ ∈ ΦB : (α, t2) |= Bχ

}
and

8For every Boolean formula χ, K∗
χ is the set of Boolean formulas believed at (α, t2) if

(α, t2) |= Iχ.
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K∗
φ∧ψ =

{
χ ∈ ΦB : (α, t3) |= Bχ

}
. Then K∗

φ and K∗
φ∧ψ satisfy AGM postulates

(K*1)-(K*8). Furthermore, for every φ, ψ ∈ ΦB, there exists an LAGM-model
such that, for some α ∈ Ω and t2, t3 ∈ T , (1) (α, t2) |= Iφ and (α, t3) |= I(φ∧ψ),
(2) if φ is not a contradiction then (β, t) |= φ, for some β ∈ Ω and t ∈ T and
(3) if (φ ∧ ψ) is not a contradiction then (γ, t′) |= (φ ∧ ψ), for some γ ∈ Ω and
t′ ∈ T .

Proof. (A) First we prove that if K ⊆ ΦB is consistent and deductively
closed, φ, ψ ∈ ΦB and K∗

φ,K
∗
φ∧ψ ⊆ ΦB satisfy AGM postulates (K*1)-(K*8)

then there is an LAGM -model, t1, t2, t3 ∈ T and α ∈ Ω such that (A.1)-(A.9)
are satisfied. We proceed as in the proof of Proposition 11. Thus MPL

B denotes
the set of maximally consistent sets of formulas for a propositional logic whose
set of formulas is ΦB and, for F ⊆ ΦB , let MF = {ω ∈M

PL
B : F ⊆ ω}.

Define the following belief revision frame: T = {t1, t2, t3},֌ = {(t1, t2), (t1, t3)},
Ω =MPL

B and, for every ω ∈ Ω,

Bt1(ω) = It1(ω) =MK

It2(ω) =

{
∅ if φ is a contradiction
Mφ otherwise

Bt2(ω) =






∅ if φ is a contradiction
Mφ ∩MK if φ is consistent and Mφ ∩MK �= ∅
MK∗

φ
if φ is consistent and Mφ ∩MK = ∅

It3(ω) =

{
∅ if φ ∧ ψ is a contradiction
Mφ∧ψ otherwise

Bt3(ω) =






∅ if φ ∧ ψ is a contradiction
Mφ∧ψ ∩MK if φ ∧ ψ is consistent and Mφ∧ψ ∩MK �= ∅
MK∗

φ∧ψ
if φ ∧ ψ is consistent and Mφ∧ψ ∩MK = ∅.

First we show that this frame is an LAGM -frame (see Definition 8). Note that
Bt1 , It1 , Bt2 and It2 are the same as in the Lb-frame defined in the proof of
Proposition 11. Thus we only need to focus on the additional elements.

The Qualitative Bayes Rule is satisfied, since Bt1(ω)∩It3(ω) �= ∅ if and only
if MK ∩Mφ∧ψ �= ∅, in which case Bt3(ω) =MK ∩Mφ∧ψ = Bt1(ω) ∩ It3(ω).

The property that, for every ω and t, Bt(ω) ⊆ It(ω) is also satisfied. The
only case left to examine is the case where t = t3 and φ ∧ ψ is a consistent
formula. If Mφ∧ψ ∩MK �= ∅, then Bt3(ω) =Mφ∧ψ ∩MK ⊆ Mφ∧ψ = It3(ω). If
Mφ∧ψ∩MK = ∅ then Bt3(ω) =MK∗

φ∧ψ
and It3(ω) =Mφ∧ψ. Now, if ω ∈MK∗

φ∧ψ

then K∗
φ∧ψ ⊆ ω and, since by AGM postulate (K*2), φ ∧ ψ ∈ K∗

φ∧ψ, it follows
that φ ∧ ψ ∈ ω, that is, ω ∈Mφ∧ψ. Hence MK∗

φ∧ψ
⊆Mφ∧ψ.

The property that, for every ω and t, Bt(ω) �= ∅ whenever It(ω) �= ∅ is
also satisfied. The only case left to examine is the case where t = t3. Now,
It3(ω) �= ∅ if and only if φ ∧ ψ is a consistent formula; in this case either
Bt3(ω) =Mφ∧ψ∩MK , ifMφ∧ψ∩MK �= ∅, or Bt3(ω) =MK∗

φ∧ψ
, in which case, by

AGM postulate (K*5), K∗
φ∧ψ is a consistent set and therefore, by Lindenbaum’s

lemma, MK∗

φ∧ψ
�= ∅.
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Next we have to show that the LAGM -specific property CAB is satisfied,
namely that if t1, t, t

′ and ω are such that t1 ֌ t, t1 ֌ t′, It′(ω) ⊆ It(ω) and
It′(ω) ∩ Bt(ω) �= ∅ then Bt′(ω) = It′(ω) ∩ Bt(ω).

We start with t = t3 and t′ = t2. In this case the joint condition It2(ω) ⊆
It3(ω) and It2(ω) ∩ Bt3(ω) �= ∅ holds only if (φ ∧ ψ) is consistent (implying
that φ is consistent) and Mφ ⊆ Mφ∧ψ, which implies that Mφ∧ψ = Mφ. This,
in turn, implies that (φ ∧ ψ) ↔ φ is a tautology, so that, by AGM postulate
(K*6), K∗

φ∧ψ = K
∗
φ. Then

Bt2(ω) =

{
Mφ ∩MK if Mφ ∩MK �= ∅
MK∗

φ
if Mφ ∩MK = ∅

and

Bt3(ω) =

{
Mφ∧ψ ∩MK =Mφ ∩MK if Mφ ∩MK �= ∅
MK∗

φ∧ψ
=MK∗

φ
if Mφ ∩MK = ∅.

Thus Bt2(ω) = Bt3(ω). Hence, since Bt2(ω) ⊆ It2(ω) (proved above for all t), it
follows that Bt2(ω) = It2(ω) ∩ Bt3(ω).

Next we consider the case where t = t2 and t′ = t3. In this case we do have
that It3(ω) ⊆ It2(ω) (in fact, It3(ω) �= ∅ if and only if φ ∧ ψ is consistent, in
which case φ must be consistent and then It2(ω) =Mφ and It3(ω) =Mφ∧ψ and
Mφ∧ψ ⊆ Mφ). Now, It3(ω) ∩ Bt2(ω) �= ∅ only if φ ∧ ψ is consistent in which
case It3(ω) =Mφ∧ψ. Assume, therefore, that φ∧ψ is consistent (which implies
that φ is consistent). We need to consider several cases.

(i) Mφ∧ψ ∩MK �= ∅. Then, since Mφ∧ψ ⊆ Mφ, Mφ ∩MK �= ∅; it follows, by
construction, that Bt2(ω) =Mφ ∩MK and Bt3(ω) =Mφ∧ψ ∩MK so that (since
It3(ω) =Mφ∧ψ and Mφ∧ψ ⊆Mφ) Bt3(ω) = It3(ω) ∩ Bt2(ω).

(ii) Mφ∧ψ ∩MK = ∅ but Mφ ∩ MK �= ∅. In this case Bt2(ω) = Mφ ∩ MK

and thus It3(ω) ∩ Bt2(ω) = Mφ∧ψ ∩MK = ∅ and therefore there is nothing
to prove, since the requirement that Bt3(ω) = It3(ω) ∩ Bt2(ω) only holds if
It3(ω) ∩ Bt2(ω) �= ∅.

(iii) Mφ ∩MK = ∅, which implies that Mφ∧ψ ∩MK = ∅. In this case Bt2(ω) =
MK∗

φ
and Bt3(ω) = MK∗

φ∧ψ
, so that It3(ω) ∩ Bt2(ω) �= ∅ if and only if Mφ∧ψ ∩

MK∗

φ
�= ∅. Assume this. Then it must be that ¬ψ /∈ K∗

φ (if it were the
case that ¬ψ ∈ K∗

φ, then we would have that ¬ψ ∈ ω for every ω ∈ MK∗

φ
,

contradicting the fact that Mφ∧ψ ∩ MK∗

φ
�= ∅). Thus, by AGM postulates

(K*7) and (K*8), K∗
φ∧ψ = [K∗

φ ∪ {ψ}]
PL. We need to show that Bt3(ω) =

It3(ω)∩Bt2(ω), that is, thatMK∗

φ∧ψ
=Mφ∧ψ∩MK∗

φ
. Let ω ∈MK∗

φ∧ψ
. Then ω ⊇

K∗
φ∧ψ = [K

∗
φ ∪ {ψ}]

PL ⊇ K∗
φ. Thus ω ∈MK∗

φ
. Furthermore, by AGM postulate

(K*2), (φ∧ψ) ∈ K∗
φ∧ψ, so that MK∗

φ∧ψ
⊆Mφ∧ψ. Thus MK∗

φ∧ψ
⊆Mφ∧ψ ∩MK∗

φ
.

Next we prove that Mφ∧ψ ∩MK∗

φ
⊆ MK∗

φ∧ψ
. Since, by AGM postulate (K*2),

φ ∈ K∗
φ, [K

∗
φ ∪ {ψ}]

PL = [K∗
φ ∪ {φ ∧ ψ}]

PL. Thus, if ω ∈ Mφ∧ψ ∩MK∗

φ
then

ω ⊇ [K∗
φ ∪ {φ ∧ ψ}]

PL = [K∗
φ ∪ {ψ}]

PL = K∗
φ∧ψ, that is, ω ∈MK∗

φ∧ψ
.

Now define the following model based on this frame: for every atomic propo-
sition q, for every ω ∈ Ω and for every t ∈ T , (ω, t) |= q if and only if q ∈ ω. As
in the proof of Proposition 11 (see (1)) it can be shown that, ∀χ ∈ ΦB,
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∀t ∈ T, ⌈χ⌉t =Mχ, that is, ∀ω ∈ Ω, (ω, t) |= χ if and only if χ ∈ ω. (4)

Recall also (see (2)) that, ∀F ⊆ ΦB,∀χ ∈ ΦB ,

χ ∈ [F ]PL if and only if χ ∈ ω, ∀ω ∈MF . (5)

We need to show that properties (A.1)-(A.9) are satisfied. The proof of (A.1)-
(A.5) is identical to the proof given for Proposition 11 (since the current frame
restricted to {t1, t2} coincides with the frame considered there). (A.6) is true
by construction. Thus we only need to prove (A.7)-(A.9).
(A.7): If (φ ∧ ψ) is a contradiction then ⌈φ ∧ ψ⌉t3 = ∅ and, by construction,
It3(α) = ∅. If (φ ∧ ψ) is consistent, by construction It3(α) = Mφ∧ψ and
by (4) ⌈φ ∧ ψ⌉t3 = Mφ∧ψ. Thus, in either case, It3(α) = ⌈φ ∧ ψ⌉t3 , that is,
(α, t3) |= I(φ ∧ ψ).

(A.8): we need to show that K∗
φ∧ψ =

{
χ ∈ ΦB : (α, t3) |= Bχ

}
. There are

several cases to be considered.

(8.i) (φ ∧ ψ) is a contradiction. Then, by AGM postulate (K*5), K∗
φ∧ψ = Φ

B

and, by construction, Bt3(α) = ∅, so that (α, t3) |= Bχ for every formula χ.
Hence

{
χ ∈ ΦB : (α, t3) |= Bχ

}
= ΦB = K∗

φ∧ψ.

(8.ii) (φ ∧ ψ) is consistent and Mφ∧ψ ∩MK = ∅. In this case Bt3(α) =MK∗

φ∧ψ
.

If χ ∈ K∗
φ∧ψ then MK∗

φ∧ψ
⊆Mχ and, by (4), Mχ = ⌈χ⌉t3 . Thus Bt3(α) ⊆ ⌈χ⌉t3 ,

that is, (α, t3) |= Bχ. Conversely, if (α, t3) |= Bχ then Bt3(α) ⊆ ⌈χ⌉t3 and,
since Bt3(α) = MK∗

φ∧ψ
and, by (4), ⌈χ⌉t3 = Mχ, it follows that MK∗

φ∧ψ
⊆ Mχ,

that is, χ ∈ ω for all ω ∈ MK∗

φ∧ψ
. It follows from (5) that χ ∈

[
K∗
φ∧ψ

]PL
. By

AGM postulate (K*1), K∗
φ∧ψ =

[
K∗
φ∧ψ

]PL
. Thus χ ∈ K∗

φ∧ψ.

(8.iii) (φ∧ψ) is consistent and Mφ∧ψ ∩MK �= ∅. In this case Bt3(α) =Mφ∧ψ ∩
MK . First of all, it must be that ¬φ /∈ K (if ¬φ ∈ K then ¬φ ∈ ω for every
ω ∈MK , which would implyMφ∧ψ∩MK = ∅, since φ ∈ ω for every ω ∈Mφ∧ψ).
Hence, by AGM postulates (K*3) and (K*4).

K∗
φ = [K ∪ {φ}]PL . (6)

Secondly, it must be that

¬ψ /∈ [K ∪ {φ}]PL . (7)

In fact, if ¬ψ ∈ [K ∪ {φ}]PL then, since [K ∪ {φ}]PL ⊆ [K ∪ {φ ∧ ψ}]PL, ¬ψ ∈
[K ∪ {φ ∧ ψ}]PL which, by (5), implies that ¬ψ ∈ ω for every ω ∈ MK∪{φ∧ψ}.
Since ψ ∈ ω, for every ω ∈ MK∪{φ∧ψ}, this would imply that MK∪{φ∧ψ} = ∅;
however, since

MK∪{φ∧ψ} =Mφ∧ψ ∩MK (8)
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this contradicts the hypothesis that Mφ∧ψ ∩MK �= ∅.

It follows from (6) and (7) that ¬ψ /∈ K∗
φ. Hence by AGM postulates (K*7) and

(K*8),

K∗
φ∧ψ =

[
K∗
φ ∪ {ψ}

]PL
. (9)

Next we note that

[K ∪ {φ ∧ ψ}]PL =
[
[K ∪ {φ}]PL ∪ {ψ}

]PL
. (10)

In fact, since φ→ (ψ → (φ ∧ ψ)) is a tautology, (ψ → (φ ∧ ψ)) ∈ [K ∪ {φ}]PL.

Thus (φ ∧ ψ) ∈
[
[K ∪ {φ}]

PL ∪ {ψ}
]PL

. Hence [K ∪ {φ ∧ ψ}]PL ⊆
[
[K ∪ {φ}]PL ∪ {ψ}

]PL
. To prove the converse, first note that, since φ ∈

[K ∪ {φ ∧ ψ}]PL, [K ∪ {φ}]PL ⊆ [K ∪ {φ ∧ ψ}]PL. Hence, since ψ ∈ [K ∪ {φ ∧ ψ}]PL,

it follows that
[
[K ∪ {φ}]PL ∪ {ψ}

]PL
⊆ [K ∪ {φ ∧ ψ}]PL.

By (6),
[
[K ∪ {φ}]PL ∪ {ψ}

]PL
=
[
K∗
φ ∪ {ψ}

]PL
and, by (9),

[
K∗
φ ∪ {ψ}

]PL
=

K∗
φ∧ψ. Thus, by (10),

[K ∪ {φ ∧ ψ}]PL = K∗
φ∧ψ. (11)

By (5) for every χ ∈ ΦB, χ ∈ [K ∪ {φ ∧ ψ}]PL if and only if χ ∈ ω, for every
ω ∈ MK∪{φ∧ψ}. It follows from this, (8) and (11) that, for every χ ∈ ΦB,
χ ∈ K∗

φ∧ψ if and only if χ ∈ ω, for every ω ∈ Mφ∧ψ ∩MK = Bt3(α). Since, by

(4), for every χ ∈ ΦB and ω ∈ Ω, χ ∈ ω if and only if (ω, t3) |= χ, it follows that,
for every χ ∈ ΦB, χ ∈ K∗

φ∧ψ if and only if, for every ω ∈ Bt3(α), (ω, t3) |= χ,
that is, if and only if (α, t3) |= Bχ.

(A.9): we need to show that, if (φ ∧ ψ) is consistent, then (γ, t′) |= (φ ∧ ψ) for
some γ ∈ Ω and t′ ∈ T . If (φ ∧ ψ) is consistent, then by Lindenbaum’s lemma,
there exists a γ ∈ MPL

B such that (φ ∧ ψ) ∈ β. By (4), (γ, t′) |= φ ∧ ψ for all
t′ ∈ T .

(B) Fix an LAGM -model such that (1) for some t1, t2, t3 ∈ T , α ∈ Ω and
φ, ψ ∈ ΦB, t1 ֌ t2, t1 ֌ t3, (α, t2) |= Iφ and (α, t3) |= I(φ ∧ ψ), (2) if φ
is not a contradiction then (β, t) |= φ, for some β ∈ Ω and t ∈ T and (3)
if (φ ∧ ψ) is not a contradiction then (γ, t′) |= (φ ∧ ψ), for some γ ∈ Ω and
t′ ∈ T . Define K =

{
χ ∈ ΦB : (α, t1) |= Bχ

}
, K∗

φ =
{
χ ∈ ΦB : (α, t2) |= Bχ

}

and K∗
φ∧ψ =

{
χ ∈ ΦB : (α, t3) |= Bχ

}
.We need to show that K∗

φ and K∗
φ∧ψ

satisfy AGM postulates (K*1)-(K*8).The proof that AGM postulates (K*1)-
(K*6) are satisfied is the same as in Proposition 11 (every LAGM -model is an
Lb-model). Thus we shall only prove that AGM postulates (K*7) and (K*8)
are satisfied.
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First we show that (K*7) is satisfied, that is, that K∗
φ∧ψ ⊆ [K∗

φ ∪ {ψ}]
PL.

Fix an arbitrary χ ∈ K∗
φ∧ψ, that is, (α, t3) |= Bχ. By hypothesis, (α, t3) |=

I(φ ∧ ψ). Thus (α, t3) |= I(φ ∧ ψ) ∧ Bχ and, since t1 ֌ t3, (α, t1) |= ♦(I(φ ∧
ψ) ∧ Bχ). By axiom K7 and Proposition 9, (α, t1) |= ♦(I(φ ∧ ψ) ∧ Bχ) →
©(Iφ → B ((φ ∧ ψ)→ χ)). Hence (α, t1) |= ©(Iφ → B ((φ ∧ ψ)→ χ)), from
which it follows, since t1 ֌ t2, that (α, t2) |= Iφ → B ((φ ∧ ψ)→ χ). By
hypothesis, (α, t2) |= Iφ. Hence (α, t2) |= B (φ→ (ψ → χ)) [since (φ ∧ ψ) → χ
is tautologically equivalent to φ → (ψ → χ)]. By axiom A and Proposition 9,
(α, t2) |= Iφ → Bφ and by hypothesis (α, t2) |= Iφ. Thus (α, t2) |= Bφ. By
axiom K and Proposition 9, (α, t2) |= (B (φ→ (ψ → χ)) ∧ Bφ) → B(ψ → χ).
Thus (α, t2) |= B(ψ → χ), that is, (ψ → χ) ∈ K∗

φ. Hence χ ∈ [K
∗
φ ∪ {ψ}]

PL.

Next we prove that (K*8) is satisfied, that is, that if ¬ψ /∈ K∗
φ then [K∗

φ ∪

{ψ}]PL ⊆ K∗
φ∧ψ. Fix an arbitrary χ ∈ [K∗

φ∪{ψ}]
PL.Then there exist φ1, ..., φn ∈

K∗
φ ∪ {ψ} such that (φ1 ∧ ... ∧ φn) → χ is a tautology. If φi ∈ K

∗
φ for every

i = 1, ..., n then, since by AGM postulate (K*1) K∗
φ is deductively closed (that

is, K∗
φ = [K∗

φ]
PL), χ ∈ K∗

φ and thus (ψ → χ) ∈ K∗
φ (since χ → (ψ → χ) is a

tautology). If φi /∈ K
∗
φ for some i then we can assume (renumbering the for-

mulas, if necessary) that φn /∈ K
∗
φ, from which it follows (since φi ∈ K

∗
φ ∪ {ψ}

for all i = 1, ..., n) that φn = ψ. Since, by hypothesis, (φ1 ∧ ... ∧ φn) → χ is
a tautology and it is tautologically equivalent to (φ1 ∧ ... ∧ φn−1) → (φn → χ)
and φn = ψ, it follows that (ψ → χ) ∈ [K∗

φ]
PL = K∗

φ. Thus

(ψ → χ) ∈ K∗
φ, that is, (α, t2) |= B(ψ → χ). (12)

By hypothesis, ¬ψ /∈ K∗
φ, that is, (α, t2) |= ¬B¬ψ. By axiom A and Proposition

9, (α, t2) |= Iφ→ Bφ and by hypothesis (α, t2) |= Iφ. Thus (α, t2) |= Bφ and,
therefore, (α, t2) |= Bφ ∧ ¬B¬ψ. By Lemma 10 and Proposition 9, (α, t2) |=
(Bφ ∧ ¬B¬ψ)→ ¬B¬(φ ∧ ψ). Thus

(α, t2) |= ¬B¬(φ ∧ ψ). (13)

By hypothesis, (α, t2) |= Iφ. This, together with (12) and (13) yields (α, t2) |=
Iφ∧¬B¬(φ∧ψ)∧B(ψ → χ). Hence, since t1֌ t2, (α, t1) |= ♦(Iφ∧¬B¬(φ∧
ψ) ∧ B(ψ → χ)). By axiom K8 and Proposition 9, (α, t1) |= ♦(Iφ ∧ ¬B¬(φ ∧
ψ)∧B(ψ → χ))→©(I(φ∧ψ)→ Bχ). Thus (α, t1) |=©(I(φ∧ψ)→ Bχ) from
which it follows, since t1 ֌ t3, that (α, t3) |= I(φ ∧ ψ) → Bχ. By hypothesis,
(α, t3) |= I(φ ∧ ψ). Hence (α, t3) |= Bχ, that is, χ ∈ K

∗
φ∧ψ.

It remains to show that for every φ, ψ ∈ ΦB , there exists an LAGM -model
such that, for some α ∈ Ω and t2, t3 ∈ T , (1) (α, t2) |= Iφ and (α, t3) |= I(φ∧ψ),
(2) if φ is not a contradiction then (β, t) |= φ, for some β ∈ Ω and t ∈ T and
(3) if (φ ∧ ψ) is not a contradiction then (γ, t′) |= (φ ∧ ψ), for some γ ∈ Ω and
t′ ∈ T . Fix arbitrary φ,ψ ∈ ΦB. Define the following belief revision frame:
T = {t2, t3}, ֌= ∅, Ω = M

PL
B and, for every ω ∈ Ω, Bt2(ω) = It2(ω) = Mφ

and Bt3(ω) = It3(ω) = Mφ∧ψ. This is an LAGM frame, since the properties
of Definition 8 are trivially satisfied. Define the following model based on this
frame: for every atomic proposition q, for every ω ∈ Ω and t ∈ T , (ω, t) |= q
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if and only if q ∈ ω. Fix an arbitrary α ∈ Ω. By (4), ⌈φ⌉t2 = Mφ and
⌈φ⌉t3 = Mφ∧ψ. Thus (α, t2) |= Iφ and (α, t3) |= I(φ ∧ ψ). Furthermore, if φ
is not a contradiction, then, by Lindenbaum’s Lemma, Mφ �= ∅ so that there
exists a β ∈MPL

B with φ ∈ β. Thus, by (4), (β, t2) |= φ. Similarly, if (φ ∧ ψ) is
not a contradiction, then, by Lindenbaum’s Lemma, Mφ∧ψ �= ∅ so that there
exists a γ ∈MPL

B with (φ ∧ ψ) ∈ γ. Thus, by (4), (γ, t3) |= φ ∧ ψ.

For lack of a better expression, we ha referred to the results of Propositions
11 and 12 as “axiomatic characterizations”. As pointed out by a reviewer, this
expression is not entirely appropriate.9 Perhaps alternative expressions could
be “axiomatic representation” or “axiomatic counterpart”.

5 Related literature

Some of the ideas contained in this paper (in particular the modeling of infor-
mation by means of a non-normal modal operator) were first put forward in
[5]. The framework in that paper was different, however, since it was not based
on branching-time structures and only two dates were considered with two as-
sociated belief operators, B0 (representing initial beliefs) and B1 (representing
revised beliefs). The main contribution of that paper was a soundness and com-
pleteness result for the proposed logic with respect to the class of frames that
satisfy the Qualitative Bayes Rule.

The interaction of a belief operator and a next-time operator is briefly dis-
cussed by Kraus and Lehmann [14]. They propose three “plausible” axioms and
state that “an open problem is to find a natural family of models for which
the systems considered are complete”. The logic they consider contains also a
knowledge operator K with standard interaction properties between knowledge
and beliefs (e.g. Bφ → KBφ: if the agent believes φ then he knows that he
believes φ). The interaction of knowledge and belief over time is further studied
in Battigalli and Bonanno [2], where, instead of introducing a temporal modal-
ity, they define a different belief and knowledge modality for each instant t:
Btφ reads “the individual believes φ at time t”. Within this framework they
provide a characterization of a property similar to the Qualitative Bayes Rule
in terms of the axiom Btφ ↔ BtBt+1φ. For a discussion of this axiom and its
relationship to the Qualitative Bayes Rule see [5].

An approach related to the one suggested in this paper, but carried out
in the situation calculus (extended to include a belief operator), can be found
in Shapiro et al [21]. The authors discuss a variety of topics, including belief
revision, belief update and iterated belief change.

Instead of temporal logic, a number of authors have used dynamic modal
logic to model belief revision (see Fuhrmann [9], de Rijke [18], Segerberg [19],
[20], van Ditmarsch [7], [8]). This approach is known as dynamic doxastic logic.
Despite some differences in the proposed logics, the common idea is to think

9According to the reviewer, the expression “axiomatic characterization” is typically used
to refer to a result that allows one to say “whatever is valid in this formal system can be
derived from this finite list of principles”.
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of revision as a dynamic action. Besides the standard belief operator B, these
authors introduce, for every (Boolean) formula φ, a revision operator [∗φ] with
the intended interpretation of [∗φ]χ as “after performing the action of revising
by φ the individual believes that χ” (some authors also discuss the expansion
operator [+φ] and the contraction operator [−φ]). These logics are considerably
more complex than ours: besides requiring the extra apparatus of dynamic logic,
they involves an infinite number of modal operators (one for each formula φ),
while our logic uses only three operators.

A modal logic analysis of belief revision was recently proposed by Board
[3]. His approach also uses an infinite number of modal operators: for every
formula φ, an operator Bφ is introduced, representing the hypothetical beliefs
of the individual in the case where she learns that φ. Thus the interpretation of
Bφψ is “upon learning that φ, the individual believes that ψ”. On the semantic
side Board considers a set of states and a collection of binary relations, one
for each state, representing the plausibility ordering of the individual at that
state. The truth condition for the formula Bφψ at a state expresses the idea
that the individual believes that ψ on learning that φ if and only if ψ is true
in all the most plausible worlds in which φ is true. The author gives a list of
axioms which is sound and complete with respect to the semantics. The infinite
collection of belief operators in Board’s framework is what makes it possible for
him to compare revisions based on different hypothetical pieces of information.
Time does not enter his analysis. Instead we use an information operator to
model the information actually received by the individual at any instant and the
comparison of revisions based on different pieces of information is made possible
by the branching-time structure and the associated temporal operator.

For further discussion of literature that is somewhat related to the general
approach proposed this paper, the reader is referred to [5].

6 Conclusion

We proposed a temporal logic where information and beliefs are modeled explic-
itly by means of two modal operators I and B, respectively. A branching-time
structure with the associated next-time operator makes it possible to compare
different belief revisions following the receipt of different pieces of information.
The proposed logic provides an axiomatic system that corresponds to the AGM
postulates for belief revision.

One of the advantages of modeling belief revision in modal logic is that
properties of beliefs can be stated in a clear and transparent way by means of
syntactic axioms. Another advantage of the approach proposed in this paper is
that it offers a uniform treatment of static and dynamic beliefs, thus providing
a unified framework both. Static beliefs would correspond to the case where
the set of instants T is a singleton. All the properties of beliefs studied in the
static approach (see Hintikka [12]), such as consistency (Bφ→ ¬B¬φ), positive
introspection (Bφ → BBφ) and negative introspection (¬Bφ → B¬Bφ), can
be added to our list of axioms to provide stronger logics, which we intend to
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study in future work.
It is also worth noting that the branching-time structure considered here

provides a natural framework for studying iterated belief revision, a topic that
has received considerable attention in recent years (see, for example, Nayak et al
[17]). Since the framework allows for a sequence of revisions based on a sequence
of pieces of information, an interesting topic for future research is weather the
principles for iterated revision that have been proposed in the literature can be
translated into syntactic axioms.

A Appendix

Proof of Proposition 4. The proof that L0 is sound with respect to the class
of temporal belief revision frames is along the usual lines (see [4] or [6]). We
need to show that (1) the rules of inference are validity preserving and (2) the
axioms of L0 are valid in an arbitrary temporal belief revision frame. The proof
of (1) is entirely standard and is omitted. The proof of validity of axiom K for
©,©−1 and A and for the temporal axioms (O1) and (O2) is also standard and
is omitted.

Validity of the backward uniqueness axiom (BU) is an immediate conse-
quence of the fact that in a belief revision frame every instant t has at most
a unique immediate predecessor: if (ω, t2) |= ♦

−1φ then there exists a t1 such
that t1֌ t2 and (ω, t1) |= φ. Since, for every t ∈ T , t֌ t2 if and only if t = t1,
it follows that (ω, t2) |=©−1φ.

Validity of the S5 axioms for A is also straightforward. Suppose that (α, t) |=
Aφ. Then (ω, t) |= φ for every ω ∈ Ω, thus in particular for ω = α. Similarly,
if (α, t) |= ¬Aφ then there exists a β ∈ Ω such that (β, t) |= ¬φ. Hence
(ω, t) |= ¬Aφ for every ω ∈ Ω and therefore (α, t) |= A¬Aφ.

The proof that the inclusion axiom for B (InclB) is valid is straightforward
and is omitted.

Validity of axiom I1: Iφ ∧ Iψ → A(φ↔ ψ). Suppose that (α, t) |= Iφ ∧ Iψ.
Then It(α) = ⌈φ⌉t and It(α) = ⌈ψ⌉t . Thus ⌈φ⌉t = ⌈ψ⌉t and hence ⌈φ↔ ψ⌉t =
Ω, yielding (α, t) |= A(φ↔ ψ).

Validity of axiom I2: A(φ↔ ψ)→ (Iφ↔ Iψ). Suppose that (α, t) |= A(φ↔
ψ). Then ⌈φ↔ ψ⌉t = Ω and, therefore, ⌈φ⌉t = ⌈ψ⌉t. Thus, (α, t) |= Iφ if and
only if It(α) = ⌈φ⌉t, if and only if It(α) = ⌈ψ⌉t, if and only if (α, t) |= Iψ.
Hence (α, t) |= Iφ↔ Iψ.
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