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Abstract

We consider strategic-form games with ordinal payoffs and provide a
syntactic analysis of common belief/knowledge of rationality, which
we define axiomatically. Two axioms are considered. The first says
that a player is irrational if she chooses a particular strategy while
believing that another strategy is better. We show that common belief
of this weak notion of rationality characterizes the iterated deletion
of pure strategies that are strictly dominated by pure strategies. The
second axiom says that a player is irrational if she chooses a particular
strategy while believing that a different strategy is at least as good
and she considers it possible that this alternative strategy is actually
better than the chosen one. We show that common knowledge of this
stronger notion of rationality characterizes the restriction to pure
strategies of the iterated deletion procedure introduced by Stalnaker
(1994). Frame characterization results are also provided.

1 Introduction

The notion of rationalizability in games was introduced independently by
Bernheim [2] and Pearce [16]. A strategy of player i is said to be ratio-
nal if it maximizes player i’s expected payoff, given her probabilistic beliefs
about the strategies used by her opponents; that is, if it can be justified
by some beliefs about her opponents’ strategies. If player i, besides being
rational, also attributes rationality to her opponents, then she must only
consider as possible strategies of her opponents that are themselves justi-
fiable. If, furthermore, player i believes that her opponents believe that
she is rational, then she must believe that her opponents justify their own
choices by only considering those strategies of player i that are justifiable,
and so on. The strategies of player i that can be justified in this way are
called rationalizable. Rationalizability was intended to capture the notion
of common belief of rationality. Bernheim and Pearce showed that a strat-
egy is rationalizable if and only if it survives the iterated deletion of strictly
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dominated strategies.1 They captured the notion of common belief of ratio-
nality only informally, that is, without making use of an epistemic frame-
work. The first epistemic characterization of rationalizability was provided
by Tan and Werlang [18] using a universal type space, rather than Kripke
structures (Kripke [13]). A characterization of common belief of rationality
using probabilistic Kripke structures was first provided by Stalnaker [17],
although it was implicit in Brandenburger and Dekel [8]. Stalnaker also in-
troduced a new, stronger, notion of rationalizability—which he called strong
rationalizability—and showed that it corresponds to an iterated deletion
procedure which is stronger than the iterated deletion of strictly dominated
strategies. Stalnaker’s approach is entirely semantic and uses the same no-
tion of Bayesian rationality as Bernheim and Pearce, namely expected pay-
off maximization. This notion presupposes that the players’ payoffs are von
Neumann-Morgenstern payoffs. In contrast, in this paper we consider the
larger class of strategic-form games with ordinal payoffs. Furthermore, we
take a syntactic approach and define rationality axiomatically. We consider
two axioms.

The first axiom says that a player is irrational if she chooses a partic-
ular strategy while believing that another strategy of hers is better. We
show that common belief of this weak notion of rationality characterizes
the iterated deletion of strictly dominated pure strategies. Note that, in
the Bayesian approach based on von Neumann-Morgenstern payoffs, it can
be shown (see Pearce [16] and Brandenburger and Dekel [8]) that a pure
strategy si of player i is a best reply to some (possibly correlated) beliefs
about the strategies of her opponents if and only if there is no mixed strat-
egy of player i that strictly dominates si. The iterated deletion of strictly
dominated strategies in the Bayesian approach thus allows the deletion of
a pure strategy that is dominated by a mixed strategy, even though it may
not be dominated by another pure strategy. Since we take a purely ordinal
approach, the iterated deletion procedure that we consider only allows the
removal of strategies that are dominated by pure strategies.

The second axiom that we consider says that a player is irrational if she
chooses a particular strategy while believing that a different strategy is at
least as good and she considers it possible that this alternative strategy is ac-
tually better than the chosen one. We show that common knowledge of this
stronger notion of rationality characterizes the iterated deletion procedure
introduced by Stalnaker [17], restricted—once again—to pure strategies.

The paper is organized as follows. In the next section we review the
KD45 multi-agent logic for belief and common belief and the S5 logic for
knowledge and common knowledge. In Section 3 we review the definition

1 This characterization of rationalizability is true for two-player games and extends to
n-player games only if correlated beliefs are allowed (see Brandenburger and Dekel [8]).
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of strategic-form game with ordinal payoffs and the iterated deletion proce-
dures mentioned above. In Section 4 we define game logics and introduce
two axioms of rationality. In Section 5 we characterize common belief of
rationality in the weaker sense and common knowledge of rationality in the
stronger sense. The characterization results proved in Section 5 (Propo-
sitions 5.4 and 5.8) are not characterizations in the sense in which this
expression is used in modal logic, namely characterization of axioms in
terms of classes of frames (see [3, p. 125]). Thus in Section 6 we provide
a reformulation of our results in terms of frame characterization. In Sec-
tion 7 we discuss related literature, while Section 8 contains a summary and
concluding remarks.

2 Multi-agent logics of belief and knowledge

We consider a multi-modal logic with n + 1 operators B1, B2, . . . , Bn, B∗

where, for i = 1, . . . , n, the intended interpretation of Biϕ is “player i
believes that ϕ”, while B∗ϕ is interpreted as “it is common belief that ϕ”.
The formal language is built in the usual way (see [3] and [10]) from a
countable set A of atomic propositions, the connectives ¬ and ∨ (from
which the connectives ∧, → and ↔ are defined as usual) and the modal
operators.

We denote by KD45∗
n the logic defined by the following axioms and

rules of inference.

Axioms:

1. All propositional tautologies.

2. Axiom K for every modal operator: for � ∈ {B1, . . . , Bn, B∗},

�ϕ ∧ �(ϕ→ ψ) → �ψ. (K)

3. Axioms D, 4 and 5 for individual beliefs: for i = 1, . . . , n,

Biϕ→ ¬Bi¬ϕ, (Di)

Biϕ→ BiBiϕ, (4i)

¬Biϕ→ Bi¬Biϕ. (5i)

4. Axioms for common belief: for i = 1, . . . , n,

B∗ϕ→ Biϕ, (CB1)

B∗ϕ→ BiB∗ϕ, (CB2)

B∗(ϕ→ B1ϕ ∧ · · · ∧Bnϕ) → (B1ϕ ∧ · · · ∧Bnϕ→ B∗ϕ). (CB3)
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Rules of Inference:

1. Modus Ponens:
From ϕ and (ϕ→ ψ) infer ψ. (MP)

2. Necessitation for every modal operator: for � ∈ {B1, . . . , Bn, B∗},

From ϕ infer �ϕ. (Nec)

We denote by S5∗
n the logic obtained by adding to KD45∗

n the following
axiom:

5. Axiom T for individual beliefs: for i = 1, . . . , n,

Biϕ→ ϕ. (Ti)

While KD45∗
n is a logic for individual and common beliefs, S5∗

n is the
logic for (individual and common) knowledge. To stress the difference be-
tween the two, when we deal with S5∗

n we shall denote the modal operators
by Ki and K∗ rather than Bi and B∗, respectively.

Note that the common belief operator does not inherit all the properties
of the individual belief operators. In particular, the negative introspection
axiom for common belief, ¬B∗ϕ → B∗¬B∗ϕ, is not a theorem of KD45∗

n.
In order to obtain it as a theorem, one needs to strengthen the logic by
adding the axiom that individuals are correct in their beliefs about what is
commonly believed: BiB∗ϕ → B∗ϕ. Indeed, the logic KD45∗

n augmented
with the axiom BiB∗ϕ→ B∗ϕ coincides with the logic KD45∗

n augmented
with the axiom ¬B∗ϕ→ B∗¬B∗ϕ (see [6]).

On the semantic side we consider Kripke structures 〈Ω,B1, . . . ,Bn,B∗〉
where Ω is a set of states or possible worlds and, for every j ∈ {1, . . . , n, ∗},
Bj is a binary relation on Ω.2 For every ω ∈ Ω and for every j ∈ {1, . . . , n, ∗},
let Bj(ω) = {ω′ ∈ Ω : ωBjω

′}.

Definition 2.1. A D45∗n frame is a Kripke structure 〈Ω,B1, . . . ,Bn,B∗〉
that satisfies the following properties: for all ω, ω′ ∈ Ω and i = 1, . . . , n

1. Seriality: Bi(ω) 6= ∅;

2. Transitivity: if ω′ ∈ Bi(ω) then Bi(ω
′) ⊆ Bi(ω);

3. Euclideanness: if ω′ ∈ Bi(ω) then Bi(ω) ⊆ Bi(ω
′);

2 Throughout the paper we shall use the Roman font for syntactic operators (e.g., Bi

and Ki) and the Calligraphic font for the corresponding semantic relations (e.g., Bi

and Ki).
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Figure 1. Illustration of a D45∗n frame.

4. B∗ is the transitive closure of B1 ∪ · · · ∪ Bn, that is, ω′ ∈ B∗(ω) if and
only if there is a sequence 〈ω1, . . . , ωm〉 in Ω such that (1) ω1 = ω, (2)
ωm = ω′ and (3) for every k = 1, . . . ,m− 1 there is an ik ∈ {1, . . . , n}
such that ωk+1 ∈ Bik

(ωk).

An S5∗n frame is a D45∗n frame that satisfies the following additional
property: for all ω ∈ Ω and i = 1, . . . , n,

5. Reflexivity: ω ∈ Bi(ω).

Figure 1 illustrates the following D45∗n frame: n = 2, Ω = {α, β, γ},
B1(α) = B1(β) = {α}, B1(γ) = {γ}, B2(α) = {α} and B2(β) = B2(γ) =
{β, γ}. Thus B∗(α) = {α} and B∗(β) = B∗(γ) = {α, β, γ}. We shall use
the following convention when representing frames graphically: states are
represented by points and for every two states ω and ω′ and for every
j ∈ {1, . . . , n, ∗}, ω′ ∈ Bj(ω) if and only if either (i) ω and ω′ are enclosed
in the same cell (denoted by a rounded rectangle), or (ii) there is an arrow
from ω to the cell containing ω′, or (iii) there is an arrow from the cell
containing ω to the cell containing ω′.

The link between syntax and semantics is given by the notions of valu-
ation and model. A D45∗n model (respectively, S5∗n model) is obtained by
adding to a D45∗n frame (respectively, S5∗n frame) a valuation V : A → 2Ω,
where A is the set of atomic propositions and 2Ω denotes the set of subsets
of Ω. Thus a valuation assigns to every atomic proposition p the set of
states where p is true. Given a model and a formula ϕ, we denote by ω |= ϕ
the fact that ϕ is true at state ω. The truth set of ϕ is denoted by ‖ϕ‖,
that is, ‖ϕ‖ = {ω ∈ Ω : ω |= ϕ}. Truth of a formula at a state is defined
recursively as follows:
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if p ∈ A, ω |= p if and only if ω ∈ V (p),
ω |= ¬ϕ if and only if ω 2 ϕ,
ω |= ϕ ∨ ψ if and only if either ω |= ϕ or ω |= ψ (or both),
ω |= Biϕ if and only if Bi(ω) ⊆ ‖ϕ‖, that is,

(i = 1, . . . , n) if ω′ |= ϕ for all ω′ ∈ Bi(ω),
ω |= B∗ϕ if and only if B∗(ω) ⊆ ‖ϕ‖.

A formula ϕ is valid in a model if it is true at every state, that is, if
‖ϕ‖ = Ω. It is valid in a frame if it is valid in every model based on that
frame.

The following result is well-known:3

Proposition 2.2. The logic KD45∗
n is sound and complete with respect

to the class of D45∗n frames, that is, a formula is a theorem of KD45∗
n if

and only if it is valid in every D45∗n frame. Similarly, S5∗
n is sound and

complete with respect to the class of S5∗n frames.

3 Ordinal games and dominance

In this paper we restrict attention to finite strategic-form (or normal-form)
games with ordinal payoffs, which are defined as follows.

Definition 3.1. A finite strategic-form game with ordinal payoffs is a quin-
tuple G = 〈N, {Si}i∈N , O, {�i}i∈N , z〉, where

• N = {1, . . . , n} is a set of players,

• Si is a finite set of strategies of player i ∈ N ,

• O is a finite set of outcomes,

• �i is player i’s ordering of O,4

• z : S → O (where S = S1×· · ·×Sn) is a function that associates with
every strategy profile s = (s1, . . . , sn) an outcome z(s) ∈ O.

Given a player i we denote by S−i the set of strategy profiles of the
players other than i, that is, S−i = S1 × · · · ×Si−1 ×Si+1 × · · · ×Sn. When
we want to focus on player i we shall denote the strategy profile s ∈ S by
(si, s−i) where si ∈ Si and s−i ∈ S−i.

3 See [4]. The same result has been provided for somewhat different axiomatizations of
common belief by a number of authors (for example [14], [15] and [12]).

4 That is, �i is a binary relation on O that satisfies the following properties: for all
o, o′, o′′ ∈ O, (1) either o �i o

′ or o′ �i o (completeness or connectedness) and (2)
if o �i o

′ and o′ �i o
′′ then o �i o

′′ (transitivity). The interpretation of o �i o
′ is

that, according to player i, outcome o is at least as good as outcome o′. The strict
ordering ≻i is defined as usual: o ≻i o

′ if and only if o �i o
′ and not o′ �i o. The

interpretation of o ≻i o
′ is that player i strictly prefers outcome o to outcome o′.
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Definition 3.2. Given a game G = 〈N, {Si}i∈N , O, {�i}i∈N , z〉 and si ∈
Si, we say that, for player i, si is strictly dominated in G if there is an-
other strategy ti ∈ Si of player i such that—no matter what strategies the
other players choose—player i prefers the outcome associated with ti to
the outcome associated with si, that is, if z(ti, s−i) ≻i z(si, s−i), for all
s−i ∈ S−i.

Let G = 〈N, {Si}i∈N , O, {�i}i∈N , z〉 and G′ be two games, where G′ =
〈N ′, {S′

i}i∈N ′ , O′, {�′
i}i∈N ′ , z′〉. We say that G′ is a subgame of G if N ′ =

N , O′ = O, for every i ∈ N : �′
i = �i and S′

i ⊆ Si (so that S′ ⊆ S)
and z′ coincides with the restriction of z to S′ (that is, for every s′ ∈ S′,
z′(s′) = z(s′)).

Definition 3.3 (IDSDS procedure). The Iterated Deletion of Strictly Dom-
inated Strategies is the following procedure. Given a game G =
〈N, {Si}i∈N , O, {�i}i∈N , z〉 let 〈G0, G1, . . . , Gm, . . . 〉 be the sequence of sub-
games of G defined recursively as follows. For all i ∈ N ,

1. let S0
i = Si and let D0

i ⊆ S0
i be the set of strategies of player i that

are strictly dominated in G0 = G;

2. for m ≥ 1, let Sm
i = Sm−1

i \Dm−1
i and let Gm be the subgame of G

with strategy sets Sm
i . Let Dm

i ⊆ Sm
i be the set of strategies of player

i that are strictly dominated in Gm.

Let S∞
i =

⋂

m∈N
Sm

i (where N denotes the set of non-negative integers)
and let G∞ be the subgame of G with strategy sets S∞

i . Let S∞ = S∞
1 ×

· · · × S∞
n .5

The IDSDS procedure is illustrated in Figure 2, where:

S0
1 = {A,B,C,D} D0

1 = {D} S0
2 = {e, f, g} D0

2 = ∅

S1
1 = {A,B,C} D1

1 = ∅, S1
2 = {e, f, g} D1

2 = {g}

S2
1 = {A,B,C} D2

1 = {C} S2
2 = {e, f} D2

2 = ∅

S3
1 = {A,B} D3

1 = ∅ S3
2 = {e, f} D3

2 = {f}

S4
1 = {A,B} D4

1 = {B} S∞
2 = S4

2 = {e} D4
2 = ∅

S∞
1 = S5

1 = {A}

Thus S∞ = {(A, e)}.
In Figure 2 we have represented the ranking �i by a utility (or payoff)

function ui : S → R satisfying the following property: ui(s) ≥ ui(s
′) if and

5 Note that, since the strategy sets are finite, there exists an integer r such that G∞ =
Gr = Gr+k for every k ∈ N.
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only if z(s) �i z(s
′) (in each cell, the first number is the payoff of player 1

while the second number is the payoff of player 2).6

The next iterated deletion procedure differs from IDSDS in that at every
round we delete strategy profiles rather than individual strategies. This
procedure is the restriction to pure strategies of the algorithm introduced
by Stalnaker [17].

Definition 3.4 (IDIP procedure). Let G = 〈N, {Si}i∈N , O, {�i}i∈N , z〉, be
a game, together with a subset of strategy profiles X ⊆ S and a strategy
profile x ∈ X . We say that x is inferior relative to X if there exists a player
i and a strategy si ∈ Si of player i (thus si need not belong to the projection
of X onto Si) such that:

1. z(si, x−i) ≻i z(xi, x−i), and

2. for all s−i ∈ S−i, if (xi, s−i) ∈ X then z(si, s−i) �i z(xi, s−i).

The Iterated Deletion of Inferior Profiles (IDIP) is defined as follows. For
m ∈ N define Tm ⊆ S recursively as follows: T 0 = S and, for m ≥ 1,
Tm = Tm−1\Im−1, where Im−1 ⊆ Tm−1 is the set of strategy profiles that
are inferior relative to Tm−1. Let T∞ =

⋂

m∈N
Tm.7

The IDIP procedure is illustrated in Figure 3, where

S = T 0 = {(A, d), (A, e), (A, f), (B, d), (B, e), (B, f), (C, d), (C, e), (C, f)},

I0 = {(B, e), (C, f)}

(the elimination of (B, e) is done through player 2 and strategy f , while the
elimination of (C, f) is done through player 1 and strategy B);

T 1 = {(A, d), (A, e), (A, f), (B, d), (B, f), (C, d), (C, e)},

I1 = {(B, d), (B, f), (C, e)}

(the elimination of (B, d) and (B, f) is done through player 1 and strategy
A, while the elimination of (C, e) is done through player 2 and strategy d);

T 2 = {(A, d), (A, e), (A, f), (C, d)},

I2 = {(C, d)}

6 Note that the payoff function ui : S → R used in Figure 2 to represent the ranking �i

of player i is an ordinal function in the sense that it could be replaced by any other
function vi obtained by composing ui with a strictly increasing function on the reals.
That is, if fi : R → R is such that fi(x) > fi(y) whenever x > y, then vi : S → R

defined by vi(s) = fi(ui(s)) could be used as an alternative representation of �i and
the outcome of the IDSDS algorithm would be the same.

7 Since the strategy sets are finite, there exists an integer r such that T∞ = T r = T r+k

for every k ∈ N.
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Figure 3. Illustration of the iterated deletion of inferior strategy profiles.

(the elimination of (C, d) is done through player 1 and strategy A);

T 3 = {(A, d), (A, e), (A, f)},

I3 = ∅,

and thus T∞ = T 3.

4 Game logics

A logic is called a game logic if the set of atomic propositions upon which
it is built contains atomic propositions of the following form:

• Strategy symbols si, ti, . . . The intended interpretation of si is “player
i chooses strategy si”.

• The symbols ri whose intended interpretation is “player i is rational”.

• Atomic propositions of the form ti �i si, whose intended interpreta-
tion is “strategy ti of player i is at least as good, for player i, as his
strategy si”, and atomic propositions of the form ti ≻i si, whose in-
tended interpretation is “for player i strategy ti is better than strategy
si”.

From now on we shall restrict attention to game logics.
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Definition 4.1. Fix a game G = 〈N, {Si}i∈N , O, {�i}i∈N , z〉 with Si =
{s1i , s

2
i , . . . , s

mi

i } (thus the cardinality of Si is mi). A game logic is called
a G-logic if its set of strategy symbols is {sk

i }i=1,...,n;k=1,...,mi
(with slight

abuse of notation we use the symbol sk
i to denote both an element of Si, that

is, a strategy of player i, and an element of A, that is, an atomic proposition
whose intended interpretation is “player i chooses strategy sk

i ”).

Given a game G with Si = {s1i , s
2
i , . . . , s

mi

i }, we denote by LD45
G (re-

spectively, LS5
G ) the KD45∗

n (respectively, S5∗
n) G-logic that satisfies the

following additional axioms: for all i = 1, . . . , n and for all k, ℓ = 1, . . . ,mi,
with k 6= ℓ,

(s1i ∨ s
2
i ∨ · · · ∨ smi

i ), (G1)

¬(sk
i ∧ sℓ

i), (G2)

sk
i → Bis

k
i , (G3)

(sk
i �i s

ℓ
i) ∨ (sℓ

i �i s
k
i ), (G4)

(sℓ
i ≻i s

k
i ) ↔ ((sℓ

i �i s
k
i ) ∧ ¬(k

i �i s
ℓ
i)). (G5)

Axiom G1 says that player i chooses at least one strategy, while axiom G2

says that player i cannot choose more than one strategy. Thus G1 and
G2 together imply that each player chooses exactly one strategy. Axiom
G3, on the other hand, says that player i is aware of his own choice: if
he chooses strategy sk

i then he believes that he chooses sk
i . The remaining

axioms state that the ordering of strategies is complete (G4) and that the
corresponding strict ordering is defined as usual (G5).

Proposition 4.2. Fix an arbitrary game G. The following is a theorem of
logic LD45

G : Bis
k
i → sk

i . That is, every player has correct beliefs about her
own choice of strategy.8

Proof. In the following PL stands for Propositional Logic. Fix a player i
and k, ℓ ∈ {1, . . . ,mi} with k 6= ℓ. Let ϕ denote the formula

(s1i ∨ · · · ∨ smi

i ) ∧ ¬s1i ∧ · · · ∧ ¬sk−1
i ∧ ¬sk+1

i ∧ · · · ∧ ¬smi

i .

1. ϕ→ sk
i tautology

2. ¬(sk
i ∧ sℓ

i) axiom G2 (for ℓ 6= k)
3. sk

i → ¬sℓ
i 2, PL

8 Note that, in general, logic L
D45
G

allows for incorrect beliefs. In particular, a player
might have incorrect beliefs about the choices made by other players. By Proposition
4.2, however, a player cannot have mistaken beliefs about her own choice.
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4. Bis
k
i → Bi¬s

ℓ
i 3, rule RK9

5. Bi¬s
ℓ
i → ¬Bis

ℓ
i axiom Di

6. sℓ
i → Bis

ℓ
i axiom G3

7. ¬Bis
ℓ
i → ¬sℓ

i 6, PL
8. Bis

k
i → ¬sℓ

i 4, 5, 7, PL (for ℓ 6= k)
9. s1i ∨ · · · ∨ smi

i axiom G1

10. Bis
k
i → (s1i ∨ · · · ∨ smi

i ) 9, PL
11. Bis

k
i → ϕ 8 (for every ℓ 6= k), 10, PL

12. Bis
k
i → sk

i 1, 11, PL

q.e.d.

On the semantic side we consider models of games, which are defined as
follows.

Definition 4.3. Given a game G = 〈N, {Si}i∈N , O, {�i}i∈N , z〉 and a
Kripke frame F = 〈Ω, {Bi}i∈N ,B∗〉, a frame for G, or G-frame, is ob-
tained by adding to F n functions σi : Ω → Si (i ∈ N) satisfying the
following property: if ω′ ∈ Bi(ω) then σi(ω

′) = σi(ω).

Thus a G-frame adds to a Kripke frame a function that associates with
every state ω a strategy profile σ(ω) = (σ1(ω), . . . , σn(ω)) ∈ S. The restric-
tion that if ω′ ∈ Bi(ω) then σi(ω

′) = σi(ω) is the semantic counterpart to ax-
iom G3. Given a player i, as before we will denote σ(ω) by (σi(ω), σ−i(ω)),
where σ−i(ω) ∈ S−i is the profile of strategies of the players other than i.

We say that the G-frame 〈Ω, {Bi}i∈N ,B∗, {σi}i∈N}〉 is a D45∗n G-frame
(respectively, S5∗n G-frame) if the underlying Kripke frame 〈Ω, {Bi}i∈N ,B∗〉
is a D45∗n frame (respectively, S5∗n frame: see Definition 2.1).

Definition 4.4. Given a gameGwith Si = {s1i , s
2
i , . . . , s

mi

i }, and aG-frame
FG = 〈Ω, {Bi}i∈N ,B∗, {σi}i∈N}〉, a model of G, or G-model, is obtained by
adding to FG the following valuation:

• ω |= sh
i if and only if σi(ω) = sh

i ,

• ω |= (sk
i �i s

ℓ
i) if and only if z(sk

i , σ−i(ω)) �i z(s
ℓ
i , σ−i(ω)).

Thus at state ω in a G-model it is true that player i chooses strategy sh
i

if and only if the strategy of player i associated with ω is sh
i (σi(ω) = sh

i )
and it is true that strategy sk

i is at least as good as strategy sℓ
i if and only

if sk
i in combination with σ−i(ω) (the profile of strategies of players other

than i associated with ω) yields an outcome which player i considers at least
as good as the outcome yielded by sℓ

i in combination with σ−i(ω).

9 RK denotes the inference rule “from ψ → χ infer �ψ → �χ ”, which is a derived rule
of inference that applies to every modal operator � that satisfies axiom K and the
rule of Necessitation.
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d e f
a 2,1 0,1 2,1
b 1,0 1,0 1,1
c 1,4 1,3 0,3

Figure 4. A game: player 1 controls the rows (i.e., has strategies a, b
and c), and player 2 the columns.

Figure 5. D45∗n frame for the game of Figure 4.

Let F
D45
G (respectively, F

S5
G ) denote the set of D45∗n (respectively, S5∗n)

G-frames and M
D45
G (respectively, M

S5
G ) the corresponding set of G-models.

Figure 4 illustrates a two-player game with strategy sets S1 = {a, b, c}
and S2 = {d, e, f} and Figure 5 a D45∗n frame for it. The corresponding
model is given by the following valuation:

α |= b ∧ e ∧ (b ≻1 a) ∧ (c ≻1 a) ∧ (b �1 c) ∧ (c �1 b)

∧ (f ≻2 d) ∧ (f ≻2 e) ∧ (e �2 d) ∧ (d �2 e),

β |= b ∧ d ∧ (a ≻1 b) ∧ (a ≻1 c) ∧ (b �1 c) ∧ (c �1 b)

∧ (f ≻2 d) ∧ (f ≻2 e) ∧ (e �2 d) ∧ (d �2 e),

γ |= a ∧ d ∧ (a ≻1 b) ∧ (a ≻1 c) ∧ (b �1 c) ∧ (c �1 b) ∧ (d �2 e)

∧ (e �2 d) ∧ (d �2 f) ∧ (f �2 d) ∧ (e �2 f) ∧ (f �2 e).

Proposition 4.5. Logic LD45
G (respectively, LS5

G ) is sound with respect to
the class of M

D45
G (respectively, M

S5
G ) models.
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Proof. It follows from Proposition 2.2 and the following observations: (1)
axioms G1 and G2 are valid in every model because, for every state ω there
is a unique strategy sk

i ∈ Si such that σi(ω) = sk
i and, by the validation

rules (see Definition 4.4), ω |= sk
i if and only if σi(ω) = sk

i ; (2) axiom G3 is
an immediate consequence of the fact (see Definition 4.3) that if ω′ ∈ Bi(ω)
then σi(ω

′) = σi(ω); (3) axioms G4 and G5 are valid because, for every
state ω, there is a unique profile of strategies σ−i(ω) of the players other
than i and the ordering �i on O restricted to z(Si × σ−i(ω)) induces an
ordering of Si. q.e.d.

5 Rationality and common belief of rationality

So far we have not specified what it means for a player to be rational.
The first extension of LD45

G that we consider captures a very weak notion
of rationality. The following axiom—called WR for ‘Weak Rationality’—
says that a player is irrational if she chooses a particular strategy while
believing that a different strategy is better for her (recall that ri is an
atomic proposition whose intended interpretation is “player i is rational”):

sk
i ∧Bi(s

ℓ
i ≻i s

k
i ) → ¬ri. (WR)

Given a game G, let LD45
G +WR (respectively, LS5

G +WR) be the exten-
sion of LD45

G (respectively, LS5
G ) obtained by adding axiom WR to it.

The next axiom—called SR for ‘Strong Rationality’—expresses a slightly
stronger notion of rationality: it says that a player is irrational if she chooses
a strategy while believing that a different strategy is at least as good and
she considers it possible that this alternative strategy is actually better than
the chosen one:

sk
i ∧Bi(s

ℓ
i �i s

k
i ) ∧ ¬Bi¬(sℓ

i ≻i s
k
i ) → ¬ri. (SR)

Given a game G, let LD45
G +SR (respectively, LS5

G +SR) be the extension
of LD45

G (respectively, LS5
G ) obtained by adding axiom SR to it.

The following shows that LD45
G +SR is an extension of LD45

G +WR.

Proposition 5.1. WR is a theorem of LD45
G +SR.

Proof. As before, PL stands for Propositional Logic.

1. sk
i ∧Bi(s

ℓ
i �i s

k
i ) ∧ ¬Bi¬(sℓ

i ≻i s
k
i ) → ¬ri Axiom SR

2. (ri ∧ s
k
i ) → ¬(Bi(s

ℓ
i �i s

k
i ) ∧ ¬Bi¬(sℓ

i ≻i s
k
i )) 1, PL

3. (sℓ
i ≻i s

k
i ) ↔ (sℓ

i �i s
k
i ) ∧ ¬(sk

i �i s
ℓ
i) Axiom G5

4. (sℓ
i ≻i s

k
i ) → (sℓ

i �i s
k
i ) 3, PL

5. Bi(s
ℓ
i ≻i s

k
i ) → Bi(s

ℓ
i �i s

k
i ) 4, RK

6. Bi(s
ℓ
i ≻i s

k
i ) → ¬Bi¬(sℓ

i ≻i s
k
i ) Axiom Di

7. Bi(s
ℓ
i ≻i s

k
i ) → (Bi(s

ℓ
i �i s

k
i ) ∧ ¬Bi¬(sℓ

i ≻i s
k
i )) 5, 6, PL
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8. ¬(Bi(s
ℓ
i �i s

k
i ) ∧ ¬Bi¬(sℓ

i ≻i s
k
i )) → ¬Bi(s

ℓ
i ≻i s

k
i ) 7, PL

9. (ri ∧ s
k
i ) → ¬Bi(s

ℓ
i ≻i s

k
i ) 2, 8, PL

10. sk
i ∧Bi(s

ℓ
i ≻i s

k
i ) → ¬ri 9, PL

q.e.d.

Definition 5.2. Given a game G, let M
D45|WR
G ⊆ M

D45
G (M

S5|WR
G ⊆ M

S5
G )

be the class of D45∗n (respectively, S5∗n) G-models (see Definition 4.4) where
the valuation function satisfies the following additional condition:

• ω |= ri if and only if, for every si ∈ Si there exists an ω′ ∈ Bi(ω) such
that z(σi(ω), σ−i(ω

′)) �i z(si, σ−i(ω
′)).10

Thus at state ω player i is rational if and only if, for every strategy
si of hers, there is a state ω′ that she considers possible at ω (ω′ ∈ Bi(ω))
where the strategy that she actually uses at ω (σi(ω)) is at least as good as si

against the strategies used by the other players at ω′ (σ−i(ω
′)). For instance,

in the model based on the frame of Figure 5 we have that α |= (r1 ∧ ¬r2),
β |= (r1 ∧ r2) and γ |= (r1 ∧ r2). To see, for example, that β |= r2 note
that σ2(β) = d and for strategy f we have that γ ∈ B2(β), σ1(γ) = a and
z(a, d) �2 z(a, f), while for strategy e we have that β ∈ B2(β), σ1(β) = b
and z(b, d) �2 z(b, e). Thus, in the model based on the frame of Figure 5, we
have that at state β both players are rational, player 2 believes that player
1 is rational, but player 1 mistakenly believes that player 2 is irrational:
β |= r1 ∧ r2 ∧B2r1 ∧B1¬r2.

Proposition 5.3. Logic LD45
G +WR (respectively, LS5

G +WR) is sound with

respect to the class of models M
D45|WR
G (respectively, M

S5|WR
G ).

Proof. By Proposition 4.5 it is sufficient to show that axiom WR is valid in
an arbitrary such model. Suppose that ω |= sk

i ∧Bi(s
ℓ
i ≻i s

k
i ). Then σi(ω) =

sk
i and Bi(ω) ⊆ ‖sℓ

i ≻i s
k
i ‖, that is (see Definition 4.4), z(sℓ

i , σ−i(ω
′)) ≻i

z(sk
i , σ−i(ω

′)), for every ω′ ∈ Bi(ω). It follows from Definition 5.2 that
ω |= ¬ri. q.e.d.

The following proposition says that common belief of the weak notion
of rationality expressed by axiom WR characterizes the Iterated Deletion
of Strictly Dominated Strategies (see Definition 3.3).11

10 This could alternatively be written as z(σi(ω′), σ−i(ω′)) �i z(si, σ−i(ω′)), since, by
definition of G-frame (see Definition 4.3), if ω′ ∈ Bi(ω) then σi(ω′) = σi(ω).

11 Proposition 5.4 is the syntactic-based, ordinal version of a semantic, probabilistic-
based result of Stalnaker [17]. As noted in the Introduction, Stalnaker’s result was,
in turn, a reformulation of earlier results due to Bernheim [2], Pearce [16], Tan and
Werlang [18] and Brandenburger and Dekel [8].

The characterization results given in Propositions 5.4 and 5.8 are not characteriza-
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Proposition 5.4. Fix a finite strategic-form game with ordinal payoffs G.
Then both (A) and (B) below hold.

(A) Fix an arbitrary model in M
D45|WR
G and an arbitrary state ω.

If ω |= B∗(r1 ∧ · · · ∧ rn) then σ(ω) ∈ S∞.

(B) For every s ∈ S∞ there exists a model in M
S5|WR
G and a state ω such

that (1) σ(ω) = s and (2) ω |= K∗(r1 ∧ · · · ∧ rn).12

Proof. (A) Fix a model in M
D45|WR
G and a state α and suppose that α |=

B∗(r1 ∧ · · · ∧ rn). The proof is by induction. First we show that, for every
player i = 1, . . . , n and for every ω ∈ B∗(α), σi(ω) /∈ D0

i (see Definition
3.3). Suppose not. Then there exist a player i and a β ∈ B∗(α) such that
σi(β) ∈ D0

i , that is, strategy σi(β) of player i is strictly dominated in G by
some other strategy ŝi ∈ Si: for every s−i ∈ S−i, z(ŝi, s−i) ≻i z(σi(β), s−i).
Then, for every ω ∈ Bi(β), z(ŝi, σ−i(ω)) ≻i z(σi(β), σ−i(ω)). It follows from
Definition 5.2 that β |= ¬ri, contradicting the hypothesis that β ∈ B∗(α)
and α |= B∗ri. Since, for every ω ∈ Ω, σi(ω) ∈ S0

i = Si, it follows that,
for every ω ∈ B∗(α), σi(ω) ∈ S0

i \D
0
i = S1

i . Next we prove the inductive
step. Fix an integer m ≥ 1 and suppose that, for every player j = 1, . . . , n
and for every ω ∈ B∗(α), σj(ω) ∈ Sm

j . We want to show that, for every
player i = 1, . . . , n and for every ω ∈ B∗(α), σi(ω) /∈ Dm

i . Suppose not.
Then there exist a player i and a β ∈ B∗(α) such that σi(β) ∈ Dm

i , that is,
strategy σi(β) is strictly dominated in Gm by some other strategy s̃i ∈ Sm

i .
Since, by hypothesis, for every player j and for every ω ∈ B∗(α), σj(ω) ∈
Sm

j , it follows—since Bi(β) ⊆ B∗(β) ⊆ B∗(α) (see Definition 2.1)—that for
every ω ∈ Bi(β), z(s̃i, σ−i(ω)) ≻i z(σi(β), σ−i(ω)). Thus, by Definition 5.2,
β |= ¬ri, contradicting the fact that β ∈ B∗(α) and α |= B∗ri. Thus, for
every player i = 1, . . . , n and for every ω ∈ B∗(α), σi(ω) ∈

⋂

m∈N
Sm

i = S∞
i .

It only remains to show that σi(α) ∈ S∞
i . Fix an arbitrary β ∈ Bi(α).

Since Bi(α) ⊆ B∗(α), β ∈ B∗(α). Thus σi(β) ∈ S∞
i . By Definition 4.3,

σi(β) = σi(α). Thus σi(α) ∈ S∞
i .

(B) Let m be the cardinality of S∞ = S∞
1 × · · · × S∞

n and let Ω =
{ω1, . . . , ωm}. Let σ : Ω → S∞ be a one-to-one function. For every player i,

tions in the sense in which this expression is used in modal logic, namely characteri-
zation of axioms in terms of classes of frames (see [3, p. 125]). In Section 6 we provide
a reformulation of Propositions 5.4 and 5.8 in terms of frame characterization.

12 Recall that, in order to emphasize the distinction between belief and knowledge, when
dealing with the latter we denote the modal operators by Ki and K∗ rather than Bi

and B∗, respectively. Similarly, we shall denote the accessibility relations by Ki and
K∗ rather than Bi and B∗, respectively.

Thus while part (A) says that if at a state there is common belief of rationality then
the strategy profile played at that state belongs to the set of strategy profiles that are
obtained by applying the IDSDS algorithm, part (B) says that any such strategy profile
is realized at a state of some model where there is common knowledge of rationality
(that is, common belief with the added property that individual beliefs satisfy the
Truth Axiom Ti).
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define the following equivalence relation on Ω: ωKiω
′ if and only if σi(ω) =

σi(ω
′), where σi(ω) is the ith coordinate of σ(ω). Let K∗ be the transitive

closure of
⋃

i∈N Ki (then, for every ω ∈ Ω, K∗(ω) = Ω). The structure so
defined is clearly an S5∗n G-frame. Consider the model corresponding to this
frame (see Definition 4.4). Fix an arbitrary state ω and an arbitrary player
i. By definition of S∞, for every si ∈ Si there exists an ω′ ∈ Ki(ω) such
that z(σi(ω), σ−i(ω

′)) �i z(si, σ−i(ω
′)). Thus ω |= ri (see Definition 5.2).

Hence, for every ω ∈ Ω, ω |= (r1 ∧ · · · ∧ rn) and, therefore, for every ω ∈ Ω,
ω |= K∗(r1 ∧ · · · ∧ rn). q.e.d.

Remark 5.5. Since M
S5|WR
G ⊆ M

D45|WR
G it follows from part (B) of Propo-

sition 5.4 that the implications of common belief of rationality—as implic-
itly defined by axiom WR—are the same as the implications of common
knowledge of rationality.

The above observation is not true for the stronger notion of rationality
expressed by axiom SR, to which we now turn.

Definition 5.6. Given a game G, let M
D45|SR
G ⊆ M

D45
G (M

S5|SR
G ⊆ M

S5
G ,

respectively) be the class of D45 (respectively, S5) G-models where the
valuation function satisfies the following condition:

• ω |= ri if and only if, for every si ∈ Si, whenever there exists an
ω′ ∈ Bi(ω) such that z(si, σ−i(ω

′)) ≻i z(σi(ω), σ−i(ω
′)) then there

exists an ω′′ ∈ Bi(ω) such that z(σi(ω), σ−i(ω
′′)) ≻i z(si, σ−i(ω

′′)).

Thus, at state ω, player i is rational if, whenever there is a strategy si

of hers which is better than σi(ω) (the strategy she is actually using at ω)
at some state ω′ that she considers possible at ω, then σi(ω) is better than
si at some other state ω′′ that she considers possible at ω. For example, in
the model based on the frame of Figure 5 we have that ω |= (r1 ∧ ¬r2) for
every ω ∈ {α, β, γ}. At state β, for instance, player 2 is choosing strategy
d when there is another strategy of hers, namely f , which is better than
d at β and as good as d at γ, and B2(β) = {β, γ}. Thus she is irrational
according to Definition 5.6.

It is easily verified that M
D45|SR
G ⊆ M

D45|WR
G and, similarly, it is the case

that M
S5|SR
G ⊆ M

S5|WR
G .

Proposition 5.7. Logic LD45
G +SR (respectively, LS5

G +SR) is sound with

respect to the class of models M
D45|SR
G (respectively, M

S5|SR
G ).

Proof. By Proposition 4.5 it is sufficient to show that axiom SR is valid in an
arbitrary such model. Suppose that ω |= sk

i ∧Bi(s
ℓ
i �i s

k
i )∧¬Bi¬(sℓ

i ≻i s
k
i ).

Then σi(ω) = sk
i and Bi(ω) ⊆ ‖sℓ

i �i s
k
i ‖ [that is—see Definition 4.4—

z(sℓ
i , σ−i(ω

′)) �i z(s
k
i , σ−i(ω

′)), for every ω′ ∈ Bi(ω)] and there is an ω′′ ∈
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Bi(ω) such that ω′′ |= sℓ
i ≻i s

k
i , that is, z(sℓ

i , σ−i(ω
′′)) ≻i z(s

k
i , σ−i(ω

′′)). It
follows from Definition 5.6 that ω |= ¬ri. q.e.d.

The following proposition says that common knowledge of the stronger
notion of rationality expressed by axiom SR characterizes the Iterated Dele-
tion of Inferior Profiles (see Definition 3.4).13

Proposition 5.8. Fix a finite strategic-form game with ordinal payoffs G.
Then both (A) and (B) below hold.

(A) Fix an arbitrary model in M
S5|SR
G and an arbitrary state ω. If

ω |= K∗(r1 ∧ · · · ∧ rn) then σ(ω) ∈ T∞.

(B) For every s ∈ T∞ there exists a model in M
S5|SR
G and a state ω such

that (1) σ(ω) = s and (2) ω |= K∗(r1 ∧ · · · ∧ rn).

Proof. (A) As in the case of Proposition 5.4, the proof is by induction. Fix a

model in M
S5|SR
G and a state α and suppose that α |= K∗(r1∧· · ·∧rn). First

we show that, for every ω ∈ K∗(α), σ(ω) /∈ I0 (see Definition 3.4). Suppose,
by contradiction, that there exists a β ∈ K∗(α) such that σ(β) ∈ I0, that
is, σ(β) is inferior relative to the entire set of strategy profiles S. Then
there exists a player i and a strategy ŝi ∈ Si such that z(ŝi, σ−i(β)) ≻i

z(σi(β), σ−i(β)), and, for every s−i ∈ S−i, z(ŝi, s−i) �i z(σi(β), s−i). Thus
z(ŝi, σ−i(ω)) �i z(σi(β), σ−i(ω)), for every ω ∈ Ki(β); furthermore, by
reflexivity of Ki (see Definition 2.1), β ∈ Ki(β). It follows from Definition
5.6 that β |= ¬ri. Since β ∈ K∗(α), this contradicts the hypothesis that
α |= K∗ri. Thus, since, for every ω ∈ Ω, σ(ω) ∈ S = T 0 we have shown
that, for every ω ∈ K∗(α), σ(ω) ∈ T 0\I0 = T 1.

Now we prove the inductive step. Fix an integer m ≥ 1 and suppose
that, for every ω ∈ K∗(α), σ(ω) ∈ Tm. We want to show that, for ev-
ery ω ∈ K∗(α), σ(ω) /∈ Im. Suppose, by contradiction, that there ex-
ists a β ∈ K∗(α) such that σ(β) ∈ Im, that is, σ(β) is inferior relative
to Tm. Then there exists a player i and a strategy s̃i ∈ Si such that
z(s̃i, σ−i(β)) ≻i z(σi(β), σ−i(β)), and, for every s−i ∈ S−i, if (s̃i, s−i) ∈ Tm

then z(s̃i, s−i) �i z(σi(β), s−i). By Definition 4.3, for every ω ∈ Ki(β),
σi(ω) = σi(β) and by the induction hypothesis, for every ω ∈ K∗(α),
(σi(ω), σ−i(ω)) ∈ Tm. Thus, since Ki(β) ⊆ K∗(β) ⊆ K∗(α), we have
that, for every ω ∈ Ki(β), (σi(β), σ−i(ω)) ∈ Tm. By reflexivity of Ki,
β ∈ Ki(β). It follows from Definition 5.6 that β |= ¬ri. Since β ∈ K∗(α),
this contradicts the hypothesis that α |= K∗ri.

Thus, we have shown by induction that, for every ω ∈ K∗(α), σ(ω) ∈
⋂

m∈N
Tm = T∞. It only remains to establish that σ(α) ∈ T∞, but this

follows from reflexivity of K∗.

13 Proposition 5.8 is the syntactic-based, ordinal version of a semantic, probabilistic-
based result due to Stalnaker [17]. For a correction of that result see Bonanno and
Nehring [5].



Syntactic Approach to Rationality 77

c d
a 1,1 1,0
b 1,1 0,1

Figure 6. A game where player 1 has strategies a and b, and player 2 has
c and d.

(B) Let m be the cardinality of T∞ and let Ω = {ω1, . . . , ωm}. Let
σ : Ω → T∞ be a one-to-one function. For every player i, define the
following equivalence relation on Ω: ωKiω

′ if and only if σi(ω) = σi(ω
′),

where σi(ω) is the ith coordinate of σ(ω). Let K∗ be the transitive closure
of

⋃

i∈N Ki (then, for every ω ∈ Ω, K∗(ω) = Ω). The structure so defined
is clearly an S5∗n G-frame. Consider the model corresponding to this frame
(see Definition 4.4). Fix an arbitrary state ω and an arbitrary player i.
By definition of T∞, for every player i and every si ∈ Si if there exists
an ω′ ∈ Ki(ω) such that if z(si, σ−i(ω

′)) ≻i z(σi(ω), σ−i(ω
′)) then there

exists an ω′′ ∈ Ki(ω) such that z(σi(ω), σ−i(ω
′′)) ≻i z(si, σ−i(ω

′′)). Thus
ω |= ri (see Definition 5.6). Hence, for every ω ∈ Ω, ω |= (r1 ∧ · · · ∧ rn) and,
therefore, for every ω ∈ Ω, ω |= K∗(r1 ∧ · · · ∧ rn). q.e.d.

Note that Proposition 5.8 is not true if one replaces knowledge with be-
lief, as illustrated in the game of Figure 6 and corresponding frame in Fig-
ure 7. In the corresponding model we have that, according to the stronger
notion of rationality expressed by Definition 5.6, α |= r1∧r2 and β |= r1∧r2,
so that α |= B∗(r1 ∧ r2), despite the fact that σ(α) = (b, d), which is an
inferior strategy profile (relative to the entire game).14 In other words, com-
mon belief of rationality, as expressed by axiom SR, is compatible with the
players collectively choosing an inferior strategy profile. Thus, unlike the
weaker notion expressed by axiom WR (see Remark 5.5), with axiom SR

there is a crucial difference between the implications of common belief of
rationality and those of common knowledge of rationality.

6 Frame characterization

The characterization results proved in the previous section (Propositions
5.4 and 5.8) are not characterizations in the sense in which this expression
is used in modal logic, namely characterization of axioms in terms of classes
of frames (see [3, p. 125]). In this section we provide a reformulation of our
results in terms of frame characterizations.

Definition 6.1. An axiom characterizes (or is characterized by) a class F

14 In the game of Figure 6 we have that S∞ = S = {(a, c), (a, d), (b, c), (b, d)} while
T∞ = {(a, c), (b, c)}.
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c d

A 1,1 1,0

B 1,1 0,1

Player2

Player

1
Figure 7. A frame for the game of Figure 6.

of Kripke frames if the axiom is valid in every model based on a frame that
belongs to F and, conversely, if a frame does not belong to F then there is a
model based on that frame and a state in that model at which an instance
of the axiom is falsified.15

We now modify the previous analysis as follows. First of all, we drop
the symbols ri from the set of atomic propositions and correspondingly

drop the definitions of the classes of models M
D45|WR
G , M

S5|WR
G , M

D45|SR
G

and M
S5|SR
G (Definitions 5.2 and 5.6). Secondly we modify axioms WR and

SR as follows:

sk
i → ¬Bi(s

ℓ
i ≻i s

k
i ), (WR′)

sk
i → ¬(Bi(s

ℓ
i �i s

k
i ) ∧ ¬Bi¬(sℓ

i ≻i s
k
i )). (SR′)

One can derive axioms WR′ and SR′ from the logics considered previ-
ously by adding the axiom that players are rational. In fact, from ri and
WR one obtains WR′ (using Modus Ponens) and similarly for SR′.

The next proposition is the counterpart of Proposition 5.4.

Proposition 6.2. Subject to the valuation rules specified in Definition 4.4
for the atomic propositions sk

i and (sℓ
i �i s

k
i ), axiom WR′ is character-

ized by the class of D45∗n game frames (see Definition 4.3) that satisfy the
following property: for all i ∈ N and for all ω ∈ Ω, σi(ω) ∈ S∞

i .

Proof. Fix a model based on a frame in this class, a state α, a player i
and two strategies sk

i and sℓ
i of player i. Suppose that α |= sk

i , that is,

15 For example, as is well known, the axiom Biϕ → BiBiϕ is characterized by the class
of frames where the relation Bi is transitive.
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σi(α) = sk
i . We want to show that α |= ¬Bi(s

ℓ
i ≻i s

k
i ). Suppose not. Then

Bi(α) ⊆ ‖sℓ
i ≻i s

k
i ‖, that is,

for every ω ∈ Bi(α), z(sℓ
i , σ−i(ω)) ≻i z(s

k
i , σ−i(ω)). (6.1)

By hypothesis, for every player j 6= i and for every ω ∈ Ω, σj(ω) ∈ S∞
j .

Thus it follows from this and (6.1) that sk
i /∈ S∞

i , contradicting the hy-
potheses that σi(α) = sk

i and σi(ω) ∈ S∞
i for all ω ∈ Ω.

Conversely, fix a D45∗n frame not in the class, that is, there is a state
ω ∈ Ω and a player i ∈ N such that σi(ω) /∈ S∞

i . For every state ω and
every player j let

m(ω, j) =

{

∞ if σj(ω) ∈ S∞
j ,

m if σj(ω) ∈ Dm
j .

Let m̂ = min{m(ω, j) : j ∈ N,ω ∈ Ω}. By our hypothesis about the frame,
m̂ ∈ N. Let i ∈ N and α ∈ Ω be such that m̂ = m(α, i). Then

σi(α) ∈ Dm̂
i (6.2)

and, since (see Definition 3.3), for every j ∈ N and for every p, q ∈ N∪{∞},
Sp+q

j ⊆ Sp
j ,

for every j ∈ N and ω ∈ Ω, σj(ω) ∈ Sm̂
j . (6.3)

Let sk
i = σi(α). By (6.2) and (6.3) , there exists a sℓ

i ∈ Si such that, for
every ω ∈ Ω, z(sℓ

i , σ−i(ω)) ≻i z(s
k
i , σ−i(ω)). Thus Bi(α) ⊆ ‖sℓ

i ≻i s
k
i ‖ and

thus α |= sk
i ∧Bi(s

ℓ
i ≻i s

k
i ), so that axiom WR′ is falsified at α. q.e.d.

The next proposition is the counterpart of Proposition 5.8.

Proposition 6.3. Subject to the valuation rules specified in Definition 4.4
for the atomic propositions sk

i and (sℓ
i �i s

k
i ), axiom SR′ is characterized by

the class of S5∗n game frames (see Definition 4.3) that satisfy the following
property: for all ω ∈ Ω, σ(ω) ∈ T∞.

Proof. Fix a model based on a frame in this class, a state α, a player i and
two strategies sk

i and sℓ
i of player i. Suppose that α |= sk

i ∧Ki(s
ℓ
i �i s

k
i ).

Then σi(α) = sk
i and Ki(α) ⊆ ‖sℓ

i �i s
k
i ‖, that is,

for all ω ∈ Ki(α), z(sℓ
i , σ−i(ω)) �i z(s

k
i , σ−i(ω)). (6.4)

We want to show that α |= Ki¬(sℓ
i ≻i s

k
i ). Suppose not. Then there exists

a β ∈ Ki(α) such that β |= (sℓ
i ≻i s

k
i ), that is,

z(sℓ
i , σ−i(β)) ≻i z(s

k
i , σ−i(β)). (6.5)
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It follows from (6.4) and (6.5) that (sk
i , σ−i(β)) = (σi(β), σ−i(β)) is inferior

relative to the set {s ∈ S : s = σ(ω) for some ω ∈ Ki(α)}, contradicting the
hypothesis that σ(ω) ∈ T∞ for all ω ∈ Ω.

Conversely, fix an S5∗n frame not in the class, that is, there is a state
ω ∈ Ω such that σ(ω) /∈ T∞. For every ω ∈ Ω, let

m(ω) =

{

∞ if σ(ω) ∈ T∞,

m if σ(ω) ∈ Im = Tm \ Tm+1.

Let m0 = min{m(ω) : ω ∈ Ω}. By our hypothesis about the frame, m0 ∈ N.
Let α ∈ Ω be such that m0 = m(α). Then σ(α) ∈ Im0 , that is, there is a
player i and a strategy sℓ

i ∈ Si such that

z(sℓ
i , σ−i(α)) ≻i z(σi(α), σ−i(α)) (6.6)

and

∀ω ∈ Ω, if (σi(α), σ−i(ω)) ∈ Tm0

then z(sℓ
i , σ−i(ω)) �i z(σi(α), σ−i(ω)). (6.7)

By definition of m0, since (see Definition 3.4) for every p, q ∈ N ∪ {∞},
T p+q ⊆ T p, for every ω ∈ Ω, σ(ω) ∈ Tm0 . Thus, letting sk

i = σi(α), it
follows from (6.7) that Ki(α) ⊆ ‖sℓ

i �i s
k
i ‖, that is, α |= Ki(s

ℓ
i �i s

k
i ). Since

the frame is an S5 frame, Ki is reflexive and, therefore, α ∈ Ki(α). It follows
from this and (6.6) that α |= ¬Ki¬(sℓ

i ≻i s
k
i ). Thus α |= sk

i ∧ Ki(s
ℓ
i �i

sk
i ) ∧ ¬Ki¬(sℓ

i ≻i s
k
i ), so that axiom SR′ is falsified at α. q.e.d.

There appears to be an important difference between the results of Sec-
tion 5 and those of this section, namely that, while Propositions 5.4 and
5.8 give a local result, Propositions 6.2 and 6.3 provide a global one. For
example, Proposition 5.4 says that if at a state there is common belief of ra-
tionality, then the strategy profile played at that state belongs to S∞, while
its counterpart in this section, namely Proposition 6.2, says that the strategy
profile played at every state belongs to S∞. As a matter of fact, the results
of Section 5 are also global in nature. Consider, for example, Proposition
5.4. Fix a model and a state α and suppose that α |= B∗(r1∧· · ·∧rn). Since,
for every formula ϕ, B∗ϕ→ B∗B∗ϕ is a theorem of KD45∗

n, it follows that
α |= B∗B∗(r1 ∧· · · ∧ rn), that is, for every ω ∈ B∗(α), ω |= B∗(r1 ∧· · · ∧ rn).
Thus, it follows from Proposition 5.4 that σ(ω) ∈ S∞, for every ω ∈ B∗(α).16

That is, if at a state there is common belief of rationality, then at that state,
as well as at all states reachable from it by the common belief relation B∗,
it is true that the strategy profile played belongs to S∞. This is essentially

16 This fact was proved directly in the proof of Proposition 5.4.
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a global result, since from the point of view of a state α, the “global” space
is precisely the set B∗(α).

Thus the only difference between the results of Section 5 and those of
this section lies in the fact that Propositions 5.4 and 5.8 bring out the
role of common belief by mimicking the informal argument that if player
1 is rational then she won’t choose a strategy s1 ∈ D0

1 and if player 2
believes that player 1 is rational then he believes that s1 /∈ D0

1 and therefore
will not choose a strategy s2 ∈ D1

2, and if player 1 believes that player 2
believes that player 1 is rational, then player 1 believes that s2 /∈ D1

2 and
will, therefore, not choose a strategy s1 ∈ D2

1 , and so on. Beliefs about
beliefs about beliefs. . . are explicitly modeled through the common belief
operator. In contrast, Propositions 6.2 and 6.3 do not make use of the
common belief operator. However, the logic is essentially the same. In
particular, common belief of rationality is generated by the axiom WR′

(or SR′) and the rule of necessitation: from sk
1 → ¬B1(s

ℓ
1 ≻1 s

k
1) we get,

by Necessitation, that B1(s
k
1 → ¬B1(s

ℓ
1 ≻1 sk

1)) ∧ B2(s
k
1 → ¬B1(s

ℓ
1 ≻1

sk
1)) and thus, whatever is implied by WR′ is believed by both players.

Further iterations of the Necessitation rule yields beliefs about beliefs about
beliefs. . . about the rationality of every player.

7 Related literature

As noted in the introduction, the iterated elimination of strictly dominated
strategies as a solution concept for strategic-form games goes back to Bern-
heim [2] and Pearce [16] and has been further studied and characterized by
a number of authors. From the point of view of this paper, the most im-
portant contribution in this area is due to Stalnaker [17], who put forward
the novel proposal of characterizing solution concepts for games in terms
of classes of models. Stalnaker carried out his analysis within the standard
framework of von Neumann-Morgenstern payoffs and defined dominance in
terms of mixed strategies. Furthermore his analysis was semantic rather
than syntactic. Our approach differs from Stalnaker’s in that we formulate
rationality syntactically within an axiomatic system and provide character-
ization results in line with the notion of frame characterization in modal
logic. Furthermore, we do this in a purely ordinal framework that does not
require probabilistic beliefs and von Neumann-Morgenstern payoffs. How-
ever, our intellectual debt towards Stalnaker is clear. In particular, the
IDIP algorithm (see Definition 3.4) is the adaptation to ordinal games of
the algorithm he introduced in [17].

A syntactic epistemic analysis of iterated strict dominance was also pro-
posed by de Bruin [9, p. 86]. However his approach is substantially dif-
ferent from ours. First of all, his analysis is explicitly carried out only for
two-person games, while we allowed for any number of players. Secondly,
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de Bruin assumes von Neumann Morgenstern payoffs and his definition of
strict dominance involves domination by mixed strategies [9, p. 51], while we
considered ordinal payoffs and defined dominance in terms of pure strategies
only (see Definition 3.2). Thirdly, de Bruin restricts attention to knowledge
(that is, in his axiom system he imposes the Truth Axiom Ti on individual
beliefs: [9, p. 51]) and thus does not investigate the difference between the
implications of common belief of rationality and those of common knowledge
of rationality (hence in his analysis there is no counterpart to the difference
highlighted in Propositions 5.4 and 5.8 of Section 5). More importantly,
however, de Bruin introduces the notion of strict dominance directly into

the syntax by using atomic propositions of the form nsdi(Ai, Aj) whose in-
tended interpretation is “player i uses a pure strategy in Ai which is not
strictly dominated by a mixed strategy over Ai given that player j plays a
pure strategy in Aj”. Furthermore, his definition of rationality incorporates

the notion of strict dominance. De Bruin’s definition of rationality [9, p. 86]
consists of two parts: a basis step without knowledge, ri → nsdi(Ai, Aj),
and an inductive step with knowledge: (ri ∧KiXi ∧KiXj) → nsdi(Xi, Xj).
According to de Bruin the advantage of his two-part definition of rationality
is that

Drawing a line between a basis case without beliefs, and an induc-
tive step with beliefs makes it possible to mimic every single round
of elimination of the solution concept by a step in the hierarchy of
common belief in rationality. This becomes highly explicit in the
inductive character of the proof. [9, p. 100]

However, as pointed out at the end of the previous section, this mim-
icking of the elimination steps occurs also in the proof of Proposition 5.4
without the need for a two-part definition of rationality and, more impor-
tantly, without incorporating the notion of dominance in the syntax.

The disadvantage of de Bruin’s approach is that one loses the distinction
between syntax and semantics and the ability to link the two by means of
frame characterization results. In our analysis, the notion of strict domi-
nance is purely a semantic notion, which has no syntactic counterpart. On
the other hand the definition of rationality is expressed syntactically and it
is epistemically based, in that it evaluates a player’s rationality by compar-
ing her action with her beliefs about the desirability of alternative actions.
The characterization results then establish a correspondence between the
output of an algorithm (such as the iterated deletion of strictly dominated
strategies) and common belief of an independently formulated notion of
rationality.

Börgers [7] provides a characterization of pure-strategy dominance that
differs from ours. Like us, Börgers assumes that only the ordinal rankings of
the players are commonly known; however—unlike us—he also assumes that
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d e
a 0,0 0,0
b 1,1 0,0
c 0,0 1,1

d e
a 0,0 0,0
b 1,1 0,0

Figure 8. Two games in which player 2 has strategies d and e, whereas
player 1 has either three strategies (left) or two (right).

each player has a von Neumann-Morgenstern utility function on the set of
outcomes, forms probabilistic beliefs about the opponents’ strategy choices
and chooses a pure strategy that maximizes her expected utility, given those
beliefs. He thus asks the question: what pure-strategy profiles are consistent
with common belief of rationality, where the latter is defined as expected
utility maximization with respect to some von Neumann-Morgenstern util-
ity function and some beliefs about the opponents’ strategies? Börgers
shows that a pure strategy is rational in this sense if and only if it is not
dominated by another pure strategy. Thus there is no need to consider dom-
inance by a mixed strategy. However, he shows that the relevant notion of
dominance in this case is not strict dominance but the following stronger
notion: a strategy si ∈ Si of player i is dominated if and only if, for every
subset of strategy profiles X−i ⊆ S−i of the players other than i, there ex-
ists a strategy ti ∈ Si (which can vary with X−i) that weakly dominates si

relative to X−i.
17 For example, in the game illustrated in Figure 8 (left),

strategy a of player 1 is dominated (by b relative to {d, e} and also relative
to {d} and by c relative to {e}). Thus in the corresponding model shown
in Figure 9, at state α, while player 1 is rational according to our axiom
WR (since no strategy is strictly dominated; indeed at state α there is
common knowledge of rationality), she is not rational according to Börgers’
definition.18

On the other hand, while stronger than the notion expressed by our
axiom WR, Börgers’ notion of rationality is weaker than our axiom SR, as
can be seen in the game of Figure 8 (right). Here strategy a of player 1 is
dominated by b relative to {d, e} and also relative to {d} but not relative to
{e}. Thus a is a rational strategy according to Börgers’ definition. On the
other hand, in the model of Figure 9 (viewed now as a model for the game
of Figure 8 (right)) player 1 is not rational at state α (where her choice is

17 We say that ti weakly dominates si relative to X−i if (1) z(ti, x−i) �i z(si, x−i), for
all x−i ∈ X−i, and (2) there exists an x̂−i ∈ X−i such that z(ti, x̂−i) ≻i z(si, x̂−i).

18 The reason for this is as follows: if player 1 assigns positive probability to both α and
β, then she would get a higher expected utility by switching to strategy b. The same
is true if she assigns probability 1 to α. On the other hand, if she assigns probability
1 to β then she can increase her utility by switching to c.
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c d

A 1,1 1,0

B 1,1 0,1

Player 2

Player

1
Figure 9. A model for the games of Figure 8.

a) according to the notion of rationality expressed by axiom SR (indeed, in
this game, T∞ = {(a, e), (b, d)} and thus (a, d) /∈ T∞).

8 Conclusion

We have examined the implications of common belief and common knowl-
edge of two, rather weak, notions of rationality. Most of the literature
on the epistemic foundations of game theory have dealt with the Bayesian
approach, which identifies rationality with expected payoff maximization,
given probabilistic beliefs (for surveys of this literature see [1] and [11]).
Our focus has been on strategic-form games with ordinal payoffs and non-
probabilistic beliefs. While most of the literature has been developed within
the semantic approach, we have used a syntactic framework and expressed
rationality in terms of syntactic axioms. We showed that the first, weaker,
axiom of rationality characterizes the iterated deletion of strictly dominated
strategies, while the stronger axiom characterizes the pure-strategy version
of the algorithm introduced by Stalnaker [17].

The two notions of rationality used in this paper can, of course, be
used also in the subclass of games with von Neumann-Morgenstern payoffs
and the results would be the same. Furthermore, the standard notion of
Bayesian rationality as expected payoff maximization is stronger than (that
is, implies) both notions of rationality considered in this paper. Thus our
results apply also to Bayesian rationality.19

We have provided two versions of our characterization results. The
first (Propositions 5.4 and 5.8), which comes closer to the previous game-
theoretic literature, is based on an explicit account of the role of common

19 In the sense that whatever is incompatible with our notion of rationality is also in-
compatible with the stronger notion of Bayesian rationality.
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belief of rationality and thus requires a syntax that contains atomic propo-
sitions that are interpreted as “player i is rational”. The second charac-
terization (Propositions 6.2 and 6.3) is closer to the modal logic literature,
where axioms are characterized in terms of properties of frames. However,
we argued that the two characterizations are essentially identical.

We have restricted attention to strategic-form games. In future work
we intend to extend this qualitative (that is, non probabilistic) analysis to
extensive-form games with perfect information and the notion of backward
induction.
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