
Bonanno, Giacomo

Working Paper

Belief change in branching time: AGM-consistency
and iterated revision

Working Paper, No. 10-1

Provided in Cooperation with:
University of California Davis, Department of Economics

Suggested Citation: Bonanno, Giacomo (2010) : Belief change in branching time: AGM-
consistency and iterated revision, Working Paper, No. 10-1, University of California, Department
of Economics, Davis, CA

This Version is available at:
https://hdl.handle.net/10419/58382

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your
personal and scholarly purposes.

You are not to copy documents for public or commercial
purposes, to exhibit the documents publicly, to make them
publicly available on the internet, or to distribute or otherwise
use the documents in public.

If the documents have been made available under an Open
Content Licence (especially Creative Commons Licences), you
may exercise further usage rights as specified in the indicated
licence.

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://hdl.handle.net/10419/58382
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/


Belief change in branching time: AGM-consistency
and iterated revision

Giacomo Bonanno
Department of Economics,
University of California,

Davis, CA 95616-8578 - USA
e-mail: gfbonanno@ucdavis.edu

January 2010

Abstract

We study belief change in the branching-time structures introduced in [4].
First, we identify a property of branching-time frames thatis equivalent to
AGM-consistency, which is defined as follows. A frame is AGM-consistent
if the partial belief revision function associated with an arbitrary state-instant
pair and an arbitrary model based on that frame can be extended to a full be-
lief revision function that satisfies the AGM postulates. Second, we provide
a set of modal axioms that characterize the class of AGM-consistent frames
within the modal logic introduced in [4]. Third, we introduce a generalization
of AGM belief revision functions that allows a clear statement of principles
of iterated belief revision and discuss iterated revision both semantically and
syntactically.

Keywords: branching time, belief revision, information, iterated belief revi-
sion, plausibility ordering.

1 Introduction

In [4] belief change over time was modeled by means of branching-time structures;
a corresponding modal logic with operators for next-time, information and belief
was proposed and some aspects of the relationship between this logic and the AGM
theory of belief revision ([1]) were discussed. In this paper we establish a stronger
correspondence between the semantics of branching-time frames and AGM belief
revision and address the issue of iterated belief revision,both syntactically and
semantically.
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The addition of a valuation to a branching-time frame gives rise - for every
state-instant pair(ω, t) - to an “initial” belief setK (the agent’s beliefs at(ω, t))
and a partial belief revision function based onK (constructed from the agent’s
beliefs at the immediate successors of instantt and at stateω). We investigate
under what conditions such a partial belief revision function can be extended to
a full AGM revision function. We find that a necessary and sufficient condition
(when the set of statesΩ is finite) is that there exist a total pre-orderR of Ω that
rationalizes belief revision at(ω, t), in the sense thatboth at instantt and at its
immediate successors (and at stateω) the states that the agent considers possible
are theR-maximal states among the ones that are compatible with the information
received. We then provide a set of axioms that characterizesthis class of branching-
time belief revision frames within the modal logic introduced in [4]. Finally, we
address the issue of iterated belief revision. First, we discuss the semantic and
syntactic modal correspondents of some well-known principles of iterated belief
revision. Then we introduce a generalization of AGM belief revision functions
that can be used to model iterated revision and show that every model based on
a rationalizable branching-time frame gives rise to such aniterated belief revision
function. One advantage of the iterated belief revision functions is that they allow
a precise formulation of what a doxastic state is and how an informational input
transforms a doxastic state into a new one.

2 Branching-time belief revision frames

The semantic frames discussed in this section provide a way of modeling the evo-
lution of an agent’s beliefs over time in response to informational inputs.

A next-time branching frameis a pair〈T,֌〉 whereT is a set of instants and
֌ is a binary relation onT satisfying the following properties:∀t1, t2, t3 ∈ T,

1. if t1֌ t3 and t2֌ t3 then t1 = t2,

2. if 〈t1, ..., tn〉 is a sequence inT with ti ֌ ti+1, for everyi = 1, ..., n − 1,
thentn �= t1.

The interpretation oft1 ֌ t2 is thatt2 is animmediate successorof t1 or t1
is theimmediate predecessorof t2 : every instant has at most a unique immediate
predecessor but can have several immediate successors. Ift ∈ T we denote the set
of immediate successors oft by t֌, that is,t֌ = {t′ ∈ T : t֌ t′}.

A branching-time belief-information frameis a tuple〈T,֌,Ω, {Bt, It}t∈T 〉
where〈T,֌〉 is a next-time branching frame,Ω is a set of states and, for every
t ∈ T , It andBt are binary relations onΩ, the first representing information and the
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latter beliefs. The interpretation ofωItω′ is that at stateω and timet− according to
the information received− it is possible that the true state isω′. On the other hand,
the interpretation ofωBtω′ is that at stateω and timet, in light of the information
received, the agent considers stateω′ possible (an alternative expression is “ω′ is a
doxastic alternative toω at timet”). We shall use the following notation:

It(ω) = {ω′ ∈ Ω : ωItω′} and, similarly,Bt(ω) = {ω′ ∈ Ω : ωBtω′}.

ThusIt(ω) is the set of states that are reachable fromω according to the relation
It and similarly forBt(ω).

Definition 1 Abranching-time belief revision frameis a frame〈T,֌,Ω, {Bt, It}t∈T 〉
that satisfies the following properties:∀ω ∈ Ω, ∀t, t′, t′′ ∈ T :

1. Bt(ω) ⊆ It(ω)

2. Bt(ω) �= ∅

3. if t֌ t′, t֌ t′′ andIt′(ω) = It′′(ω) thenBt′(ω) = Bt′′(ω)

4. if t֌ t′ andBt(ω) ∩ It′(ω) �= ∅ thenBt′(ω) = Bt(ω) ∩ It′(ω).

Property 1 says that information is believed and Property 2 that beliefs are
consistent. The two together imply thatIt(ω) �= ∅, that is, that information itself
is consistent.1

Property 3 requires that at any two instants that share the same immediate pre-
decessor, if information is the same then beliefs must be thesame. That is, differ-
ences in beliefs must be due to differences in information.

Property 4 is called the ‘Qualitative Bayes Rule’ (QBR) in [4], based on the
following observation. In a probabilistic setting, letPω,t be the probability measure
over a set of statesΩ representing the agent’s probabilistic beliefs at stateω and
instantt, letF ⊆ Ω be an event representing the information received by the agent
at a later instantt′ and letPω,t′ be the posterior probability measure representing the
revised beliefs at stateω and instantt′. Bayes’ rule requires that, ifPω,t(F ) > 0,

then, for every eventE ⊆ Ω, Pω,t′(E) =
Pω,t(E∩F )
Pω,t(F )

. Bayes’ rule thus implies the
following (wheresupp(P ) denotes the support of the probability measureP ):

if supp(Pω,t) ∩ F �= ∅, then supp(Pω,t′) = supp(Pω,t) ∩ F.

If we setBt(ω) = supp(Pω,t),F = It′(ω), with t֌ t′, andBt′(ω) = supp(Pω,t′)
then we get Property 4. Thus in a probabilistic setting the proposition “at instantt

1Thus we rule out inconsistent information. As pointed out byFriedman and Halpern [11], it is
not clear how one could be informed of a contradiction or, at least, how one could treat a contradiction
as information.
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the agent believes thatφ” would be interpreted as “the agent assigns probability 1
to the set of states whereφ is true”.

Figure 1 shows a branching-time belief revision frame. For simplicity, in all
the figures we assume that, for every instantt, the information relationIt is an
equivalence relation (whose equivalence classes are denoted by rectangles) and the
belief relationBt is transitive and euclidean2. An arrow fromω to ω′ means that
ω′ ∈ Bt(ω) (orωBtω′, that is,ω′ is reachable fromω according to the relationBt).
Note, however, that none of the results below requireIt to be an equivalence rela-
tion (in particular, veridicality of information isnot assumed), nor do they require
Bt to be transitive and euclidean.

t 0

t 2t
1

t
4 t

5

α β γ

β γ

δ ε

t 3

α γ

β ε δ

α

β δ

β γ

α ε

δ

α δ

γβ ε

γ ε
δ

α ε

Figure 1

For example, in Figure 1 at stateα and instantt3 the agent is informed that the
true state is eitherα, γ or ε (It3(α) = {α, γ, ε}) and (incorrectly) believes that
it is eitherγ or ε (Bt3(α) = {γ, ε}). At the next instantt4 (and still at stateα)

2Bt is transitive ifω′ ∈ Bt(ω) implies thatBt(ω′) ⊆ Bt(ω); it is euclidean ifω′ ∈ Bt(ω)
implies thatBt(ω) ⊆ Bt(ω′). Property 1 of Definition 1 is usually referred to as seriality.
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the agent is now informed that the true state is eitherα or ε (It4(α) = {α, ε})
and forms the revised (and still incorrect) belief that the true state isε. On the
other hand,t5 is an alternative next instant tot3 and att5 (and still at stateα)
the agent’s information isIt5(α) = {α, δ} and she forms the revised (and now
correct) belief that the true state isα (Bt5(α) = {α}). Note that all the properties
of Definition 1 are satisfied. In particular the Qualitative Bayes Rule is satisfied
everywhere: sometimes vacuously (as is the case at stateα and instantst3 andt5
whereBt3(α) ∩ It5(α) = ∅) and sometimes non-trivially (as is the case at stateα
and instantst3 andt4 whereBt3(α) ∩ It4(α) = Bt4(α) = {ε}).

Next we relate branching-time belief revision frames to theAGM theory of
belief revision ([1]), which is reviewed in the following section.3

3 AGM belief revision functions

Let Φ be the set of formulas of a propositional language based on a countable set
S of atomic formulas.4 Given a subsetK ⊆ Φ, its PL-deductive closure[K]PL

(where ‘PL’ stands for Propositional Logic) is defined as follows: ψ ∈ [K]PL if
and only if there existφ1, ..., φn ∈ K (with n ≥ 0) such that(φ1∧ ...∧φn)→ ψ is
a tautology (that is, a theorem of Propositional Logic). A set K ⊆ Φ is consistentif
[K]PL �= Φ (equivalently, if there is no formulaφ such that bothφ and¬φ belong
to [K]PL). A setK ⊆ Φ is deductively closedif K = [K]PL. A belief setis a set
K ⊆ Φ which is deductively closed.

Let K be a consistent belief set representing the agent’s initialbeliefs and let
Ψ ⊆ Φ be a set of formulas representing possible items of information. A belief
revision function based on Kis a functionBK : Ψ → 2Φ (where2Φ denotes the
set of subsets ofΦ) that associates with every formulaψ ∈ Ψ (thought of as new
information) a setBK(ψ) ⊆ Φ (thought of as the revised beliefs).5 If Ψ �= Φ we
callBK a partial belief revision function, while ifΨ = Φ thenBK is called afull
belief revision function.

Definition 2 LetBK : Ψ → 2Φ be a (partial) belief revision function andB∗K :
Φ → 2Φ a full belief revision function. We say thatB∗K is anextensionof BK if,
for everyψ ∈ Ψ, B∗K(ψ) = BK(ψ).

3For a more detailed account see [12] or [10].
4ThusΦ is defined recursively as follows: ifp ∈ S thenp ∈ Φ and ifφ, ψ ∈ Φ then¬φ ∈ Φ

and(φ ∨ ψ) ∈ Φ. The connectives∧ and→ are defined as ususal:φ ∧ ψ
def
= ¬(¬φ ∨ ¬ψ) and

φ→ ψ
def
= ¬φ ∨ ψ.

5In the literature it is common to use the notationK ∗ ψ or K∗
ψ instead ofBK(ψ), but for our

purposes the latter notation is clearer.
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Definition 3 A full belief revision function is called anAGM revision functionif it
satisfies the following properties, known as the AGM postulates:∀φ,ψ ∈ Φ,

(AGM1) BK(φ) = [BK(φ)]
PL

(AGM2) φ ∈ BK(φ)
(AGM3) BK(φ) ⊆ [K ∪ {φ}]PL

(AGM4) if ¬φ /∈ K, then[K ∪ {φ}]PL ⊆ BK(φ)
(AGM5) BK(φ) = Φ if and only if φ is a contradiction
(AGM6) if φ ↔ ψ is a tautology thenBK(φ) = BK(ψ)

(AGM7) BK(φ ∧ ψ) ⊆ [BK(φ) ∪ {ψ}]PL

(AGM8) if ¬ψ /∈ BK(φ), then[BK(φ) ∪ {ψ}]PL ⊆ BK(φ ∧ ψ).

AGM1 requires the revised belief set to be deductively closed.
AGM2 requires that the information be believed.
AGM3 says that beliefs should be revised minimally, in the sensethat no new

formula should be added unless it can be deduced from the information received
and the initial beliefs.6

AGM4 says that if the information received is compatible with the initial be-
liefs, then any formula that can be deduced from the information and the initial
beliefs should be part of the revised beliefs.

AGM5 requires the revised beliefs to be consistent, unless the informationφ is
a contradiction (that is,¬φ is a tautology).

AGM6 requires that ifφ is propositionally equivalent toψ then the result of
revising byφ be identical to the result of revising byψ.

AGM7 andAGM8 are a generalization ofAGM3 andAGM4 that

“applies toiteratedchanges of belief. The idea is that ifBK(φ) is a
revision ofK [prompted byφ] andBK(φ) is to be changed by adding
further sentences, such a change should be made by using expansions
of BK(φ) whenever possible. More generally, the minimal change of
K to include bothφ andψ (that is,BK(φ ∧ ψ)) ought to be the same
as the expansion ofBK(φ) byψ, so long asψ does not contradict the
beliefs inBK(φ)” ([12], p. 55; notation changed to match ours).

4 Branching-time models and AGM belief revision

We now return to the semantic structures of Definition 1 and interpret them by
adding a valuation that associates with every atomic proposition p ∈ S the set of

6Note that, for every formulaψ, ψ ∈ [K ∪ {φ}]PL if and only if (φ → ψ) ∈ K (since, by
hypothesis,K = [K]PL).
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states at whichp is true. Note that, by defining a valuation this way, we frame the
problem as one of belief revision, since the truth value of anatomic proposition
depends only on the state and not on the time.7

Let S be a countable set of atomic formulas andΦ the set of propositional
formulas built fromS (see Footnote 4). Given a branching-time belief revision
frameF = 〈T,֌,Ω, {Bt,It}t∈T 〉, amodel based on(or aninterpretation of) F
is obtained by adding toF a valuationV : S → 2Ω (where2Ω denotes the set
of subsets ofΩ).8 Truth of an arbitrary formulaφ ∈ Φ at stateω in modelM is
denoted byω |=M φ and is defined recursively as follows:

(1) for p ∈ S, ω |=M p if and only ifω ∈ V (p),
(2) ω |=M ¬φ if and only ifω �|=M φ, and
(3) ω |=M (φ ∨ ψ) if and only if eitherω |=M φ or ω |=M ψ (or both).

The truth set of formulaφ in modelM is denoted by‖φ‖
M
; thus‖φ‖

M
=

{ω ∈ Ω : ω |=M φ}.

Definition 4 Given a modelM = 〈T,֌,Ω, {Bt,It}t∈T , V 〉, a stateω ∈ Ω, an
instantt ∈ T and formulasφ, ψ ∈ Φ we say that

• at (ω, t) the agent is informed thatψ if and only if It(ω) = ‖ψ‖
M

,

• at (ω, t) the agent believes thatφ if and only if Bt(ω) ⊆ ‖φ‖
M

.

Note that for information we requireequalityof the two sets (this corresponds
to the notion of ‘all the agent knows’: see [4] for a discussion and references),
while for belief we impose the standard requirement thatBt(ω) be asubsetof the
truth set of a formula.

Given a modelM and a state-instant pair(ω, t), according to Definition 4 we
can associate with(ω, t) a belief set and a (typically partial) belief revision function
as follows. Let

KM,ω,t = {φ ∈ Φ : Bt(ω) ⊆ ‖φ‖
M
} , (1)

denote the set of formulas that the agent believes at(ω, t), that is, his (initial)
belief set at(ω, t). It is straightforward to show thatKM,ω,t is a consistent and
deductively closed set. Let

7In principle, the branching-time structures of Definition 1can be used to describe either a sit-
uation where the objective facts describing the world do notchange− so that only the beliefs of
the agent change over time− or a situation where both the facts and the doxastic state of the agent
change. In the literature the first situation is calledbelief revision, while the latter is calledbelief
update(see [15]). We restrict attention to belief revision.

8If instead of belief revision we were interested in belief update (see Footnote 7), then we would
need to define a valuation as a functionV : S → 2Ω×T .
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ΨM,ω,t =
{
ψ ∈ Φ : ‖ψ‖

M
= It′(ω) for somet′ ∈ t֌

}
(2)

be the possible items of information that the agent might receive next time (that is,
at some immediate successor oft: recall thatt֌ = {t ∈ T : t֌ t′}). Finally let
BKM,ω,t

: ΨM,ω,t → 2Φ be defined as9

BKM,ω,t
(ψ) =

{
φ ∈ Φ : Bt′(ω) ⊆ ‖φ‖

M
for t′ ∈ t֌ with It′(ω) = ‖ψ‖

M

}
.
(3)

That is, if at the immediate successort′ of t the agent is informed thatψ (It′(ω) =
‖ψ‖

M
), then his revised belief set is given by the set of formulas that he believes

at (ω, t′): {φ ∈ Φ : Bt′(ω) ⊆ ‖φ‖
M
}.

For example, consider a model of the frame illustrated in Figure 1 above where,
for some atomic formulasp1, p2, p3 andq, V (p1) = {α, γ, δ} = It1(α), V (p2) =
{α, δ, ε} = It2(α), V (p3) = {α, γ, ε} = It3(α) andV (q) = {γ}. Then the
initial beliefs at(α, t0) are given by the (consistent and deductively closed) set
Kα,t0 = {φ ∈ Φ : β |= φ}. The setΨα,t0 of potential informational inputs at
(α, t0) is rather small; for example, whilep1, p2, p3 ∈ Ψα,t0 , (p1 ∨ p2) /∈ Ψα,t0.
Thus the associated belief revision functionBKα,t0

is a partial function. As an
example we have that¬q, p3 ∈ BKα,t0 (p2); thus, since¬q,¬p3 ∈ Kα,t0 the agent
initially believes both¬q and¬p3 and, upon being informed thatp2 (at(α, t2)) she
revises her beliefs by maintaining the belief that¬q but switching from believing
that¬p3 to believing thatp3. A natural question to ask is whether this partial belief
revision function is compatible with the AGM postulates, inthe sense that there
exists a full belief revision functionB∗Kα,t0

that satisfies the AGM postulates and is
an extension ofBKα,t0 (see Definition 2). In this case the answer is negative. This
can be proved as follows. To simplify the notation we shall drop the subscripts
a, t0; thus we writeK instead ofKα,t0 , BK instead ofBKα,t0

, etc. Suppose that
B∗K is an AGM extension ofBK . Then, sincep2 ∈ BK(p1) andp2 ∈ BK(p2) (and
BK(p1) = B∗K(p1) andBK(p2) = B∗K(p2)) it follows that10

p2 ∈ B∗K(p1 ∨ p2). (4)

ThusB∗K((p1 ∨ p2) ∧ p2) = B∗K(p1 ∨ p2).11 Since(p1 ∨ p2) ∧ p2 is equivalent to
p2, by AGM6B∗K((p1 ∨ p2) ∧ p2) = B∗K(p2). Thus (sinceBK(p2) = B∗K(p2))

9This function is well defined because of Property 3 of Definition 1.
10This is a consequence of the following result, which is proved in the Appendix (Lemma 13). Let

K be a consistent belief set andBK : Φ → 2Φ an AGM belief revision function. Letφ, ψ, χ ∈ Φ
be such thatχ ∈ BK(φ) andχ ∈ BK(ψ). Thenχ ∈ BK(φ ∨ ψ).

11Proof: byAGM1, B∗
K(p1 ∨ p2) = [B∗

K(p1 ∨ p2)]
PL. By AGM5, since(p1 ∨ p2) is not a

contradiction,B∗
K(p1 ∨ p2) 
= Φ. Thus, sincep2 ∈ B∗

K(p1 ∨ p2), ¬p2 /∈ B∗
K(p1 ∨ p2). Hence,
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B∗K(p1 ∨ p2) = BK(p2). (5)

Sincep3 ∈ BK(p2),12

[BK(p2) ∪ {p3}]
PL = [BK(p2)]

PL = BK(p2). (6)

Furthermore, by(5), p3 ∈ B∗K(p1 ∨ p2). Since(p1 ∨ p2) is not a contradiction, by
AGM5 B∗K(p1 ∨ p2) is consistent and thus¬p3 /∈ B∗K(p1 ∨ p2). Hence, byAGM7

andAGM8, B∗K((p1∨p2)∧p3) = [B
∗
K((p1 ∨ p2) ∪ {p3}]

PL and, by (5), the latter
is equal to[BK(p2) ∪ {p3}]

PL which, in turn, by (6), is equal toBK(p2). Thus

B∗K((p1 ∨ p2) ∧ p3) = BK(p2). (7)

Since(p1 ∨ p2)∧ p3 is equivalent top3, by AGM6 B∗K((p1 ∨ p2)∧ p3) = B∗K(p3).
Thus, by (7),

B∗K(p3) = BK(p2). (8)

SinceB∗K is an extension ofBK , B∗K(p3) = BK(p3). Thus it follows from (8)
thatBK(p3) = BK(p2), yielding a contradiction, since¬q ∈ BK(p2) but¬q /∈
BK(p3).

In view of the above example, a natural question to ask is whether there exists
a property of branching-time belief revision frames that guarantees that the partial
belief revision functions generated by models based on frames that satisfy that
property are compatible with the AGM postulates. The notionof compatibility
with the AGM postulates is made precise in the following definition.

Definition 5 A branching-time belief revision frameF = 〈T,֌,Ω, {Bt, It}t∈T 〉
is AGM-consistent at(ω, t) ∈ Ω × T if, for every modelM = 〈F , V 〉 based on
it the associated belief revision functionBKM,ω,t

(see (3) above) can be extended
(see Definition 2) to a full AGM belief revision function (seeDefinition 3).

We showed above that the branching-time belief revision frame illustrated in
Figure 1 isnot AGM consistent at(α, t0).

The following proposition, which is proved in the Appendix,extends results
given in [6] and [14]. Note that the Qualitative Bayes Rule (Property 4 of Definition
1) is crucial for the validity of Proposition 6.

by AGM7 andAGM8, B∗
K((p1 ∨ p2) ∧ p2) = [B

∗
K(p1 ∨ p2) ∪ {p2}]

PL = [B∗
K(p1 ∨ p2)]

PL =
B∗
K(p1 ∨ p2).
12It is sraightforward to show that, for everyφ ∈ Ψ, BK(φ) is deductively closed.
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A total pre-orderof Ω is a binary relationR ⊆ Ω × Ω which is complete
(∀ω,ω′ ∈ Ω, eitherωRω′ or ω′Rω) and transitive (∀ω,ω′, ω′′ ∈ Ω, if ωRω′ and
ω′Rω′′ thenωRω′′). We shall interpretωRω′ as “stateω is at least as plausible as
stateω′”. Given a total pre-orderR of Ω and a subsetE ⊆ Ω, let13

bestR E
def
= {ω ∈ E : ωRω′, ∀ω′ ∈ E}.

ThusbestR E is the set of states inE that are most plausible according toR.

Proposition 6 Let F = 〈T,֌,Ω, {Bt, It}t∈T 〉 be a branching-time belief revi-
sion frame (see Definition 1) whereΩ is finite and let(ω, t) ∈ Ω × T . Then the
following conditions are equivalent:

(a) F is AGM consistent at(ω, t).

(b) There exists a total pre-orderRω,t of Ω that rationalizes the agent’s beliefs
at t and at the immediate successors oft (and stateω) in the sense that

b1. Bt(ω) = bestRω,t It(ω), and

b2. for everyt′ ∈ T such thatt֌ t′,Bt′(ω) = bestRω,t It′(ω).

(c) ∀u0, u1, ..., un ∈ t֌ with un = u0 (recall that t֌ is the set of immediate
successors oft),

if Iuk−1(ω) ∩ Buk(ω) �= ∅, ∀k = 1, ..., n,

then Iuk−1(ω) ∩ Buk(ω) = Buk−1(ω) ∩ Iuk(ω), ∀k = 1, ..., n.
(PLS)

A frame that satisfies Property(b) of Proposition 6 is said to berationaliz-
able at (ω, t) and we say that the total pre-orderRω,t rationalizes belief revi-
sion at (ω, t). The branching-time belief revision frame illustrated in Figure 1
is not rationalizable at(α, t0). In fact, suppose that there is a total pre-orderRα,t0
that satisfies(b.1) and (b.2). Let Pα,t0 be the corresponding strict order (thus
ωPα,t0ω

′ if and only if ωRα,t0ω
′ and notω′Rα,t0ω). Then, sinceγ ∈ It1(α)

andBt1(α) = bestRα,t0 It1(α) = {δ}, δPα,t0γ; similarly, sinceδ ∈ It2(α) and
Bt2(α) = bestRα,t0 It2(α) = {ε}, εPα,t0δ. Hence, by transitivity,εPα,t0γ. How-
ever, fromBt3(α) = bestRα,t0 It3(α) = {γ, ε} we get thatγRα,t0ε, yielding

13In the literature sometimes the total pre-order is denoted by � and the set{ω ∈ E : ω �
ω′,∀ω′ ∈ E} is referred to as the set ofmaximalelements ofE, while some other times the total
pre-order is denoted by≤ and the set{ω ∈ E : ω ≤ ω′,∀ω′ ∈ E} is referred to as the set of
minimalelements ofE. In order to avoid confusion, we denote the relation byR and refer to thebest
elements of a set.
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a contradiction. Since the frame is not rationalizable at(α, t0), it follows from
Proposition 6 that it is not AGM-consistent at(α, t0), a fact that was proved di-
rectly above.

PropertyPLS of part(c) of Proposition 6 gives a necessary and sufficient con-
dition for a branching-time belief revision frame to be rationalizable at(ω, t). To
verify that the frame of Figure 1 is not rationalizable at(α, t0) using this prop-
erty, let u0 = u3 = t1, u1 = t3 and u2 = t2. Then It1(α) ∩ Bt3(α) =
{γ} �= ∅, It3(α) ∩ Bt2(α) = {ε} �= ∅ andIt2(α) ∩ Bt1(α) = {δ} �= ∅, but
Bt1(α) ∩ It3(α) = ∅ and thusBt1(α) ∩ It3(α) �= It1(α) ∩ Bt3(α).

Definition 7 A frame islocally rationalizableif it is rationalizable at every state-
instant pair(ω, t); it is AGM-consistentif it is AGM consistent at every(ω, t).

Thus, by Proposition 6, a frame whereΩ is finite is locally rationalizable if and
only if it is AGM-consistent.

In a locally rationalizable frame, for every state-instantpair (ω, t), belief revi-
sion can be rationalized by a plausibility ordering of the set of states, in the sense
that att and at the immediate successors oft (and a stateω) the states that the
agent considers doxastically possible (that is, accordingto her beliefs) are the most
plausible among the ones that are compatible with the information received. Figure
2 shows a locally rationalizable (and thus AGM-consistent)branching-time belief
revision frame. For example, belief revision at(α, t0) is rationalized by the total
pre-orderRα,t0 generated by the strict total orderβPα,t0δPα,t0γPα,t0α:
Rα,t0 = {(α,α), (β, α), (β, β), (β, γ), (β, δ), (δ, α), (δ, γ), (δ, δ), (γ, γ), (γ, α)}.

Remark 8 In a locally rationalizable frame, it is possible that, ift′ is an imme-
diate successor oft, the plausibility ordering ofΩ at (ω, t′) is different from the
plausibility ordering at(ω, t). For example, in the frame of Figure 2 any total pre-
order that rationalizes belief revision at(α, t0)must be such thatγ is strictly more
plausible thanα,14 whereas any total pre-order that rationalizes belief revision at
(α, t2)must be such thatα is strictly more plausible thanγ.15 Thus the ranking of
α andγ is reversed upon moving from(α, t0) to (α, t2).

Note also that, for a given instantt, if ω andω′ are different states the total
pre-order that rationalizes belief revision at(ω, t) may be different from the total
pre-order that rationalizes belief revision at(ω′, t). For example, in Figure 2,

14BecauseBt1(α) = {γ} andIt1(α) = {α, γ}.
15BecauseBt3(α) = {α} andIt3(α) = {α, γ}.
For example, belief revision at(α, t2) is rationalized by the total pre-orderRα,t2 =

{(α,α), (α, γ), (α, δ), (β, α), (β, β), (β, γ), (β, δ), (δ, δ), (δ, γ), (γ, γ)}, that is, by the stict total
orderβPα,t2αPα,t2δPα,t2γ.
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any total pre-order that rationalizes belief revision at(β, t2) must be such thatβ
is strictly more plausible thanδ,16 whereas any total pre-order that rationalizes
belief revision at(δ, t2)must be such thatδ is strictly more plausible thanβ.17
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Figure 2

We now turn to a modal-logic characterization of locally rationalizable branching-
time belief revision frames.

5 A temporal logic for belief revision

We briefly review the modal language introduced in [4], which contains the fol-
lowing modal operators: the next-time operator©, the belief operatorB, the in-
formation operatorI and the “all state” operatorA. The intended interpretation is
as follows:

16Because BecauseBt3(β) = {β} andIt3(β) = {β, δ}.
17Because BecauseBt3(δ) = {δ} andIt3(δ) = {β, δ}.

For example, belief revision at(β, t2) is rationalized by the total pre-order generated by the strict
total orderβPβ,t2αPβ,t2γPβ,t2δ, while belief revision at(δ, t2) is rationalized the total pre-order
generated by the strict total orderδPδ,t2βPδ,t2γPδ,t2α.
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©φ : “at every next instant it will be the case thatφ”
Bφ : “the agent believes thatφ”
Iφ : “the agent is informed thatφ”
Aφ : “it is true at every state thatφ”.

Fix a modelM = 〈T,֌,Ω, {Bt,It}t∈T , V 〉, whereV : S → 2Ω is a valua-
tion. Given a stateω, an instantt and a formulaφ, we write(ω, t) |=M φ to denote
thatφ is true at(ω, t) in modelM. Let‖φ‖

M
⊆ Ω×T denote the truth set ofφ, that

is, ‖φ‖
M
= {(ω, t) ∈ Ω× T : (ω, t) |=M φ} and let‖φ‖

M,t ⊆ Ω denote the set
of states at whichφ is trueat instantt, that is,‖φ‖

M,t = {ω ∈ Ω : (ω, t) |=M φ}.
Truth at(ω, t) is defined as usual forp ∈ S (whereS is the set of atomic formulas),
¬φ and(φ ∨ ψ). For the modal formulas we have

(ω, t) |=M ©φ if and only if (ω, t′) |=M φ for everyt′ such thatt֌ t′

(ω, t) |=M Bφ if and only ifBt(ω) ⊆ ‖φ‖
M,t

(ω, t) |=M Iφ if and only if It(ω) = ‖φ‖
M,t

(ω, t) |=M Aφ if and only if ‖φ‖
M,t = Ω.

Note that, while the truth condition for the operatorB is the standard one,
the truth condition for the operatorI is non-standard: instead of simply requiring
that It(ω) ⊆ ‖φ‖

M,t we require equality:It(ω) = ‖φ‖
M,t (for an explanation

see [4], where the role of the “all state" operator is also discussed). Note also
that, while the other modal operators apply to arbitrary formulas, the information
operator is restricted to apply only to pure Boolean formulas, that is formulas that
do not contain any modal operators.18 Pure Boolean formulas represent facts and
information is restricted to be about facts.

A formulaφ is valid in a modelif ‖φ‖
M
= Ω× T , that is, ifφ is true at every

state-instant pair(ω, t). A formulaφ is valid in a frameif it is valid in every model
based on it. A property of framescharacterizes(or is characterized by) an axiom
if the axiom is valid in every frame that satisfies the property and, conversely, if
the frame violates the property then there is a model based onthat frame and a
state-instant pair at which the axiom is falsified.

Let ♦ be an abbreviation for¬ © ¬ (thus (ω, t) |=M ♦φ if and only if
(ω, t′) |=M φ for somet′ such thatt ֌ t′); furthermore, let

∧

j=1,...,m
φj denote

the formula(φ1 ∧ ... ∧ φm). In the following proposition (which is proved in the
Appendix) all the formulas are restricted to be pure Boolean, that is, formulas that
do not contain any modal operators.

18A similar (in fact, stronger) restriction is imposed in [16]in the context of dynamic doxastic
logic (p. 175).
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Proposition 9 The class of locally rationalizable branching-time beliefrevision
frames is characterized by the following axioms (in Axiom 5 we letφ0 = φn and
χ0 = χn):

1. Iφ → Bφ

2. Bφ → ¬B¬φ

3. ♦(Iψ ∧Bφ)→ ©(Iψ → Bφ)

4a. (¬B¬φ ∧Bψ)→ ©(Iφ → Bψ)

4b. ¬B¬(φ ∧ ¬ψ)→ ©(Iφ → ¬Bψ)

5.
∧

j=1,...,n
♦
(
Iφj∧¬B¬φj−1∧Bχj

)
→

∧

j=1,...,n
©
(
(Iφj → B(φj−1 → χj−1)) ∧ (Iφj−1 → B(φj → χ

j
))
)

Axiom 1 says that information is believed and Axiom 2 that beliefs are consis-
tent. Axiom 3 corresponds to Property 3 of Definition 1. Axioms4a and4b provide
a characterization of Property 4 of Definition 1 (the Qualitative Bayes Rule). Ax-
iom 5 characterizes PropertyPLS of Proposition 6.

6 Iterated belief revision in branching-time frames

Branching-time belief revision frames provide a natural setting for studying iter-
ated belief revision, that is, changes in beliefs prompted by asequenceof informa-
tional inputs. The analysis can be carried out either semantically, within the class of
branching-time frames, or syntactically, within the modallanguage of the previous
section; furthermore, the two approaches can be linked via axiomaticcharacteriza-
tion results. In this section we will briefly discuss some of the principles of iterated
belief revision that have been proposed in the literature,19 while in the next section
we provide a generalization of AGM belief revision functions (see Definition 3)
that captures iterated revision and discuss the correspondence between branching-
time frames and iterated belief revision functions.

In a locally rationalizable frame the total pre-order associated with a state-
instant pair(ω, t) encodes both the agent’s initial beliefs and her disposition to
change those beliefs upon receipt of new information. This is what has been called
in the literature anepistemicor doxastic state(see, for example, [9], [17], [19]).
AGM-consistency (which, by Proposition 6, is equivalent tolocal rationalizability)

19The first analysis of iterated belief revision using the branching-time frames introduced in [4]
was carried out by Zvesper [21].
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imposes only very weak restrictions on how the epistemic state of the agent can
change from(ω, t) to (ω, t′) whent′ is an immediate successor oft. The following
lemma (proved in the Appendix) identifies one such restriction: if E ⊆ F ⊆ Ω and
the agent’s beliefs when informed thatF do not rule outE, then she will have the
same beliefs in the situation where she is immediately informed thatE as in the
situation where she is first informed thatF and then she is is informed thatE.20

Lemma 10 LetF = 〈T,֌,Ω, {Bt, It}t∈T 〉 be a locally rationalizable frame. Fix
an arbitrary stateω ∈ Ω and instantst, t1, t2, t3 ∈ T such thatt֌ t1 ֌ t2 and
t ֌ t3 (that is, t1 and t3 are immediate successors oft and t2 is an immediate
successor oft1). Then21

if It3(ω) = It2(ω) ⊆ It1(ω) andBt1(ω) ∩ It2(ω) �= ∅,

thenBt2(ω) = Bt3(ω). (REFweak)

Note that the clauseBt1(ω) ∩ It2(ω) �= ∅ is crucial: without it the lemma is
not true. Denote byREF the strengthening ofREFweak obtained by dropping
the clauseBt1(ω) ∩ It2(ω) �= ∅. As before, lett, t1, t2, t3 ∈ T be such that
t֌ t1֌ t2 andt֌ t3 and letω ∈ Ω:

if It3(ω) = It2(ω) ⊆ It1(ω), thenBt2(ω) = Bt3(ω). (REF )

PropertyREF states that “since the subsequent evidence is more specific than
the initial evidence (that is,It2(ω) ⊆ It1(ω)), the later evidence washes away the
earlier evidence” ([17], p. 197). Figure 3 shows a locally rationalizable frame that
violates PropertyREF at (α, t).22 Consider a model based on this frame where,
for some atomic formulasp, q andr, ‖p‖ = {δ}, ‖q‖ = {α, γ} = It2(α) = It3(α)
and ‖r‖ = {γ}. Then at(α, t) the agent’s disposition to revise her beliefs is

20In the following lemma,E = It2(ω) = It3(ω) andF = It1(ω). Note that, although
REFweak is a rather weak property and is implied by the AGM postulates, the underlying require-
ment for iterated belief revision is not uncontroversial: see, for example, [20] and [18].

21‘REF ’ stands for ‘refinement’ (of information). PropertyREFweak can be derived from the
Qualitative Bayes Rule (Property 4 of Definition 1) and the following property, introduced in [4]:

if t֌ t1, t֌ t3, It3(ω) ⊆ It1(ω) andBt1(ω) ∩ It3(ω) 
= ∅
then Bt3(ω) = Bt1(ω) ∩ It3(ω). (CAB)

PropertyCAB is valid in every locally rationalizable frame and, as shownin [5], it is characterized
by the axioms

♦(I(φ ∧ ψ) ∧Bχ)→©(Iφ→ B ((φ ∧ ψ)→ χ)) (K7)
♦(Iφ ∧ ¬B¬(φ ∧ ψ) ∧B(ψ → χ))→©(I(φ ∧ ψ)→ Bχ) (K8)

22Belief revision at(α, t) is rationalized by the total pre-order generated by the strict total order
βPδPγPα, while belief revision at(α, t1) is rationalized by any total pre-order that contains the
strict componentδPαPγ. Note that the ranking ofα andγ has been reversed in moving from(α, t)
to (α, t1).
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such that, if informed thatq (which is the case at(α, t3)) she will believe that
r. However, after being informed that(p ∨ q) (at (α, t1): It1(α) = {α, γ, δ} =
‖p ∨ q‖) her disposition changes and, if later she is informed thatq (which is the
case at(α, t2)), she will believe that¬r (despite the fact that information thatq is
a refinement of the information that(p ∨ q)).
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Figure 3

Although not implied by AGM-consistency, PropertyREF captures a prin-
ciple that is part of most well-known theories of iterated belief revision (see, for
example, [7], [8], [9], [13], [17]). It is shown in [21] that PropertyREF is charac-
terized by the following axioms:

A(ψ → φ) ∧ ♦(Iφ ∧ ♦(Iψ ∧Bχ)) → © (Iψ → Bχ) Ref1
A(ψ → φ) ∧ ♦(Iψ ∧Bχ) → © (Iφ → ©(Iψ → Bχ)) Ref2

A further strengthening ofREF is given by the following property, which
corresponds to the postulate ‘Conjunction’ in Nayak et al ([17], p. 203). It says that
if two sequentially received pieces of information are consistent with each other,
then they induce the same beliefs as the information consisting of their conjunction.
As before lett, t1, t2, t3 ∈ T be such thatt֌ t1֌ t2 andt֌ t3 and letω ∈ Ω:
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if It2(ω) ∩ It1(ω) �= ∅ andIt3(ω) = It2(ω) ∩ It1(ω)
thenBt2(ω) = Bt3(ω).

(REFstrong)

It is shown in [21] that PropertyREFstrong is characterized by the following
axioms:

¬A¬(ψ ∧ φ) ∧ ♦(Iφ ∧ ♦(Iψ ∧Bχ)) → © (I(φ ∧ ψ)→ Bχ) Ref3
¬A¬(ψ ∧ φ) ∧ ♦(I(φ ∧ ψ) ∧Bχ) → © (Iφ →©(Iψ → Bχ)) Ref4

The rationale for PropertyREFstrong is that information should be treated
cumulatively in the sense that information thatE followed by information thatF
has the same effect on beliefs as information thatE ∩ F (provided thatE andF
are compatible, that is, thatE ∩ F �= ∅).

Other principles of iterated belief revision that have beenproposed in the liter-
ature have corresponding properties in branching-time belief revision frames and
can be characterized by modal axioms similar to the ones discussed above: see
[21]. Instead of continuing the discussion along these lines, in the next section we
go back to the relationship between branching-time frames and AGM belief revi-
sion functions and provide a generalization of the latter that can be used to discuss
principles of iterated belief revision.

7 Iterated belief revision functions

As in Section 3, letΦ be the set of formulas in a propositional language based on
the setS of atomic formulas. Recall that, given a belief setK ⊆ Φ, an AGM belief
revision function is a functionBK : Φ → 2Φ that associates with every formula
φ ∈ Φ (thought of as new information) a revised belief setBK(φ) ⊆ Φ, satisfying
the AGM postulates (see Definition 3). Several authors have discussed whether
belief revision ought to be thought of as a unary operation (that is, a function tak-
ing an informational inputφ ∈ Φ and producing a new belief set) or as a binary
operation (that is, a function taking a belief setK ⊆ Φ and an informational input
φ ∈ Φ and producing a new belief set).23 This is an issue that has been raised in
the context of iterated belief revision. We propose to modeliterated belief revision
in terms of athree-argument function, that is, a ternary operation. As we shall see,
our proposed functions incorporate the belief revision operations suggested in the
literature and offer a clear way of stating principles of iterated revision.

Let H be the set of sequences inΦ. If h = 〈φ1, ..., φn〉 ∈ H andφ ∈ Φ, we
denote the sequence〈φ1, ..., φn, φ〉 ∈ H byhφ. The empty sequence〈 〉 is denoted

23See, for example, [17] and [19].
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by ∅ and is an element ofH. We think of a sequenceh as a history of informational
inputs received in the past andup to the moment under consideration. The first
argument of our iterated belief revision functions is a history h. The need to take
into account the history of previous informational inputs has been noted in the
literature. For instance Rott ([19], p. 398) writes:

“We need to make room for a dependence of the revision function
not only on the current belief state, but also on the history of belief
changes (previous belief states as well as previous inputs).”

In a similar vein Nayak et al ([17], p. 202) write:

“It is conceivable that at two different times,t1 andt2, an agent has the
same set of beliefs but the relative firmness of the beliefs are different.
If the agent accepts the same evidence att1 andt2, the resultant belief
sets would be different.”

Presumably, the difference the authors refer to is attributable to the fact that the
two different timest1 andt2 represent different ways in which the agent arrived at
the same set of beliefs, that is, different past histories.

Figure 4 illustrates this possibility by means of an AGM-consistent branching-
time frame.24 Consider a model based on this frame where, for some atomic for-
mulasm, p, q, r ands, ‖m‖ = {α, β, γ, δ, ε}, ‖p‖ = {α, β, γ}, ‖q‖ = {α, β, ε},
‖r‖ = {α, γ, ε} and ‖s‖ = {α}. Then the agent has the same belief set at
(α, t1) and at(α, t2), namely the setK = {φ ∈ Φ : β |= φ}. However, the
same information (at the corresponding next instant), namely that r is the case
(It3(α) = It4(α) = ‖r‖), leads to different beliefs: for instance at(α, t3) she be-
lieves thatswhile at(α, t4) believes that¬s (Bt3(α) ⊆ ‖s‖whileBt4(α) ⊆ ‖¬s‖).
This difference in disposition to revise beliefs upon receiving information thatr,
despite the same “initial” set of beliefsK, can be traced to the different informa-
tional history leading toK: the information history at(α, t1) is given by〈m,p〉
while the information history at(α, t1) is given by〈m, q〉.

24It is straightforward to check that the frame of Figure 4 is locally rationalizable. For exam-
ple, belief revision at(α, t0) is rationalized by the total pre-order generated by the strict total order
δPα,t0βPα,t0αPα,t0γPα,t0ε, belief revision at(α, t1) is rationalized by the total pre-order gener-
ated by the strict total orderβPα,t1αPα,t1γPα,t1δPα,t1ε and belief revision at(α, t2) is rationalized
by the total pre-order generated by the strict total orderβPα,t2γPα,t2αPα,t2δPα,t2ε.
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The other two arguments in the iterated belief revision functions are a belief set
K ⊆ Φ and an informational inputφ ∈ Φ. LetK be the set of deductively closed
sets of formulas.

Definition 11 AnAGM iterated belief revision functionis a functionB : H×K×
Φ→ 2Φ that satisfies the AGM postulates:∀h ∈ H,∀K ∈ K, ∀φ, ψ ∈ Φ

(AGM1) B(h,K, φ) = [B(h,K,φ)]PL

(AGM2) φ ∈ B(h,K, φ)
(AGM3) B(h,K, φ) ⊆ [K ∪ {φ}]PL

(AGM4) if ¬φ /∈ K, then[K ∪ {φ}]PL ⊆ B(h,K,φ)
(AGM5) B(h,K, φ) = Φ if and only ifφ is a contradiction
(AGM6) if φ ↔ ψ is a tautology thenB(h,K, φ) = B(h,K,ψ)

(AGM7) B(h,K, φ ∧ ψ) ⊆ [B(h,K, φ) ∪ {ψ}]PL

(AGM8) if ¬ψ /∈ B(h,K,φ), then[B(h,K,φ) ∪ {ψ}]PL ⊆ B(h,K,φ ∧ ψ).

As noted by Nayak et al ([17], p.196) the only restriction that the AGM pos-
tulates imply concerning iterated belief revision is the one given in the following
lemma, which is the counterpart of Lemma 10.

Lemma 12 LetB : H×K×Φ→ 2Φ be an AGM iterated belief revision function.
Then,for everyh ∈ H, K ∈ K, andφ,ψ ∈ Φ
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if ¬ψ /∈ B(h,K, φ) thenB(hφ,B(h,K, φ), ψ) = B(h,K, φ ∧ ψ). (9)

The antecedent of (9), namely¬ψ /∈ B(h,K, φ), says thatψ is compatible
with the revised belief set after information thatφ, when the starting point is given
by informational historyh and belief setK; the consequent says that the revised
belief set after the further information thatψ, with new starting point given by
the update historyhφ and the revised belief setB(h,K,φ), coincides with the
revised belief set after information that(φ ∧ ψ), when the starting point is given
by informational historyh and belief setK. In short: information thatφ followed
by information thatψ produces the same beliefs as the “one step” information that
(φ ∧ ψ), provided thatψ is compatible with the revised beliefs after the first piece
of information, namelyφ.

(9) is the counterpart of the semantic propertyREFweak. The counterpart of
the strong version of this property, namelyREFstrong is obtained by replacing the
clause ‘¬ψ /∈ B(h,K,φ)’ with ‘ (φ ∧ ψ) is a consistent formula’:25

if (φ ∧ ψ) is consistent, thenB(hφ,B(h,K, φ), ψ) = B(h,K, φ ∧ ψ). (10)

A consequence of (10) is that the order in which two consistent items of infor-
mation are received is irrelevant:26

if (φ ∧ ψ) is consistent,
thenB(hφ,B(h,K,φ), ψ) = B(hψ,B(h,K,ψ), φ).

(11)

However, (11) is weaker than (10); that is, it is possible for an AGM iterated belief
revision function to satisfy (11) but not (10).

Other principles of iterated belief revision that have beenproposed in the liter-
ature can easily be stated by means of AGM iterated belief revision functions. For
instance, Darwiche and Pearl’s postulate DP2 ([9]; see also [17], p. 203) can be
stated as follows:

if (φ ∧ ψ) is inconsistent while each ofφ andψ is consistent,
thenB(hφ,B(h,K,φ), ψ) = B(h,K,ψ).

25The counterpart of the intermediate propertyREF is: if ψ implies φ, then
B(hφ,B(h,K, φ), ψ) = B(h,K, φ ∧ ψ).

26Proof. Let(φ ∧ ψ) be a consistent formula. From (10) we get thatB(hφ,B(h,K, φ), ψ) =
B(h,K, φ ∧ ψ). Similarly, B(hψ,B(h,K,ψ), φ) = B(h,K,ψ ∧ φ). Since(φ ∧ ψ) is equiva-
lent to (ψ ∧ φ), by AGM6 B(h,K, φ ∧ ψ) = B(h,K,ψ ∧ φ). ThusB(hφ,B(h,K, φ), ψ) =
B(hψ,B(h,K,ψ), φ).
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Rather than restating the various principles of iterated revision proposed in the
literature, we first comment on the philosophical issue of how revision of belief
states should be modeled and then turn to the relationship between AGM iterated
belief revision functions and branching-time belief revision frames.

Several authors have convincingly argued that a belief state ought to be thought
of as comprisingboth the initial set of beliefsand the disposition to change those
beliefs upon receipt of new information. As Rott ([19], p. 398) puts it,

“an [AGM] revision function does notrevisea belief state - let alone
revise all possible belief states - buta revision function is a belief state.
Actually, a revision function does not revise anything; in particular,
there are no primitive entities in the study of belief revision that could
be revised by such a function. Revision functions are themselves the
primitive entities of the theory of belief revision.”

Rott goes on to note that, if one accepts this point of view, then one faces the
problem of how to represent therevision of belief states:

“If unary revision functions are primitive and the appropriate formal
representation of doxastic states, how dotheyget revised by proposi-
tional inputs?” [ibidem]

We argue that the AGM iterated belief revision functions of Definition 11
provide an answer to this question. Abelief statecan be taken to be a triple
(h, K, b : Φ → 2Φ) whereh is a history of previous informational inputs,K

is the current set of beliefs andb(·)
def
= B(h,K, ·) : Φ → 2Φ is the one-step revi-

sion function obtained fromB : H × K × Φ → 2Φ by fixing the values ofh and
K. Upon receipt of informationφ ∈ Φ, the initial belief state(h,K, b) is trans-
formed into the new belief state(h′,K ′, b′) whereh′ = hφ, K ′ = B(h,K,φ) and
b′(·) = B(hφ,B(h,K,φ), ·) : Φ→ 2Φ.27

We now turn to the relationship between branching-time belief revision frames
and AGM iterated belief revision functions. For simplicitywe will focus onrooted
branching-time frames where there is an instantt0 ∈ T , called theroot, which has
no immediate predecessor and is a predecessor of every otherinstant (that is, for
every t ∈ T\{t0} there is a sequence〈t0, t1, ..., tn〉 in T such thattn = t and,

27Rott’s proposal in [19] is to define iterated belief revisionfunctions as unary operations
∗ : H → 2Φ taking sequences of input formulas into sets of beliefs. Such functions can be generated
by the functions of our Definition 11 as follows: (1) fix a starting point(h,K), (2) obtain from the
sequence of input formulas〈φi〉i=1,..,n the sequence〈(hi,Ki)〉i=1,..,n wherehi = hi−1φi and
Ki = B(hi−1,Ki−1, φi) and then (3) define∗(〈φi〉i=1,..,n) = Kn.
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for everyi = 1, ..., n, ti−1 ֌ ti).28 Given a frameF = 〈T,֌,Ω, {Bt, It}t∈T 〉
and a valuationV : S → 2Ω, letM be the corresponding model. ThenM gives
rise to a partial iterated belief revision function in a natural way. Associate with
every state-instant pair(ω, t) a historyhM,ω,t and a belief setKM,ω,t by letting
(as before: see (1))KM,ω,t = {φ ∈ Φ : Bt(ω) ⊆ ‖φ‖

M
} andhM,ω,t be the

history of past informational inputs up tot, defined as follows. Let〈t0, t1, ..., tn〉
be the path from the roott0 to t and let〈It0(ω),It1(ω), ...,Itn(ω)〉. For every
i = 0, 1, .., n, let Φi = {φ ∈ Φ, Iti(ω) = ‖φ‖

M
} and lethM,ω,t = ∅ (recall

that∅ denotes the empty sequence) ifΦi = ∅ for everyi = 0, 1, ...n, otherwise
hM,ω,t = 〈φ1, ..., φm〉 (m ≤ n+1)whereφj is an arbitrary selection fromΦj−1 �=
∅. Finally, if φ ∈ Φ is such such thatIt′(ω) = ‖φ‖

M
for somet′ ∈ T such that

t֌ t′, letB(hM,ω,t,KM,ω,t, φ) = {ψ ∈ Φ : Bt′(ω) ⊆ ‖ψ‖
M
}.

As an illustration, consider a modelM based on the frame of Figure 4 where,
for some atomic formulasm, p, q andr, ‖m‖ = {α, β, γ, δ, ε}, ‖p‖ = {α, β, γ},
‖q‖ = {α, β, ε} and‖r‖ = {α, γ, ε}. For simplicity we drop the subscriptM.
Then

hα,t0 = 〈m〉 Kα,t0 = {φ ∈ Φ : δ |= φ}
hα,t1 = 〈m,p〉 Kα,t1 = {φ ∈ Φ : β |= φ}
hα,t2 = 〈m, q〉 Kα,t2 = {φ ∈ Φ : β |= φ}
hα,t3 = 〈m,p, r〉 Kα,t3 = {φ ∈ Φ : α |= φ}
hα,t4 = 〈m, q, r〉 Kα,t4 = {φ ∈ Φ : γ |= φ}

andB(hα,t0, Kα,t0, p) = Kα,t1 ,B(hα,t0 , Kα,t0 , q) = Kα,t2 ,B(hα,t1 , Kα,t1 , r) =
Kα,t3 andB(hα,t2 , Kα,t2, r) = Kα,t4 .

By Proposition 6, the partial iterated belief revision function associated with
an arbitrary model based on a frameF = 〈T,֌,Ω, {Bt,It}t∈T 〉 that is locally
rationalizable can be extended to a full AGM iterated beliefrevision function. One
can extend the analysis by adding to the AGM postulates appropriate postulates of
iterated belief revision and identifying properties of frames that are equivalent to
the existence of full AGM iterated belief revision functions that (i) satisfy those
additional postulates and (ii ) extend the partial iterated revision functions obtained
by interpreting the given frames. We leave this project to future research.

28In a general branching-time frame with no root, instead of identifying a past history with the path
from the root to the instant under consideration one would consider a maximal chain of predecessors
of that instant.
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8 Concluding remarks

The branching-time frames discussed in this paper provide anatural setting for a
discussion of belief change both semantically, in terms of property of frames, and
syntactically, in terms of modal axioms.29 Furthermore, a correspondence between
interpretations of branching-time frames and AGM belief revision functions can
also be established, thereby providing a link to the vast literature on belief revision
and iterated belief revision.

A Appendix

First we prove the following lemma (see Footnote 10).

Lemma 13 Let K be a consistent belief set andBK : Φ → 2Φ an AGM belief
revision function. Letφ, ψ, χ ∈ Φ be such thatχ ∈ BK(φ) andχ ∈ BK(ψ). Then
χ ∈ BK(φ ∨ ψ).

Proof. First we show that

(φ → χ) ∈ BK(φ ∨ ψ). (12)

If ¬φ ∈ BK(φ∨ψ) then, since - byAGM1 - BK(φ∨ψ) is deductively closed and
¬φ → (φ → χ) is a tautology,(φ → χ) ∈ BK(φ ∨ ψ). If ¬φ /∈ BK(φ ∨ ψ) then,
by AGM7 andAGM8,BK((φ∨ψ)∧φ) = [BK(φ ∨ ψ) ∪ {φ}]PL, that is, for every
ξ ∈ Φ,

ξ ∈ BK((φ ∨ ψ) ∧ φ) if and only if (φ → ξ) ∈ BK(φ ∨ ψ). (13)

Since(φ ∨ ψ) ∧ φ is propositionally equivalent toφ, by AGM6 BK((φ ∨ ψ) ∧
φ) = BK(φ). Thus, using (13) and the hypothesis thatχ ∈ BK(φ), we get that
(φ → χ) ∈ BK(φ ∨ ψ). A similar proof leads to

(ψ → χ) ∈ BK(φ ∨ ψ). (14)

From (12) and (14) and the fact thatBK(φ ∨ ψ) is deductively closed we obtain

((φ → χ) ∧ (ψ → χ)) ∈ BK(φ ∨ ψ). (15)

Since((φ → χ) ∧ (ψ → χ)) → ((φ ∨ ψ) → χ) is a tautology, it belongs to
BK(φ ∨ ψ). Hence, by (15),((φ ∨ ψ)→ χ) ∈ BK(φ ∨ ψ). By AGM2, (φ ∨ ψ) ∈
BK(φ ∨ ψ). Henceχ ∈ BK(φ ∨ ψ).

29For a different, but related, approach see [2] and [3]
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We now turn to the proof of Proposition 6. First we need some preliminary
definitions and results.

Definition 14 A choice structureis a triple 〈Ω, E, f〉 whereΩ is a set,E ⊆ 2Ω is a
collection of subsets ofΩ andf : E → 2Ω is a function that satisfies the following
properties:∀E ∈ E, (1) f(E) ⊆ E and (2) ifE �= ∅ thenf(E) �= ∅.

Give a choice structureC = 〈Ω,E , f〉, a Hansson sequencein C is a sequence
〈E0, ..., En〉 (n ≥ 1) such that (1)En = E0 and,∀k = 1, ..., n, (2) Ek ∈ E and
(3)Ek−1 ∩ f(Ek) �= ∅.

The following result is due to Hansson ([14], Theorem 7, p. 455).

Proposition 15 LetC = 〈Ω,E, f〉 be a choice structure. The following are equiv-
alent:

1. there exists a total pre-orderR ⊆ Ω × Ω such that , for everyE ∈ E,

f(E) = bestR E
def
= {ω ∈ E : ωRω′, ∀ω′ ∈ E},

2. for every Hansson sequence〈E0, ..., En〉 in C, Ek−1 ∩ f(Ek) = f(Ek−1)∩
Ek, ∀k = 1, ..., n.

As we shall see below, by Proposition 15 PropertyPLS of Proposition 6 guar-
antees the rationalizability of the beliefsat the immediate successorsof an instant
t (and some stateω). However, our definition of local rationalizability includes the
initial beliefs, that is, also the beliefs at(ω, t). Thus a little more work needs to be
done in order to prove the equivalence of(b) and(c) of Proposition 6.

Definition 16 Given two choice structuresC = 〈Ω,E, f〉 andC′ = 〈Ω,E ′, f ′〉, we
say thatC′ is a QBR-extension ofC by the addition of O⊆ Ω (withO �= ∅) if (1)
E ′ = E ∪ {O}, (2) f ′ is an extension off , that is,∀E ∈ E, f ′(E) = f(E) and (3)
∀E ∈ E, if E ∩ f ′(O) �= ∅ thenf(E) = E ∩ f ′(O).

Lemma 17 LetC = 〈Ω, E, f〉 be a choice structure andC′ = 〈Ω,E ′, f ′〉, a QBR-
extension ofC by the addition ofO ⊆ Ω. Then the following are equivalent:

(A) if 〈E0, ..., En〉 is a Hansson sequence inC then,∀k = 1, ..., n, Ek−1 ∩
f(Ek) = f(Ek−1) ∩Ek;

(B) if 〈E′0, ..., E
′
n〉 is a Hansson sequence inC′ then,∀k = 1, ..., n, E′k−1 ∩

f ′(E′k) = f ′(E′k−1) ∩E′k.

Proof. That (B) ⇒ (A) is obvious, since the set of Hansson sequences inC′

contains the set of Hansson sequences inC (they are those whereE′k ∈ E for all
k). Thus we only need to prove(A)⇒ (B).
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Consider first the case where,∀E ∈ E, E ∩ f ′(O) �= ∅. Then, by Definition
16 , f(E) = E ∩ f ′(O), ∀E ∈ E. Define the following relationR′ on Ω: for
all x, y ∈ Ω, xR′y if and only if either (1)x ∈ f ′(O) or (2) x /∈ f ′(O) and
y /∈ f ′(O). ThenR′ is a total pre-order30 and, furthermore, for everyE ∈ E ′,
f ′(E) = bestR′ E.31 Thus, by Proposition 15,(B) holds.

Suppose now thatE∩f ′(O) = ∅ for someE ∈ E. LetE0 = {E ∈ E : E ∩ f ′(O) = ∅}
and letΩ0 =

⋃

E∈E0

E. ThenΩ0 ∩ f ′(O) = ∅. By Proposition 15 it follows from

(A) that there is a total pre-orderR ofΩ such that, for allE ∈ E, f(E) = bestR E.
Fix such a total pre-orderR and define the following relationR′ onΩ:

R′ = (R ∩ (Ω0 ×Ω0))
⋃

{(x, y) ∈ Ω×Ω : x ∈ f ′(O)}⋃
{(x, y) ∈ Ω×Ω : y ∈ Ω\(Ω0 ∪ f ′(O))}

(16)

That is, (i) the elements off ′(O) are the most plausible states, (ii)R′ coincides
with R onΩ0×Ω0 and (iii) the elements ofΩ\(Ω0∪f ′(O)) are the least plausible
states. We want to show thatR′ is a total pre-order ofΩ and is such that, for every
E ∈ E ′, f ′(E) = bestR′ E. If we establish this then, by Proposition 15,(B) holds.

Proof thatR′ is complete. Fix arbitraryx, y ∈ Ω. We need to show that
eitherxR′y or yR′x. If x ∈ f ′(O) then, by (16),xR′y; similarly, if y ∈ f ′(O)
thenyR′x. If x, y ∈ Ω0 then it follows from (16) and completeness ofR. If
y ∈ Ω\(Ω0 ∪ f ′(O)) then, by (16),xR′y; similarly, if x ∈ Ω\(Ω0 ∪ f ′(O)) then
yR′x.

Proof thatR′ is transitive. Fix arbitraryx, y, z ∈ Ω and suppose thatxR′y and
yR′z. We need to show thatxR′z. If x ∈ f ′(O), then, by (16),xR′z. Assume that
x /∈ f ′(O). Two cases are possible: (1)x ∈ Ω0 and (2)x ∈ Ω\(Ω0 ∪ f ′(O)). In
Case 1, sincexR′y, it must be that either (1a)y ∈ Ω0 or (1b)y ∈ Ω\(Ω0∪f ′(O)).
In Case 1a, sinceyR′z, it must be that eitherz ∈ Ω0, in which casexR′z by (16)
and transitivity ofR, or z ∈ Ω\(Ω0 ∪ f ′(O)), in which casexR′z by (16). In
Case 1b, sinceyR′z by (16) it must be thatz ∈ Ω\(Ω0 ∪ f ′(O)) and thus, by
(16),xR′z. Consider now Case 2, wherex ∈ Ω\(Ω0 ∪ f ′(O)). Then, sincexR′y,
it must be thaty ∈ Ω\(Ω0 ∪ f ′(O)) and thus, sinceyR′z, it must be that also
z ∈ Ω\(Ω0 ∪ f ′(O)). HencexR′z by (16).

30Proof of completeness. Fix arbitraryx, y ∈ Ω. We need to show that eitherxR′y or yR′x. If
x ∈ f ′(O) thenxR′y; if y ∈ f ′(O) thenyR′x; if both x /∈ f ′(O) andy /∈ f ′(O) thenxR′y and
yR′x.

Proof of transitivity. Fix arbitraryx, y, z ∈ Ω and suppose thatxR′y andyR′z. We need to show
thatxR′z. If x ∈ f ′(O), thenxR′z. If x /∈ f ′(O) then, sincexR′y, it must be thaty /∈ f ′(O) and
thus, sinceyR′z, it must be that alsoz /∈ f ′(O). ThusxR′z.

31By definition ofR′, bestR′ Ω = f ′(O). Let E ∈ E . Then, sincef(E) = E ∩ f ′(O) = E ∩
bestR′ Ω, f(E) = bestR′E (recall that we are considering the case where,∀E ∈ E , E ∩ f ′(O) 
=
∅).
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ThusR′ is a total pre-order ofΩ. It remains to show that, for everyE ∈ E ′,
f ′(E) = bestR′ E. It is clear from (16) thatf ′(O) = bestR′ Ω and thusf ′(O) =
bestR′ O (since, by definition of choice structure,f ′(O) ⊆ O ⊆ Ω). Thus we
only need to show thatf(E) = bestR′ E for all E ∈ E. If E ∈ E0 (that is,
E ∩ f ′(O) = ∅) then, sincef(E) = bestR E, it follows from (16) thatf(E) =
bestR′ E (sinceR′ andR coincide onΩ0 ×Ω0). Suppose, therefore, thatE /∈ E0,
that is,E ∩ f ′(O) �= ∅. Then, by Definition 16,f(E) = E ∩ f ′(O). Hence, since
f ′(O) = bestR′ Ω andbestR′ Ω ∩E = bestR′ E (becausebestR′ Ω ∩ E �= ∅), it
follows thatf(E) = bestR′ E.

Proof of Proposition 6. Part 1: equivalence of(b) and (c). Fix a branching-
time belief revision frame〈T,֌,Ω, {Bt, It}t∈T 〉 , an arbitrary statêω and an ar-
bitrary instant̂t. ConditionPLS states that

∀t0, t1, ..., tn ∈ t̂֌ with tn = t0 andn ≥ 1,
if Itk−1(ω̂) ∩ Btk(ω̂) �= ∅, ∀k = 1, ..., n,
then Itk−1(ω̂) ∩ Btk(ω̂) = Btk−1(ω̂) ∩ Itk(ω̂), ∀k = 1, ..., n.

(17)

Associate with(ω̂, t̂) the following choice structureC = 〈Ω, E, f〉: E =
{It(ω̂) : t ∈ t̂֌} and, for everyE ∈ E, if E = It(ω̂) for somet ∈ t̂֌ then
f(E) = Bt(ω̂). Note that the functionf is well-defined because of Property 3 of
Definition 1. Then (17) can be rewritten as follows (see Definition 14):

for every Hansson sequence〈E0, ..., En〉 in C
Ej−1 ∩ f(Ej) = f(Ej−1) ∩Ej , ∀j = 1, ..., n.

(18)

Let C′ = 〈Ω,E ′, f ′〉 be the extension ofC given byE ′ = E ∪ {It(ω̂)} and
f ′(It(ω̂)) = Bt(ω̂). Then, by Property 4 of Definition 1,C′ is a QBR extension
of C by the addition ofIt(ω̂) (see Definition 16). Thus, by Lemma 17, (18) is
equivalent to

for every Hansson sequence〈E′0, ..., E
′
n〉 in C′

E′j−1 ∩ f(E′j) = f(E′j−1) ∩E′j , ∀j = 1, ..., n.
(19)

By Proposition 15, (19) is equivalent to the existence of a total pre-orderR̂ ⊆
Ω×Ω that rationalizesC′ and thus (by construction ofC′) R̂ that rationalizes belief
revision at(ω̂, t̂) (that is,(b) of Proposition 6 is satisfied).

Remark 18 The proofs of Proposition 15 and Lemma 17 do not requireΩ to be
finite. Thus the equivalence of(b) and(c) of Proposition 6 holds also in the case
whereΩ is infinite.
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In order to prove the equivalence of(a) and(b) of Proposition 6 we need the
following.

Definition 19 A choice structure〈Ω, E, f〉 (see Definition 14) is called aU-choice
structure(‘U’ becauseE contains the universal setΩ) if (i) Ω ∈ E and (2)∀E ∈ E,
E �= ∅.

A U-choice structure〈Ω, E, f〉 is rationalizableif there exists a total pre-order

R ofΩ such that, for everyE ∈ E, f(E) = bestR E
def
= {ω ∈ E : ωRω′, ∀ω′ ∈

E}.
A U-choice structure〈Ω,E, f〉 is AGM-consistent if, for every valuationV :

S → 2Ω, the (partial) belief revision functionBK : Ψ → 2Φ whereK = {φ ∈
Φ : f(Ω) ⊆ ||φ||}, Ψ = {φ ∈ Φ : ||φ|| ∈ E} and, for everyφ ∈ Ψ, BK(φ) =
{ψ ∈ Φ : f(||φ||) ⊆ ||ψ||}, can be extended to a full AGM belief revision function.

The following proposition is proved in [6].

Proposition 20 A U-choice structure〈Ω,E, f〉 withΩ finite is AGM-consistent if
and only if it is rationalizable.

A “pointwise” application of Proposition 20, with some appropriate modifica-
tions of the choice structure associated with every state-instant pair(ω, t), yields a
proof of the equivalence between(a) and(b) of Proposition 6.

Proof of Proposition 6. Part 2: equivalence of(a) and (b). Fix a branching-
time belief revision frame〈T,֌,Ω, {Bt,It}t∈T 〉 , with Ω finite. Fix an arbitrary
stateω̂ ∈ Ω and an arbitrary instant̂t ∈ T .

Associate with(ω̂, t̂) the following U-choice structureC = 〈Ω,E, f〉: E =
{Ω} ∪ {It(ω̂) : t ∈ t̂֌}, f(Ω) = Bt̂(ω̂) and, for everyE ∈ E\{Ω}, if E = It(ω̂)
for somet ∈ t̂֌ thenf(E) = Bt(ω̂).32

By construction,(a) of Proposition 6 is equivalent to AGM-consistency ofC
(see Definition 19).33

Next we show that(b) of Proposition 6 is equivalent to rationalizability ofC.
Suppose thatC is rationalizable and letR be a total pre-order ofΩ that rationalizes
C. Then (b.2) of Proposition 6 holds by definition ofC. Furthermore,Bt̂(ω̂) =
f(Ω) = bestR Ω. SinceBt̂(ω̂) ⊆ It̂(ω̂), it follows thatBt̂(ω̂) = bestR It̂(ω̂)
and thus (b.1) holds. Conversely, letR be a total pre-order ofΩ that satisfies (b.1)

32As noted bove, the functionf is well-defined because of Property 3 of Definition 1.
33Given an arbitrary valuationV : S → 2Ω, the initial beliefs and the partial belief revision

function associated with(ω̂, t̂) coincide with the initial beliefs and the partial belief revision function
associated withC.
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and (b.2). LetE0 = {E ∈ E\{Ω} : E ∩ f(Ω) = ∅} and letΩ0 =
⋃

E∈E0

E. Then

Ω0 ∩ f(Ω) = ∅. Define the following relationR′ onΩ:

R′ = (R ∩ (Ω0 ×Ω0))
⋃

{(x, y) ∈ Ω×Ω : x ∈ f(Ω)}⋃
{(x, y) ∈ Ω×Ω : y ∈ Ω\(Ω0 ∪ f(Ω))}.

(20)

ThenR′ is a total pre-order ofΩ (the proof is identical to that given in Lemma
17 for (16), replacingf ′ with f andO with Ω). We want to show that, for every
E ∈ E, f(E) = bestR′ E. It is clear from (20) thatf(Ω) = bestR′ Ω. Thus
we only need to show thatf(E) = bestR′ E for all E ∈ E\{Ω}. If E ∈ E0
(that is,E ∩ f(Ω) = ∅) then, sincef(E) = bestR E, it follows from (20) that
f(E) = bestR′ E (sinceR′ andR coincide onΩ0 ×Ω0). Suppose, therefore, that
E /∈ E0, that is,E∩ f(Ω) �= ∅. Then, sincef(Ω) = bestR′ Ω, E ∩ bestR′ Ω �= ∅
and thusE ∩ bestR′ Ω = bestR′ E. By Property 4 of Definition 1 (the Qualitative
Bayes Rule),f(E) = E ∩ f(Ω).34 Thusf(E) = bestR′ E.

Since(a) of Proposition 6 is equivalent to AGM-consistency ofC and(b) of
Proposition 6 is equivalent to rationalizability ofC, the equivalence of(a) and(b)
follows from Proposition 20.

Proof of Proposition 9. It is shown in [5] that, forj = 1, 2, Axiom j of
Proposition 9 characterizes Propertyj of Definition 1.

Next we show that Axiom 3 of Proposition 9 characterizes Property 3 of Defi-
nition 1. Fix an arbitrary frame that satisfies Property 3 of Definition 1, namely if
t֌ t′, t֌ t′′ andIt′(ω) = It′′(ω) thenBt′(ω) = Bt′′(ω). Fix arbitraryω̂ ∈ Ω,
t̂ ∈ T and pure Boolean formulasφ andψ and suppose that(ω̂, t̂) |= ♦(Iψ∧Bφ).
Then there exists at′ such that̂t ֌ t′ and(ω̂, t′) |= Iψ ∧ Bφ, that is,It′(ω̂) =
‖ψ‖t′ andBt′(ω̂) ⊆ ‖φ‖t′ . We have to show that(ω̂, t̂) |= ©(Iψ → Bφ). Fix an
arbitraryt ∈ T such that̂t֌ t and suppose that(ω̂, t) |= Iψ. ThenIt(ω̂) = ‖ψ‖t.
Sinceψ is a pure Boolean formula, by Proposition 5 in [4],‖ψ‖t′ = ‖ψ‖t. Hence
It′(ω̂) = It(ω̂) and thus, by Property 3 of Definition 1,Bt′(ω̂) = Bt(ω̂). Hence
Bt(ω̂) ⊆ ‖φ‖t′ . Sinceφ is a Boolean formula,‖φ‖t′ = ‖φ‖t, so thatBt(ω̂) ⊆ ‖φ‖t,
that is,(ω̂, t) |= Bφ. Hence(ω̂, t) |= Iψ → Bφ and thus, sincet was chosen arbi-
trarily with t̂ ֌ t, (ω̂, t̂) |= ©(Iψ → Bφ). Conversely, fix a frame that violates
Property 3 of Definition 1. Then there existω ∈ Ω and t, t1, t2 ∈ T such that
t֌ t1, t֌ t2, It1(ω) = It2(ω) andBt1(ω) �= Bt2(ω). Without loss of general-
ity we can assume that

there exists anα ∈ Bt2(ω) such thatα /∈ Bt1(ω) (21)

34By definition ofC, f(Ω) = Bt̂(ω̂), E = It(ω̂) for somet such that̂t֌ t andf(E) = Bt(ω̂).
By Property 4 of Definition 1, ifBt̂(ω̂) ∩ It(ω̂) 
= ∅ thenBt(ω̂) = Bt̂(ω̂) ∩ It(ω̂).
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(otherwise renumber the two instants). Construct a model where, for some atomic
formulasp andq, ‖p‖ = It1(ω)×T and‖q‖ = Bt1(ω)×T . Then(ω, t1) |= Ip∧Bq
and thus, sincet֌ t1, (ω, t) |= ♦(Ip∧Bq). Furthermore, sinceIt1(ω) = It2(ω),
(ω, t2) |= Ip and, by (21),(ω, t2) � Bq, so that(ω, t2) � (Ip → Bq). Hence,
sincet֌ t2, (ω, t) �©(Ip → Bq) and thus Axiom 3 is falsified at(ω, t).

It is shown in [5] that Axiom 4a of Proposition 9 (called ND in [5]) is charac-
terized by the following property

if t֌ t′ andBt(ω) ∩ It′(ω) �= ∅ thenBt′(ω) ⊆ Bt(ω) (22)

and Axiom 4b of Proposition 9 (called NA in [5]) is characterized by the following
property

if t֌ t′ thenBt(ω) ∩ It′(ω) ⊆ Bt′(ω). (23)

Since Property 4 of Definition 1 implies both (22) and (23), itfollows that a
frame that satisfies Property 4 validates Axioms 4a and 4b. Furthermore, in the
presence of Property 1 of Definition 1, the conjunction of (22) and (23) implies
Property 4. Thus, in the presence of Property 1, violation ofProperty 4 implies vi-
olation of either (22) or (23) (or both) and thus leads to the possibility of falsifying
either Axiom 4a or Axiom 4b (or both).

We conclude the proof of Proposition 9 by showing that Axiom 5is character-
ized by PropertyPLS of Proposition 6. Fix a branching-time belief revision frame
that satisfiesPLS, an arbitrary model based on it, arbitrary pure Boolean formulas
φ1, ..., φn andχ1, ..., χn and arbitrarŷω ∈ Ω and t̂ ∈ T and suppose that (letting
φ0 = φn)

(ω̂, t̂) |=
∧

j=1,...,n
♦
(
Iφj∧¬B¬φj−1∧Bχj

)
(24)

We have to show that, for everyj = 1, ..., n (lettingφ0 = φn andχ0 = χn)

(ω̂, t̂) |=©
(
(Iφj → B(φj−1 → χj−1)) ∧ (Iφj−1 → B(φj → χ

j
))
)

.

By (24) there existt1, ..., tn ∈ t̂֌ such that

(ω̂, t1) |= Iφ1∧¬B¬φn∧Bχ1 (recall thatφ0 = φn) and
(ω̂, tj) |= Iφj∧¬B¬φj−1∧Bχj for all j = 2, ..., n.

(25)

Thus
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(a)Itj (ω̂) =
∥∥φj

∥∥
tj

for all j = 1, ..., n,

(b)Btj(ω̂) ∩ Itj−1(ω̂) �= ∅ for all j = 2, ..., n,
(c)Bt1(ω̂) ∩ Itn(ω̂) �= ∅
(d)Btj(ω̂) ⊆

∥∥χj
∥∥
tj

for all j = 1, ..., n.

(26)

Fix arbitrary j ∈ {1, ..., n} and t ∈ T with t̂ ֌ t. We have to show that if
(ω̂, t) |= Iφj then(ω̂, t) |= B(φj−1 → χj−1) and if (ω̂, t) |= Iφj−1 then(ω̂, t) |=
B(φj → χj). Suppose first that(ω̂, t) |= Iφj , that is,It(ω̂) =

∥∥φj
∥∥
tj

. Sinceφj
is a pure Boolean formula, by Proposition 5 in [4],

∥∥φj
∥∥
t
=
∥∥φj

∥∥
tj

, so that, by (a)

of (26),It(ω̂) = Itj (ω̂). It follows from this and Property 3 of Definition 1, that
Bt(ω̂) = Btj(ω̂). Thus, without loss of generality, we can taket = tj . Similarly, if
(ω̂, t) |= Iφj−1 then, without loss of generality, we can taket = tj−1. Thus it will
be sufficient to show that if(ω̂, tj) |= Iφj then(ω̂, tj) |= B(φj−1 → χj−1) and
if (ω̂, tj−1) |= Iφj−1 then(ω̂, tj−1) |= B(φj → χj). By (b) and (c) of (26) and
propertyPLS we have that (lettingt0 = tn)

Itj−1(ω̂) ∩ Btj (ω̂) = Btj−1(ω̂) ∩ Itj(ω̂). (27)

By (d) of (26),Btj−1(ω̂) ⊆
∥∥χj−1

∥∥
tj−1

and, sinceχj−1 is a pure Boolean formula,

by Proposition 5 in [4],
∥∥χj−1

∥∥
tj−1

=
∥∥χj−1

∥∥
tj

. Thus

Btj−1(ω̂) ⊆
∥∥χj−1

∥∥
tj

. (28)

Hence, by (27) and (28),

Itj−1(ω̂) ∩ Btj (ω̂) ⊆
∥∥χj−1

∥∥
tj

. (29)

Now (letting�E denote the complementE, that is,�E = Ω\E),

Btj (ω̂) ⊆ �Itj−1(ω̂) ∪
(
Itj−1(ω̂) ∩ Btj (ω̂)

)
. (30)

By (a) of (26),Itj−1(ω̂) =
∥∥φj−1

∥∥
tj−1

. Sinceφj−1 is a Boolean formula,
∥∥φj−1

∥∥
tj−1

=
∥∥φj−1

∥∥
tj

. Thus

�Itj−1(ω̂) = �
∥∥φj−1

∥∥
tj
=
∥∥¬φj−1

∥∥
tj

. (31)
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Putting together (30), (31) and (29) we get thatBtj (ω̂) ⊆
∥∥¬φj−1

∥∥
tj
∪
∥∥χj−1

∥∥
tj
=

∥∥φj−1 → χj−1
∥∥
tj

, that is,(ω̂, tj) |= B(φj−1 → χj−1). The proof that if(ω̂, tj−1) |=

Iφj−1 then(ω̂, tj−1) |= B(φj → χj) is along the same lines.35

Conversely, fix a frame that violates propertyPLS. Then there exist̂ω ∈ Ω,
t̂ ∈ T , t1, ..., tn ∈ t̂֌, and ak∗ ∈ {1, ..., n} such that (lettingt0 = tn)

(a)Itk−1(ω) ∩ Btk(ω) �= ∅, ∀k = 1, ..., n,
(b) Itk∗−1(ω̂) ∩ Btk∗ (ω̂) �= Btk∗−1(ω̂) ∩ Itk∗ (ω̂).

(32)

Letp1, ..., pn, q1, ..., qn, be atomic formulas and construct a model where, for every
k = 1, ..., n, ‖pk‖ = Itk(ω̂) × T and‖qk‖ = Btk(ω̂) × T . Then, by (a) of (32)
(lettingp0 = pn)

(ω̂, t̂) |=
∧

j=1,...,n
♦
(
Ipj∧¬B¬ pj−1∧Bqj

)
. (33)

By (b) of (32), either
(A) there is anα ∈ Itk∗−1(ω̂) ∩ Btk∗ (ω̂) such thatα /∈ Btk∗−1(ω̂) ∩ Itk∗ (ω̂) or
(B) there is aβ ∈ Btk∗−1(ω̂) ∩ Itk∗ (ω̂) such thatβ /∈ Itk∗−1(ω̂) ∩ Btk∗ (ω̂).

Consider Case A first. Sinceα ∈ Btk∗ (ω̂) and, by Property 1 of Definition 1,
Btk∗ (ω̂) ⊆ Itk∗ (ω̂), it must be thatα /∈ Btk∗−1(ω̂), so that(α, t) |= ¬qk∗−1, for
everyt ∈ T. Sinceα ∈ Itk∗−1(ω̂), (α, t) |= pk∗−1, for everyt ∈ T. Thus(α, t) |=
¬(pk∗−1 → qk∗−1), for everyt ∈ T , in particular(α, tk∗) |= ¬(pk∗−1 → qk∗−1).
Sinceα ∈ Btk∗ (ω̂), it follows that(ω̂, tk∗) |= ¬B(pk∗−1 → qk∗−1), so that, since
(ω̂, tk∗) |= Ipk∗ , (ω̂, tk∗) |= ¬(Ipk∗ → B(pk∗−1 → qk∗−1)). It follows from this
and the fact that̂t֌ tk∗ that(ω̂, t̂) |= ¬© (Ipk∗ → B(pk∗−1 → qk∗−1)). This,
together with (33) falsifies Axiom 5 of Proposition 9 at(ω̂, t̂).

Now consider Case B. Sinceβ ∈ Btk∗−1(ω̂) andBtk∗−1(ω̂) ⊆ Itk∗−1(ω̂), it
must be thatβ /∈ Btk∗ (ω̂), so that(β, t) |= ¬qk∗ , for everyt ∈ T. Sinceβ ∈
Itk∗ (ω̂), (β, t) |= pk∗ , for everyt ∈ T. Thus(β, t) |= ¬(pk∗ → qk∗), for everyt ∈
T , in particular(β, tk∗−1) |= ¬(pk∗ → qk∗). Sinceβ ∈ Btk∗−1(ω̂), it follows that
(ω̂, tk∗−1) |= ¬B(pk∗ → qk∗), so that, since(ω̂, tk−1∗) |= Ipk∗−1, (ω̂, tk∗−1) |=
¬(Ipk∗−1 → B(pk∗ → qk∗). It follows from this and the fact that̂t֌ tk∗−1 that
(ω̂, t̂) |= ¬©(Ipk∗−1 → B(pk∗ → qk∗)). This, together with (33) falsifies Axiom
5 of Proposition 9 at(ω̂, t̂).

35By (d) of (26) Btj (ω̂) ⊆
∥∥χj

∥∥
tj

and sinceχj is Boolean,
∥∥χj

∥∥
tj
=
∥∥χj

∥∥
tj−1

. Thus,

using (27), we get thatBtj−1(ω̂) ∩ Itj (ω̂) ⊆
∥∥χj

∥∥
tj−1

. SinceBtj−1(ω̂) ⊆ �Itj (ω̂) ∪(
Itj (ω̂) ∩ Btj−1(ω̂)

)
andItj (ω̂) =

∥∥φj
∥∥
tj
=
∥∥φj

∥∥
tj−1

, it follows thatBtj−1(ω̂) ⊆
∥∥¬φj

∥∥
tj−1

∪
∥∥χj

∥∥
tj−1

=
∥∥φj → χj

∥∥
tj−1

.
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Proof of Lemma 10. First we prove that every locally rationalizable frame
satisfies PropertyCAB (see Footnote 21) and then show that PropertyCAB, to-
gether with the Qualitative Bayes Rule (Property 4 of Definition 1) implies Prop-
ertyREFweak. Fix ω ∈ Ω andt, t1, t3 ∈ T such thatt֌ t1, t֌ t3, It3(ω) ⊆
It1(ω) andBt1(ω)∩It3(ω) �= ∅; we want to show thatBt3(ω) = Bt1(ω)∩It3(ω)
(this is PropertyCAB). By local rationalizability, there exists a total pre-orderR

of Ω such thatBt1(ω) = bestR It1(ω)
def
= {ω ∈ It1(ω) : ωRω

′, ∀ω′ ∈ It1(ω)}

andBt3(ω) = bestR It3(ω)
def
= {ω ∈ It3(ω) : ωRω

′, ∀ω′ ∈ It3(ω)}. Since,
by hypothesis,It3(ω) ⊆ It1(ω) andBt1(ω) ∩ It3(ω) �= ∅, bestR It3(ω) =
bestR It1(ω) ∩ It3(ω). HenceBt3(ω) = Bt1(ω) ∩ It3(ω).

Next we show that PropertyCAB, together with the Qualitative Bayes Rule
(QBR) implies PropertyREFweak. Fix ω ∈ Ω and t, t1, t2, t3 ∈ T such that
t ֌ t1 ֌ t2 and t ֌ t3 and suppose thatIt3(ω) = It2(ω) ⊆ It1(ω) and
Bt1(ω) ∩ It2(ω) �= ∅. By QBR, sinceBt1(ω) ∩ It2(ω) �= ∅, Bt2(ω) = Bt1(ω) ∩
It2(ω). SinceIt3(ω) = It2(ω),Bt1(ω)∩It3(ω) �= ∅ and thus, by PropertyCAB,
sinceIt3(ω) ⊆ It1(ω), Bt3(ω) = Bt1(ω) ∩ It3(ω). HenceBt2(ω) = Bt3(ω).

Proof of Lemma 12. Fix arbitraryh′ ∈ H, K ′ ∈ K andφ, ψ ∈ Φ. By AGM3
andAGM4, if ¬ψ /∈ K ′ thenB(h′,K′, ψ) = [K ′ ∪ {ψ}]PL. Thus, lettingh′ = hφ
andK ′ = B(h,K,φ) we get

if ¬ψ /∈ B(h,K,φ) then B(hφ,B(h,K,φ), ψ) = [B(h,K,φ) ∪ {ψ}]PL .
(34)

By AGM7 andAGM8,

if ¬ψ /∈ B(h,K, φ), then [B(h,K,φ) ∪ {ψ}]PL = B(h,K,φ ∧ ψ). (35)

Thus, by (34) and (35), if¬ψ /∈ B(h,K, φ), B(hφ,B(h,K,φ), ψ) = B(h,K, φ∧
ψ).
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