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Abstract

We study belief change in the branching-time structuresdhtced in [4].
First, we identify a property of branching-time frames ttsaéquivalent to
AGM-consistency, which is defined as follows. A frame is AGMdRsistent
if the partial belief revision function associated with ahitiary state-instant
pair and an arbitrary model based on that frame can be exdgodefull be-
lief revision function that satisfies the AGM postulatesc@wal, we provide
a set of modal axioms that characterize the class of AGMistarg frames
within the modal logic introduced in [4]. Third, we introdeia generalization
of AGM belief revision functions that allows a clear staternef principles
of iterated belief revision and discuss iterated revisiothisemantically and
syntactically.

Keywords: branching time, belief revision, informatiotgrated belief revi-
sion, plausibility ordering.

1 Introduction

In [4] belief change over time was modeled by means of branggtime structures
a corresponding modal logic with operators for next-tinmégimation and belief
was proposed and some aspects of the relationship betwedartic and the AGM
theory of belief revision ([1]) were discussed. In this papwe establish a stronger
correspondence between the semantics of branching-tamef and AGM belief
revision and address the issue of iterated belief revidioth syntactically and
semantically.



The addition of a valuation to a branching-time frame givies r for every
state-instant paifw, t) - to an “initial” belief setK (the agent’s beliefs &atv, t))
and a patrtial belief revision function based &h(constructed from the agent’s
beliefs at the immediate successors of instaanhd at statev). We investigate
under what conditions such a partial belief revision fumttcan be extended to
a full AGM revision function. We find that a necessary and sidfit condition
(when the set of states is finite) is that there exist a total pre-orderof 2 that
rationalizes belief revision dtw, ¢), in the sense thdioth at instantt and at its
immediate successors (and at stajehe states that the agent considers possible
are theR-maximal states among the ones that are compatible witimtbemation
received. We then provide a set of axioms that charactetheslass of branching-
time belief revision frames within the modal logic introgakcin [4]. Finally, we
address the issue of iterated belief revision. First, weudis the semantic and
syntactic modal correspondents of some well-known priesipf iterated belief
revision. Then we introduce a generalization of AGM belefision functions
that can be used to model iterated revision and show thay evedel based on
a rationalizable branching-time frame gives rise to suchieaated belief revision
function. One advantage of the iterated belief revisiorciams is that they allow
a precise formulation of what a doxastic state is and how fmrirational input
transforms a doxastic state into a new one.

2 Branching-time belief revision frames

The semantic frames discussed in this section provide a Wwanpdeling the evo-
lution of an agent’s beliefs over time in response to infdraral inputs.

A next-time branching framis a pair(T, —) whereT is a set of instants and
— IS a binary relation ofl” satisfying the following propertie&tt,, to,t3 € T,

1. if t1 — 13 and to — i3 then t1 = to,

2. if (t1,...,t,) is a sequence ift" with t; — ¢;,1, for everyi = 1,...,n — 1,
thent,, # t;.

The interpretation of; — to is thatts is animmediate successaf ¢; or ¢4
is theimmediate predecessof ¢, : every instant has at most a unique immediate
predecessor but can have several immediate successbesTlfwe denote the set
of immediate successorsoby ¢, thatis,t” = {t' ¢ T : t — t'}.

A branching-time belief-information framis a tuple(T", —, 2, {Bt, Z; }+e1)
where (T, —) is a next-time branching framé) is a set of states and, for every
t € T, I, andB; are binary relations of1, the first representing information and the
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latter beliefs. The interpretation ofZ;«’ is that at statev and timet — according to
the information received it is possible that the true state.is On the other hand,
the interpretation o3, is that at states and timet, in light of the information
received, the agent considers stat@ossible (an alternative expressionds fs a
doxastic alternative ta at timet”). We shall use the following notation:

Ti(w) = {w' € Q: wZi'} and, similarly,B:(w) = {w' € Q: wBw'}.

ThusZ;(w) is the set of states that are reachable fromccording to the relation
7 and similarly forB;(w).

Definition 1 Abranching-time belief revision framea frame(T, —, Q, {B;, Z; }+e1)
that satisfies the following propertieSw € Q, V¢, t',t" € T

1. Bt(w) Q It(W)

2. Biw)# @
3. ift—tht—t" andZy (w) =1L (w) thenBy (w) = B (w)
4. ift — t'andBy(w) NZy(w) # @ thenBy (w) = Bi(w) N Zy (w).

Property 1 says that information is believed and Propertha2 beliefs are
consistent. The two together imply tHa{w) # @, that is, that information itself
is consistent.

Property 3 requires that at any two instants that share the samediate pre-
decessor, if information is the same then beliefs must bedhee. That is, differ-
ences in beliefs must be due to differences in information.

Property 4 is called the ‘Qualitative Bayes Rule’ (QBR) ir), [dased on the
following observation. In a probabilistic setting, lé ; be the probability measure
over a set of stateQ representing the agent’s probabilistic beliefs at stasnd
instantt, let F* C 2 be an event representing the information received by thetage
ata later instant and letP,, ;» be the posterior probability measure representing the
revised beliefs at state and instant’. Bayes’ rule requires that, ¥, :(F) > 0,
then, for every eventl C Q, P, v (F) = %. Bayes’ rule thus implies the

following (wheresupp(P) denotes the support of the probability measBje
if supp(P,:) N EF # @, then supp(FP, v) = supp(P,) N F.

If we setBB(w) = supp(Pot), F = Iy (w), witht — ¢/, andBy (w) = supp(P,, ¢)
then we get Property 4. Thus in a probabilistic setting ttogpsition “at instant

Thus we rule out inconsistent information. As pointed oufbigdman and Halpern [11], it is
not clear how one could be informed of a contradiction oeast, how one could treat a contradiction
as information.



the agent believes that would be interpreted as “the agent assigns probability 1
to the set of states whedwgis true”.

Figure 1 shows a branching-time belief revision frame. Hopficity, in all
the figures we assume that, for every instarnthe information relatiorZ; is an
equivalence relation (whose equivalence classes areatkhgtectangles) and the
belief relation; is transitive and euclidedn An arrow fromw to w’ means that
W' € Bi(w) (orwhB’, that isw’ is reachable fromv according to the relatiof;).
Note, however, that none of the results below regdir® be an equivalence rela-
tion (in particular, veridicality of information isot assumed), nor do they require
BB; to be transitive and euclidean.

e Qg CB}M
By b Y ‘
Figure 1

For example, in Figure 1 at stateand instants the agent is informed that the
true state is eithety, v or ¢ (Z;, (o) = {a,7,¢}) and (incorrectly) believes that
it is eithery or e (B, (o) = {v,e}). At the next instant, (and still at statex)

2B, is transitive ifw’ € Bi(w) implies thatB;(w’) C B:(w); it is euclidean ifw’ € Bi(w)
implies thatB; (w) C B:(w’). Property 1 of Definition 1 is usually referred to as senyalit
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the agent is now informed that the true state is eith@r ¢ (Z,(«) = {«,e})
and forms the revised (and still incorrect) belief that theststate iss. On the
other handgs is an alternative next instant tg and atts (and still at statex)
the agent’s information g, (o) = {a, d} and she forms the revised (and now
correct) belief that the true stateds(B;, (o) = {«}). Note that all the properties
of Definition 1 are satisfied. In particular the Qualitativay®s Rule is satisfied
everywhere: sometimes vacuously (as is the case atsiatel instantss andts
whereB,, (o) N Zy, (o) = @) and sometimes non-trivially (as is the case at state
and instantss andt, whereBy, (o) N7y, () = By, () = {e}).

Next we relate branching-time belief revision frames to A&\ theory of
belief revision ([1]), which is reviewed in the following stéon 2

3 AGM belief revision functions

Let ® be the set of formulas of a propositional language based ou@table set
S of atomic formulag. Given a subsek’ C @, its PL-deductive closurgk]?”
(where ‘PL stands for Propositional Logic) is defined asdek: ¢ € [K]7F if
and only if there exisp,, ..., ¢,, € K (withn > 0) suchthat{g, A...A¢,,) — ¢ is
a tautology (that is, a theorem of Propositional Logic). AlseC & is consistentf
[K]PL + & (equivalently, if there is no formula such that bottp and—¢ belong
to [K]FL). A setK C & is deductively closeif K = [K]”". A belief seiis a set
K C ® which is deductively closed.

Let K be a consistent belief set representing the agent’s imigébéfs and let
¥ C ® be a set of formulas representing possible items of infaomatA belief
revision function based on I§ a functionByg : ¥ — 2% (where2® denotes the
set of subsets ob) that associates with every formufac ¥ (thought of as new
information) a sef3x () C ® (thought of as the revised beliefs)f U £ & we
call Bx apartial belief revision function, while ift = ® then By is called &full
belief revision function.

Definition 2 Let Bk : ¥ — 2% be a (partial) belief revision function ang :
® — 22 a full belief revision function. We say that, is anextensiorof By if,

for everyy) € U, Bk (1)) = Bg (¥).

3For a more detailed account see [12] or [10].
*Thus ® is defined recursively as follows: if € S thenp € ® and if ¢, 1) € ® then—¢ € ®

and(¢ V ¢) € ®. The connectives. and— are defined as ususal A v wf —(—¢ V ) and
def
6= ~pvy.
®In the literature it is common to use the notatifin« ¢ or K7, instead ofBx (), but for our
purposes the latter notation is clearer.




Definition 3 A full belief revision function is called a&AGM revision functionif it
satisfies the following properties, known as the AGM postal&/o, ¢ € O,

(AGM1) Bg(¢) = [Bx ()"

(AGM2) ¢ € Bk (9)

(AGM3) Bi(¢) C [K U {¢}]""

(AGM4) if =¢ ¢ K, then[K U {¢}]"F C Bg(9)

(AGM5) Bk (¢) = @ if and only if ¢ is a contradiction
(AGM6) if ¢ < 7 is a tautology theBx (¢) = Bi (v)

(AGM7) B (¢ Av) C [Br(¢) U {y}]""

(AGMB)  if =) ¢ Bi(¢), then[Br(¢) U{p}]"™" C Bi (¢ A ).

AGM1 requires the revised belief set to be deductively closed.

AGM2 requires that the information be believed.

AGM3 says that beliefs should be revised minimally, in the sé¢mseno new
formula should be added unless it can be deduced from thematmon received
and the initial belief$.

AGM4 says that if the information received is compatible with thitial be-
liefs, then any formula that can be deduced from the infoionaand the initial
beliefs should be part of the revised beliefs.

AGM5 requires the revised beliefs to be consistent, unlessitbemationg is
a contradiction (that is;¢ is a tautology).

AGMG6 requires that ifp is propositionally equivalent t¢ then the result of
revising by¢ be identical to the result of revising hy.

AGM7 andAGMS8 are a generalization 8iGM3 andAGM4 that

“applies toiteratedchanges of belief. The ideais thaf3f; (¢) is a
revision of K [prompted byy] and Bk (¢) is to be changed by adding
further sentences, such a change should be made by usingsexusa
of Bx (¢) whenever possible. More generally, the minimal change of
K to include bothp and (that is, Bx (¢ A 1)) ought to be the same
as the expansion dBx (¢) by v, so long as) does not contradict the
beliefs inBx (¢)” ([12], p. 55; notation changed to match ours).

4 Branching-time models and AGM belief revision

We now return to the semantic structures of Definition 1 andrpret them by
adding a valuation that associates with every atomic pitpng € S the set of

®Note that, for every formulab, v € [K U {¢}]"* if and only if (¢ — o) € K (since, by
hypothesisk = [K]7%).



states at whiclp is true. Note that, by defining a valuation this way, we frahe t
problem as one of belief revision, since the truth value oftmic proposition
depends only on the state and not on the time.

Let S be a countable set of atomic formulas abdhe set of propositional
formulas built fromS (see Footnote 4). Given a branching-time belief revision
frameF = (T, —,Q, {B:, Z: }+cr), amodel based ofor aninterpretation of) F
is obtained by adding t& avaluationV : S — 29 (where2® denotes the set
of subsets 0f2).2 Truth of an arbitrary formula € @ at statew in model M is
denoted by = ¢ and is defined recursively as follows:

1) forpe S,wEmpifandonly ifw € V(p),

(2w Em g ifand only ifw g ¢, and

B)w Eum (¢ Vo) if and only if eitherw =4 ¢ Orw =g 9 (Or both).

The truth set of formula in model M is denoted by||¢|| ,; thus||¢|[ \, =

{weQ:wkEnm ot

Definition 4 Given a modeM = (T, —,Q,{B;,Z; }+er, V), a statew € Q, an
instantt € T and formulasp, ¢ € ® we say that

e at (w,t) the agent is informed that if and only if Z; (w) = [|9)]| v,
e at (w,t) the agent believes thatif and only if B;(w) C [|¢]] o4

Note that for information we requirequalityof the two sets (this corresponds
to the notion of ‘all the agent knows’: see [4] for a discussand references),
while for belief we impose the standard requirement that) be asubsebf the
truth set of a formula.

Given a modelM and a state-instant paiw, ¢), according to Definition 4 we
can associate witfw, t) a belief set and a (typically partial) belief revision fuoct
as follows. Let

Kmwi ={¢ € ®:Bi(w) S [|9llag} 1)

denote the set of formulas that the agent believeguat), that is, his (initial)
belief set at(w, t). It is straightforward to show thak (., ; is a consistent and
deductively closed set. Let

“In principle, the branching-time structures of Definitiomdn be used to describe either a sit-
uation where the objective facts describing the world doaiatnge— so that only the beliefs of
the agent change over time or a situation where both the facts and the doxastic stateeohgent
change. In the literature the first situation is calleglief revision while the latter is calledelief
update(see [15]). We restrict attention to belief revision.

8If instead of belief revision we were interested in belieflafe (see Footnote 7), then we would
need to define a valuation as a functign S — 297



Ut = {0 € ||9]| o = Zv(w) for somet’ € £} )

be the possible items of information that the agent mighgivecnext time (that is,
at some immediate successorpfecall thatt™ = {t € T': t — t'}). Finally let
Byt Vs — 2% be defined 8

Bk, () = {9 € ®: By(w) C[|¢] 5 fort’ €t with Zy (w) = [[¢[| o} -
3
That is, if at the immediate successbof ¢ the agent is informed that (Z, (w) =
||1/J||M) then his revised belief set is given by the set of formutess he believes

at(w,t'): {¢p € ©: By(w) C ||&] o)

For example, consider a model of the frame illustrated infég. above where,
for some atomic formulag;, p2, ps andq, V(p1) = {«, 7,5} T, (a), V(p2) =
{a,0,e} = T, (), V(p3) = {a,7,e} = Ti;() andV (q) = {v}. Then the
initial beliefs at(«,ty) are given by the (consistent and deductlvely closed) set
Koty = {¢p € @ : B = ¢}. The set¥,,, of potential informational inputs at
(o, to) is rather smallfor example, whilepy, p2, ps € Voo, (P1 V P2) & Yo,
Thus the associated belief revision functiBik, , is a partial function. As an
example we have thatg, ps € Bk, ,, (p2); thus, since~q, ~p3 € K, 4, the agent
initially believes both-¢q and—ps and, upon being informed thas (at(«, t2)) she
revises her beliefs by maintaining the belief thagtbut switching from believing
that—ps to believing thaps. A natural question to ask is whether this partial belief
revision function is compatible with the AGM postulates tire sense that there
exists a full belief revision functiol} |, that satisfies the AGM postulates and is
an extension 0B, . (see Definition 23 In this case the answer is negative. This
can be proved as follows. To simplify the notation we shadipdthe subscripts
a, to; thus we writeK instead ofK,, ;,, Bx instead ofBKa,tO, etc. Suppose that
Bj. is an AGM extension oB3k. Then, since, € Bk (p1) andps € Bi(p2) (and
Bk (p1) = Bj(p1) and B (p2) = Bj(p2)) it follows that®

p2 € Br(p1V p2). 4)
Thus B ((p1 V p2) Ap2) = B (p1 V p2).1t Since(pr V p2) A ps is equivalent to
D2, byAGM6 B}}((pl \/pg) /\pg) = B%(pg). Thus (SinCGBK(pQ) = B}}(pg))

This function is well defined because of Property 3 of Defimiti..

This is a consequence of the following result, which is pebivethe Appendix (Lemma 13). Let
K be a consistent belief set afitk : & — 2% an AGM belief revision function. Lep, ¢,y € ®
be such thak € Bx(¢) andx € Bk (¢). Theny € B (¢ V ).

Uproof: byAGM1, Bj(p1 V p2) = [Bi(p1 V p2)]"%. By AGMS5, since(p: V pz) is not a
contradiction,Bi (p1 V p2) # ®. Thus, sincers € By (p1 V p2), “p2 ¢ Bi(p1 V p2). Hence,
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By (p1V p2) = Br(p2). 5)
Sinceps € Bx (p2),12

[Bx (p2) U {ps}]"" = [Bi(p2)]"" = Bk (p2). (6)

Furthermore, by5), ps € B (p1 V p2). Since(p: V p2) is not a contradiction, by
AGMS5 Bj;(p1 V p2) is consistent and thusps ¢ By (p1 V p2). Hence, byAGM7
andAGMS8, B ((p1V p2) Aps) = [Bi((p1 V p2) U {p3}]"* and, by (5), the latter
is equal to By (p2) U {ps}]"* which, in turn, by (6), is equal td (p2). Thus

By ((p1 V p2) Ap3) = Br(p2). (7)

Since(p: V p2) A ps is equivalent ts, by AGM6 B ((p1 V p2) Ap3) = By (p3).
Thus, by (7),

B (p3) = Br(p2). 8)

Since Bj; is an extension 0B, Bj.(p3) = Bx(ps). Thus it follows from (8)
that Bx (p3) = Bk (p2), yielding a contradiction, sinceq € Bk (p2) but—q ¢

Bk (ps3)-

In view of the above example, a natural question to ask is lenghere exists
a property of branching-time belief revision frames thadnguntees that the partial
belief revision functions generated by models based ondsathat satisfy that
property are compatible with the AGM postulates. The notibrtompatibility
with the AGM postulates is made precise in the following dé&éin.

Definition 5 A branching-time belief revision fram®€ = (T, —, Q, {B;, Z; }ier)

is AGM-consistent atw, t) € Q x T if, for every modelM = (F, V) based on

it the associated belief revision functid?y,, ., (see (3) above) can be extended
(see Definition 2) to a full AGM belief revision function ($aefinition 3).

We showed above that the branching-time belief revisiomé&dlustrated in
Figure 1 isnot AGM consistent ato, to).

The following proposition, which is proved in the Appendextends results
givenin [6] and [14]. Note that the Qualitative Bayes Rulefferty 4 of Definition
1) is crucial for the validity of Proposition 6.

by AGM7 andAGM8, Bi((p1 V p2) Ap2) = [Bic(p1 V p2) U {p2}]"" = [Bic(p1 V p2)]"" =

Bi¢ (p1 V p2).
21t is sraightforward to show that, for evesyc ¥, Bk () is deductively closed.



A total pre-orderof €2 is a binary relationR C Q x € which is complete
(Vw,w" € Q, eitherwRw' or w’ Rw) and transitive {w, w’, w” € Q, if wRw' and
w'Rw” thenwRw"). We shall interprety Rw’ as “statew is at least as plausible as
statew’”. Given a total pre-ordeR of Q and a subsef C (2, let!3

bestp £ =l {we F:wRW, V'€ E}.

Thusbestr E is the set of states iR that are most plausible according/o

Proposition 6 Let F = (T, —,Q,{B;,Z; }+cr) be a branching-time belief revi-
sion frame (see Definition 1) whefeis finite and let(w,t) € @ x T'. Then the
following conditions are equivalent:

(a) Fis AGM consistent afw, t).

(b) There exists a total pre-ordet,, ; of €2 that rationalizes the agent’s beliefs
att and at the immediate successors ¢dnd statev) in the sense that

bl. Bi(w) = bestr,, It(w), and
b2. forevery’ € T suchthat — t', By (w) = bestr,, , Iy (w).

(¢) Yug,u1,...,u, € t— with u, = ug (recall that¢— is the set of immediate
successors af,

if Zy,_,(w) N By, (w) #2,Vk=1,...,n, PLS
thenZ,, ,(w)NBy, (w) =By, ,(w) NIy, (w),Vk=1,..,n. ( )

A frame that satisfies Property) of Proposition 6 is said to beationaliz-
able at (w,t) and we say that the total pre-ordfy, ; rationalizes belief revi-
sion at (w,t). The branching-time belief revision frame illustrated ilgufe 1
is notrationalizable af«, tp). In fact, suppose that there is a total pre-orfgr;,
that satisfiegb.1) and (b.2). Let P,;, be the corresponding strict order (thus
wPyt,w' if and only if wR, 4w’ and notw'R, ,w). Then, sincey € 7y, (a)
andB, (o) = bestr, ,, It, (@) = {0}, 6 Pa,t,y; similarly, sinced € Zi, (o) and
By, (a) = bestr,, ,, Lt,(a) = {e}, P, 6. Hence, by transitivitys P, 1,y. How-
ever, fromBy, (a) = bestr,,, It,(a) = {v,e} we get thatyR, +,¢, Yielding

BIn the literature sometimes the total pre-order is denoted-tand the sefw € E : w =
W', Vw' € E} is referred to as the set afiaximalelements off/, while some other times the total
pre-order is denoted by and the sefw € E : w < w',Vw’' € E} is referred to as the set of
minimalelements ofZ. In order to avoid confusion, we denote the relationfbgnd refer to thévest
elements of a set.
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a contradiction. Since the frame is not rationalizabléaatt), it follows from
Proposition 6 that it is not AGM-consistent @t, tp), a fact that was proved di-
rectly above.

PropertyP LS of part(c) of Proposition 6 gives a necessary and sufficient con-
dition for a branching-time belief revision frame to be oatlizable a{w, t). To
verify that the frame of Figure 1 is not rationalizable(at ty) using this prop-
erty, let uy = uz = t1, uy = t3 anduy = t9. Then Itl (Oé) N Btg (Oé) =
{7} # 9, Ti,(a) N By, () = {e} # @ andZy, () N By, (o) = {6} # 2, but
Btl (Oz) ﬂItS (Oz) = @ and thuthl (OZ) ﬂItg (OZ) ?é Itl (OZ) N BtS(OZ).

Definition 7 A frame islocally rationalizabléf it is rationalizable at every state-
instant pair(w, t), it is AGM-consistentf it is AGM consistent at everi, t).

Thus, by Proposition 6, a frame wheeas finite is locally rationalizable if and
only if it is AGM-consistent.

In a locally rationalizable frame, for every state-instpair (w, t), belief revi-
sion can be rationalized by a plausibility ordering of thedfestates, in the sense
that atz and at the immediate successorst ¢and a statev) the states that the
agent considers doxastically possible (that is, accortimgr beliefs) are the most
plausible among the ones that are compatible with the irdtiom received. Figure
2 shows a locally rationalizable (and thus AGM-consisterénching-time belief
revision frame. For example, belief revision(at to) is rationalized by the total
pre-orderR,, ;, generated by the strict total ord@r,, ;, P, oY Pa,to 0

Raty ={(a,a), (8,0), (B, 8), (8,7), (B,9), (6, a),(8,7), (6,0), (7, 2. 0, a)}.

Remark 8 In a locally rationalizable frame, it is possible that,tfis an imme-
diate successor df, the plausibility ordering of? at (w, ') is different from the
plausibility ordering at(w, t). For example, in the frame of Figure 2 any total pre-
order that rationalizes belief revision &tv, ty) must be such that is strictly more
plausible tham,'* whereas any total pre-order that rationalizes belief rewisat
(o, t2) must be such that is strictly more plausible than.'® Thus the ranking of
a and- is reversed upon moving frofa, tg) to («, t2).

Note also that, for a given instant if w andw’ are different states the total
pre-order that rationalizes belief revision &b, t) may be different from the total
pre-order that rationalizes belief revision &u’,¢). For example, in Figure 2,

“Because3;, (o) = {7} andZ, (a) = {a,7}.
®BecauseB;, (a) = {a} andZ;, (a) = {a,v}.
For example, belief revision afa,t2) is rationalized by the total pre-ordeR.:, =

2
{(a, @), (@, 7), (@, 0), (B, ), (B, 8), (B,7), (B,6), (3,6, (6,7), (7v,7)}, that is, by the stict total
orderB Py, 1o APy 150 Po,ts7y-
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any total pre-order that rationalizes belief revision @, t2) must be such that
is strictly more plausible thad,'® whereas any total pre-order that rationalizes
belief revision atd, t2) must be such thatis strictly more plausible thag.!’

We now turn to a modal-logic characterization of locallyaaalizable branching-
time belief revision frames.

5 Atemporal logic for belief revision

We bridly review the modal language introduced in [4], which corgdime fol-
lowing modal operators: the next-time operafor the belief operatoB, the in-
formation operatof and the “all state” operatot. The intended interpretation is
as follows:

%Because Becaudt:, (3) = {8} andZ, (8) = {3, 5}

"Because Becauds:, (6) = {0} andZ, () = {8, 6}.
For example, belief revision 413, t2) is rationalized by the total pre-order generated by thetstri
total order8Ps 1, aP3.4,7Ps,1,0, while belief revision a{d, t») is rationalized the total pre-order
generated by the strict total ord&Ps ¢, 3Ps,1,vPs.t, .

12



O¢: *“at every next instant it will be the case thgit
B¢ : ‘“the agent believes that’

I¢: “the agentis informed that”

A¢: ‘itistrue at every state that”.

Fix a modelM = (T, —, Q, {B;, T; }ser, V), whereV : S — 29 is a valua-
tion. Given a state, an instant and a formulap, we write(w, t) = ¢ to denote
thatg is true at{w, t) in model M. Let||¢[| ., € QxT denote the truth set ¢f, that
is, [l = {(w,t) € QX T : (w,t) Em ¢} and let][¢]|,,, € €2 denote the set
of states at whickp is trueat instantt, that is,||¢|| , , = {w € Q : (w,?) Fam o}
Truth at(w, t) is defined as usual fgr € S (whereS is the set of atomic formulas),
—¢ and(¢ V ). For the modal formulas we have

(w,t) Em O¢  ifand only if (w, ') =aq ¢ for everyt’ such that — ¢/
(w,t) Em Be ifand only if Bi(w) C [|¢]| vy,

(w,t) Em Lo ifand only if Z;(w) = H¢HM¢

(w,t) Fm Ag  ifand only if (@] , , = €.

Note that, while the truth condition for the operatBris the standard one,
the truth condition for the operatdris non-standard: instead of simply requiring
thatZ(w) C [|¢|rs, We require equalityZ;(w) = ||¢| v, (for an explanation
see [4], where the role of the “all state" operator is als@ulised). Note also
that, while the other modal operators apply to arbitraryrolias, the information
operator is restricted to apply only to pure Boolean formauthat is formulas that
do not contain any modal operatdfsPure Boolean formulas represent facts and
information is restricted to be about facts.

A formula ¢ is valid in a modeif ||¢[[ ,, = Q x T, that is, if¢ is true at every
state-instant paifw, t). A formula¢ is valid in a frameif it is valid in every model
based on it. A property of frameharacterizeqor is characterized byan axiom
if the axiom is valid in every frame that satisfies the propard, conversely, if
the frame violates the property then there is a model basdtiatrframe and a
state-instant pair at which the axiom is falsified.

Let ¢ be an abbreviation forr O = (thus (w,t) Em Q¢ if and only if
(w,t") Fm ¢ for somet’ such that — ¢); furthermore, let A  ¢; denote

Jj=1,....m
the formula(¢; A ... A ¢,,). In the following proposition (which is proved in the
Appendix) all the formulas are restricted to be pure Bogl#aat is, formulas that

do not contain any modal operators.

1A similar (in fact, stronger) restriction is imposed in [1i6]the context of dynamic doxastic
logic (p. 175).
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Proposition 9 The class of locally rationalizable branching-time belie¥ision
frames is characterized by the following axioms (in Axiomedleto, = ¢,, and
Xo = Xn)

1. I¢p— Bo

2. B¢ — B¢

3. O(IY A B¢) — OIy — Bg)
4a. (~B-¢ A By) — O(Ip — By)
ab. —B—(¢ A ) — O(I$ — —By)

5. 1/\ O(Igf)j/\ﬁBﬁgbjfl/\BXj) —
j=1,...,n

A O(U8) = B4 = X3 A (T9y1 = B, = x,)))

J

Axiom 1 says that information is believed and Axiom 2 thaidfslare consis-
tent. Axiom 3 corresponds to Property 3 of Definition 1. Axen and4b provide
a characterization of Property 4 of Definition 1 (the QuéaliteaBayes Rule). Ax-
iom 5 characterizes ProperfyLS of Proposition 6.

6 Iterated belief revision in branching-time frames

Branching-time belief revision frames provide a naturdtiisg for studying iter-
ated belief revision, that is, changes in beliefs prompted $equencef informa-
tional inputs. The analysis can be carried out either sepalyt within the class of
branching-time frames, or syntactically, within the modalguage of the previous
section furthermore, the two approaches can be linked via axionchticacteriza-
tion results. In this section we will bifiy discuss some of the principles of iterated
belief revision that have been proposed in the literativehile in the next section
we provide a generalization of AGM belief revision functofsee Definition 3)
that captures iterated revision and discuss the corresgpordetween branching-
time frames and iterated belief revision functions.

In a locally rationalizable frame the total pre-order assted with a state-
instant pair(w,t) encodes both the agent’s initial beliefs and her dispositm
change those beliefs upon receipt of new information. Twsghat has been called
in the literature arepistemicor doxastic statgsee, for example, [9], [17], [19]).
AGM-consistency (which, by Proposition 6, is equivaleniotcal rationalizability)

The first analysis of iterated belief revision using the btang-time frames introduced in [4]
was carried out by Zvesper [21].
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imposes only very weak restrictions on how the epistemite sthithe agent can
change fromw, t) to (w, t') whent' is an immediate successorofThe following
lemma (proved in the Appendix) identifies one such restnictif £ C F' C Q and
the agent’s beliefs when informed th&tdo not rule outF, then she will have the
same beliefs in the situation where she is immediately méat that~' as in the
situation where she is first informed th&tand then she is is informed that?°

Lemma 10 LetF = (T, —, Q, {B:, Z;: }+cr) be alocally rationalizable frame. Fix
an arbitrary statew € Q2 and instantg, ¢4, t2,t3 € T such thatt — ¢; — ¢ and
t — t3 (that is,¢; andts are immediate successorsi#oéndis is an immediate
successor of;). Then?!

if Itg (UJ) = It2 (UJ) - Itl (w) andBtl (UJ) N It2 (U)) ?é g,
thenBy, (w) = By, (w). (REFyeat)

Note that the clausB;, (w) N Z, (w) # @ is crucial: without it the lemma is
not true. Denote byREF' the strengthening oREF,,..i Obtained by dropping
the clauseB;, (w) N 7y, (w) # @. As before, lett,t1,t2,t3 € T be such that
t »— t1 — tg andt — t3 and letw € Q:

if Itg (UJ) = It2 (w) - Itl (w), thenBt2 (UJ) = Btg (UJ) (REF)

PropertyR E'F' states that “since the subsequent evidence is more spéaific t
the initial evidence (that is[;, (w) C 7, (w)), the later evidence washes away the
earlier evidence” ([17], p. 197). Figure 3 shows a localljorzalizable frame that
violates Property? EF at («, t).??> Consider a model based on this frame where,
for some atomic formulags, ¢ andr, ||p|| = {6}, [lq]| = {a, v} = Ti, (@) = Ziy ()
and|lr]| = {~}. Then at(a,t) the agent’s disposition to revise her beliefs is

?In the following lemma,E = Ii,(w) = Ii,(w) and F = I;,(w). Note that, although
REF,eqr is a rather weak property and is implied by the AGM postulates underlying require-
ment for iterated belief revision is not uncontroversiae sfor example, [20] and [18].

2 REF" stands for ‘refinement’ (of information). Properf§E Fycqr can be derived from the
Qualitative Bayes Rule (Property 4 of Definition 1) and thikofeing property, introduced in [4]:

if t—t1, t—t3, Tiy(w) C Ty (w) andBy, (w) N Ty, (w) # @
then Bi, (w) = By, (w) N Ty (w). (CAB)

PropertyC' A B is valid in every locally rationalizable frame and, as shawjb], it is characterized

by the axioms
OI(pA) ABx) — OU¢ — B((¢ A ) — X)) (K7)
OUpA-B=~(¢ AY)AB(p — x)) = OU(#AY) — Bx) (K8)

22Belief revision at(«, t) is rationalized by the total pre-order generated by thetsivtal order

BP§P~Pa, while belief revision a{«, t1) is rationalized by any total pre-order that contains the

strict componend PaP~. Note that the ranking af and~ has been reversed in moving frdim, ¢)
to (OL7 tl).
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such that, if informed thay (which is the case afx, t3)) she will believe that
r. However, after being informed thgb \ q) (at (o, t1): Zt, (@) = {a, 7,8} =
|pV ¢||) her disposition changes and, if later she is informed gh@thich is the
case al«, t2)), she will believe thatr (despite the fact that information thats
a refinement of the information thgt Vv ¢q)).

t ‘_%__./‘

a y 5 t1 ts o Y
< & .
B 5 3
x tz
& .
a y
@G| @
B 3
Figure 3

Although not implied by AGM-consistency, Proper®E F' captures a prin-
ciple that is part of most well-known theories of iteratedidfaevision (see, for
example, [7], [8], [9], [13], [17]). Itis shown in [21] thatrBperty RE F' is charac-
terized by the following axioms:

Al — @) ANOUd AOIY ABx)) — O (Y — Bx) Ref
A — ) ANOIY ABx) — O (I¢ — Oy — Bx)) Refs

A further strengthening oREF is given by the following property, which
corresponds to the postulate ‘Conjunction’ in Nayak etBI|[p. 203). It says that
if two sequentially received pieces of information are éstest with each other,
then they induce the same beliefs as the information camgist their conjunction.
As before lett, t1, t2,t3 € T be such that — t; — ¢ andt — t¢3 and letw € Q:
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if Zp, (w) N Ty, (w) # @ andZy, (w) = Zy, (w) N7, (w)

then8t2 (UJ) = Btg (UJ) . (REFStT‘Ong)

It is shown in [21] that Property)? E'Fi;ong IS Characterized by the following
axioms:

~AS(WAG) NO(IP N O(IYh ABx)) — O I(pAY) — Bx) Refs
A= AP ANOI(@AY)ABx) — O UI¢— Oy — Bx)) Refy

The rationale for Property? £ Fsirong IS that information should be treated
cumulatively in the sense that information thatollowed by information thai’
has the same effect on beliefs as information thiat F' (provided thatF and F
are compatible, that is, th&t N F' # ).

Other principles of iterated belief revision that have bpmposed in the liter-
ature have corresponding properties in branching-timefoevision frames and
can be characterized by modal axioms similar to the onesisksd above: see
[21]. Instead of continuing the discussion along thesesliitethe next section we
go back to the relationship between branching-time framesAGM belief revi-
sion functions and provide a generalization of the lattat tan be used to discuss
principles of iterated belief revision.

7 Iterated belief revision functions

As in Section 3, letb be the set of formulas in a propositional language based on
the setS of atomic formulas. Recall that, given a belief $6tC &, an AGM belief
revision function is a functioBx : ® — 2% that associates with every formula
¢ € ® (thought of as new information) a revised belief 8gt(¢) C ®, satisfying
the AGM postulates (see Definition 3). Several authors haeudsed whether
belief revision ought to be thought of as a unary operatibat(is, a function tak-
ing an informational inpup € ® and producing a new belief set) or as a binary
operation (that is, a function taking a belief $6tC ® and an informational input
¢ € ® and producing a new belief sé.This is an issue that has been raised in
the context of iterated belief revision. We propose to mitdehted belief revision
in terms of ahreeargument function, that is, a ternary operation. As wel Sea,
our proposed functions incorporate the belief revisiorrapens suggested in the
literature and offer a clear way of stating principles ofated revision.

Let H be the set of sequencesdn If h = (¢y,...,¢,,) € H and¢ € &, we
denote the sequen¢e,, ..., ¢,,, ¢) € H by h¢. The empty sequence is denoted

Bgee, for example, [17] and [19].
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by () and is an element @ff. We think of a sequendeas a history of informational
inputs received in the past amngh to the moment under consideratiofhe first
argument of our iterated belief revision functions is adngt:. The need to take
into account the history of previous informational inputsstbeen noted in the
literature. For instance Rott ([19], p. 398) writes:

“We need to make room for a dependence of the revision fumctio
not only on the current belief state, but also on the histdrigedief
changes (previous belief states as well as previous inputs)

In a similar vein Nayak et al ([17], p. 202) write:

“Itis conceivable that at two different timefg,andt,, an agent has the
same set of beliefs but the relative firmness of the beliefsidierent.
If the agent accepts the same evidenag andt,, the resultant belief
sets would be different.”

Presumably, the difference the authors refer to is ataifletto the fact that the
two different timeg; andt, represent different ways in which the agent arrived at
the same set of beliefs, that is, different past histories.

Figure 4 illustrates this possibility by means of an AGM-sisitent branching-
time frame?* Consider a model based on this frame where, for some atomic fo
mulasim, p, ¢, 7 ands, ml| = {a, 8,7,4,}, [lpl = {a, 8,7}, llall = {o, B, ¢},

Il = {a,v,e} and||s|| = {a}. Then the agent has the same belief set at
(o, t1) and at(a, t2), namely the seff = {¢ € ® : 8 | ¢}. However, the
same information (at the corresponding next instant), hathat » is the case
(Zty (o) = Iy, () = ||r]]), leads to different beliefs: for instance(at, t3) she be-
lieves thats while at(«, t4) believes thats (B, () C ||s|| while B, (o) C ||—s])).
This difference in disposition to revise beliefs upon reigj information that-,
despite the same “initial” set of beliefs, can be traced to the different informa-
tional history leading td<: the information history ata, ¢1) is given by(m, p)
while the information history &, ¢1) is given by(m, q).

241t is straightforward to check that the frame of Figure 4 isally rationalizable. For exam-
ple, belief revision at, to) is rationalized by the total pre-order generated by thetstvial order
0PatoBPa,toPa,iyvPat €, belief revision ata, ¢1) is rationalized by the total pre-order gener-
ated by the strict total ordetPy 1, & Pa,t, Y Pa,t;, 0 Pa,t, € @and belief revision afe, t2) is rationalized
by the total pre-order generated by the strict total o8y, +,vPa,t, @ Pa 50 Pa t5€.
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Figure 4

The other two arguments in the iterated belief revision fiams are a belief set
K C & and an informational input € ®. LetKK be the set of deductively closed
sets of formulas.

Definition 11 AnAGM iterated belief revision functiois a functionB : H x K x
® — 2% that satisfies the AGM postulategh ¢ H,VK € K,V¢, € ®

(AGML) B(h, K, ¢) = [B(h, K, ¢)|PL

(AGM2) ¢ € B(h, K, ¢)

(AGM3)  B(h, K, ¢) C [K U{¢}]"*

(AGMA) if —¢ ¢ K, then[K U {¢}]"L C B(h, K, )

(AGM5) B(h, K, ¢) = @ if and only if¢ is a contradiction

(AGM6) if ¢ <> 1) is a tautology therB(h, K, ¢) = B(h, K, 1))

(AGM?)  B(h, K, ¢ A ) C [B(h, K, ¢) U {y}]""

(AGM8) if ~ ¢ B(h, K, ), then[B(h, K, $) U {p}]"* C B(h, K, ¢ A).

As noted by Nayak et al ([17], p.196) the only restrictiontttiee AGM pos-
tulates imply concerning iterated belief revision is the given in the following
lemma, which is the counterpart of Lemma 10.

Lemma 12 LetB : H x K x ® — 2% be an AGM iterated belief revision function.
Then,foreveryr € H, K € K, and¢, v € ®
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if ) ¢ B(h, K, $) thenB(he, B(h, K, ¢),v) = B(h, K,p Ap).  (9)

The antecedent of (9), namety) ¢ B(h, K, ¢), says that) is compatible
with the revised belief set after information thigtwhen the starting point is given
by informational historyh and belief set; the consequent says that the revised
belief set after the further information that with new starting point given by
the update historyr¢ and the revised belief sd®(h, K, ¢), coincides with the
revised belief set after information thgt A ¢), when the starting point is given
by informational historyh and belief set<. In short: information thad followed
by information that) produces the same beliefs as the “one step” information that
(¢ A1), provided that) is compatible with the revised beliefs after the first piece
of information, namelyp.

(9) is the counterpart of the semantic propeRt¥ F,..... The counterpart of
the strong version of this property, nameéty F';,..,,, is obtained by replacing the
clause - ¢ B(h, K, $)' with * (¢ A ) is a consistent formula®

if (¢ A1) is consistent, the®(ho, B(h, K, ¢),¢) = B(h, K,¢ A).  (10)

A consequence of (10) is that the order in which two consistems of infor-
mation are received is irrelevafft:

if (¢ A1) is consistent,
thenB(hd)’ B(h” K’ ¢)’ /l/)) = B(h’/l/}’ B(h” K’ /l/})’ gb)'

However, (11) is weaker than (I@hat is, it is possible for an AGM iterated belief
revision function to satisfy (11) but not (10).

Other principles of iterated belief revision that have bpmposed in the liter-
ature can easily be stated by means of AGM iterated beligiogvfunctions. For
instance, Darwiche and Pearl’'s postulate DP2; (§8f also [17], p. 203) can be
stated as follows:

(11)

if (¢ A1) is inconsistent while each @fands is consistent,
thenB(h¢, B(h, K, ¢),v) = B(h, K,¢).

®The counterpart of the intermediate propert@EF is: if « implies ¢, then
B(he, B(h, K, $),¢) = B(h, K,¢ A ).

2proof. Let(¢4 A 1) be a consistent formula. From (10) we get tfthe, B(h, K, ¢), 1) =
B(h,K,¢ A ). Similarly, B(hy, B(h, K,v),¢) = B(h,K,¥ A ¢). Since(¢ A ¢) is equiva-
lent to (¢ A @), by AGM6 B(h, K, A ) = B(h,K,v A ¢). ThusB(ho, B(h, K, ¢),1) =
B(h, B(h, K, ), ¢).
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Rather than restating the various principles of iteratetien proposed in the
literature, we first comment on the philosophical issue af hevision of belief
states should be modeled and then turn to the relationshiyeba AGM iterated
belief revision functions and branching-time belief remsframes.

Several authors have convincingly argued that a belief staght to be thought
of as comprisindoththe initial set of beliefandthe disposition to change those
beliefs upon receipt of new information. As Rott ([19], p83ults it,

“an [AGM] revision function does natkevisea belief state - let alone
revise all possible belief states - lautevision function is a belief state
Actually, a revision function does not revise anythiig particular,
there are no primitive entities in the study of belief reststhat could
be revised by such a function. Revision functions are themsehe
primitive entities of the theory of belief revision.”

Rott goes on to note that, if one accepts this point of vieentbne faces the
problem of how to represent tmevision of belief states

“If unary revision functions are primitive and the apprape formal
representation of doxastic states, howtkleyget revised by proposi-
tional inputs?” [bidend

We argue that the AGM iterated belief revision functions dfibDition 11
provide an answer to this question. bklief statecan be taken to be a triple
(h, K, b : ® — 2%) whereh is a history of previous informational input

is the current set of beliefs ardg-) = B(h,K,-) : ® — 2% is the one-step revi-
sion function obtained fronB : H x K x & — 2% by fixing the values of, and
K. Upon receipt of informatiop € &, the initial belief statgh, K, b) is trans-
formed into the new belief staté’, K’,v’) whereh' = h¢, K’ = B(h, K, ¢) and
V(-) = B(h¢, B(h, K, ¢),-) : & — 2227

We now turn to the relationship between branching-timegbedivision frames
and AGM iterated belief revision functions. For simplicitye will focus onrooted
branching-time frames where there is an instar¢ 7', called theroot, which has
no immediate predecessor and is a predecessor of everyiaghent (that is, for
everyt € T\{to} there is a sequendgy, t1, ..., t,) in T such thatt,, = ¢ and,

Z'Rott’s proposal in [19] is to define iterated belief revisfonctions as unary operations
x : H — 2% taking sequences of input formulas into sets of beliefshSuictions can be generated
by the functions of our Definition 11 as follows: (1) fix a stagt point (h, K), (2) obtain from the
sequence of input formulag,),_, . the sequencé(h;, K;)),_, , whereh; = h;_1¢, and
K; = B(hi—1, Ki—1,¢,;) and then (3) define((¢;),_, ) = Kn.
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for everyi = 1,...,n, t;_1 ~ t;).2® Given a frameF = (T, —,Q, {B;, T }se1)
and a valuatior// : S — 29, let M be the corresponding model. Thér gives
rise to a partial iterated belief revision function in a matway. Associate with
every state-instant paitv, t) a historyh ., and a belief sef{,,+ by letting
(as before: see (LKt = {¢ € © : Bi(w) C [|¢]lp} @andhpge be the
history of past informational inputs up todefined as follows. Letto, t1, ..., tn)
be the path from the roay to ¢ and let(Z;,(w), Z, (w), ..., Zt, (w)). For every
i=0,1,.,n, let®; = {¢ € D, Ij;(w) = ||¢]| o} and lethp,: = 0 (recall
that ) denotes the empty sequence®if = & for everyi = 0, 1, ...n, otherwise
hmwt = (P15 Pm) (M < n+1) whereg, is an arbitrary selection from; _; #
@. Finally, if $ € ® is such such thaf, (w) = ||¢|| ,, for somet’ € T such that
t—t' et B(hpw,t, Kpmws @) = {0 € @ : By(w) C [[9]| o)

As an illustration, consider a modél based on the frame of Figure 4 where,
for some atomic formulas:, p, ¢ andr, |m| = {«, 8,7,9,}, |lpll = {«, 8,7},
llgll = {«, B,e} and||r|| = {a,v,e}. For simplicity we drop the subscrip¥1.
Then

ha,to = <m> Ka,to = {(/J) €d:o ‘: (/J)}
ha,tl = (m,p> Ka,tl = {Qb €d: B ): ¢}
ha,tg <m7Q> Ka,tz = {(/J) €d: 6 ): (/J)}
hats = (m,p, 1) Kopys ={p € P:a= ¢}
ha7t4 - <m,q,r> Ka7t4 = {(/J) €d: v ): (/J)}

andB(hoz7t07 Koz7t07 p) = Ka,tlv B(hoz7t07 Koz7t07 Q) = Ka,tgv B(hoz7t17 Koz7t17 T) =
Koz7t3 andB(hohtz, Koz7t2a ’I“) = Koz7t4-

By Proposition 6, the partial iterated belief revision ftion associated with
an arbitrary model based on a frate= (T, —,Q, {B;,Z; }+er) that is locally
rationalizable can be extended to a full AGM iterated bekeision function. One
can extend the analysis by adding to the AGM postulates appte postulates of
iterated belief revision and identifying properties ofrfres that are equivalent to
the existence of full AGM iterated belief revision functthat () satisfy those
additional postulates and) extend the partial iterated revision functions obtained
by interpreting the given frames. We leave this project tareiresearch.

8In a general branching-time frame with no root, instead ehtifying a past history with the path
from the root to the instant under consideration one wouldsitter a maximal chain of predecessors
of that instant.
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8 Concluding remarks

The branching-time frames discussed in this paper provicaral setting for a
discussion of belief change both semantically, in termsroperty of frames, and
syntactically, in terms of modal axiom& Furthermore, a correspondence between
interpretations of branching-time frames and AGM beliefisipn functions can
also be established, thereby providing a link to the vastditire on belief revision
and iterated belief revision.

A Appendix
First we prove the following lemma (see Footnote 10).

Lemma 13 Let K be a consistent belief set afglx : & — 2% an AGM belief
revision function. Leb, ¢, x € ® be such thak € Bx(¢) andx € Bx(v). Then

X € Br (o V).

Proof. First we show that

(¢ — x) € Bk(¢ V). (12)
If =¢ € Br (¢ V1) then, since - bAGM1 - Bi (¢ V ) is deductively closed and

—¢ — (¢ — x) is atautology(¢p — x) € Br (¢ V). If =¢ ¢ Br (¢ V ) then,
by AGM7 andAGMS, By ((¢V 1) A¢) = [Br (¢ V ) U {¢}]7%, that s, for every
e,

§ € Br((¢Vy)Ag)ifandonlyif (¢ — &) € Br(oV ). (13)

Since(¢ V ¥) A ¢ is propositionally equivalent t¢, by AGM6 Bx ((¢ V ) A
¢) = Bk (). Thus, using (13) and the hypothesis that Bk (¢), we get that
(¢ — x) € Br(¢ V). Asimilar proof leads to

(¥ = x) € Br(o V). (14)
From (12) and (14) and the fact th8¥ (¢ V v) is deductively closed we obtain

(¢ =x)A (W —x)) € B(¢V ). (15)
Since((¢ — x) A (¥ — X)) — ((¢ V) — x) is a tautology, it belongs to

Br (¢ Vv ). Hence, by (15)((¢ vV ¢) — x) € Bk (¢ V ). By AGM2, (¢ V 9) €
Br (¢ V). Hencex € Bi(pV1)). m

2For a different, but related, approach see [2] and [3]

23



We now turn to the proof of Proposition 6. First we need sonadipinary
definitions and results.

Definition 14 A choice structurés a triple (2, £, f) whereQ is a set€ C 2% is a
collection of subsets ¢t and f : £ — 2% is a function that satisfies the following
properties:VE € &, (1) f(E) C Eand (2) ifE # @ thenf(F) # .

Give a choice structuré = (€, £, f), aHansson sequenae(C is a sequence
(Eg, ..., En) (n > 1) such that (1)E,, = Ey and,Vk = 1,...,n, (2) Ex € £ and
(3) Ex—1 N f(Ek) # 2.

The following result is due to Hansson ([14], Theorem 7, [£)45

Proposition 15 LetC = (2, €, f) be a choice structure. The following are equiv-
alent:
1. there exists a total pre-ordeR C Q x Q such that , for everyg € &,

F(E) =bestp B {we E:wR Vo' € EY,
2. for every Hansson sequen@dg, ..., E,) inC, Ex_1 N f(Ex) = f(Ex—1)N
Ep,Vk=1,..,n.

As we shall see below, by Proposition 15 PropérilyS of Proposition 6 guar-
antees the rationalizability of the belieisthe immediate successabkan instant
t (and some state). However, our definition of local rationalizability inales the
initial beliefs, that is, also the beliefs @b, ¢t). Thus a little more work needs to be
done in order to prove the equivalencedf and(c) of Proposition 6.

Definition 16 Given two choice structurgs= (2, &, f) andC’' = (Q, &, '), we
say thatC’ is a QBR-extension of by the addition of OC 2 (with O # @) if (1)
&' =& U{0}, (2) f'is an extension of, thatis,VE € &, f'(F) = f(F) and (3)
VE €&, fFENf(O)# @thenf(E)=EnN f'(0).

Lemma 17 LetC = (Q, &, f) be a choice structure and@ = (Q, &', '), a QBR-
extension of by the addition ofh C Q. Then the following are equivalent:

(A) if (Ey, ..., B,) is a Hansson sequence Ghthen,Vk = 1,...,n, Ex_1 N
f(Ex) = f(Eg-1) N Eg;

(B) if (EY, ..., E,) is a Hansson sequence @4 then,Vk = 1,...,n, E, | N
f(E) = f(Ej_y) N Ey.

Proof. That(B) = (A) is obvious, since the set of Hansson sequencés in
contains the set of Hansson sequences fthey are those wher, < £ for all
k). Thus we only need to provel) = (B).
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Consider first the case wheteE € £, EN f'(O) # @. Then, by Definition
16, f(E) = En f'(O), VE € &. Define the following relation?’ on €2: for
all z,y € Q, xR’y if and only if either (1) € f(O) or (2) z ¢ f'(O) and
y ¢ f/(0). ThenR' is a total pre-ordéf and, furthermore, for everyy ¢ &,
f/(E) = bestr E.3! Thus, by Proposition 13,8) holds.
Suppose now thafnf’(O) = g forsomeE € €. Letéy ={F € £: EN f'(0) = o}

andletQy = |J E. ThenQ N f'(O) = @. By Proposition 15 it follows from
Ecé&y
(A) that there is a total pre-ord@ of 2 such that, foralE’ € &, f(E) = bestg E.

Fix such a total pre-orde® and define the following relatioR’ on Q:

R = (RN(Q x)) UAlz,y) eQxQ:xze f(O)}
U {(z,9) € @xQ:y e N\(QU f(0))}

That is, (i) the elements of’(O) are the most plausible states, (R coincides
with R on)y x Qo and (iii) the elements dR\ (2o U f/(O)) are the least plausible
states. We want to show th&t is a total pre-order of? and is such that, for every
E €&, f'(E)=bestr E. If we establish this then, by Proposition 1&) holds.

Proof thatR’ is complete. Fix arbitrary,y € . We need to show that
eitherzR'y or yR'z. If x € f/(O) then, by (16),zR'y; similarly, if y € f/(O)
thenyR'z. If z,y € Qp then it follows from (16) and completeness Bf If
y € Q\(Qo U f'(0)) then, by (16)xR'y; similarly, if z € Q\(20 U f/(O)) then
yR'z.

Proof thatR’ is transitive. Fix arbitrary, y, 2 € 2 and suppose thatk’'y and
yR'z. We need to show thatR’z. If x € f'(O), then, by (16)xR’~. Assume that
x ¢ f'(O). Two cases are possible: (t)e Qo and (2)z € Q\(Q U f/(O)). In
Case 1, since R'y, it must be that either (1a) € Qg or (1b)y € Q\(Q U f/(0)).
In Case 1a, sincgR’z, it must be that either € €, in which caser R’z by (16)
and transitivity of R, or z € Q\(Q U f'(0)), in which casetR’'z by (16). In
Case 1b, sincgR'z by (16) it must be that € Q\(Q U f/(O)) and thus, by
(16),zR’z. Consider now Case 2, wherec Q\(Q U f'(O)). Then, since:R'y,
it must be thaty € Q\(Q U f/(O)) and thus, sincgR'z, it must be that also
z € Q\(Q U f'(0)). Hencex R’z by (16).

(16)

*Proof of completeness. Fix arbitragyy € Q. We need to show that eitheR'y or yR'z. If
x € f'(O) thenzR'y; if y € f'(O) thenyR'z; if bothz ¢ f'(O) andy ¢ f'(O) thenzR'y and
yR'z.

Proof of transitivity. Fix arbitrarys, y, 2 € Q and suppose thatR'y andy R'z. We need to show
thatzR'z. If z € f'(O), thenzR'z. If = ¢ f'(O) then, sincecR’y, it must be thay ¢ f'(O) and
thus, since/R’z, it must be that alse ¢ f'(O). ThuszR'z.

3By definition of R', bestpr © = f(0). Let E € £. Then, sincef(E) = EN f'(0) = EN
bestr: Q, f(E) = bestr/ E (recall that we are considering the case wheig,c £, EN f'(0) #
).
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Thus R’ is a total pre-order of2. It remains to show that, for evely € &,
f!(E) = bestgr E. Itis clear from (16) thaf’(O) = bestr: 2 and thusf’(O) =
bestr: O (since, by definition of choice structurg,(O) C O C Q). Thus we
only need to show thaf(E) = bestpr Eforall E € €. If E € & (that is,
En f/(O) = @) then, sincef(E) = bestr E, it follows from (16) thatf (E) =
bestr E (sinceR’ and R coincide onQ)y x €2p). Suppose, therefore, that¢ &,
thatis,E N f'(O) # @. Then, by Definition 16f(F) = E N f'(O). Hence, since
f/(O) = bestr Q andbestr Q2N E = bestp E (becauséestr QXN E # @), it
follows thatf(E) = bestp E.m

Proof of Proposition 6. Part 1: equivalence ofb) and (c). Fix a branching-
time belief revision frameT’, —, Q, {B:, Z: }+c7) , an arbitrary stateé) and an ar-
bitrary instant.. ConditionPLS states that

Vto, t1,....tn € £~ With t,, = tg andn > 1,
if Zo, (0) N By (©) # 2,Vk =1,...,n, (17)
then Itk,1 (Ut)) N Btk ((,:)) = Btk71(d)) ﬂz-tk (Ut)), Vk = 1, ey T

Associate with(w, ) the following choice structur€ = (Q,&,f): € =
{T,(@) : t € £} and, for everyE € &, if E = T,(w) for somet € £~ then
f(E) = Bi(w). Note that the functiorf is well-defined because of Property 3 of
Definition 1. Then (17) can be rewritten as follows (see Dafinil4):

for every Hansson sequeng, ..., E,,) in C
E;_1nN f(Ej) = f(Ej_l) NE;Vj=1,..n.

LetC' = (Q,&', f') be the extension of given by&’ = £ U {Z;(v)} and
1 (Zy(®)) = Biy(w). Then, by Property 4 of Definition L’ is a QBR extension
of C by the addition ofZ;(w) (see Definition 16). Thus, by Lemma 17, (18) is
equivalent to

(18)

for every Hansson sequen¢gy, ..., E/) in C’

. 19
E N f(E)) = f(E;_)NE,Vji=1,..,n (19)

By Proposition 15, (19) is equivalent to the existence oftal fore-orderR C
Q x Q) that rationalizeg€’ and thus (by construction 6f) R that rationalizes belief
revision at(&, t) (that is,(b) of Proposition 6 is satisfiedi

Remark 18 The proofs of Proposition 15 and Lemma 17 do not reqQir® be
finite. Thus the equivalence @f) and (c) of Proposition 6 holds also in the case
whereQ is infinite.
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In order to prove the equivalence @f) and(b) of Proposition 6 we need the
following.

Definition 19 A choice structuré(2, £, f) (see Definition 14) is called d-choice
structure(‘U’ becausef contains the universal sé€l) if (i) 2 € £ and (2)VE € &,
E # 2.

A U-choice structuré(, £, f) is rationalizablef there exists a total pre-order

R of Q such that, for everfy € &, f(E) = bestg E def {w e E:wRW, VW' €
E}.

A U-choice structure(Q2, £, f) is AGM-consistent if, for every valuatidn :
S — 29 the (partial) belief revision functioB; : ¥ — 2% where K = {¢ €
®: f(Q) Clgll}, U = {¢e®:|lg|| € £} and, for everyp € ¥, Bx(¢) =
{ped: f(|lol]) C|v||}, can be extended to a full AGM belief revision function.

The following proposition is proved in [6].

Proposition 20 A U-choice structureg(2, €, f) with © finite is AGM-consistent if
and only if it is rationalizable.

A “pointwise” application of Proposition 20, with some appriate modifica-
tions of the choice structure associated with every statnt paifw, t), yields a
proof of the equivalence betweém) and(b) of Proposition 6.

Proof of Proposition 6. Part 2: equivalence of(a) and (b). Fix a branching-
time belief revision frame&T’, —, Q, {B;,Z; }e7) , with € finite. Fix an arbitrary
statey € Q and an arbitrary instamte 7.

Associate with(w, ) the following U-choice structur€ = (Q,&, f): £ =
{QU{Ty(@) : t € 7}, F(Q) = B;(w) and, for everyE € E\{Q}, if E = T,()
for somet € £~ thenf(FE) = B;().32

By construction,(a) of Proposition 6 is equivalent to AGM-consistency(®f
(see Definition 19%3

Next we show thatb) of Proposition 6 is equivalent to rationalizability 6f
Suppose that is rationalizable and lek be a total pre-order d@ that rationalizes
C. Then (b.2) of Proposition 6 holds by definition ©f Furthermore3;(w) =
f(Q) = bestg Q. SinceB;(w) C Z;(w), it follows that B;(w) = bestr Z;(w)
and thus (b.1) holds. Conversely, letbe a total pre-order d that satisfies (b.1)

32As noted bove, the functiofi is well-defined because of Property 3 of Definition 1.

3Given an arbitrary valuatio’ : S — 29, the initial beliefs and the partial belief revision
function associated witfi, £) coincide with the initial beliefs and the partial belief igien function
associated witl.
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and (b.2). Letty = {E € E\{Q}: ENf(Q) =2} andletQy = |J E. Then
Ecé&y
Qo N f(Q2) = 2. Define the following relatior?’ on 2:

R= (RN(Qx) U{lzy) eQxQ:ze f(Q)}
U {(z,y) € 2 xQ:y € Q\(Q0o U f(2))}-

ThenR' is a total pre-order of2 (the proof is identical to that given in Lemma
17 for (16), replacing’ with f andO with Q). We want to show that, for every
E € &, f(E) = bestr E. ltis clear from (20) thatf (2) = bestr 2. Thus
we only need to show that(E) = bestr E forall E € E\{Q}. If E € &
(thatis,E N f(Q2) = @) then, sincef(E) = besty E, it follows from (20) that
f(E) = bestg E (sinceR’ and R coincide orf)y x Q). Suppose, therefore, that
E ¢ &, thatis,EN f(Q2) # @. Then, sincef () = bestr Q, ENbestr Q) # @
and thusE N bestr: 2 = bestr: E. By Property 4 of Definition 1 (the Qualitative
Bayes Rule)f(E) = EN f(Q).3* Thusf(E) = bestp E.

Since(a) of Proposition 6 is equivalent to AGM-consistency®and (b) of
Proposition 6 is equivalent to rationalizability 6f the equivalence aofa) and(b)
follows from Proposition 20m

(20)

Proof of Proposition 9. It is shown in [5] that, forj = 1,2, Axiom j of
Proposition 9 characterizes Propejtgf Definition 1.

Next we show that Axiom 3 of Proposition 9 characterizes Briyp3 of Defi-
nition 1. Fix an arbitrary frame that satisfies Property 3 efibition 1, namely if
t—t',t — t" andZy (w) = Zy(w) thenBy (w) = By (w). Fix arbitraryw € Q,
t € T and pure Boolean formulasands/ and suppose thét, #) = O(I¢ A Bo).
Then there exists # such that — ' and (&, t') = Iy A Bg, thatis,Zy (&) =
%]l andBy (@) C |9, We have to show thdty, #) = O(I — Be). Fix an
arbitraryt € T such that — ¢ and suppose théb, t) = 1. ThenZ; (&) = [|¥],-
Sincey is a pure Boolean formula, by Proposition 5 in [#;||,, = ||¢|l;- Hence
Ty (w) = Zy(w) and thus, by Property 3 of Definition By (&) = B:(w). Hence
Bi(w) C ||¢]|,.. Sinceyp is a Boolean formuld|¢||,, = ||¢||,, so thatB3,(w) C ||¢],,
thatis,(w, t) = B¢. Hence(w, t) = I — B¢ and thus, sincewas chosen arbi-
trarily with ¢ — ¢, (&,%) = O(Iy — Bg). Conversely, fix a frame that violates
Property 3 of Definition 1. Then there existc  andt,t;,t, € T such that
t— t1,t — ta, Iy, (w) = T4, (w) and By, (w) # By, (w). Without loss of general-
ity we can assume that

there exists an € By, (w) such thaix ¢ By, (w) (21)

By definition ofC, £(Q) = By(&), E = Z:(&) for somet such that — t and f(E) = B;(@).
By Property 4 of Definition 1, if3;(®) N Z: (@) # @ thenB, (&) = B;(®) N Iy (@).
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(otherwise renumber the two instants). Construct a modeleytHor some atomic
formulasp andg, ||p|| = Z¢, (w)xT and||q|| = Bt, (w)xT. Then(w, t1) = IpABq
and thus, since — t1, (w,t) = O(IpA Bgq). Furthermore, sSinc&;, (w) = 7y, (w),
(w,t2) E Ip and, by (21),(w,t2) ¥ Bg, so that(w,t2) ¥ (Ip — Bgq). Hence,
sincet — to, (w,t) ¥ O(Ip — Bq) and thus Axiom 3 is falsified dtv, t).

It is shown in [5] that Axiom 4 of Proposition 9 (called ND in [5]) is charac-
terized by the following property

if ¢ — t' andB;(w) N Zy (w) # @ thenBy (w) C B(w) (22)

and Axiom 4 of Proposition 9 (called NA in [5]) is characterized by théidaing
property

if ¢t — ¢ thenBt(w) NZy (UJ) C By (w) (23)

Since Property 4 of Definition 1 implies both (22) and (23)Yoitows that a
frame that satisfies Property 4 validates Axiomasahd 4. Furthermore, in the
presence of Property 1 of Definition 1, the conjunction of)(28d (23) implies
Property 4. Thus, in the presence of Property 1, violatioRroperty 4 implies vi-
olation of either (22) or (23) (or both) and thus leads to tbesibility of falsifying
either Axiom 4 or Axiom 4b (or both).

We conclude the proof of Proposition 9 by showing that Axiom Bharacter-
ized by PropertyP LS of Proposition 6. Fix a branching-time belief revision fram
that satisfied” LS, an arbitrary model based on it, arbitrary pure Boolean tdas
¢1, ..., 6, andxy, ..., x,, and arbitrarys € Q andf € T and suppose that (letting

d)O = ¢n)
(@) . 1/\ <>(I¢j/\ﬁB_'¢j—1/\BXj) (24)
‘7: 7"'7“

We have to show that, for evely= 1, ..., n (letting ¢, = ¢,, andx, = x,,)
@) F O ((6; = Bléj1 = x;-0) A Ud;1 = Bl = x,))-

By (24) there exist, ..., t, € t— such that

(w,t1) = Ipy\—B- ¢, ABx; (recall thatp, = ¢,,) and

Thus
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@)L, (w) = Hgijtj forallj =1,...,n,

(b) B, (w) NIy, ,(w) # 2 forallj =2,...,n
(©) Bt ((2}) N7, (@) * O

(d) By, (@) € HXJ'Htj forallj =1,...,n

(26)

Fix arbitraryj € {1,...,n} andt € T with { — t. We have to show that if

(@,1) = I, then(@, ) = B(¢;_y — x;_1) and if (&, ) |_ 16, then(o,1) |-
B(¢; — x;). Suppose first thato, t) = I¢;, that is, Z;(w) = Hgf)JHt Sinceg;

is a pure Boolean formula, by Proposition 5 in [#;]|, = H¢JH1&~ so that, by (a)
of (26), Z;(w) = Z,(w). It follows from this and Property 3 of Definition 1, that
Bi(w) = B, (w). Thus, without loss of generality, we can take t;. Similarly, if
(w,t) = I¢;_; then, without loss of generality, we can take t;_;. Thus it will
be sufficient to show that ifw, t;) = I, then(w,t;) = B(¢;_1 — x;-1) and
if (w,tj-1) = I¢;_4 then(w,t;-1) = B(¢; — x;)- By (b) and (c) of (26) and
property P LS we have that (lettingy = ¢,,)

Ty, (@) N By () = By, (0) N Ly, (). (27)
By (d) of (26),5;,_, (@) C HXJ‘—1Ht~,1 and, sincey;_, is a pure Boolean formula,
by Proposition 5 in [4]H><]’_1Htj71 - ij_lHtj. Thus

Btj—l(d}) C HXj—lHtj : (28)
Hence, by (27) and (28),
Itj 1( )th C HX; lH (29)

Now (letting 'E denote the complemerft, that is,"E = Q\ E),

Bt ("D) —I-Z.t 1( ) (Itj—l(d}> N Btj (d}>) . (30)
By (a) of (26).Z;,_, (@) = ||¢,_ 1Ht . Sinces;_, is a Boolean formulfﬂgbj_lHtji1 =
Hgbj*IHtj' Thus
Ty (@) = " égally, = =il - (31)
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Putting together (30), (31) and (29) we get that() C ||-¢,_+|, Ul[x;_1|, =
J J
¢ — Xj—lutj ,thatis,(@,t;) = B(¢;_, — x;_1)- The proofthatif®, ;1) |
I$; , then(@,t;1) = B(¢; — x;) is along the same line$?
Conversely, fix a frame that violates propefy.S. Then there exist € ),
teT,ty,..t, € t~,and ak* € {1,...,n} such that (lettingo = t,,)

@Iy, (w)N By (w) #9,Yk=1,...,n,

0)I;,. ,(©) N By (W) # By, (W) NIy ().
Letps, ..., pn, q1, ..., gn, D€ @tomic formulas and construct a model where, for every
k=1,..n,|pkll = Zt, (@) x T and||gx|| = B, (@) x T. Then, by (a) of (32)
(letting po = pn)

(32)

(@,1) = ‘ 1/\ O (IpjA—B=p;_1A\Bg;) - (33)
71=1,...,n
By (b) of (32), either
(A)thereisam € Z;,,. ,(w) N B, (w) suchthaty ¢ B;,.  (w) NIy, (W) or
(B) thereis a3 € By,. , (W) NI (w)suchthad ¢ 7, .  (©) NBy,. ().

Consider Case A first. Singe € B;,. (w) and, by Property 1 of Definition 1,
B;,.(w) € I,. (@), it must be thaty ¢ B;,. ,(w), so that(a,t) = g1, for
everyt € T. Sincea € 7, (W), (a,t) |= pe=—1, for everyt € T. Thus(a, t) |=
—(pgr—1 — qr+—1), for everyt € T, in particular(c, tg«) = —~(prr—1 — qrr—1)-
Sincea € By, (@), it follows that(w, ty+) = —~B(pg=—1 — qx+—1), SO that, since
(W, tg) E Ipps, (@, tk+) E 7(Ipgr — B(prr—1 — qx+—1))- It follows from this
and the fact that — ¢~ that(@, %) = = O (Ipr — B(ppe—1 — qr_1)). This,
together with (33) falsifies Axiom 5 of Proposition 9(at, #).

Now consider Case B. Singg € B;,. ,(w) andB;,. (@) C Zy,. (@), it
must be thats ¢ B;,. (@), so that(8,t) = —q-, for everyt € T. Since €
Ii,. (@), (B,t) = pi~, foreveryt € T. Thus(f,t) = —(pr= — qi~), for everyt €
T, in particular(5, ty-—1) = = (pr= — qi+). Sincep € By, (w), it follows that
(@, tg—1) = ~B(per — qi+), SO that, sincew, ty—1+) |= Ippe—1, (@, tpe—1) =
—(Ipg=—1 — B(pg+ — qi~). It follows from this and the fact that— t;«_; that
(@,1) = -O UIpps—1 — B(pe= — q+)). This, together with (33) falsifies Axiom
5 of Proposition 9 atc, 7). m

%By (d) of (26) B, (@) C HXthj and sincey; is Boolean,HXthj = HXJ'Htj,l' Thus,

using (27), we get thatB:, , (@) N T, (@) € |x;|, - SinceBy; (@) € Iy (@) U
i

(Zi; (@) N By;_, (@) andZ;,; (@) = H%Htj = HquHtH, it follows thatB;,_, (&) C Hﬁquutjilu

Gl =1 =, -

31



Proof of Lemma 10 First we prove that every locally rationalizable frame
satisfies Propert¢’AB (see Footnote 21) and then show that Propét#s, to-
gether with the Qualitative Bayes Rule (Property 4 of Dafnitl) implies Prop-
erty REF yeqr. FiXw € Q andt, t1,t3 € T such thatt — t1, ¢t — t3, Zy,(w) C
Ty, (w) andBy, (w) N7y, (w) # 2; we want to show thal,, (w) = By, (w) N7, (w)
(this is PropertyC'AB). By local rationalizability, there exists a total pre-erd?
of Q such thatB,, (w) = bestr T, (w) & {w € T, (w) : wRW, Yo' € T, (w)}
and By, (w) = bestr i, (w) = {w € Tty (w) : wRW, W' € Ti,(w)}. Since,
by hypothesisZi,(w) C 7 (w) and By, (w) N Iy, (w) # @, bestr Ly, (w) =
bestr It, (w) N Ly, (w). HenceBy, (w) = By, (w) N I, (w).

Next we show that Propert§y AB, together with the Qualitative Bayes Rule
(QBR) implies PropenyREFeqr. Fix w € Q andt, ty,t9,t3 € T such that
t — t; — to andt — t3 and suppose thaf, (w) = Z;,(w) € Zy, (w) and
Btl (OJ) ﬂItQ (W) 7é . By QBR, SiﬂCd?tl (W) N Itz (OJ) 7é g, Bt2 (OJ) = Bt1 (OJ) N
T, (w). SinceZy, (w) = Iy, (w), B, (w) N7, (w) # @ and thus, by Property AB,
sinceZy, (w) C Iy, (w), Bty (w) = By, (w) N Iy, (w). HenceBy, (w) = B, (w). m

Proof of Lemma 12 Fix arbitraryh’ € H, K’ € K and¢, € ®. By AGM3
andAGMA4, if — ¢ K’ thenB(I/, K',1) = [K' U {1)}]"*. Thus, letting’ = h¢
andK’ = B(h, K, ¢) we get

if ~ ¢ B(h, K, ) then B(ho, B(h, K, ¢),0) = [B(h, K, $) U {p}]7~.
(34)
By AGM7 andAGMS,

if ) ¢ B(h, K,¢), then[B(h, K,¢) U {¢})"* =B(h,K, ¢ Av).  (35)
Thus, by (34) and (35), ife) ¢ B(h, K, ¢), B(h¢, B(h, K, ¢),v) = B(h, K, ¢\
Y). m
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