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OLIGOPOLY EQUILIBRIA WHEN FIRMS HAVE
LOCAL KNOWLEDGE OF DEMAND*

By GiacoMo BoNANNO!

1. INTRODUCTION

The notion of Nash equilibrium in static oligopoly games is based on the
assumption that each firm knows its entire demand curve (and, therefore, its
entire profit function). It is much more likely, however, that firms only have some
idea of the outcome of small price variations within some relatively small interval
of prices. This is because firms can only learn their demand functions through
price experiments and if they are risk-averse and/or have a low discount factor,
they will be unwilling to engage in extensive price experiments involving large
variations in price.2 We can therefore expect firms to experiment through small
price variations and stop when they reach a price such that no small deviation
from it brings about an increase in profits.®> In other words, firms will stop
experimenting when they reach a local maximum of their profit functions.* The
purpose of this paper is to investigate the existence of local Nash equilibria. In
other words, this paper investigates a vector of prices such that each firm is at a
local maximum of its profit function, given the prices charged by the other firms
(obviously, a Nash equilibrium is a local Nash equilibrium, but the converse is
not true, as the first example in Section 2 shows).

It is well known (Roberts and Sonnenschein 1977) that Nash equilibria may
fail to exist unless one imposes restrictions on the demand functions (e.g. con-
cavity) which cannot be justified on the basis of standard assumptions on con-
sumers’ preferences.’ Bonanno and Zeeman (1985) recently showed that if firms

* Manuscript received June 1986; revised March 1987

! This paper draws from Chapter 2 of my Ph.D. thesis which was submitted to the London School
of Economics in May 1985. I am grateful to Oliver Hart for his help and encouragement and to
Christopher Zeeman and an anonymous referee for constructive comments and suggestions.

2 Indeed, it was recently shown by Aghion, Bolton, and Jullien (1986) that if the discount factor is
sufficiently small even a risk-neutral firm may be very reluctant to engage in (even very small) price
experiments.

3 This idea was first suggested by Baumol and Quandt (1964).

* Problems may arise when many interdependent firms experiment at the same time, in which case
the demand curve of each single firm would be shifting during the price experiments. One way of
overcoming this difficulty would be to restrict oneself to the case of monopolistic competition (large
number of small firms), characterized by the fact that the action of any single firm has a negligible
effect on the demand faced by every other firm (see, for example, Hart 1985). In this case the effects of
the other firms’ simultaneous experiments would be negligible and would, on average, cancel out.

5 The problem posed by Roberts and Sonnenschein (1977) was named “an impossibility theorem”
by Friedman (1982, p. 532).
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perform local price experiments and extrapolate a linear demand function which
is “correct” (in the sense that it coincides with the linear approximation to the
“true” demand curve at that point) then an equilibrium exists always, that is, with
arbitrary demand functions.® In this paper, we consider the case where firms
perform enough local price experiments to enable them to arrive at a correct,
rather than approximate, estimation of their demand curves; that is, they learn
the correct shape of their demand functions locally.

The paper is organized as follows. In Section 2, we show, by means of an
example, that there are oligopoly games which have no Nash equilibria but
possess (isolated) local Nash equilibria and then give an example of a duopoly
game which has no local Nash equilibria. In Section 3, we give sufficient con-
ditions for the existence of a local Nash equilibrium.

2. EXAMPLES

Both examples in this section are of a duopoly with differentiated products and
zero costs of production, where firms compete in prices. The first example shows
that there are games which have no Nash equilibria but possess a finite number
of local Nash equilibria. Let p; be the price of firm i (i = 1, 2), p = (p,, p,) and let
D(p) be the demand function of firm i. Let’

1) D,(p) = —p} + 12p? — 52p, + 93 + p,
The profit function of firm 1 is given by
(2 Py(p) = p,D,(p)

Figure 1 shows the set of points p such that (0P,/dp,)(p) = 0. The heavy lines
represent global maxima of P, (as a function of p,, parametrized by p,), the
continuous lines local maxima and the dashed line local minima (therefore the
reaction curve of firm 1 is given by the union of the two heavy lines).

Let:®

3) D,(p) =3+ 0.74p, — p, for 0 <p, <1+ 0.68p,
=25+ 0.4p, — 0.5p, for p, =1+ 0.68p,

The profit function of firm 2 is given by P,(p) = p, D,(p). Figure 2 shows the
set of points p such that (0P,/0p,)(p) = 0. As in Figure 1, the heavy lines repre-

8 This notion of equilibrium was first introduced by Silvestre (1977). Unlike Silvestre, however,
Bonanno and Zeeman (1985) impose no restrictions at all on the demand curves (not even that they
be decreasing everywhere). The use of the word “equilibrium” is justified, since—even though a firm
may actually be at a local minimum of its “true” profit function—it will believe, on the basis of the
estimated demand curve, that it is maximizing profits.

7 To be more precise, we should say that D, is given by the maximum between zero and (1). The
same applies to (3), (4), and (5). Note that D, > 0 implies 0D ,/dp, < 0, dD,/0p, > 0, and | 0D /0p,| >
oD, /0p, .

8 Note, again, that D, > 0 implies 6D, /dp, > 0, 8D, /dp, < 0,and |8D, /dp,| > 8D, /dp,.
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sent global maxima of P, (as a function of p,, parametrized by p,), the continu-
ous lines local maxima and the dashed line local minima (therefore the reaction
curve of firm 2 is given by the union of the two heavy lines).°

Figure 3 shows Figures 1 and 2 together. It can be seen that this game has no
Nash equilibria, since the reaction curves do not intersect (recall that the reaction
curve of firm 1 is given by the union of the heavy lines of the S-shaped curve,
while the reaction curve of firm 2 is given by the union of the heavy lines of the
(inverted) Z-shaped curve). However, there are four local Nash equilibria, denot-
ed by A4, B, C, and D.'° At equilibria 4 and B, firm 2 is at a global maximum of
its profit function, while firm 1 is at a local—but not global—maximum of its
profit function. Conversely, at equilibria C and D, firm 1 is at a global maximum,
while firm 2 is at a local—but not global-—maximum of its profit function.

° While the global and local maxima of P, are smooth, the local minima are not, since they occur
at the point p, = 1 + 0.68p, at which the demand function D, (given by (3)) has a kink. This fact is of
no consequence for our analysis, since we are not interested in the local minima of the profit function
P, . The function (3) was chosen in order to simplify the figures, but it could easily be replaced by a
smooth approximation (which would smooth the local minima of P,). In fact, every continuous
function can be approximated arbitrarily closely by a smooth function (see Hirsh 1976, Theorem 2.4,
p. 47). A smooth approximation of (3) would also transform the Z-shaped curve of Figure 2 into a
smooth (inverted) S-shaped curve.

10 The coordinates of A, B, C, and D are respectively (2.0423, 3.3169), (3.9974, 2.9790), (4.1208,
4.1483), and (1.9127, 2.2077), where the first coordinate is p, and the second p,.
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The next example shows that local Nash equilibria do not always exist. Let:

4) D,(p) = —0.0014p3 + 0.0748p? — 1.4796p, + 0.5829 + p,
and
(5) D,(p) = 10.5 + 1.9p, — 2p, for 0<p, <033+ 09%p,

=10 + 0.49p, — 0.5p, for p, =0.33 + 0.94p,

Figure 4 shows the two curves defined by (0P,/dp,)(p) = 0 and (0P, /0p,)p) =
0. As before, the heavy lines represent global maxima, the continuous lines repre-
sent local maxima, and the dashed lines represent local minima (of the corre-
sponding profit functions). It can be seen from Figure 4 that this game has no
local Nash equilibria.!

This last example shows that it is necessary to impose some restrictions on the
demand curves in order to guarantee the existence of a local Nash equilibrium.

11 At point E, both firms are at a local minimum of their profit functions. As explained in footnote
6, each firm will believe that it is maximizing profits if it only knows the linear approximation of its
demand curve at that point (Bonanno-Zeeman 1985, p. 282).
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FIGURE 3

3. EXISTENCE OF LOCAL NASH EQUILIBRIA

We shall use the same model which was used by Bonanno and Zeeman (1985).
There are n firms, indexed by i = 1, ..., n, producing differentiated products and
competing in prices. The cost function of firm i is given by C,(q) = c,q, where ¢; is
a constant!? and g denotes output. Let p = (py, ..., p,), Where p; is the price of
firm i, and let D(p) be the demand function of firm i. D, is assumed to be
continuous, to become zero at some price p; > c;, which varies smoothly with the
prices charged by the other firms and is bounded away from infinity (in Figure
Sa, p¥ represents an upper bo.d for p)). Finally, the partial derivative dD;/0p; is
assumed to be C! and to be n : itive at the point where the demand curve crosses
the p-axis (the left derivative, to be precise).!® Figure 5a shows a possible shape
of D, for a given vector of prices charged by the other firms (note that, contrary
to common use, we measure price on the horizontal axis). Figure 5b shows the

12 Fixed costs of production can alsc b2 allowed for.

13 For a more detailed description of the model and discussion of the assumptions the reader is
referred to Bonanno-Zeeman (1985). Here we have strengthened assumption 1(d) (p. 280) by requiring
p; to be a C? function rather than merely continuous and assumption 3 (p. 281) by requiring D, and
0D, /dp; to be C* rather than merely continuous. These assumptions are still weaker than those which
are normally made in oligopoly models with differentiated products (Friedman 1982, p. 501).
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corresponding profit function
(6) P{p) = (p; — c)D(p)

(the function P; will be defined later).
We can now introduce the following definition.

DEFINITION 1. A4 local Nash equilibrium is a vector of prices p° such that
7 P(p°) >0 i=1,...,n
and for each i there exists a neighborhood N, of p; such that
®) P(p°) = P{p;, p2;)  for all p; € N;
(where (p;, p°.;) denotes the vector p° with p; replaced by p)).
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FIGURE 5
ProposITION 1. If for all i and for each point p with D{p) >0 and p; > ¢;
(i =1,..., n)the following condition is satisfied

D, 2D(p)

® P2 ey

then a local Nash equilibrium exists.
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Note that, since the RHS of (9) is positive, the above proposition implies that
when the demand curve is concave (3°D,/dp? < 0) or the convexities of D; are
small, then a local Nash equilibrium exists. Note, however, that the proposition
also implies that a local Nash equilibrium exists even if the convexities of the
demand function are very large (the RHS of (9) tends to + co as p; approaches c;
from above).

A proof of the above proposition is given in the Appendix. Condition (9)
implies that there is no point p such that (P(p)>0) and (0P;/0p)p) =
(0%P,;/0p?)(p) = O; that is, it is not the case that—as the prices of the other firms
vary—a local maximum of the profit function of firm i gets closer and closer to a
local minimum and eventually coalesces with it, giving rise to a point of inflec-
tion.

Note that, just as quasiconcavity of the profit functions is a sufficient but not
necessary condition for the existence of Nash equilibria, so condition (9) is suf-
ficient but not necessary for the existence of local Nash equilibria. In both the
examples of Section 2, condition (9) is not satisfied; however, only in the second
example does the failure of condition (9) to hold give rise to non-existence of local
Nash equilibria.**

4., CONCLUSION

The first example of Section 2 shows that the class of oligopoly games which
have local Nash equilibria is larger than that of games which have Nash
equilibria.'® Proposition 1 gives sufficient conditions for the existence of local
Nash equilibria which are much weaker than those needed to prove the existence
of Nash equilibria (quasi-concavity of the profit functions). However, the second
example of Section 2 shows that, unlike the equilibria studied by Bonanno and
Zeeman (1985), local Nash equilibria may not exist if one allows for arbitrary
demand functions. Since Roberts and Sonnenschein (1977) effectively showed that
standard conditions on consumers’ preferences (e.g. convexity) are compatible
with demand functions of any shape, the second example of Section 2 could also
be interpreted as “an impossibility theorem” (cf. Friedman 1982, p. 532) for local
Nash equilibria, while the proposition is the analogue (for local Nash equilibria)
of the standard existence theorem for Nash equilibria (it is also worth noting that

4 In the first example there are two points (p,, p,) at which 82D, /dp? = 2D, /p? (recall that in both
examples costs of production are zero) and these are (2.42, 4.54) and (3.58, 1.46) (see Figure 1).
Similarly, any smooth approximation of D, (see footnote 9) would violate condition (9) at two points
(py> py) close to (1.61, 2.09) and (5.36, 4.64) (see Figure 2). In the second example, D, fails to satisfy
condition (9) at the two points (12.8, 12.42) and (13.6, 12.41) and any smooth approximation of D,
would fail to satisfy condition (9) at two points close to (4.94, 4.97) and (21.49, 20.53). The above eight
points are points of inflection of the corresponding profit functions.

!5 It can also be shown that, generically, local Nash equilibria are isolated and finite in number
and that the property of having a local Nash equilibrium is structurally stable (see Bonanno 1985,
Proposition 2.4, p. 69).
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if the profit functions are quasiconcave, every local Nash equilibrium is a Nash
equilibrium).

University of California at Davis, U.S.A.

APPENDIX

Proor OF PrOPOSITION 1. Proposition 1 is a consequence of the following
lemma. Let C be the n-dimensional cube

C={xeRY—1<x;<1,i=1,...,n}

and let f;: C— R (i = 1, ..., n) be n continuous functions satisfying the following
hypotheses:

(A1) of;/0x; exists and is C?

(A2) of;/0x; >0 if x;,=—1

<0 if x;=+1.

LEMMA. If for each i and x
(A.3) (0f;/0x)(x) = 0 implies (0°f;/0x?)(x) # O
then there exists a point x° in the interior of C such that for each i
(0f:/0x)(x°) =0 and (9%;/0x2)(x°) <O

that is, x° is a local Nash equilibrium of the game with payoff functions f; (i = 1,
.., h).

ProOF OF LEMMA. For each i let
S; = {x € C/(9f;/0x;)(x) = 0}.

Since df;/0x; is continuous and C is compact, S; is a compact set and therefore
has a finite number of connected components. Let K be the (n — 1)-dimensional
cube

K={yeR"'/—1<y,<lj=1,...,n—1}

We shall denote a point x € C by x = (y, x;) with y € K and x; e [—1, 1]. We
first want to show that each connected component of S; projects onto K (that is,
if M = S, is a connected component of S;, then for each y € K there exists an
x; € [—1, 1] such that (y, x;) € M). First of all, the boundary conditions (A.2)
ensure that S; itself projects onto K (that is, for each y € K there exists an
x; € [—1, 1] s.t. (0f;/0x)(y, x;) = 0). Furthermore, by (A.3), for each y € K the set

{x; € [—1, 11/(0f;/0x )y, x;) = 0}

is a finite set (since it is a discrete subset of a compact set). Therefore, by the
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implicit function theorem (applied to the function df;/0x;: C =K x [—1, 1]— R)
for each y € K there exists an open neighborhood N, of y in K such that S, is
locally diffeomorphic to the Cartesian product of N, and a finite set. More
precisely, fix an arbitrary y € K and let x" e [—1,1], r=1, ..., m, be all the
solutions to the equation (df;/0x,)(7, x;) = O (in general, the number of solutions,
m, could vary with y € K). By the implicit function theorem, for every solution x!"
there exists a neighborhood NY of j in K, a neighborhood W® of (7, x{”) in
C=K x[—1, 1]and a C" function h”: N¢’ — R such that:

(i) (9fi/ox)(y, h"(y)) = Ofor all y € Ny

(i) The only solutions to the equation (3f;/dx)(y, x;) = 0 in W are those
given by (i) (see, for example, Field 1976, p. 203).

Then there exists an open neighborhood N; of j in K (contained in the inter-
section of the neighborhoods N¥’, r = 1, ..., m) with the following property: if for
some x; € [—1, 1] and for some y e Ny, (y, x;) € S; then x; = h®(y) for some
r=1,..., m. If not, there would exist a sequence of points {y*> in K converging
to y and a sequence of points (x> in [ — 1, 1] such that for all k, (¥, x¥) € S, and
O xH) ¢ W for all r =1, ..., m. Since [—1, 1] is compact, the sequence {x*>
has a convergent subsequence. Let x; be the limit of this subsequence. Then since
S; is closed, (7, X;) € S;. Then x; = x{" for some r (r = 1, ..., m), which implies that
(%, x¥) e W for k sufficiently large (where the superscript k now refers to the
convergent subsequence), yielding a contradiction.

The set {N,}, .k is an open covering of K, which is a compact set. Therefore,
there exists a finite subcovering Z = {N,, N, ..., N, }. N, has a nonempty
intersection with another N, , j # 1 (otherwise the points in K which belong to
the boundary of N, would not belong to any of the open sets in Z, contradicting
the fact that Z is a covering of K). Thus the number of solutions to the equation
(9f:/0x Ny, x;) = 0 with fixed y is the same for all y e N,, U N, and every point
(» x) €S, with ye N, U N, (and x; € [—1, 1]), is situated on the graph of a
C' functionh: N, U N, —[—1, 1]).

Similarly, N, v N, must have a nonempty intersection with another N, in Z
(i # 1, j) and, again, the number of solutions must be constant on the union
N, u N, U N,. By repeating this argument a finite number of times (until we
have exhausted the covering Z), we can conclude that the number of solutions to
the equation (9f;/0x;)(y, x;) = 0 with fixed y is the same for all y € K and, there-
fore, each connected component of S; projects onto K and is the graph of a C*
function h: K—[—1, 1].

By the boundary conditions and by the hypothesis that (8%f;/0x?) is never zero
on S; (A.3), at least one of these connected components consists of local maxima
of the function f{(y, x;) as a function of x; parametrised by y (that is, by the
boundary conditions (A.2) for each y € K there exists at least one point (y, x,) €

S, such that (0%f;/0x?)(y, x) < 0, and by (A.3) 8f,/0x}? must have constant sign on
each connected component of S)).

Finally, let h;: K— [—1, 1] be the C! function whose graph gives the chosen

connected component of S;. Let H;: C— [—1, 1] be defined by H(y, x;) = h(y)
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and define H: C— C by H = (H,, ..., H,). The function H is clearly continuous
and, by Brouwer’s fixed-point theorem, there exists a fixed point x° = H(x°).

Then, x; = H{(x°) = h(x°,), where x2;=(x], ..., X;_{, X{41,...,Xy;), which
means that (9f;/0x,)(x°) = 0 and (8%f;/0x?)(x°) < 0. Thus, x° is a local Nash equi-
librium. Q.E.D.

The proposition can now be shown to be an application of the above lemma
using exactly the same argument which was used in the proof of Proposition 2 in
Bonanno-Zeeman (1985, p. 282). We first restrict ourselves to the compact set
A=A, x--xA,, A;=[c;, p¥] and replace the profit function P; with the
function P, obtained by prolonging the tangent at p; instead of going along the
price axis (see Figure 5). Finally, we define f{(x) = P(T(x)), where T is the
orientation-preserving affine map which takes C onto 4. The above lemma then
applies. It only remains to show that (9) implies (A.3). It is easy to check that (9)
is equivalent to:

foralliand p, Pf(p)>0 and (0P/dp)p)=0 implies (0>P,/0p?)p) # O.
In fact, P(p) > 0 and (0P,/0p,)(p) = O is equivalent to

(A4) (0D;/op)(p) = —D{p)/(p; — ¢))
and, given (A.4), (62P,/dp?)(p) # O is equivalent to (9). Q.E.D.
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