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ABSTRACT. Given an extensive game, with every node x and every player i a subsct

K,(x) of the set of terminal nodes is associated, and is given the interpretation of player

I's knowledge (or information) at node x. A belief of player i is a function that assoeiates
with every node x an element of the set K,(x). A belief system is an n-tuple of beliefs,

onc for cach player. A belief system is rational if it satisfies some natural consistency
properties. The main result of the paper is that the notion of rational belief system gives

rise to a refinement of the notion of subgame-perfect equilibrium.

Keywords : Information, beliefs, subgame-perfect equilibrium.

1 .  I N T R O D U C T I O N

ln an extensive game, information sets capture the notion of what a
player knows when it is her turn to move: if two decision nodes x and y

belong to the same information set of player i, then player I does not

know whether she is making a choice at x or at y. Information sets,

however, do not tell us what a player knows at a node that belongs to

another player. This raises the question of what information players

obtain during the play of a game. For example, in general it cannot be

the case that every player always observes which player is moving
(even though he may not observe what move was made), as the game

of Figure 1 shows. When it is player 3's turn to move, he wil l either
have observed that, before him, only player 1 moved or that both
players I and 2 moved. In the first case he will be able to deduce that

he is at node x,, while in the second case he wil l know that he is at

node x., . But this contradicts the fact that, according to his information

set, player 3 cannot distinguish between nodes x2 and x., . The example
of Figure 1 also shows that, in general, we cannot think of the play of a
game as having a well-defined temporal structure of the following type:

t h e  g a m e  s t a r t s  a t  d a t e  t : 1 a n d  a t  e v e r y  d a t e  t : 2 , 3 , . . .  a  m o v e  i s

made unti l a terminal node is reached. In the above example, if player

3 is  asked to move at  date t :2  he wi l l  know that  he is  at  node x.  ,
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while if he is asked to move at date /:3 he wil l know that he is at
node x. , .

Thus the play of an extensive game requires the presence of an

outside agent - we shall call her the umpire - who provides players

with different amounts of information as the play of the game unfolds
(for example, in the game of Figure 1, if player l chooses a, then

player 2 must be informed, while player 3 cannot be informed). In

Section 3 we suggest one way of formalizing the information conveyed

to each player along every possible play of an extensive game (Section

2 contains some preliminary definitions). With every node -r and every
player i we associate a subset K,(x) of the set of terminal nodes,

representing what player I knows when node x is reached. The

interpretation is that if -when node x is reached-player i 's knowl-

edge  i s  g i ven  by ,  say ,  t he  se t  {2 ,  , 22125 ,  z r } ,  t hen  p laye r  i  i s  i n fo rmed

that the play of the game so far has been such that only terminal nodes

z 1 , 2 2 , z s  a n d  z s c a n  b e  r e a c h e d .

If x is a decision node that belongs to information set lr of player i,

we define player I's knowledge at .r as the set of all the terminal nodes

that can be reached from nodes in ft. Thus our definition of knowledge

gives an accurate representation of a player's information sets. It
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seems that, as long as a player's knowledge at her decision nodes is a
faithful representation of her information sets, there is a lot of freedom
concerning the specification of her knowledge at decision nodes of
other players. Thus the definition put forward in this paper is only one
of many possibil i t ies.' An appealing fearure of the definit ion proposed
in this paper is that it provides an intuitive characterization of such
notions as perfect recall, perfect information and simultaneity.

In Section 4 we show that our approach offers a new way of thinking
about the solutions of a game. We first introduce the notion of belief
system. We denote by P,@) player i 's belief at node x and we require
that B,(x) be an element of the set K,(x). The interpretation is as
follows. Suppose that at node -r player I 's knowledge is represented by
the set  K,( t ) :  {zr ,  zr ,  zs,  z8} .  Then,  as expla ined above,  p layer  i
knows (is informed) that only terminal nodes z, , 2,, zs and z, can be
reached. If B,@): z, then player i believes that the final outcome will
actually be zr. (Note that z, need not be reachable from x, that is,
player i 's belief may reflect i 's ignorance of the actual play of the
game.) Thus a belief of player i is a function that associates with every
node x an element of the set K,(x). A belief system is an n-tuple of
beliefs, one for each player. There are some natural consistency
properties that one can impose on beliefs. Four simple properties are
used in Section 4 to characterize the notion of rational belief system. It
is then shown that from a (not necessarily rational) belief system B one
can extract a pure strategy profi le o: t(B) in a natural way. The main
resuft of this paper is that if B is a rational belief system then o : t(B)
is a subgame-perfect equil ibrium.' While in games of perfect informa-
tion there is a one-to-one correspondence between (pure-strategy)
subgame-perfect equil ibria and rational belief systems, in games of
imperfect information the notion of rational belief system refines that
of subgame-perfect equil ibrium. We show this by means of an exam-
ple. Another example is used to show that a rational belief system
need not  be a sequent ia l  equi l ibr ium. '

2 .  P R E L I M I N A R Y  D E F I N I T I O N S

In this section we define some functions that wil l be used extensively
throughout  the paper.
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Fix a (finite) extensive game.4 Let X be the set of decision nodes and

Z the set of terminal nodes. Let T: XU Z. (ln general, we shall

denote a decision node by x or y, a terminal node by z and a generic

node - decision or terminal - by t.) For every , e f, let

0(t) c z

be the set of terminal nodes that can be reached from r. For every

ze Z,  we set  by def in i t ion 0(z) :  {z} .  For  example '  in  the game of

F igu re  l ,  0 ( x r ) :  { t r ,  zo ,  Z r )  .

If h is an information set, define

e. (h ) :  
Po t@)

that is, g*(/r) is the set of terminal nodes that can be reached from

nodes in h.  For  example,  in  the game of  F igure l ,  h :  {xr 'x . }  is

p laye r  3 ' s  i n fo rma t i on  se t  and  we  have  tha t  e * (h ) : { z , z r , z t .Z t } '

Recal l  that  a choice c at  in format ion set  h :  {xr ,  .  .  . ,  x , , }  is  a set  of

e d g e s  c :  { ( " ,  ,  ! r ) ,  ( x . , l . ) , .  .  .  , ( x , , ,  y ^ ) }  w h e r e  n o d e  y *  i s  a n

immed ia te  successo r  o f  node  xo  ( k :7 , . . . ,  m) .  De f i ne

r . r ( c )  :  0 ( y ' )  u  0 ( Y r )  u ' ' '  u  0 ( Y  ^ ) ,

that is, pc(c) is the set of terminal nodes that can be reached from

nodes in ft following the edges that constitute choice c. For example, in

the  game o f  F igu re  l .  p (R  )  :  \ zz .  z r \ .

3 .  T H E  D E F I N I T I O N  O F  K N O W L E D G E

Fix an extensive game. For every player I and for every (decision or

terminal) node / we define a subset K,(t) of the set Z of terminal

nodes, which wil l be interpreted as 'player i 's knowledge at / ' . One

way of thinking about the proposed definition is as follows. At the root

of the tree, denoted by x0, all players have the same knowledge,

namely Z. As the play of the game unfolds and new nodes are

reached, an umpire gives (separately) to each player the maximum

amount of information that is compatible with that player's informa-
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tion sets, according to the following rules. If z is a terminal node, then
every player is informed that the game ended at z.lf node x belongs to
information set ft of player i, then player i is told that her information
set /r has been reached, but is not told which node in fr was reached. If
node x does not belong to player i and all the information sets of
player i ( if any) that are crossed by paths starting at x consist entirely
of nodes that are successors of x, then player i is informed that node r
has been reached (the justif ication for this rule is that later on, ar any
of her information sets, player i wil l be able to deduce that the play of
the game must have gone through node x; hence player i might as well
be told at the time when x is reached). When the above condition is
not satisfied, player i 's knowledge at x either doesn't change (that is,
player i is not told anything new) or at most reflects the choice made
by player i at the immediate predecessor of x, if that node belonged to
player i.

The formal  def in i t ion is  as fo l lows.5

(1) Let x,, be the root of the tree. For every player i set

K , ( x , , ) :  Z  .

(2) For every z e Z and for every player l, set

K , ( z ) :  { z }  .

(3) If r is a decision node that belongs to information set ft of player r,
set

K , ( x ) :  0 * ( h )  '

(4) For every decision node x and every player i, let H,(x) be the set
of information sets of player I defined as follows: h € H,(x) if and
only if h is an information set of player i and there is a node y € fr
that is a successor of x. Now, if x is not a decision node of player I
and either H,(*):0 (where 0 denotes the empty set) or, for every
heH,(x) ,0. (h)C 0(r )  ( that  is ,  every node in y ' r  is  a successor  of
-r) then set

K,(x) : 0(x) .
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(5) If node.r is not a decision node of player i and the condition given

under (4) is not satisfied (that is, there exists an he H,(x) and a

node y c lr such that y is not a successor of x) and x is an

immediate successor of decision node / of player i and c is the

choice of player I that leads from / to x, then set

K,(x) :  6r(c)  .

(6) Finally, if x is not a decision node of player I and conditions (4)

and (5) are not satisfied, set

K,(x) :  K,(n, )

where zr, denotes the immediate predecessor of .r.

For example, in the game of Figure 2 we have:

Fig. 2
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B y  ( 1 ) :  K , ( r n )  :  Z :  { z .  z r ,  Z t ,  z 4 ,  z s ,  z 6 ,  z . t }
f o r  a l l  i : 1 . 2 . 3  .

B y  ( 2 ) :  X , ( 2 1 ) :  { z  j }  f o r  a l l  i : 7 , 2 , 3  a n d  f o r  a l l  7 : 1 , . . . , 7  .

B y  ( 3 ) :  K r ( * r ) : 0 . ( { x , } )  : O ( x r ) :  { z t , z 4 ,  z 5 t  z r , ,  z t )  .

B y  ( a ) :  K r ( x r ) :  0 ( x  t )  :  { z r ,  Z q ,  Z s .  2 6 ,  z . t }  .

By (6) :  K.( r , )  :  Kr(x) :  7  .

By  (a ) :  K r ( * r ) :  K r ( x r ) :  0 ( x r ) :  { 2 ,  z r }  .

B y  ( 3 ) :  K . ( * r ) : 0 * ( { x r , x r } ) :  { 2 ,  z r , 2 3 , 2 4 , 2 5 ,  z 6 }  .

By  (4 ) :  K ,  ( r . )  :  K . ( x r )  :  0 ( x )  :  { zz ,  24 ,  zs ,  z6 }

B y  ( 3 ) :  & ( x . )  :  O * ( { x z , x . } ) :  { z r ,  z r ,  2 3 ,  Z q , z s ,  z 6 }  .

B y  ( 3 ) :  K r ( r ) :  0 * ( { x o ,  x r } )  :  { 2 . ,  z o ,  z s ,  z 6 }

B y  ( a ) :  K r ( r ) :  K r ( x o ) : 0 ( x ) :  { z t ,  z o }  .

B y  ( 3 ) :  K , ( x r )  : 0 * ( { x o ,  x r } ) :  { 2 . ,  z + ,  z s ,  2 6 }  .

By  (a ) :  K r ( t r ) :  K : ( xs ) :  0 ( xs )  :  { zs ,  zo }  .

Remark 1. It is easy to show (see Bonanno, 1991) that for every node /
and for every player i, 0(t) is a subset of K,(r). (Recall that 0(r)
denotes the set of terminal nodes that can be reached from node r.)

Remark 2. It is an immediate consequence of point (3) of the above
definition that if ft is an information set of player l, and x and y are two
nodes in ft, then f,(r): K,(y). Thus it makes sense to write K,(ft) for
player i's knowledge at her information set ft.

An appealing feature of the definition of knowledge given above is that
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it provides an intuitive characterization of such notions as perfect

recall, perfect information, simultaneity, etc. For a proof of the

fo l lowing propert ies see Bonanno (1991).

PROPERTY 1. An extensive game with perfect recall satisfies the

following property: if node y is a successor of node -r, then' for every

player t, K,(y) c K,(x) That is, at every node each player knows at

least as much as she knew before that node was reached.

The game shown in Figure 3 satisfies the property that if y is a

successor of x then K,(y)gK,(x), for every player i, but is not a game

with perfect recall. Thus the converse of property 1 is not true.

PROPERTY 2. An extensive game with perfect recall has perfect

information if and only if at every node all players have the same

knowledge, that is, if and only if for every node / and for any two

p laye rs  i  and  7 .  K , ( r ) :  K , ( t ) .

zg

Fig.  3
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Define an extensive game to be simultaneous if every play crosses all
the information sets.

PROPERTY 3. An extensive game is simultaneous if and only if i t
satisfies the following property: if r is a decision node of player l, then
K,(x): Z. That is, when a player has to move she knows as much as
she did at the root of the tree.

4 .  B E L I E F S

Fix an extensive game. As before, let x be the set of decision nodes. Z
the set of terminal nodes, and Z the union of X and Z.

DEFINITION. A belief of player j is a function

B,: T--> Z

sat is fy ing the fo l lowing properr ies:

0) B,G) e KJt), vt e r,
(2) lf -r and y belong to the same information set of prayer i (so that

K,(x): K,(y)) rhen B,(x) : F,0).

The interpretation is as follows. consider again the game of Figure 2.
A t  n o d e  x ,  w e  h a v e  t h a t  K , ( x , ) :  { r . , 2 4 ,  Z s , 2 6 ,  z 1 } .  T h i s  m e a n s  t h a t
player 1 knows that only terminal nodes different from z, and z2can
be reached.  I f  BrQ,) :  z ,  then p layer  I  bel ieves that  the p lay of  the
game will actually end at node z. (this obviously implies that player 1
believes that player 2 wil l take action c and player 3 wil l take action F
and he h imsel f  p lans to choose G).

condition (1) in the above definit ion says that what a player believes
must be consistent with what he knows, and condition (2) says that a
player cannot have different beliefs at two nodes that belong to one of
his information sets, since his knowledge is the same at both nodes.
Thus it makes sense to write Bi(h) for player i 's belief at his informa-
t ion sct  f t .
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DEFIN IT ION.  A  be l i e f  sys tem i s  an  n - tup le  B : (8 t , . . . ,  F , ) ,

whe re ,  f o r  each  p laye r  i : I , . . . , f t ,  F i  i s  a  be l i e f  o f  p l aye r  l .

DEFINITION. Let B be a belief system. we say that B is rational if it

satisfies the following properties (which will be discussed immediately

below):

(l) Contraction Consistency. If x and y are two nodes such that

K,(x) I K,(y) and F,(t) € K,(y), then B'(y) : F'G).

(2) Tree Consistency. Let h be an information set of player l. Let

x e h be the predecessor of B,(h) and let L(x) be the set of

immediate successors of x. Then

F,0) e 0(y) VY e l(x) .

(3) Individual Rationality. Let h be an information set of player l. Let

x e h be the predecessor of B,(h) and let I(x) be the set of

immediate successors of x. Then

U,(8,(h))> U,(F'(y)) VY € I,(x) ,

where IJ,: Z-'>ilt is player i 's payoff function. (lt denotes the set

of real numbers.)

(4) Choice Consistency. Let x belong to information set ft of player I'

and let c be the choice at h that precedes Br(h). Then, for every

player j, i f B,@) comes after choice d at h, it must be d: c.

Property (1) says that, as the knowledge of a player evolves and

becomes more refined, the player will not change his belief unless he

has to, that is, unless his previous belief is inconsistent with the new

information. This is a contraction consistency property which is im-

plied, for example, by Bayesian updating.

The purpose of property (2) is to rule out situations like the one

i l l us t ra ted  i n  F igu re  4 .  The re  we  have  tha t  K r (h ) :  { z r , 22 ,  Zz ,24 ,25 ,

zo) where h: {x.,,xr} is the first information set of player 2, and

Kr(d :  {2,  z ,  24,  zs}  where I  :  {xz,  xo}  is  the second informat ion

set of player 2.
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Suppose Br(h): 26 and PrG): zr. This belief of player 2 is incon-
sistent because believing in zu at h means believing that node J2 was
reached. Given this belief, if player 2 takes action /, so that the play of
the game proceeds to information set g, then node xo must be reached,
and from xo terminal node z, cannot be reached. In this example
property (2) requires that if Br(h): zu then either Bt( g): zo or

F t ( i l :  z t .
The motivation for property (3) is as follows. If terminal node z

represents what player i believes at his information set ft (that is, if
z: P,(h)), then it means that player i believes that he is at that node x
in lr which lies on the play to z. Suppose that U,(z)<U,(F,(y)) where
y is an immediate successor of x. Then believing in z (at ft) is irrational
for player i because, instead of making the choice required to reach z,
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he can - according to his beliefs and by making another choice - move
the game to node y where, again according to_his beliefs, the game will
evolve to an outcome which he prefers to z.o

Property (4) says that if player j believes that the play of the game
will reach player i 's information set ft, then playerT's belief concerning
the choice that will be made by i at ft must be the same as the choice
implied by i 's belief at lr (although i and i might disagree on the node
at which this choice would be made). A justif ication for this property
could be that player 7 puts himself in the shoes of player i and correctly
predicts the choice that player i would make at her information set /r.

The properties that define the notion of rational belief system seem
to be very natural. Of course, definit ions must be judged on the basis
of the results that can be obtained from them. The main result of this
paper is that the notion of rational belief system gives rise to a
refinement of the notion of subgame-perfect equilibrium. In order to
prove this result we first need to show how to associate with a (not
necessar i ly  rat ional )  bel ie f  system p:  (8r , .  .  .  ,  B, )  a s t rategy prof i le
o : ( c t , . . . , c n ) . L e t  B  b e  a  b e l i e f  s y s t e m .  L e t  o : t ( B )  b e  t h e
pure-strategy profile obtained as follows. If ft is an information set of
player i and z: P,(h),let c be the choice at h that precedes z. Set
o,(h): c, that is, c is the choice selected (with probabil ity 1) by player

i 's strategy at information set /r.
The proof of the following proposition is given in Appendix B.

PROPOSITION 1 . Fix an extensive game with perfect recall. Let B be
a rational belief system and o: t(D the corresponding strategy profile.
Then o is a subgame-perfect equilibrium.

In Bonanno (1990) it is shown that in games of perfect information
there is a one-to-one correspondence between rational belief systems
and (pure-strategy) subgame-perfect equil ibria. (Note that in a game

of perfect information property (2) of the definition of rational belief
system (Tree Consistency) is redundant, since, for every player I and
for every node /, K,(t):0(/).) We now show that in games with
imperfect information the notion of rational belief system refines that
of subgame-perfect equil ibrium.

In the next example we shall make use of the following lemma
(which is proved as Corollary 1 in Appendix B).
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LEMMA. Let B be a rationsl belief system of a game wilh perfect
recall. Then for every two players i and j, F,@) : F1@). That is, at the
root of the tree the beliefs of all the players agree.

Consider, again, the well-known game of Figure 1 which was first
discussed by Selten (1975). This game has two (pure-strategy) Nash
equilibria: (a, A, R) and (d, A, L). Both are subgame-perfect since
there are no proper subgames. Of these two equilibria only (a, A,R)
is sequential (and trembling-hand perfect). We now show that this
game has a unique rat ional bel ief  system B and that €G):@, A,R).

First of all, by Individual Rationality and Contraction Consistency it
cannot be B.(x, ,) :  22or F.(xo):23. '  By the above lemma, i t  cannot
be  B, (x , , )  :  z2  o r  F ,@J:  z ,  fo r  any  p layer  i :7 ,2 ,3 .

Suppose B,@): z,  for al l  l :1,2,3. Then, by Contract ion Con-
sistency, F.("r) :  zrand, by Choice Consistency, Fr(xr) :  Fr(x):  zt .
Therefore, by Individual Rationality (for player 2), Fr(xr): zz. By
Choice Consistency and Contraction Consistency, B,(r,) : z3.o Hence
by Individual Rat ional i ty i t  cannot be B,(xo):  zt ,  a contradict ion.
Thus  B, (x , , ) :  z ,  i s  ru led  ou t  fo r  a l l  i :1 ,2 ,3 .

S imi la r ly ,  suppose F ,@) :  zo for  a l l  i :1 ,2 ,3 .  Then,  by  Cont rac-
tion Consistency Br(x,): zo, which violates Individual Rationality for
player 2, s ince Ur(zr)> Ur(z).  Thus the only possibi l i ty is B,(x, ,) :  z.
for all i -- | ,2, 3 . By Contraction Consistency this implies that

B,Q ) : Fr@ r) : Fz(x r) : z, . As noted before, by Individual
Rat ional i ty i t  cannot be Br@r):  z2 or F.@r):  2. , .  Suppose B..(xr) :
2, .  Then by Choice Consistency, s ince Kr(*r) :  {2, ,  zr} ,  i t  must be

FrQ): z,  .  But this,  together with B,(x, ,) :  z,  contradicts Individual
Rationality for player 1. Thus for B to be a rational belief system it
must be Fr@r):  zo, which, by Choice Consistency, impl ies B,@r):
B r ( x r ) - -  z r a n d  9 r @ r ) :  P z ( x ) :  z o .

Thus we have found a unique rational belief system B given by:

B r ( x , , ) :  2 5 ,  P r ( x r ) :  z ,  F , ( x r ) :  2 . ,  B , ( x . ) :  z o ;

F r ( x , , , ) :  z ,  F r ( x , ) :  z r ,  F r ( * r ) :  z r ,  F r @ ) :  r o ;

F r ( x , , ) :  z r ,  F r ( x r ) :  z r ,  F r ( x r ) :  z o ,  F . ( x r ) :  z o .

I t  is easy to check that 4(B) :  @, A, R).
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On the basis of the above example, one might wonder if the notion

of rational belief system coincides with that of sequential equilibrium.

The following example shows that the answer is negative.

Consider the game of Figure 5. [Note that Kr(*): Kz(xr):

K r ( x r )  :  Z  a n d  K r ( { r r ,  x 4 ,  x s } )  :  { z r ,  2 2 1  Z 3 t  2 4 ,  Z 5 , z u } ,  w h i l e  f o r

every Jt :  1 ,  .  .  .  ,5 ,  K,(xr)  :  e@)) . I t  is  easy to check that  the fo l low-

ing belief system is rational:

F r ( xo ) :  z *  F r ( x r )  :  B r ( xo ) :  23 ,

F t @ r ) :  B r ( x ) :  z s ,  B t ( x r ) =  z t ;

B r @ ) :  9 z @ ) :  B , ( x , )  =  z g ,

9rG ' ) :  F rGo) :  Fz(xs) :  zs -

Fig. 5

zl ,2 .3 24 t5 t6

1 8 3 0 2 0

0 1 0 3 2 0
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It is clear that if o : €(B) then o : ((f, L, b), l). We will now show
that ((7, L, b), /) is not a sequential equilibrium. In fact we will prove
a stronger claim, namely that there is no sequential equilibrium that
yields outcome z, with probability l.

LEMMA. In the game of Figure 5 there is no sequential equilibrium
where player I chooses T with probability L

Proof. Recall that, for the game of Figure 5, a sequential equilib-
rium is defined in terms of a pair (o, z) where o : (or, or) is a
(behav io r )  s t ra tegy  pro f i le  and z :  {x r ,x r ,x2 ,x3 ,x4 ,xs} - -+ [0 ,  1 ]  i s  a
funct ion sat isfying v(x):  v(x):  v(x):1 and z(x.)  + v(x) +
v(x):1.  We shal l  wri te o,(a):p to mean that player i 's strategy q
assigns probability p to choice a. Now, suppose there is a sequential
equilibrium (o, z) with or(T):1. Then it must be ar(/) > j (otherwise
B would be player 1's unique best choice), which implies that o,(b;: 1
and o , (L ) :1 .  Thus  c r  must  be  o f  the  fo rm ( (2 ,  L ,b ) ,  (p , l -p ) ) ,
where p > j is the probability with which player 2 chooses /. Now
consider a sequence {ot, o',. . .} of completely mixed strategies whose
mth element is given by

o - :  ( ( 1  -  e m -  b ^ , e ^ , b ^ ;  l *  c m , c m ;  l -  d ^ , d ^ ) ;  ( l -  e ^ , e ^ ) )
T M B L R b t l r

with a- ,b^,c^,d^e(O, 1) and converging to zero as rn tends to
infinity, while e- € (0,1) converges to 1- p. Let ft be the information
set of player 2. Now, Prob{/r  I  o^} :  b^ + a^(1 -  c^d^) and
Prob{x .  I  o^ }  :  a^c^( I  -  d^ ) .Thus ,  g iven  o- ,

c^ ( l  -  d^ )

As m goes to infinity, the numerator tends to zero while the de-
nominator either tends to infinity or converges to a number greater
than or equal to 1. Hence v(x):0, that is, player 2 must attach zero
probability to node x, if his information set is reached. But z(xr) : 0
requires player 2 to play / with probability zero, a contradiction. I

* .  
r  -  c ^ d ^

Prob {x r , r t  :  
(
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5 .  C O N C L U S I O N

For every node / and for every player i we defined a subset K,(t) of the

set of terminal nodes and we interpreted it as the information given to

player i when node / is reached. We then defined a belief of a player as

a function that associates with every node / an element of Kr(r) and a

belief system as an n-tuple of beliefs, one for each player. Natural

consistency properties were used to define the notion of rational belief

system and it was shown that every rational belief system gives rise to a

subgame-perfect equilibrium. Two examples were used to show that

the notion of rational belief system refines that of subgame-perfect

equilibrium and differs from the notion of sequential equilibrium.

A P P E N D I X  A :  D E F I N I T I O N  O F  E X T E N S I V E . F O R M  G A M E ,

A finite game in extensive form without chance moves is a sextuple

G:  (V ,  N ,  P ,  H ,  C ,  U )

where the constituents are as follows.

The Game Tree

The game tree V is a pair (7,-) where T is a finite set of nodes and
'--+' is a binary relation on T. The interpretation of x-+y is'node x

immediately precedes node y'.

ASSUMPTION 1.  Asymmetry. l f  x ,  y  € Iand x+1,  then not  l - - -> x.

An edge is an ordered pair e:(x, y) such that x--->!. We say that e is

incident out of x and incident into y. We shall represent edges as arrows

[ f rom x  t o  y  i f  e :  ( x ,  y ) ) .

For each x C T. lel

I ( r ) :  {yeT l r -y } :  se t  o f  immedia te  successors  o f  x .

Il(.r) : {y e T I y ---> x}: set of immediate predecessors of x .
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ASSUMPTION 2. Root. There exists a unique xoe T such that
II("u) : 0. 

.ftrls element xo is called the root of the tree.

Thus every node r € Z\{xn} has an immediate predecessor. The
following assumption requires uniqueness of predecessors.

ASSUMPTION 3. Unique predecessor. For every r € A{x,,}, l l(x) is
a singleton and its unique element is denoted by n,.

Let  er :  (x ,  y , )  and er(x2,  yr )  be two edges.  We say that  e,

u d j a c e n t  t o  e r i f .  l r :  x z .  L e t  ( e r :  ( x r ,  / r ) , .  .  . ,  € ^ : ( x - ,  y - ) )  b e

f in i te  sequence of  edges (z >2) .  l f ,  for  every k :  1 , .  .  . ,  m -  7,  er

adjacent  to ek+r ,  then we cal l  the sequence a path f rom x,  to  l^ .

ASSUMPTION 4 .  No  cyc les .  l f .  ( e ,  : ( x ' ,  / r ) ,  .  .  . ,  € ^ :  ( x ^ ,  y ^ ) )

a  pa th  f r om x ,  t o  y^ ,  t hen  x r *  y ^ .

By the finiteness of Z and Assumptions 2, 3 and 4, for every y e

T\{x,,} there exists a unique path from x(.)to y.

Let  Z:  {x€ f  l l (x) :0} .  Given the f in i teness of  Z and Assump-

tion 4, the set Z is non-empty. We call Z the set of terminal nodes (or

end nodes). Thc set X: T\Z is called the set of. decision nodes.

A play is a path from the root of the tree to a terminal node. As

noted above, our assumptions imply that for every z € Z there is a

unique play to it.

The Set of Players

N :  {1 ,2 , .  . . ,  n }  i s  t he  se t  o f  p l aye rs .  P laye rs  w i l l  be  i ndexed  by  i .

The Player Partition

The p layer  par t i t ion P:  {Pr , .  .  .  ,  P^}  is  a par t i t ion of  the set  of

decision nodes X. P, is the set of decision nodes of player l. We assume

that P, is non-empty for every i € N.

,,t

is
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The Information Partition

The information partit ion H : {Hr, . . . , H,} is defined as follows. For
every i € N, a subset h of. P, is called eligible (as an information set) if:

( i) ft is non-empty;
( i i )  every p lay in tersects f t  a t  most  once; '0

(iii) for every .r and y in /r, the number of immediate successors of x is
equal to the number of immediate successors of y.

11, is a partition of P, into eligible subsets. An element of I/, is called
an information set of player i.

The Choice Partition

The choice partit ion C : {Cr, . . . , Cn} is defined as follows. For every
player i and for every information set heHi,let E(h) be the set of
edges incident out of nodes in lr. We say that a subset c of E(ft) is
eligible (as a choice) if it contains exactly one edge incident out of x,
for every xe h. C, partit ions the set of all edges incident out of nodes
contained in information sets of player I into eligible subsets. If he Hi
and c belongs to an element of C, and also to E(/r), then c is called a
choice of player i at information set h. The set of all choices at ft € H, is
denoted by C,(h).

The Payoff Function

The payoff function U associates with every terminal node z e. Z a
vec to r  U (z ) : (U r ( t ) , . . . ,U^ (z ) )  €01 " ,  ca l l ed  rhe  payo f f  vec to r  a t  z .
The component U,(z) is called player i's payoff at z.

DEFINITION. An extensive game is said to have perfect recsll if it
satisfies the following property: for every player i and any two informa-
tion sets h and g of player l, i f one noder€gcomes after a choice c at
h, then every node y € g comes after this choice.

DEFINITION. An extensive game is said to have perfect information
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if every information set is a singleton. A game which does not have
perfect information is called a game of imperfect information.

DEFINITION. An extensive game is said to be simultaneous if every
play of the game crosses all the information sets.

.  A P P E N D I X  B

ln this Appendix we prove Proposition 1.
lemma.

Given a pure-strategy profile o, for every

We shall begin with a

node x we denote by

t@l  o )

the terminal node reached from x by following o (if z is a terminal

node.  we set  by def in i t ion tQlo\ :  z) .  Obviously .  ( (x  I  o)  e 0(x) .

LEMMA 7. Fix a game with perfect recsll. Let B be a belief system that

satisfies the properties of Contraction Consistency and Choice Con-

sistency. Then, for every player i and for every node x, if B,@) € 0(x),

t hen  B , ( x ) :  t@ lo )  whe re  o :  t (B ) .
Proof. Let B be a belief system that satisfies Contraction Con-

sistency and Choice Consistency and let o: t(B). Fix an arbitrary

node x. If x is a terminal node then ((x I o) : x by definit ion of (( ' )
and B,(x) : x for every player l, since K,(*): {x}. Suppose, therefore,

that x is a decision node. Suppose there is a player I for whom

P , Q )  :  z '  e . 0 ( x ) b u t  z '  *  z ,  w h e r e  z  :  { ( x l  o ) .  L e t  x . ,  x 2 , .  .  . ,  x ^ b e

the sequence of nodes that form the path from x to z (thus xr:X,

x ^ :  z  a n d ,  f o r  e v e r y  k : 1 , . .  . , m -  1 ,  r o  i s  t h e  i m m e d i a t e  p r e -

d e c e s s o r  o f  x o * , ) .  O b v i o u s l y ,  t V k l o ) :  z  f o r  a l l k : 1 , . . . ,  m . L e t x o

be the node at which the path from x Io z and the path from x to z'

diverge. (That is, z,z'€ 0(xo) and for every immediate successory of

xo it is not true that both z and z' belong to 0(y).) Note that x. could

be x itself (in other words, k : 1 is a possibil i ty). Clearly, x* is a

decision node. Let lr be the information set to which xo belongs and 7
be the player to whom /r belongs. Two cases are possible: (1) t:7, and

( 2 )  i +  j .
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In case (1), let c be the choice at h that precedes z and c' be the

choice at h that precedes z'. By our choice of xp, c+c'. We now

obtain a contradiction by showing that o,(h): c'. (If o,(h): c' then

following o from .rr. one cannot reach z and this contradicts the fact

that  z :  t@r lo) . )  By Remark 1 of  Sect ion 3,  0(xo)  C K,(x*) .  Thus

z 'e K,(xr) ,  s ince z 'e 0(xo)  by the way xk was chosen.  By Property  1

of Section 3, K,(x) E K,(x). By Contraction Consistency, it must be

F,@o):  z ' .  By def i r i i t ion of  o:  f (B) ,  i t  fo l lows that  o, (h) :  c ' .

Now consider case (2), where jl i. Again, let c be the choice at /r

that precedes z and c' be the choice at hthat precedes z'. By definit ion

of  o :  6(B) ,  i t  must  be o1(h) :  c .  Thus F,@o) comes af ter  choice c of

player j at h (even though F,@) need not be a successor of -ro) and

F,Qo) comes after choice c' of player i at h, contradicting Choice

Consistency.r r  I

COROLLARY 1. Fix a game with perfect recall. Let B be a belief

system that satisfies the properties of Contraction Consistency and

Choice Consistency. Then, for every two players i and i, B,Q): F,@o)
(where x,., is the root of the tree).

Proof. Since, for every player i, K,(x,,): Z:0(x,,), it follows from

Lemma 1 that  B,(xo)  :  {@ulo)  for  a l l  l .  I

Proof of Proposition l. (The argument of the proof will be illustrated

at the end with the help of Figure 6.) Fix an extensive game G with

perfect recall. Let B be a rational belief system and o: f(B) the

corresponding (pure) strategy profile. Suppose o is not a subgame-

perfect equil ibrium. Then there exist a decision node x*, a subgame G'

of G with root x*, a player I and a pure strategy cr', of player I such that

( B . 1 )  U , ( r ' ) >  U , ( z * )

where z* : t(x* | a) is the terminal node reached from x* by o :

(o, ,  o  , )  and z '  :  ( (x*  lo ' )  is  the terminal  node reached f rom x* by

o ' : ( o ' , , o , )  ( w h e r e  o ,  d e n o t e s  t h e  ( n - l ) - t u p l e  ( o r ,  ,  o i  1 ,
A i + l , . , . r O r ) ) .

Step l .  We f i rs t  show tha t  F1@*) :  z* ,  fo r  a l l  p layers  i :1 , .  .  .  , r .
Since x* is the root of  a subgame, for every playerT ei ther H,(x*):0
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(recall that H,(x*) is the set of information sets of player i that have a
node which is a successor of x*) or for every he H,(x*),  O.(h)c
0(x* ) .  . |hus  K, (x* ) :0 (x - ) .  By  Lemma l ,  F i@*) :  ( (x* l rv ) :  z *  fo r
every player 7.

Step 2. Let y be the node at which the path from r* to z* and the
path from x* to z '  diverge. (That is,  z*,2 'eO(y) and i f  w is an
immediate successor of y then it is not the case that both z* and z'
belong to 0(w).) Note'that y: x* is a possibility. Then y is a decision
node of player i. By Remark 1 (cf. Section 3), 0(y) e K,(y). Thus
z* e K,(y).  By Property 1 (cf .  Sect ion 3),  &(y)G K,(x*).  Thus, by
Contract ion Consistency, F,0):  B Qs*):  z*.

Step 3. Let y, be the immediate successor of y on the path from y to
z'  andler zt :  Fr j) .  Then, by Tree Consistency, zte 0(yr)  (hence
zr*  z* ) .  Thus ,  by  Lemma 7 ,  z r :  t0 r lo ) .  By  Ind iv idua l  Rat iona l i t y ,
since B,(y) : z* and y, is an immediate successor of y,

(B  2)  U, ( t  r )  <  U, ( r * )

lf. 2,, : z' the proof is complete, since (B.2) contradicts our supposition
rha t  U, (z ' )>  U, ( r * ) . I f  z r *  z* ,  p roceed to  S tep  4 .

Step 4. Let y, be the node at which the path from ytto zt and the
path from y, to z '  diverge (yr. :y,  is a possibi l i ty) .  Then y, is a
decision node of player i .  By Remark 1 (cf .  Sect ion 3),0(yr)gK,(yr)
and, therefore, s ince zre 0(yr),  i t  fo l lows that zre K,(yr) .By Con-
traction Consistency (since, by Property 1 (cf. Section 3), K,(yr)c
K , ( v , ) ) ,  F , ( v r ) : 2 , .

Step 5. Let y. be the immediate successor of y, on the path from y,
to z '  and let  z.  :  F,(yr) .  By Tree Consistency, zr€ 0(y.) .  By Lemma
l ,  Z t :  {0 r lo ) .By  Ind iv idua l  Rat iona l i t y ,

( B . 3 )  U , ( t r ) <  U , ( r , )

and,  us ing  (B .2)  and (B .3) ,

(B .4)  U, ( t r )<  U, ( r * )

Step 6. lf z.: z' the proof is complete, since (B.4) contradicts
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(B.1) .  I f .  z .*z ' ,by proceeding the same way-s ince the number of

nodes (and hence of information sets) is finite - we must reach a node
y, such that:

(i) the path from x* to z'and the path from x* to z,= 9,(y,) diverge

at y, (and, therefore, y, is a decision node of player i; further-

more .  z r  :  t ( y , l o ) l :
(ii) if i is the imniediate successor of y, on the path from y, to z',

t0 l  o)  :  t0 l  o ' )

(either because none of the nodes on the path from i to z' are
decision nodes of player i, or because q and oi coincide at the
information sets of player i crossed by this path);

(111) U,(2,)<U,(z*) (by the same argument that led to (B.4)).

Then, by Tree Consistency, F,( i )e|( i l ,  so that,  by Lemma 1,

8 , 6 ) :  t 6 l o ) . B y  ( i i ) ,  a b o v e ,  t 0 l t ) :  t 0 l o ' ) :  z ' .  ( R e c a l l  t h a t
z '  :  t (x *  lo ' ) ;  hence,  s ince  y  i s  on  the  pa th  f rom x*  to  z ' ,  { ( j , lo ' ) :
z ' . )  By Individual Rat ional i ty,  U,(z ')<U,(t , )  and by ( i i i ) ,  above,
U,(r ,)  < U,(z*).  Thus

U , ( t ' ) < U , ( z * ) ,

contradicting our supposition that U,(r')> U,(r*). I

Figure 6 illustrates the argument of the proof. In Figure 6 continu-
ous double edges denote the strategy profile o, while dashed double
e d g e s  d e n o t e  < r ' , . l n  t h i s  c a s e  w e  h a v e :  i : 1 ,  y :  x * , l t :  x r , l z :  ! , :
x . ,  !  :  x o .
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G'

Fig. 6.

N O T E S

I An alternative definition, which is coarser than the one used in this paper, is given in
Bonanno (1991) .
2 The notion of subgame-perfect equilibrium was introduced by Selten (1965, 1973) and
is a generalization of the backward induction argument suggested by Zermelo (1912).
t The notion of sequential equilibrium was introduced by Kreps and Wilson (1982).
o For simplicity we shall restrict ourselves to games without chance moves, although not
necessarily with perfect recall. The definition of extensive game without chance moves is
given in Appendix A, together with other definitions used in this paper.
t Points (1)-(5) define a function K'. N x T+22, where N is the set of players and 22
denotes the set of subsets of Z. Given a pair (i, l), where I is a player and , is a node, we
use the notation K,(t) instead of K(r, t).
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'  
Property (3)  is  somewhat reminiscent  of  the not ion of  intcrnal  stabi l i ty '  d iscussed by

Greenbcrg (1990).
'  

Suppose P.(r r )  :  2. .  Then, s ince z,  e K.(- r . ) ,  by Contract ion Consistency we must
have  p . ( x , ) - 2 . .  Bu t  z ,  i s  an  immed ia te  successo r  o f  x .  and  F rQ , ) :  z ,  s l ncc
K . (2 , ) -  { 2 , } .  S i nce  U . (2 , ) : 2>U . (2 . ) : 0 ,  I nd i v i dua l  Ra t i ona l i t y  wou ld  be  v i o l a ted
for player 3. The argument for B.(.r,,): 2., is similar.
"  

B y C h o i c e C o n s i s t e n c y , s i n c e B r ( x , ) : z . , i t m u s t b e e i t h e r F , ( r , ) :  z . o r p r ( x , ) : 2 , .
The lat ter .  however,  would require,  by Contract ion Consistency,  that  B,(x.) :zr ,
contradict ing what we have al ready establ ished,  namely that  g,(xr) :  2. .
'  

Our def in i t ion is  a long the l ines of  Sel ten's (1975).
" '  

That  is ,  i f  (e,  :  (x , ,  y , ) ,  .  .  .  .  e, ,  -  (* , , , ,  y , , , ) )  is  a p lay ( thus x,  -  xn and y, , ,  € Z)  then
the following conditions are satisfied:

(a)  i f  r^  E f t  for  some k :  l .
x t t  n i

,  rn,  then,  for  a l l  j :  I . m .  y , y '  h  a n d .  f o r  a l l  I  -  1 .

( b )  i f  y *  e  h  f o r  s o m e  k  :  1 , .  .  . ,  m -  1 ,  t h e n ,  f o r  a l l  I  :  1 , .  . ,  m ,  x , y '  h ,  a n d ,  f o r  a l l
j + k , y , y ' h .

" 
It is easy to show that if either Contraction Consistency or Choice Consistency is not

satisfied then Lemma I is not true.
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