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ABSTRACT 

Functional robustness refers to a system’s ability to maintain a function in the face of perturbations 

to the causal structures that support performance of that function. Modularity, a crucial element of 

standard methods of causal inference and difference-making accounts of causation, refers to the 

independent manipulability of causal relationships within a system. Functional robustness appears to 

be at odds with modularity. If a function is maintained despite manipulation of some causal structure 

that supports that function, then the relationship between that structure and function fails to be 

manipulable independent of other causal relationships within the system. Contrary to this line of 

reasoning, I argue that functional robustness often attends feedback control, rather than failures of 

modularity. Feedback control poses its own challenges to causal explanation and inference, but those 

challenges do not undermine modularity—and indeed, modularity is crucial to grappling with them. 
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1. Introduction 

Functional robustness refers to a system’s ability to maintain some function despite substantial 

variation in relevant component parts and processes that sustain that function.1,2 In other words, this 

sort of robustness refers to functional stability despite underlying causal heterogeneity. Over the past 

twenty years, robustness has come to play a prominent role in analyses of complex systems, particularly 

in genetics, systems biology, multiple levels of analysis in neuroscience, and network analyses of social 

systems.3 

Standard methods of causal inference involve intervening on component parts and processes 

within a system and observing changes that occur in response – that is, concomitant variations. 

Functional robustness poses obvious and unique challenges to such methods of causal investigation. 

If complex systems respond to intervention in such a way as to flexibly maintain functions, then 

methods of concomitant variation may be unreliable in unearthing the causal factors that sustain those 

functions. In this vein, Sandra Mitchell (2008, 2009) has argued that systems that exhibit functional 

robustness fail to be modular, in the sense of having causal relationships that are independently 

disruptable. This argument is consequential because modularity is a crucial component of both 

difference-making accounts of causation, particularly interventionism, as well as the methods of causal 

investigation associated with those accounts (Hausman and Woodward 1999, Woodward 2003, 

Woodward 2008). 

 
1 Many terms have been introduced that have similar and related meanings to what I refer to as “functional robustness”—
e.g., “biological robustness” (Kitano 2004), “distributed robustness” (Wagner 2005), “degeneracy (Edelman and Gally 
2001, Whitacre 2010), “canalization” (Waddington 1942). See §II below for further discussion and clarification. 
2 The relevant sense of robustness here is ontological, in the sense of referring to a feature of systems in the world that are 
the targets of explanations and causal inference, thus contrasting with the epistemic notions of robustness analysis or 
robustness of models (cf. Weisberg 2006). See Boone (2018) for further discussion of the significance of this ontological 
notion of robustness, particularly as it relates to multiple realization. 
3 See Felix and Barkoulas (2015) for genetics, Marder and Goaillard (2006) for cellular and systems neuroscience, and Boldi 
et al. (2011) for social networks. 
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My aim in this paper is to explore the consequences of functional robustness for accounts of 

causation and causal inference. In contrast to Mitchell, I argue that modularity retains a crucial role in 

causal inference in systems that seem to exhibit functional robustness. Mitchell’s argument relies on 

anomalous genetic knockout results, in which some gene knockout produces no apparent phenotypic 

effect. I show that closer inspection of genuine instances of functional robustness reveals that these 

phenomena are often indicative of feedback loops driving systems toward particular outcomes. That 

is, robustness does not attend failures of modularity but rather failures of acyclicity. Causal inference 

in cyclic systems presents its own set of challenges, but those challenges do not support general 

skepticism of difference-making accounts of causation or support a call for radically different methods 

of causal investigation. Indeed, I show that modularity is often a crucial component of unearthing the 

causal structure of cyclic systems. 

I proceed as follows. In §I, I provide general background on interventionist accounts of causation 

and explicate the role of modularity in those accounts. In §II, I reconstruct Mitchell’s argument that 

functional robustness in genetic knockout experiments is incompatible with modularity. I argue, to 

the contrary, that modularity plays a crucial methodological role in knockout experimentation. In §III, 

I argue that, rather than failures of modularity, functional robustness often attends feedback control—

that is, the presence of cyclic causal structure. I conclude by exploring some of the challenges feedback 

control poses to theories of causation and causal inference and show how modularity may be crucial 

to overcoming those challenges. 

 

2. Modularity and Interventionism 

The interventionist account of causation interprets the meanings of causal claims as counterfactual 

statements about how the world would be different given certain changes, where those changes are 

understood as hypothetical idealized experimental manipulations. So, to say X causes Y is just to say 
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that, if other relevant features are held fixed, changing the value of X will result in a change in the 

value of Y. For instance, to say that smoking cigarettes causes lung cancer is just to say that, given 

appropriate controls (or conditioning on the other relevant variables like diet, exercise, and alcohol 

consumption), adjusting cigarette smoking will alter the risk of developing lung cancer.4 

Interventionism is attractive as a theory of causation because it comports well with experimental 

practice and causal inference techniques—such as those based on directed acyclic graphs, or DAGs 

(Pearl 2000, Spirtes et al. 2000)—and it is well-suited to offering interpretations of causal claims in the 

special sciences. In particular, it has the advantage, over so-called process theories of causation of 

allowing straightforward interpretation of causal claims that do not involve obvious physical 

connection between events—say, the claim that inflation causes interest rates to increase.5 

Additionally, interventionism trades the standard framing of natural laws qua universal, exceptionless 

generalizations, perhaps with ceteris paribus clauses, for different, graded forms of relative stability of 

causal generalizations. 

Central among these forms of stability are the notions of invariance and modularity.6 To say that 

a generalization is invariant, as opposed to universal, is to allow that it may hold only for restricted 

ranges of variable values. Take, for instance, a snap mousetrap (see figure 1 for reference). The causal 

operation of snap mousetraps is roughly as follows. The trap is set by pulling the hammer, against the 

force of the spring, in an arch over the platform; the holding bar is then placed over the hammer and 

held by the catch on the opposite side of the platform. When the catch is tripped, the holding bar is 

 
4 Note that the claim is not that it must be possible to perform this intervention. For instance, we can understand the claim 
that the moon’s gravity causes oceanic tides as a counterfactual claim about how the tides would be affected if the moon 
didn’t exist or were closer or further from Earth without actually being able to perform those interventions. (See 
Woodward, 2003: pp. 129-131 for discussion.) 
5 Cf. Dowe 2000, Salmon 1984. 
6 For extended discussion of invariance, see Woodward 1997, 2003 (Ch. 6); for modularity, see Hausman and Woodward 
1999, Woodward 2003 (pp.327-342), and Woodward 2008. 
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released and the potential energy of the spring’s force against the hammer is converted to kinetic 

energy, causing the hammer to slam onto the opposite side of the platform.  

 

Figure 1: (a) Illustration of a snap mousetrap with (b) a causal diagram of relevant factors bearing 

on the force exerted by the hammer on the platform upon release of the catch. 

This causal story does not hold universally—instead, it is invariant over a range of values that the 

relevant variables in this causal chain can take. For instance, if the spring is too strong relative to the 

sensitivity of the catch or the strength of the holding bar, the system will cease to function in accord 

with this set of causal relationships. 

Modularity refers to a distinct form of stability that is an important, though controversial, 

component of the interventionist framework.7 In short, modularity refers to the independent 

manipulability of causal relationships within a system.8 Independent manipulability here means that 

changing one functional relationship within the system does not cause changes to other functional 

relationships within the same system. Woodward (2008) offers the following definition: 

 
7 In less cautious moments, interventionists have described modularity as intrinsic to the concept of causality (e.g., 
Hausman and Woodward 1999, p.550) and have attempted to use modularity in the service of deriving the Causal Markov 
Condition (Hausman and Woodward 1999, Hausman and Woodward 2004). See Cartwright 2002 and Steel 2006 for 
objections to the latter efforts. 
8 See also the notion of autonomy from Aldrich (1989), as incorporated by Pearl (1999). 
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Modularity: A system of equations is modular iff (i) each equation is invariant under 

some range of interventions on its independent variables and (ii) for each equation, it 

is possible to intervene on the dependent variable in that equation in such a way that 

only the equation in which that dependent variable occurs is disrupted while the other 

equations in the system are left unchanged. (Woodward 2008, p.221) 

Note that the first condition, which is a restatement of the invariance condition just discussed, holds 

within individual equations. By contrast, the second condition stipulates a relationship that holds 

between equations in the same system. 

To gain a clearer sense of what modularity entails consider, again, the snap mousetrap. Suppose 

we are interested in understanding the relevant causes that determine the force the hammer exerts on 

the platform, as represented in the associated causal diagram (1b). That force is a function of the initial 

position of the hammer and the strength of the spring. The initial position of the hammer is a function 

of the positions of both the catch and the holding bar. These causal relationships can be represented 

by the following system of equations, where U and V are error terms (typically interpreted as 

representing omitted causes). 

(1.1) Y1=aX1+bX2+U 

(1.2) Z=cY1+dY2+V 

Modularity entails, in the first place, that both equations are invariant under some range of 

interventions on their independent (right-hand side) variables. In this case, that is just to say that 

equation (1.1) correctly describes how the initial position of the hammer will vary given changes in 

the positions of the catch and holding bar, and equation (1.2) correctly describes how the force of the 

hammer will vary given changes in either the initial position of the hammer or the strength of the 

spring. The second condition then entails that intervening on one of the dependent (left-hand side) 

variables will only disrupt the equation that describes that variable, leaving the other causal 

relationship(s) intact. Suppose, for instance, we exogenously set the value of Y1—say, by pulling the 
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hammer back manually to an initial position independent of the locations of the catch and holding 

bar. Doing so would disrupt equation 1.1, breaking the relationship between the positions of the catch 

and holding bar and the initial position of the hammer, but it would leave equation 1.2 intact. 

Now note that we could substitute equation (1.1) into equation (1.2) to yield (1.3), where e=ad, 

f=bd, and W=dU+V.  

(1.3) Z= eX1+fX2+dY2+W 

Equation (1.3) yields the reduced-form equation, describing the force of the hammer on the platform 

solely as a function of the three exogenous variables—the positions of the catch and holding bar and 

the strength of the spring. On one hand, equations (1.1)–(1.2) and equation (1.3) are logically 

equivalent, in the sense that algebraic transformations can allow you to derive (1.1)–(1.2) from (1.3) 

and vice versa. However, a central tenet of interventionism, enforced by the requirement of 

modularity, maintains that the content of equations (1.1)–(1.2) and that of equation (1.3) are in fact 

distinct, entailing different counterfactual claims about the causal system in question. The initial 

position of the hammer, Y1, does not occur as a separate dependent variable in equation (1.3). From 

an interventionist standpoint, this implies that there is no separate intervention that could be 

performed on the initial position of the hammer apart from adjusting the initial position of the catch 

and holding bar. Equations (1.1)–(1.2), by contrast, include Y1 as a separate dependent variable. This 

inclusion entails a distinct set of counterfactuals describing what would happen under different 

experimental manipulations—namely, in this case, the intervention mentioned above where the initial 

position of the hammer is set exogenously. 

Modularity entails that at most one of these sets of equations provides a correct description of the 

system. Other accounts of explanation and causation fail to make this distinction. For instance, 

positivist accounts of explanation that take explanation to consist in logical derivation do not have the 

resources to distinguish between the explanatory value of logically equivalent claims (or systems of 
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equations). In a separate vein, Cartwright (2003) commits to the idea that causal laws must be 

“numerically transitive”, which she explains to mean, “causally correct equations remain causally 

correct if we substitute for any right-hand-side factor any function in its causes that is among nature’s 

causal laws” (p. 206). Modularity thus plays a crucial role distinguishing interventionism from 

alternative accounts of explanation and causation. 

Apart from this somewhat technical point about logically equivalent systems of equations, 

modularity also plays a more basic and intuitive role in the interventionist framework. Specifically, it 

ensures the stability and reliability of causal inferences made on the basis of interventions. 

Interventions effectively set the value of some putative causal variable. Causal relationships can then 

be inferred based on resultant changes in the values of other variables. The bedrock of this approach 

lies in the idea that interventions on causal variables will only induce changes in other variables that 

are actually causally related to that variable—that is, causal “descendants” of the variable intervened 

upon. This is precisely what modularity ensures: when you intervene upon a causal variable, you 

disrupt all and only the causal pathways into that variable, leaving the other causal relationships in the 

system intact. To the extent that modularity holds, interventions can reliably be used to infer causal 

pathways from the intervened upon variable to the variables that change as a result of the intervention. 

To the extent that modularity fails, there is no guarantee that changes brought about by interventions 

provide reliable information about the causal structure of the system, because those changes may be 

the result of incidental alterations of other relationships in the system that are not causally connected 

to the intervened upon variable. 

Take, for instance, what it would mean for modularity to fail for the snap mousetrap. Suppose 

that intervening on the initial position of the hammer changed the relationship between the strength 

of the spring and the force of the hammer on the platform. There is no clear physical interpretation 
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of such a violation in this system.9 What is clear is that such a situation would profoundly obfuscate 

causal investigation into the workings of the mousetrap: There would be no way to disentangle the 

effects of changes in the initial position of the hammer (on the force of the hammer on the platform) 

from the effects of changes in the strength of the spring. It is unclear how one would even approach 

causal decomposition of such a mousetrap or systematic investigation into the causal relationships 

underlying its operation. 

 

3. Mitchell's Challenge: Robustness and Modularity 

Sandra Mitchell (2008, 2009) has argued that complex systems, particularly those found in biology, 

often fail to be modular in much the sense just described.10 Mitchell bases her arguments on cases of 

functional robustness in biology. She argues that modularity fails when robustness is achieved through 

some form of reorganization of causal structure in response to localized experimental manipulations. 

Her support for this conclusion draws on evidence of genetic robustness—specifically, experiments 

that show that elimination, or “knock out”, of individual genes often results in no discernible 

phenotypic change in organisms. She concludes from such cases that interventionist theories of causal 

explanation and their attendant methods of causal inference are not viable in complex systems and 

that instead new methods of causal inference and new theories of explanation are needed. 

As mentioned at the outset, functional robustness refers to a system’s ability to maintain some 

function despite wide range of perturbations in the relevant causal structures that support performance 

of that function (Kitano 2004, Wagner 2005, Whiteacre 2010). This concept of robustness should be 

 
9 Note that the claim here must not be that there is some unknown mechanism connecting the initial position of the 
hammer with the strength of the spring, which just amounts to the claim that the causal diagram in figure 1b is incorrect, 
omitting a directed edge from Y1 to Y2. 
10 A parallel line of argument can be found in Wimsatt’s (1972) critique of Simon’s (1962) claim that complex systems tend 
to exhibit near-decomposability. Near decomposability approximates to the interventionist notion of modularity. Wimsatt 
argues that complex systems typically exhibit significant interactional complexity between the component parts and 
processes they are analysed in terms of. This interactional complexity in turn generates functional overlap that seriously 
confounds efforts to understand such systems in terms of hierarchical, modular organization. 
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distinguished from the more general concept of functional stability (figure 2a). For any function there 

is some normal range of variation in the underlying parts and processes supporting it, over which it 

may be stable. For instance, spark-ignition engines can combust a range of air-fuel mixture ratios 

(roughly, between 8:1 and 18:1) that are regulated by a carburetor. The function of the engine is thus 

stable over this range of ratios. But this form of stability is weaker than or at least distinct from that 

implied by the concept of robustness of interest to biologists. Robustness in biological systems is a 

subclass of functional stability that involves some form of reorganization of a system in order to 

maintain function in the face of perturbations. 

A further distinction can be drawn between (at least) two ways functional robustness can occur: 

redundancy and reorganization.11 Redundancy occurs when a system maintains some function via 

some structurally and functionally similar component that fills in for a perturbed component. For 

instance, suppose a spark-ignition engine were designed in such a way that if its carburetor fails, a 

backup carburetor automatically comes online, allowing the engine to continue running. In such a 

case, the redundant, structurally similar component plays the same causal role in the system, so changes 

to other causal relationships within the system need not occur. By contrast, functional robustness via 

reorganization occurs when some number of different components play a range of different causal 

roles in ways that compensate for effects of perturbations. Though there is no easy analog for engines, 

it might be something like a spark-ignition engine having the capacity to reorganize itself into a 

compression-ignition engine in response to spark plug failure, with some kind of internal refinery 

coming online to convert gasoline into diesel. In such a case, the function is preserved as a result of 

changes to several other causal relationships in the system, rather than those relationships simply 

 
11 There is, in fact, something of a terminological morass here, with several further distinctions that can be and have been 
drawn with several cross-cutting terms: See, for instance, canalization (Waddington 1942), degeneracy (Edelman and Gally 
2001), and distributed robustness (Wagner 2005). Degeneracy is frequently used in a way that approximates to what I refer 
to here as reorganization. However, degeneracy is typically defined at a base level as “structurally different components 
performing the same function” (e.g., Edelman and Gally 2001). This definition of degeneracy edges closer to redundancy 
than reorganization (see below). 
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remaining intact while a functionally equivalent component is substituted into the system, as in cases 

of redundancy. It may sound ridiculous in the context of engines, but something like this seems to be 

rather common in certain biological systems. 

 

Figure 2: Examples of distinct causal structures that may give rise to functional stability. 

Put a bit more precisely, we can think of the function of interest as some effect variable and the 

various causes supporting that function as causal variables with edges directed into that effect variable. 

Functional robustness via redundancy occurs when some new causal variable comes online in the face 

of an intervention that would otherwise disrupt the function (figure 2b). In this case, an otherwise 

identical set of causal relationships maintains the function in the face of the perturbation. Functional 

robustness via reorganization, on the other hand, entails the formation of new causal relationships or 

changes to existing causal relationships in the face of such an intervention (figure 2c). Prima facie, this 

form of robustness is in tension with modularity because an intervention brings about changes to 

other causal relationships, not directly related to the variable or causal relationship targeted by the 

intervention. 

Accordingly, Mitchell’s argument against modularity is rooted in this latter phenomenon of 

functional robustness via reorganization. Her argument is based on anomalous gene knockout 

experiments, which she argues indicate a form functional robustness in genetics. Mitchell argues that 

genetic robustness provides cases in which intervening on some particular causal relationship 

reconfigures other causal relationships in order to maintain some phenotype in the face of the 
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intervention. She concludes that genetic systems violate modularity and thus that new theories of 

causation are needed to account for the complex causation found in biological systems (see, in 

particular, Mitchell 2009, Ch4). 

To understand Mitchell’s argument, it is first necessary to provide some background. Genetic 

knockout is a targeted form of intervention that involves inserting artificial, nonfunctional DNA into 

the chromosomes of embryonic stem cells in vitro. The embryos are then transplanted into a female 

uterus of some particular model organism, most typically a mouse, and allowed to develop. The 

resulting mouse pups are heterozygous knockouts, which can then be bred to create homozygous 

knockouts. These techniques provide a precisely targeted means of manipulating genes to determine 

their roles in supporting different phenotypes. One might thus expect knockout experiments to be 

exemplars of interventionist accounts of causality—precisely controlled manipulations of dependent 

variables (genes) lead to changes in independent variables (phenotypes), and a causal link is inferred 

between those variables. And indeed, many knockout experiments proceed in just this way. Schofield 

et al. (2012) note in a review that of the ~25,000 mouse genes with protein sequence data, ~8,200 

have identified phenotypes.12 That is a significant amount of success in establishing causal links 

between genes and phenotypes, especially when considering that knockout techniques had only been 

in practice for 20 years when their review was published. 

However, not all genetic knockouts have associated phenotypic changes. Roughly 15 percent of 

gene knockouts are developmentally lethal. Aside from those, and to the point crucial for Mitchell’s 

argument, some sizable percentage of knockout experiments show little to no evidence of phenotypic 

change. These are the so-called “anomalous” knockout experiments, and Mitchell cites their 

proportion at roughly 30% of all knockout experiments (Mitchell 2008, p.700, Mitchell 2009, p.68). 

 
12 See also the massive databases available online collating information on the mouse genome (www.informatics.jax.org) 
and phenome (phenome.jax.org). 
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Other estimates fall in the 10-15% range (Barbaric et al. 2007), but the accuracy of this number is quite 

hard to gauge, for reasons that will be explored further below. Nonetheless, in some subset of these 

cases, Mitchell argues that systems exhibit a form of functional robustness via reorganization. 

Her argument, offered primarily in her own words, proceeds as follows, 

[I]n up to 30% of double knockouts there is little or no evident phenotypic 

consequence of knocking out a gene. The cases where the knockout produces no 

substantive phenotypic difference may point to the dynamical plasticity of the genetic 

network. Robustness due to redundancy or degeneracy will make it difficult to make 

inferences about the normal causal structure from an intervention or perturbation of 

the system. (Mitchell 2008, p.700) 

In the knockout case, redundancy simply involves a back-up copy of a gene being substituting for 

knocked out gene. When robustness is achieved through redundancy, the other causal relationships 

within the system need not change. Thus, these cases pose only a minimal challenge to modularity. 

Specifically, in cases of redundancy, an intervention on some variable (here, a gene) also changes 

exactly one additional causal relationship in the system, whereby a new, identical variable is introduced 

in the same causal relationship. This challenge can be overcome by identifying that redundant causal 

variable and intervening on it in tandem. Mitchell continues her reasoning in accord, 

The absence of a phenotypic change even when all redundant copies of a single genetic 

component are knocked out could indicate that the network itself has reorganized to 

compensate for the loss of the gene. If so, parts of the network that in the normal state 

would be described by one set of functional relationships change their interactions in 

response to the experimental intervention to produce a product similar to that of the 

unperturbed system. (Mitchell 2009, p.71, her emphasis) 

It appears that a degenerate or robust system where a genetic network reorganizes 

when some piece of it is knocked out is not independently disruptable. That is, one 

gene in the network functions as a causal contribution to the phenotypic effect under 

normal internal conditions, but functions in a different way when another part of the 
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network is removed… Thus Woodward’s condition of modularity is not met. (Mitchell 

2009, p.77) 

Mitchell thus argues that functional reorganization provides the best explanation for the results of 

some anomalous knockout experiments when redundancy can be ruled out. And it is these instances 

of robustness that pose a significant challenge to the interventionist notion of modularity. Her 

conclusions from here are sweeping: New concepts of causation are necessary and no uniform 

methodological prescriptions—for instance, regarding experimentation or how to conduct causal 

investigation—will be adequate for such complex causal systems. 

While I am sympathetic to many aspects of Mitchell’s argument, it moves too quickly to support 

such sweeping conclusions. Further, with respect to the more measured conclusion regarding the 

prospects for modularity in systems that exhibit robustness, I believe that she mislocates the challenge 

that robustness poses to theories of causation and causal inference. Spelling this out requires first 

taking a step back. 

Results from anomalous knockout experiments are not straightforwardly attributable to functional 

robustness. Mitchell is well aware of this. In the setup for her argument (2009, p.68), she cites a famous 

quote from Mario Capecchi, who received the Nobel prize in 2007 for his research in the field: “I 

don’t believe in complete redundancy. If we knock out a gene and don’t see something, we’re not 

looking correctly.” She also offers a quote from the opposite end of the ideological spectrum from 

Robert Weinberg, a pioneer of research on the genetics of cancer: “The big surprise to date is that so 

many individual genes, each of which has been thought important, have been found to be nonessential 

for development.”13 Other researchers (e.g., Greenspan 2001, Edelman and Gally 2001), with whom 

Mitchell sides, offer a distinct possibility: phenotypes may be impervious to gene variation as a result 

of robustness in genetic networks. There are thus three broad possibilities that must be considered in 

 
13 Both quotes can be found in Travis 1992. 
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the interpretation of anomalous knockout experiments: (1) there is actually a phenotypic difference 

that simply has not yet been discovered, (2) the targeted DNA is nonessential, (3) the system exhibits 

functional robustness, either via redundancy or reorganization. Interpreting anomalous results to 

imply (3) is thus not uncontroversial. 

I take (2) to be a conclusion of last resort, as it effectively ends inquiry despite the presence of 

other live options. However, (1) merits further scrutiny. Barbaric et al. (2007) provide an excellent 

review, detailing possible explanations of anomalous knockout results. They offer the following set of 

options. 

If inactivation of a gene does not lead to an observed abnormal phenotype, there are 

three possibilities: (i) the abnormal phenotype is present under the conditions currently 

being used but is yet to be discovered, (ii) the abnormal phenotype will only become 

evident under environmental conditions that have not yet been tested, or (iii) there is 

no abnormal phenotype. (Barbaric et al. 2007, p.92) 

The first two options refer to distinct ways phenotypic differences can be obscured. First, (i) there 

may be a phenotypic difference that is present in experimental conditions but has not yet been 

discovered. One major methodological issue that creates this possibility is the lack of standardization 

in phenotyping protocols. Some large-scale efforts have been made to standardize protocols. In only 

its first few years of operation, one such effort, the German Mouse Clinic (Gailus-Durner et al. 2005), 

analysed more than 80 knockout lines and discovered previously uncharacterized phenotypes in 95% 

of those lines (Fuchs et al. 2009). The ongoing discovery of new phenotypes for different mutant 

strains should give pause to the idea that anomalous results should be taken at face value. However, 

as protocols become more standardized and more exhaustive, this should become less of an issue. It 

is difficult to estimate the impact this will have on the proliferation of anomalous knockout results, 

but it is likely to be significant. 
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Second, (ii) many phenotypes are only apparent in specific environmental contexts. Thus, it may 

be that anomalous knockout results are due to experimental conditions that do not provide the 

environmental conditions necessary for the phenotype to manifest, rather than reflecting an actual 

lack of phenotypic variation. For instance, Chen et al. (1997) discovered an exocrine gland dysfunction 

resulting from melanocortin 5 receptor (MC5-R) knockout in mice simply by chance due to an 

unrelated phenotyping assay designed to test stress response. They write,  

No readily visible phenotype was apparent in MC5-RKO mice… Appearance, 

behavior, growth, muscle mass, adipose mass, reproduction, basal and stress-induced 

corticosterone, glucose, and insulin levels in these animals were indistinguishable from 

wild-type littermates. More subtle physiological phenotypes of the knockout were 

studied by examination of responses to exogenous melanocortin peptides in biological 

assays… None of these assays produced identifiable differences between the wild-type 

and knockout animals. During a stress-induced analgesia assay in which the mice are 

made to swim for 3 min to activate the hypothalamic-pituitary-adrenal axis, it was 

observed that the knockout animals remained wet for a longer period of time than 

littermate controls. This effect was then identified to result from nearly double the 

water retention in the coat of the MC5-RKO, resulting in severe thermoregulatory 

defects in the animal as well. (Chen et al. 1997, p.794) 

In other words, MC5-R knockout was previously characterized as an anomalous knockout gene, 

showing no phenotypic variation despite a wide range of phenotyping assays. Fortuitously, during an 

assay to test for abnormal stress response in which mice are forced to swim, Chen et al. noticed an 

unrelated abnormality—the coats of MC5-R knockout mice took significantly longer to dry than did 

the coats of wild-type mice. It turns out this abnormality reflects an exocrine gland dysfunction due 

to the MC5-R knockout. 

Again, it is difficult to estimate what proportion of anomalous knockout experiments will 

ultimately be accounted for in this way. My point in raising these possibilities is not to come up with 

an estimate but rather to reflect on appropriate methodology. Mitchell argues, on the basis of 
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anomalous knockout results, that new methods of causal inference and new accounts of causal 

explanation are needed. In particular, she argues that when faced with anomalous knockout results, 

researchers should not assume modularity but should instead assume that some more complex causal 

structure is in play. On one hand, even given the preceding discussion, it is probably reasonable to 

expect that at least some anomalous knockout experiments are indicative of more complex causal 

structures. However, it is clearly premature to infer from this that standard forms of experimental 

design, captured by the interventionist framework and assumptions of modularity, should be 

abandoned. As a methodological principle, modularity pushes researchers toward discovery of new 

phenotypes rather than accepting anomalous knockout results at face value. 

 

4. Answering Mitchell's Challenge: Robustness and Cyclicity 

I have just argued that, from a methodological perspective, Mitchell is wrong that modularity should 

be abandoned as a principle guiding causal investigation in genetics. However, my discussion does not 

support the conclusion that all anomalous knockout results are due to undiscovered phenotypes. This 

thus leaves open the (likely) possibility that some results will be best explained by reference to 

functional robustness. So, my argument that modularity is the right methodological principle to retain 

in genetics is beside the point of this main issue: what are the implications of functional robustness 

for modularity?  

Consider the following, from a discussion of robustness from O’Leary (2018): “If an insect loses 

a leg, it may or may not lose the ability to walk. But the biomechanical relationships between the 

remaining legs will be fundamentally altered” (O’Leary 2018, p.182).  Autotomy (self-amputation) of 

appendages, in fact, occurs in many taxa, including vertebrates, echinoderms, crustaceans, and 

arachnids (Wrinn and Uetz 2007). Spiders are particularly interesting cases because their legs play vital 

roles not only in locomotion but also as sensory organs—the tiny hairs on spider legs are capable of 
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detecting minuscule vibrations. Yet they can lose two to three legs, and often do as a result of 

autotomy, and nonetheless retain their abilities to walk and detect prey. 

This case gets to the heart of the issue with the relationship between modularity and functional 

robustness. On one hand, appendages are generally regarded as exemplars of modularity in biology 

(e.g., Williams and Nagy 2001). Granted, the notion of modularity in biology is distinct from, though 

it bears similarity to, the concept of modularity at play in interventionism.14 And appendages do seem 

to satisfy modularity in the interventionist sense: they provide isolated causal contributions to the 

capacities they are involved in. However, in certain organisms, like spiders, removal of appendages 

leads to changes in other causal relationships within the system—particularly, the biomechanical and 

sensory relationships between the remaining legs. Taken together, these observations seem to suggest 

that appendages at once satisfy and violate modularity. 

The tension here can be resolved by considering more carefully how the changes in other causal 

relationships within the system occur. In the immediate aftermath of leg removal, a spider’s ability to 

walk is actually seriously impaired. This is because the biomechanical relationships between the 

remaining legs do not adjust automatically. The remaining legs are still controlled by motor patterns 

predicated on the organism having all eight of its legs. Thus, it is more accurate to say that the 

biomechanical relationships adjust over time in response to feedback that enables recovery of 

function. This is significant because it shows that a system can exhibit functional robustness while 

 
14 In the interventionist framework, modularity denotes independent manipulability of causal relationships, whereas in 
biology (among other fields like cognitive science), modularity refers to organization of a system into discrete subsystems. 
Neglecting some nuance, modularity in the biological sense implies modularity in the interventionist sense. If a system is 
organized into discrete subsystems, it should be possible to intervene on those subsystems without altering the causal 
relationships other subsystems are involved in. (Removing a few fingers from your dominant hand will affect your ability 
to type or grasp an object but will generally leave your capacity to run, metabolize complex carbohydrates, etc. intact.) The 
converse, however, need not hold: Modularity in the interventionist sense does not imply that a system be organized into 
discrete subsystems. The lack of (straightforward) decomposition of a system into subsystems does preclude that system 
from exhibiting independently manipulable causal relationships. An important caveat is that causal decomposition of a 
system into subsystems often provides a valuable (in some cases, plausibly, indispensable) guide to variable selection, a 
critical first step of interventionist analysis into the causal operations of a system. 
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nonetheless satisfying modularity. The components of a causal system can figure in isolable causal 

relationships, which can be assessed on short timescales immediately following an intervention that 

disrupts one of those causal relationships. And then, on longer timescales, other causal relationships 

may change as a result of feedback within the system in response to that intervention, and those 

changes may enable recovery of function—that is, functional robustness. 

The upshot is that in systems where functional robustness is achieved via feedback control, there 

is a temporal gap between the intervention and the recovery of function.15 This gap creates room for 

a productive notion of modularity to play a role both as a criterion on adequate causal explanations 

and as a principle guiding causal investigation. Indeed, modularity is often critical to understanding 

how feedback control enables robustness. This can be seen again in the example of the autotomous 

spider. To understand how the biomechanical relationships between the remaining legs need to change 

to preserve locomotion, it is necessary to first understand the modular causal contributions of the 

destroyed leg. That leg will have played different roles in different motor behaviours—for instance, 

prey capture or web navigation. Characterizing those different roles—the isolated causal contributions 

of the leg—is necessary to understand how those motor behaviours can be maintained in the absence 

of the leg. For instance, whether it is a front, back, or middle leg that is missing will have consequences 

for the new motor patterns that need to be learned, and hence new causal relationships that need to 

be adopted, to maintain those behaviours. 

These considerations are not limited to this example. Feedback control seems to be one of the 

primary mechanisms responsible for enabling functional robustness across a range of systems, 

particularly in both neural and genetic networks. Mitchell is, of course, aware of this. However, she 

 
15 By feedback control here, I simply mean presence of cyclic causal structure, with that structure maintaining some stable 
output (akin to a centrifugal governor or thermostat). I do not intend to conjure any noncausal (for instance, strong 
teleological) notions that may otherwise be associated with the concept. For further discussion of a strictly causal notion 
of control mechanisms, see Bechtel (2018), and for further discussion of feedback mechanisms in biological systems, see 
Bechtel and Abrahamsen (2013). 
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concludes that feedback is inconsistent with modularity. She writes, “[a]ny physical system with 

complex feedback mechanisms will be one in which we can expect modularity to fail. But we should 

not conclude that such systems don’t involve true component causes” (Mitchell 2009, p.82). Her idea 

seems to be that feedback involves alteration of other causal relationships within the system, so 

systems that exhibit feedback must not be modular. But this is not right: as I have just argued, feedback 

control and modularity are not incompatible, and to the contrary, modularity is an important 

component of adequate explanations of and investigations into systems that achieve robustness via 

feedback control. So, while it may be true that feedback control changes other causal relationships in 

the system, there is no independent reason to suppose those changes are not causally downstream 

from the intervention that triggers the feedback response—and this is what is required for modularity 

to be satisfied. 

This point can be developed further by comparing the results of intervention techniques that 

probe robustness (and the mechanisms supporting it) on different timescales. Cellular neuroscience 

provides illuminating cases. The functions of individual neurons are generally characterized in terms 

of their response (input-output) properties. A neuron’s response properties are determined by the 

combined effect of several currents that result from proteins (ion channels) allowing ions to permeate 

the cell’s membrane. Whereas a neuron may live for decades, these proteins have shorter lifespans, 

typically turning over on the order of hours, days, or weeks.16 As a result, the conductances that 

determine a neuron’s response properties also vary over time. This variance raises questions regarding 

how stable those response properties are, and, to the extent that they are stable, how neurons maintain 

that stability. A range of studies has shown, for a variety of cells, that ion channel densities can in fact 

vary severalfold between cells that nonetheless have effectively identical response properties 

(Golowasch et al. 2002, Schulz et al. 2006, Ransdell et al. 2013). This research suggests that neuronal 

 
16 See, e.g., Hanwell et al. 2002; and Marder and Goaillard 2006, for relevant review. 
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response properties are highly robust and has motivated further research into the mechanisms that 

support that robustness. 

Burst firing in Purkinje cells is a prime example of this sort of robustness of response properties 

to variation in the underlying conductances. Purkinje cells are a type of neuron found in the cerebellum 

that are relatively large with sprawling dendritic trees that receive tens of thousands of inputs. They 

play key roles in motor behaviours and, particularly, in motor learning. Climbing fibers, projections 

from the inferior olivary nucleus in the medulla oblongata, provide a strong source of excitatory input 

to Purkinje cells. According to a longstanding model, the inputs from climbing fibers convey a motor 

error signal that is integral to motor control and motor learning.17 Depolarizing stimulation from 

climbing fibers evokes a stereotyped all-or none burst firing pattern from Purkinje cells. This burst 

firing is a crucial function that enables plasticity in adjacent circuits, in the form of both long-term 

potentiation and long-term depression. Purkinje cell burst firing is the result of a relatively small net 

inward current after an initial action potential. And Purkinje cells are among those that have been 

shown to have similar electrophysiological profiles despite massive variance in surface conductances. 

That is to say, Purkinje cells with very similar burst profiles exhibit substantial variation in underlying 

conductances of different types of ions. This similarity in burst profiles is surprising because the bursts 

are triggered by a small net influx of currents relative to the variability in any particular conductance. 

In a remarkable study, Swensen and Bean (2005) investigated the mechanisms that support 

robustness of burst firing in Purkinje cells. Their experiments illustrate some of the unique challenges 

robustness poses to functional inference and how those challenges can be overcome (using techniques 

that assume modularity). Swensen and Bean used two different intervention techniques to investigate 

the robustness of Purkinje cell burst firing and the mechanisms that support that robustness. The first 

 
17 This is the Marr-Albus-Ito model, one of the most influential computational-cum-experimental models in neuroscience 
(Marr 1969, Albus 1971, Ito et al. 1982, Ito and Kano 1982, Ito 1989). For relevant review of the model, see Strata 2009.  
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technique involved pharmacological blockade of sodium conductance with TTX, which is transient 

and occurs on very short timescales. The relevance of the short duration of the intervention is that it 

rules out second messenger processes occurring within the cell that may alter ion channel expression 

on the cell membrane. The second intervention involved a genetic knockout similar to those discussed 

in the previous section. In particular, the mice used were knockouts for the Nav1.6 gene, which codes 

for the protein that constitutes a particular subtype of voltage-gated sodium channel. 

Swensen and Bean conducted additional analyses to determine the mechanisms responsible for 

robustness in each condition, and they found evidence of distinct mechanisms that operate on two 

different timescales. In their pharmacological intervention, Swensen and Bean first recorded the action 

potential waveforms for each Purkinje cell in current-clamp, and then switched to voltage-clamp and 

played the action potential waveform back to the cell.18 This technique allowed them to observe any 

compensatory changes in other conductances that facilitated continued burst firing. They discovered 

that the acute decrease in sodium conductance due to TTX produced a decrease in the height of the 

action potential and a hyperpolarizing shift in postspike membrane potential. These changes in action 

potential waveform effected a small decrease in calcium conductance and, more notably, significant 

reductions in potassium current—both voltage-dependent and calcium-activated potassium current 

saw reductions ~50% in comparison to their levels with no TTX block. Sodium exists in high 

concentrations outside the cell, whereas potassium exists in high concentrations inside the cell. Thus, 

when TTX-sensitive sodium channels open, sodium rushes into the cell, depolarizing the membrane; 

and when voltage-activated and calcium-activated potassium channels open, potassium rushes out of 

the cell, hyperpolarizing the membrane. 

 
18 Current-clamp is a technique in which experimenters record from cells while injecting stimuli (usually 1ms depolarizing 
electrical currents) and recording the cell’s response (so the cell’s membrane potential is the dependent variable). Voltage-
clamp, by contrast, is a technique in which the experimenter controls the cell’s membrane potential and observes how 
aspects of the cell’s electrophysiology respond (so the cell’s membrane potential is the independent variable). 
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Both voltage-dependent and calcium-activated potassium channels are sensitive to changes in the 

action-potential waveform. The primary driver of decrease in voltage-dependent potassium is the 

hyperpolarizing shift in interspike potential. Swensen and Bean hypothesized that this decrease is due 

to the voltage sensitivity of deactivation of the Kv3-type potassium channel in the observed voltage 

range. They attribute the decrease in calcium-activated potassium current to three main factors: (1) 

the decrease in calcium entering the cell (despite the changes in calcium current being relatively small), 

and the hyperpolarizing postspike shift serves to (2) promote deactivation of BK-type potassium 

channels, and (3) decrease the potassium driving force. The causal dynamics here are obviously fairly 

complex, which on one hand makes it all the more remarkable that the system achieves such stability. 

On the other hand, the complex causal dynamics combine to produce a relatively simple causal 

structure, as shown in figure 3 below. 

 

Figure 3: Simplified causal diagram of the acute mechanism supporting Purkinje cell burst firing 
robustness. 

Intervening on sodium conductance disrupts the main inward current during the interspike interval. 

However, it also affects the action potential waveform. This leads to a form of acute feedback control, 

operating analogously to a flywheel governor, whereby potassium conductance, which is the main 

source of outward current flow in the interspike interval (Swensen and Bean 2003), also decreases as 
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a result of those changes in the action potential waveform. The net effect is that the postspike inward 

current is stable and burst firing persists. 

Note that this case has all the features that make functional robustness seem, prima facie, 

incompatible with modularity. It appears as though burst firing is robust to variation in sodium 

conductance because other causal relationships within the system (particularly between potassium 

conductance and postspike inward current) change in tandem with the TTX intervention to preserve 

burst firing. (Note the symmetry here with the cases of genetic robustness discussed in the previous 

section and the case of the imagined “modularity-violating mousetrap” at the end of §I.) What 

Swensen and Bean’s study elegantly illustrates is that there is a specific mechanism that explains how 

those apparent changes in other causal relationships are causally linked to the intervention. Intervening 

on sodium conductance does not change the relationship between potassium conductance and 

postspike current; rather, it alters potassium conductance via an acute feedback mechanism that 

compensates for changes in sodium conductance via changes to the action potential waveform. Recall 

that modularity requires that interventions on causal variables not give rise to changes in other (causally 

disconnected) relationships in the system. In other words, modularity requires that the changes 

brought about by an intervention are causally “downstream” from the intervened upon variable. 

Swensen and Bean’s TTX intervention shows how functional robustness can occur on short 

timescales strictly via acute feedback control mechanisms causally downstream from sodium 

conductance. 

Interestingly, in their second condition, using genetic knockout instead of pharmacological 

blockade, Swensen and Bean found evidence of a completely different mechanism operating over 

much longer timescales. Rather than the acute mechanism operating via changes in action potential 

dynamics, this mechanism involves compensating for the lack of sodium conductance through 

changes in the expression of other ion channels on the cell membrane—a process known as activity-
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dependent synaptic plasticity. They found that the main difference driving robustness of bursting in 

Nav1.6 knockouts was an increase in calcium conductance. This is surprising for two reasons. First, as 

noted above, potassium conductance was the main current that changed in response to acute 

reductions in sodium conductance in the TTX experiment. One might thus expect that in the 

knockout case the changes in channel expression would largely consist in a decrease in potassium 

channels proportional to the decrease in sodium channel expression. Yet this is not what Swensen and 

Bean found. 

Second, one of the main drivers of increased potassium conductance in the TTX experiment was 

calcium-activated potassium current. Calcium influx can have, on net, either hyperpolarizing or 

depolarizing effects on membrane potential. While calcium entering the cell has a depolarizing effect, 

the hyperpolarizing response of calcium-activated potassium current is capable of overwhelming those 

depolarizing effects. However, Swensen and Bean found that this does not occur in the case of Nav1.6 

knockouts. This indicates plasticity in the coupling between calcium influx and calcium-activated 

potassium current. Thus, there are two main changes that account for robustness of burst firing in the 

knockout case—increased calcium ion channel expression on the cell membrane and a decrease in the 

responsiveness of calcium-activated potassium current to the presence of calcium within the cell (figure 

4). Both these changes are likely the result of activity-dependent feedback control mechanisms driving 

the cells toward burst firing in response to the decrease in sodium conductance due to the knockout. 

Though the precise mechanisms responsible for both these forms of plasticity have yet to be 

characterized, they are likely tied to changes in the amount of calcium entering the cell due to the 

presence or absence of burst firing.19 

 
19 Burst firing triggers distinctive patterns of calcium influx and calcium is often implicated in activity dependent plasticity 
due to its roles in gene expression (see, among others, Grasselli et al. 2016, Puri 2020, Zucker 1999). 
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Figure 4: Simplified causal diagram of the chronic mechanism supporting Purkinje cell burst firing 
robustness. Question marks indicate hypothesized but unconfirmed causal relationships. 

This knockout case reinforces two aspects of my arguments to this point. First, note that the causal 

relationships illuminated by the Nav1.6 knockout satisfy modularity. Similar to the case of the TTX 

blockade, the activity-dependent plasticity both in calcium conductance and in the relationship 

between calcium influx and calcium-activated potassium are causally downstream from the Nav1.6 

knockout. That is, there is no reason to suppose these changes in other causal relationships in the 

system are anything other than effects of causal processes initiated by the intervention; indeed, 

precisely the opposite seems to be the case. 

Second, Swensen and Bean’s knockout experiment reinforces an important aspect of my argument 

from §II. Note that if we zoom out to the level of the whole organism, the phenotypic change 

associated with the Na1.6 gene knockout in cerebellar function would likely be obscured. If the 

function of the Nav1.6 in that context were not already well-characterized prior to the experiment, the 

robustness of burst firing in the face of Nav1.6 knockout could just as easily be construed as an 

anomalous knockout result—that is, a case where there is no apparent phenotypic effect associated 

with the gene knockout due to the functional robustness of Purkinje cells. If we were to follow 

Mitchell’s prescriptions about causal investigation and explanation, we would thus misconstrue the 

effect of Nav1.6 knockout and miss the means by which robustness is actually achieved. In other 
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words, this case points to another way in which anomalous knockout results can be misleading. Here 

phenotypic robustness occurs at an intermediate scale within an organism, and hence if researchers 

are not focused in on the appropriate scale, the effect of gene deletion could easily be missed. 

This last point suggests important implications functional robustness may have for a particular 

aspect of causal discovery in the context of graphical modeling—namely, the Causal Faithfulness 

Condition (Spirtes et al. 2000, Zhang and Spirtes 2008, Forster et al. 2018, Weinberger 2018).20 Causal 

discovery involves inference between the causal structure of a system and the joint probability 

distribution over all variables in that system. Two principles have played prominent roles in guiding 

the development of causal discovery algorithms – that is, algorithms designed to infer causal structure 

from probabilistic data. First, the Causal Markov Condition (CMC), states that, conditional on its 

direct causes, each variable within a system is independent of all other variables (other than its effects). 

Second, the Causal Faithfulness Condition (CFC), the converse of the CMC, states that the only 

independencies present in the joint distribution are those implied by the CMC. Failures of the CFC 

occur when two variables that are causally related are, nonetheless, probabilistically independent 

(conditional on the direct causes of the upstream causal variable). 

In acyclic causal systems, failures of faithfulness occur when alternate causal pathways precisely 

counterbalance changes in some causal variable such that some effect variable does not change in 

response to variation in that causal variable (Zhang and Spirtes 2008, Andersen 2013, Weinberger 

2018). For instance, grant that fish consumption increases both omega-3 fatty acid and mercury 

concentrations in the body. Now suppose omega-3s are inversely related to risk of developing 

dementia and that this inverse correlation is precisely counterbalanced by a positive relationship 

between presence of mercury and risk of developing dementia. Such a case would present a violation 

 
20 I thank an anonymous reviewer for pressing me to highlight this connection between robustness and causal faithfulness. 
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of the CFC: Risk of developing dementia will be independent of fish consumption despite the 

presence of causal pathways linking the two in the true causal structure. 

Violations of faithfulness pose challenges to causal discovery due to this presence of 

independencies that obscure underlying causal relationships. Note that the challenge posed by 

anomalous gene knockout results is importantly similar to the challenge posed by violations of the 

CFC. With anomalous knockout results, it is unclear whether the independence between some gene 

and any detectable phenotypic change is due to the absence of a causal relationship or instead to some 

other factor, which in turn explains the apparent absence of phenotypic change. Note, further, that 

the above example regarding fish consumption relevantly parallels cases of functional robustness. The 

effect (risk of developing dementia) is “robust” to variations in some cause (fish consumption) due to 

precisely counterbalanced causal pathways (through mercury and omega-3 concentrations). 

The most common and influential line of justification for the CFC maintains that violations should 

be vanishingly unlikely.21 This is reasonably intuitive in the example of fish consumption because it is 

incredibly unlikely that the negative relationship between omega-3s and dementia risk should be the 

exact inverse of the positive relationship between mercury and dementia risk. However, the parallels 

between cases of functional robustness and violations of the CFC suggest that examples of functional 

robustness may provide cases where these sorts of “conspiracies of the evidence” to obscure causal 

relationships are not only not vanishingly unlikely but may, in fact, be overwhelmingly likely.22 

There are, however, several important caveats here. First, the CFC was developed, and its 

implications for causal discovery have been explored, primarily in the context of acyclic causal models 

(particularly directed acyclic graphs – DAGs). The implications of violations of the CFC in cyclic 

causal models is more complex and less well-explored, and as the examples and arguments above 

 
21 More precisely, relative to all possible parameterizations, those that entail violations of the CFC will be Legesgue measure 
zero. See Spirtes, Glymour, and Scheines (2000) Theorem 3.2 pp.41-42 and pp.383-384 for the proof. 
22 For arguments to similar conclusions, see Cartwright (1999, 2007), Hoover (2001), and Andersen (2013). 
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show robustness often attends feedback control, which entails cyclic causal structure. Second, many 

cases of functional robustness are not contexts where causal discovery is at issue. In the Purkinje cell 

case, the causal structure of the system was well characterized prior to Swensen and Bean’s work 

illuminating the mechanisms by which robustness is achieved. Indeed, the robustness of Purkinje cell 

burst firing to variation in sodium conductance is surprising precisely because sodium conductance is 

known to be the major contributor of post-spike inward current supporting burst firing. In such cases, 

there is thus no issue of inferring causal structure from joint probability distributions. Anomalous 

gene knockout experiments and other contexts in neuroscience, like effective connectivity in fMRI 

research, may provide cases where underlying causal structure is not already well known and functional 

robustness is likely to be present. In these cases, the parallel challenges to causal inference posed by 

the CFC and functional robustness may point to serious challenges to causal discovery and raise 

questions about the reliability of discovery algorithms that rely on the CFC. 

Third, and perhaps most significantly, not all instances of functional robustness constitute 

violations of the CFC. Violations of the CFC entail that two causally related variables be 

probabilistically independent, provided appropriate conditionalizations. But in cases of functional 

robustness, it need not be the case, and often is not the case, that the function is probabilistically 

independent of the relevant causal variable(s). Instead, functional robustness typically occurs over 

some range of values for the relevant causal variable(s). Outside of that range, the function may be 

disrupted. As a result, the function and relevant causal variable(s) will not, in fact, be independent 

(assuming the joint distribution includes values beyond the range for which robustness holds). 

Consider the Purkinje cell case as an example. It is not the case that Purkinje cell burst firing persists 

for all values of sodium conductance. Rather, the function is stable for a (remarkable) range of sodium 

conductance – up to a ~50% decrease. When perturbed beyond this range, a dependence between 

sodium conductance and burst firing will emerge and reveal the underlying causal relationship (if this 
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were a context of causal discovery where the causal structure was not already characterized). There 

are certainly interesting and important challenges that arise with inferring causal structure in these 

sorts of cases—for instance, if the function is robust across all values of some independent variable 

(as may be the case with anomalous gene knock-out results), or if there are reasons to believe some 

data set is restricted to only values where robustness holds. Full exploration of these issues is beyond 

the purview of this paper, but these brief remarks hint at the rich potential for future work exploring 

the relationship between robustness and the CFC. 

 

5. Conclusion 

The preceding arguments show that functional robustness is compatible with modularity and 

furthermore that modularity is often a crucial methodological assumption guiding research into the 

feedback control mechanisms that enable robustness. However, it would be a mistake to conclude 

that feedback control and functional robustness do not carry significant consequences that impel 

revisions to the interventionist framework, particularly with respect to the notions of modularity, 

invariance, and the notion of intervention itself. 

Different experimental interventions operate on different timescales. In the case of Purkinje cells, 

the transient, short-timescale intervention of pharmacological blockade has a totally different effect 

on the system than the persistent, longer-timescale intervention of the gene knockout despite both 

techniques targeting the same causal variable—namely, sodium conductance. This observation 

suggests that the concept of an intervention may require some inherent timescale-sensitivity—for 

instance, with respect to issues of variable choice and how to properly characterize controls. 

Furthermore, intervention techniques that target different timescales are, in turn, capable of 

illuminating distinct sets of causal relationships that also operate on different timescales, as evidenced 

by the contrast between the two mechanisms enabling robustness in Purkinje cell burst firing. Such 
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results suggest that the invariance of causal relationships may be constrained, not only by the values 

of the variables involved in those relationships, but also by the timescales on which those relationships 

operate. 

Finally, for the notion of modularity a parallel issue arises wherein a particular set of causal 

relationships within a system may be modular only on some specific timescale. Feedback control that 

occurs in the wake of an intervention may alter causal relationships in distal parts of a system. On 

longer timescales than those on which feedback control operates, systems may thus appear to violate 

modularity despite the effects of feedback control being causal descendants of the intervened upon 

variable. Though I have argued that this set of conditions need not pose problems in principle for the 

concept of modularity, it does raise considerable practical challenges for causal inference techniques 

based on modularity. 

First, it provides reason to believe that systems that exhibit functional robustness may be 

unsuitable for analysis with causal discovery algorithms that rely on the assumption of acyclicity. While 

it may be informative to treat such systems as acyclic on particular timescales, methods that assume 

acyclicity may fail to capture the full dynamics of systems that involve feedback control, especially 

when researchers are interested in understanding the behaviour of that system on much longer 

timescales than those on which relevant feedback control mechanisms operate. Second and relatedly, 

there is a measurement problem that arises here: if systems achieve robustness via feedback control 

operating on short timescales relative to the temporal resolution of some measurement instrument, 

that system may well appear to violate modularity. As a result, it will be impractical to employ causal 

inference techniques that assume modularity on data acquired in such conditions. In my view, these 

considerations should not be construed as posing fundamental problems for the interventionist 

framework so much as illuminating a set of issues where further work is needed. 
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