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Network glasses are the physical prototype for many self-organized systems,
ranging from proteins to computer science. Conventional theories of gases,
liquids and crystals do not account for the strongly material-selective character
of the glass-forming tendency, the phase diagrams of glasses or their optimizable
properties. A new topological theory, only 25 years old, has succeeded where
conventional theories have failed. It shows that (probably all slowly quenched)
glasses, including network glasses, are the result of the combined effects of a few
simple mechanisms. These glass-forming mechanisms are topological in nature
and have already been identified for several important glasses, including
chalcogenide alloys, silicates (window glass and computer chips) and proteins.

‘Some four thousand years ago man discovered glass in the embers of a fire built
somewhere in the deserts of the Near East. A few years from now ultratransparent
glass fibers will be transmitting [much, much, much!] more information than copper
wires’ [1]. As foreseen 25 years ago, the Internet has indeed revolutionized our world.
In this article certain phrases will appear in braces {}; the interactive reader will find
background on the {} topics with his or her Internet browser. What was unforesee-
able 25 years ago was the discovery of an important new class of electronic glasses,
namely doped cuprates, exhibiting not only high-temperature (about 100 K) super-
conductivity, but also ‘strange metal’ transport anomalies right up to the annealing
temperature (700 K)—a sure sign of electronic glassy arrest. Theory has identified
two new topological phase transitions in network glasses, and a new topological
phase characterized by self-organization; it appears that this new phase is also
responsible for high-temperature superconductivity in the cuprates. Finally, there
is an exciting new bridge between physics and biophysics, based on analysing strain
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in protein networks using methods parallel to those used for strain in network
glasses.

Glass is so much a part of our daily lives that we take its properties for granted.
The most important glasses (such as window glass) have aperiodic and yet micro-
scopically homogeneous network structures. Glasses are solids formed by slowly
quenching melts to temperatures far below their equilibrium melting points, and
they can remain in their metastable states indefinitely. Physical glasses (not just
network glasses, but also molecular glasses, commercial polymers, the optimized
electronic networks of cuprates, and collapsed folded peptide chains of proteins)
all share an essential property: they are {space-filling} (or nearly so) networks.
Mathematicians have studied {space filling} by {sphere or polyhedral packing} in
great detail, but the way in which network glasses are connected to fill space is
different (much more abstract), and the differences are very important in practice.

The origin of these differences lies typically in skeletal constraints that define the
network configuration. Figure 1 shows examples of such constraints, here repre-
sented by nearest-neighbour springs for an N =4-membered cluster in d=2 dimen-
sions. In real glasses, constraints are imposed not just by nearest-neighbour contacts
(bond stretching) (here called o (strong) forces, as occurs for sphere packing) but
also for & forces (bond-bending weaker three-body forces). The radius of a cluster of
N atoms increases as N'/“, where d is the dimension, and the forces decrease with
increasing distance but, at the same time, the number of possible cluster configura-
tions increases as e, leading to statistical problems of exponential complexity. These
topological problems are well known to mathematicians, who describe them as ‘not
polynomial (NP) complete’. (We prefer the description{exponentially complex}.)

Rigidity
2D example
B )
S L LA BEBRRL L1 e
o 3 ;T &S
o 3 o £0
o A o cﬁ
g 3 5o )
/@:p - 3 & 2
e 00p0 A ®R000gg : |
22 Q*’U.Z Q:?}\ N 20900090 ¢
1 floppy motion Rigid but unstressed

Rigid and stressed

Figure 1. Three examples of elastic network skeletons in two dimensions with nearest-
neighbour forces only. A quadrilateral is floppy (isostatic, stressed) with no (one, two) cross
braces. Note that there are eight degrees of freedom for the four atoms, but three of these are
associated with two translational and one rotational rigid modes. Each spring here is an
independent constraint.
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A familiar example of an {exponentially complex} problem is the travelling sales-
man, who should visit randomly placed cities along the shortest path; many combi-
natorial problems are {exponentially complex}. There are now computer algorithms
that have solved problems of 25000 cities in ‘only’ 70 computer years (parallel
processing). However, these graphic methods do not include the physical restriction
that the cities form a space-filling megapolitan network, and so they cannot be
extended to network glasses or proteins.

The exponentially great simplification brought about by the space-filling network
restriction is embodied [1] in a very simple and yet extremely far-reaching idea: the
number of interatomic Lagrangian constraints (he and we count the number of
potentials and not the number of Newtonian forces) IV, that are intact at the glass
transition temperature T, should equal the number Ny of degrees of freedom. There
are three possible cases (figure 1). If N.< Ny, the underconstrained glass is ‘floppy’,
and it could freely crystallize while, if N. > Ny, the glass would be rigid and stressed
and could relieve the stress by crystallizing exothermally (in practice, severely over-
constrained materials such as amorphous Si films do not melt; they crystallize explo-
sively when heated). When N, = Ny, the network is rigid and yet stress free. In this
ideal case (called ‘isostatic’), the dynamics of the glass are arrested because it is
trapped ‘in limbo’ [1]. Intact constraints can be identified in diffraction or optical
data as anomalously narrow peaks, but is this idea really correct? Does it ‘miracu-
lously’ identify the optimally space-filling, exponentially small fraction of configura-
tion space that is glassy?

It does quite well (sufficient precision (about 1%) for practical purposes, as
confirmed by many experiments), and figure 2a shows the quantitative results [2].
One can construct space-filling, tetrahedrally coordinated models of amorphous Si,
disordered in various ways, and then dilute the connectivity of the network by
striking out bonds at random until the average coordination number has been
reduced from four to nearly two. At this level the network has begun to fall apart
into disconnected chain segments, and there are many cyclical (zero-frequency)
vibrational modes. In reality, weak additional forces will give these modes a small
finite frequency of a few wave numbers and so we shall refer to them as floppy
modes. One now adds cross-linking bonds at random, and the number of such floppy
modes decreases. Remarkably, that decrease is nearly linear in the average coordina-
tion number (r), and the latter itself is linear in the number of intact constraints; it
extrapolates to zero at the mean-field value of 2.40=12/5 (calculated theoretically
from o and m constraints). More sophisticated numerical simulations [3,4] have
shifted the transition to 2.39.

Cyclical, or Goldstone, modes play an important role in theoretical physics; they
are usually explained as the result of some kind of symmetry. However, this disor-
dered network has no obvious symmetries and, if one examines the vibrational
matrix and counts the number of off-diagonal Newtonian forces generated by the
three-body potentials, it is much too large to explain the large number of cyclical or
floppy modes for (r) <2.40. This ‘counter-intuitive’ behaviour is dramatic evidence
for the power of Lagrange’s concept of constraints (he and we count the number of
potentials and not forces), here applied in the statistical limit where both N. and Ny4
are large, but the fractional difference between them is small. It is fair to say that
this idea, as confirmed in figure 1, has revolutionized our understanding of the
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Figure 2. (a) The number of floppy (cyclical) vibrational modes per degree of freedom for a
diluted diamond lattice with several thousand atoms. The random case gives a smooth curve,
while allowance for the formation of percolative self-organized backbones suggests a first-
order transition from floppy to rigid. (b) A similar plot for 20 proteins, each also involving
several thousand atoms. The similarity is used to help to calibrate the relative strengths of
hydrogen bonds and hydrophobic interactions, and to identify the transition states of the
proteins [3].

microscopic nature of glass and other networks of atoms. This idea has sweeping
implications; for instance, it shows that all the very common central force (sphere-
packing) models of glasses are non-trivially incomplete. Experience has shown that
liquids composed of atoms behaving as spheres (for instance, liquid Ar) always
crystallize, no matter how rapidly they are quenched, and mixtures of Ar and Ne
phases separate and crystallize, again no matter how rapidly they are quenched.
Lagrangian constraints have enabled us to resolve the exponentially complex prob-
lem of why covalent network formers are so much better glassy materials than many
other apparently promising candidates, and they have even told us where to look for
the best covalent network formers. The actual calculations require no more than five
easy lines of linear algebra.

The first dramatic experimental confirmation of the power of the ‘limbo’ con-
cept came from Raman and Modssbauer experiments [5] on chalcogenide glass
alloys (S and Se cross-linked by As, Ge, Si, Sn, etc.). These glasses form typical
predominantly covalent networks, with elemental coordination configurations fol-
lowing the classical ‘8 — N’ rule of valence chemistry. The experiments examined
the bond and site connectivity of the alloys and revealed that some kind of phase
transition was occurring near (r)=2.40. An example is shown in figure 3 for (Sn,
Ge)Se alloys. Replacing Ge (high melting point) with Sn (low melting point) dilutes
the m bending constraints, and the ‘limbo’ composition is calculated to occur at
40% Sn, which is exactly where T, collapses. Mdssbauer site populations exhibit
parallel behaviour.
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Figure 3. The glass transition temperature T, in Sn,Ge,_,Se; glass alloys. At the predicted
critical composition with x =0.40 the network softens dramatically [5]. Angular constraints
are weak and so are ignored at the Sn ions but are strong and intact for Ge and Se ions.

Subsequent work repeatedly confirmed the existence of the stiffness transition at
or very near (r)=2.40; later, however, it suggested [6] that there could actually be two
closely spaced transitions, rather than just the one predicted by mean-field theory for
a ‘random’ space-filling network. Between the two nearby transitions is a new glassy
phase, the ‘intermediate phase’, which is strictly a topological phase. The phase has
no special symmetry, but it does have a characteristic connectivity. It is a percolative
phase, but the percolation is not occurring on a lattice, and it is not random. At first,
one might think that non-equilibrium ‘off-lattice’ percolation behaves identically
with equilibrium ‘on-lattice’ percolation, but this is apparently not the case. In a
sense this is obvious, as there are two non-equilibrium stiffness transitions, which
bound the non-equilibrium intermediate phase, and only one equilibrium critical
point, with no intermediate phase. Of course, because this glassy phase is not an
equilibrium phase, it is not a true phase in the sense of equilibrium thermodynamics.
However, its boundaries with respect to composition are often sharp, justifying the
terminology.

Some experiments have identified an equilibrium electronic intermediate phase,
and the electronic cases often generate disputes involving complex quantum inter-
actions. However, it appears that the same intermediate phase occurs in insulating
network glass alloys, where quantum effects are secondary; in the latter the topolog-
ical nature of the intermediate phase is unambiguous. The generic similarities
between these intermediate phases are striking, and it seems quite probable that
they all share a common topological origin.
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Specific heat experiments on glasses have traditionally involved a technique
called differential scanning calorimetry (DSC) but, when these are modified to
include modulation with lock-in detection, one gains in two ways: accuracy is
increased by an order of magnitude, and one now measures both the reversible
and the non-reversible enthalpy of the glass transition. The new instruments are
widely used in industry for quality control, especially of plastics, but are entering
research practice only slowly. Figure 4 shows dramatic results for several glass
transitions [7]. The non-reversible enthalpy of the transition varies extremely rapidly
near the two stiffness transitions, dropping in favourable cases nearly to zero in the
intermediate phase, and forming a ‘reversibility window’. (Of course, all glass transi-
tions are irreversible; this term is merely a convenient way to describe the very deep
recently discovered valley, whose existence had previously not even been suspected.)
Also shown is the much shallower (and unremarked) valley in a more traditional
quantity, the logarithmic derivative of the viscosity in the melt, extrapolated to T,
said to measure the ‘strength’ of the glass (loosely speaking, its resistance to crystal-
lization, which decreases here by a factor of only 2 in the window). The database for
chalcogenide alloy glasses includes many different compositions (20-30 for an alloy
series) for many alloys (about ten). Overall the window spans a range of (r) from
2.28 to 2.52 [8] and is centred on 2.40(3). Clearly the reversibility window defines a
glassy ‘phase’ that will have physical properties quite different from those of glasses
with compositions outside the window.

The reversibility window is only one of the remarkable properties of the inter-
mediate phase. It is also often a maximal plateau (not peak!) in molar density. (In
other words, the result of the space-filling condition is at first an increase in
density when chains are cross-linked, followed by a decrease when the network
is overconstrained. However, in the strain-free [§] intermediate phase, across a
narrow range of compositions the density is nearly constant as percolative
strain-free backbones are added to the network. For this reason the intermediate
phase can be said to be in isostatic mechanical equilibrium; isostatic is a term
borrowed from hydrodynamics to describe the absence of nonlinear strain effects
in the intermediate phase.) When one monitors the ageing or relaxation of the
glassy network by changes in the non-reversible enthalpy of the glass transition
over periods of the order of years (figure 5), there is almost no ageing in the
intermediate phase [9] and substantial ageing outside it, a fact of great importance
for quality control.

The discrete methods of set theory and topology used to describe glassy networks
are also used in computer science. The parallels are more than casual; a ‘phase
transition’ occurs between computable and non-computable problems which closely
resembles the stiffness transition. Moreover, again there is an intermediate phase of
intermediate (i.e. possible, but very difficult) computability [10]. The meaning of the
word ‘computability’ has often been unclear, but the comparison between glassy
networks and Boolean logical networks provides a clear-cut physical basis for the
concept.

The discovery of a new inorganic phase in glasses, with a nearly reversible, nearly
non-ageing character, opens new vistas for understanding non-equilibrium behav-
iour. Internal strain fields govern this behaviour; traditionally such off-lattice strain
fields have defied our best efforts to achieve quantitative understanding. They are not
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Figure 4. (a) Viscosity n(7) of four As,Se,_, glass melts as a function of temperature; a
rare example of a glass alloy system for which such complete viscosity data are available.
(b) Comparison of d[log(n)]/dT at T, with the non-reversible enthalpy AH,, of the glass
transition as functions of x, as measured by modulated DSC. The latter are available for
many alloys. Note the different base lines. The former drops by a factor of 2 in the window,
whereas the latter drops by a factor of more than 10 (nearly to zero). Thus the reversibility
window is resolved much more accurately by the modern method (modulated DSC), enabling
its identification, and giving accurate estimates of its compositional boundaries [7].

only long range, but also non-local. They are easy to understand in the context of
covalent crystalline heterointerfaces, where the lattice framework makes it easy to
treat elastic misfit and {misfit dislocations}. Similarly in metals there are {shape
memory alloys} whose properties are based on the presence of two microphases,
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Figure 5. The special nature of glassy networks in the non-reversibility window is brought
out in spectacular fashion by studying the ageing of AH,,, at temperatures well below T, for
periods of the order of months. Within the window, there is very little change but, outside the
window, ageing causes large increases in A H, .. Nanoscale phase separation of P,Se, and P4Ses
molecules from the backbone results in the feature labelled NSPS. The alloy studied here is
GCxszel_zx [9]

one stiff, and the other soft. Are there other applications of these very general
concepts?

Consider window glass first; it may well be the material most responsible for
modern civilization. Window glass is based on silica (SiO»), but the melting point of
SiO, is much too high for practical processing. So soda (Na,O) is added to reduce
the melting point at the eutectic, but the Na,O creates non-bridging O dangling
alkali ends (—Si—~O-Na) that are reactive. Empirically it was found that adding
lime (CaO) zips up these ends and makes window glass chemically stable. Can
topology calculate how much NA,O (x) and CaO (y) should be added to SiO,
(1—=x—y) to form window glass? It can! Na,O is strongly ionic; so one has to
modify the classical valence rules to recognize, as prescribed by Pauling, that there
is only one resonating valence bond or Na ion. (Pauling’s rules are also valid for
complex materials such as the cuprates, discussed below.) Two conditions are needed
to determine x and y. The first condition is global: the strain-free ‘limbo’ condition,
while the second condition is local (for space filling by Si—O-Si—O- - - rings, the
average number of rings passing through a cation should be the same as in crystalline
SiO, namely six). These two conditions are illustrated by the ternary phase diagram
(figure 6); they give x=0.16 and y=0.10, in perfect agreement with commercial
practice [11].
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Figure 6. A ternary phase diagram for SiO,—Na,O-CaO glass alloys. The line labelled M is
the mean-field line for a global stress-free network, while the line labelled R represents the
local topological condition of constant ring size. The dashed line segments labelled E are
eutectics. The lines M and R intersect at W, which is the composition of window glass.

If the optimal composition of ternary SiO,—Na,O—CaO mixtures to form win-
dow glass is determined by fwo topological conditions, what determines the optimal
compositions of binary glasses, for instance sodium silicates? The two factors, global
and local, compete, but the overall data pattern suggests that the global (stress-free
network) condition dominates, with the local (space-filling) condition having only a
secondary influence. Thus, as we saw above, the optimal average coordination num-
ber in chalcogenide glass alloys spans the range from 2.28 to 2.52 [8], but the average
(over many binary alloys) is still the global or mean-field value 2.40(3). In effect the
local geometrical factors cause deviations that average to zero over many different
kinds of local packing, a gratifyingly simple result.

While window glass is very old, the next example is essential to modern electro-
nics. A trick question is: why is it that computer chips are usually made from Si,
rather than Ge? Ge has many electronic advantages, including higher carrier mobi-
lities, lower Joule heating, etc. The reason is that electronic factors are usually
secondary to a crucial materials factor, the perfection of the native oxide interface
with ‘the world outside’, M:MO,. For M =Si this interface is nearly ideal, and
the question is: how and why does crystalline Si form a nearly ideal interface with
glassy SiO,? The ideality of the Si—SiO, interface corresponds to a defect level
near 107%, while simple misfit considerations (similar to those used for crystalline
heterointerfaces) would lead one to expect defects levels of 10%.
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{High-k dielectrics} (SiO, films doped with Zr or Hf) are now technologically
interesting: what are their minimal defect densities? Topology explains the perfection
of the undoped interface in terms of an SiO monolayer; it turns out that, when
the constraints are calculated carefully, and allowance is made for breaking of =
constraints involving non-resonant O-Si-Si interlayer bonds, this monolayer is
actually isostatic, that is strain free, which means that it can be ideal. Moreover,
the theory [12] enables one to identify the relevant chemical variables for both the
defect (charge trapping) density (figure 7), which is the main factor limiting transistor
speed, and the dielectric constants of the Zr- or Hf-doped films (figure 8).

The electronic applications of topological network theory are very interesting,
but they involve a variety of quantum factors that the interested reader can study
elsewhere [13]. There are a few points of general significance. Efforts are often made
to describe the metal-insulator transition in semiconductor impurity bands, the
intermediate phase of high-temperature superconductors and sometimes even the
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Figure 7. Fixed charge (trap density) at Si—dielectric interfaces for dielectrics of technological
interest [12]. Here N,, is the average valence number of the dielectric and AN,, = N,, —2.67.
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Figure 8. Dielectric constant k for many Zr- and Hf-doped dielectrics relative to SiO,. Here
N,, is the average valence number of the dielectric [12].

molecular glass transition in terms of a single continuum phase transition and its
associated critical point, but experiment does not support these efforts based on
mean-field models. There are definitely two well-separated impurity band transitions,
one electronic and one thermal, and there is an intermediate phase between them
with scaling properties different from those predicted by continuum critical point
theory. In the cuprates all the experimental evidence, including the isotope effect,
supports a picture of three-dimensional glassy percolation along topological paths
determined by minimizing strain and maximizing dielectric screening energies asso-
ciated with dopants located outside the ubiquitous CuO, planes. The latter are
crucial primarily for architectonic, and not electronic reasons; they are isostatic
(strain-free) planar networks (much like the SiO monolayers discussed above), and
they stabilize a soft network that would be otherwise insulating because of the
{Jahn-Teller} effect.

Because better samples are now available, as well as synchrotron beams with
higher intensity and better resolution, there is now a growing wave of evidence [14]
for strong electron—phonon interactions in the cuprates; these also reflect enhanced
interactions of carriers at the Fermi energy with disordered (glassy) dopants.
This suggests that topological models of soft hosts and glassy dopants will
play an increasingly important part in developing genuine understanding of the
physics of high-temperature superconductivity. Many studies of older intermetallic
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Figure 9. Isotope shifts measured by angle-resolved photoemission. There is a kink in the
dispersion curve near 70 meV; above this kink (points 1 and 2, closer to the Fermi energy, set
equal to 0) the isotope shift is small, and below it (points 3 and 4) the shift grows linearly.
These shifts are inexplicable using polynomial methods (e.g. conventional polaron theory).

superconductors (such as NbN and Nbs;Sn) showed that the same strong electron—
phonon interactions that produce high-temperature superconductivity also cause
lattice instabilities that limit the attainable temperatures. Just as these limits are
reached, one finds anomalies not only in vibrational dispersion curves, but even in
the lattice constants themselves.

The most striking recent data [15] concern the effect on dispersion of quasipar-
ticle states near the Fermi energy on replacing '°O with '*O (figure 9). Because of
glassy arrest of the dopant configuration during sample annealing, the observed
isotope effects on phonon fine structure in the cuprates show many anomalies. In
particular, there is a kink in the dispersive curves at the Debye energy. Between this
kink and the Fermi energy, the quasiparticle dispersion is almost unaffected by
isotope exchange, but outside this band the effects are large. Moreover, the same
separation into ‘rigid’ and ‘soft’ sets of states is seen when the dopant concentration
is varied. Conventional quasiparticle (Landau Fermi-liquid) theory also predicts
separate behaviours above and below the Debye energy, but the ‘rigid’ and ‘soft’
sets of states are reversed! This tells us that ‘free’-particle models of any kind are
inadequate, and that we are indeed dealing with a nanoscopic glass. High-resolution
scanning tunnelling microscopy has observed similar two-phase separation into
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larger gaps and smaller gaps [16]. Such behaviour is readily explained by the topo-
logical methods of constraint theory. The ‘rigid’ (soft) states below (above) the
Debye energy are spectroscopically narrow (broad), which is much the same condi-
tion as was used to identify intact and broken constraints in network glasses.

Self-organized isostatic backbones immersed in soft matrices, even in space-
filling inorganic networks, are strongly suggestive of the native states of proteins
in water, collapsed by a combination of hydrophobic interactions in their cores and
hydrophilic interactions nearer their surfaces [17]. Figure 2b shows the strong
similarities in network topologies of proteins and glasses. Protein structures
exhibit a high density of local close packing, characteristic of densely packed spheres,
involving the side groups of the peptide chains.

Sphere-packing models [18], of course, include only o (main-chain) interactions,
whereas the dynamic properties of proteins near their transition states must be
determined by primarily m (bending or shear) interactions. This suggests using
hydrogen bonds and side group (amino acid) contacts to index protein structures
near their transition states [3]. One begins with a mechanical model of the completely
collapsed, static protein structure determined by diffraction and molecular dynamics
(the ‘native’ state) and dilutes the connectivity by cutting hydrogen bonds and
hydrophobic ‘tethers’, starting with the weakest. In this way, one arrives at the
transition state, defined as a maximum in the free energy and the state at which
non-trivial floppy modes first occur in significant numbers. (Just as with glasses
(figure 2), this state occurs very close to an average coordination number of 2.40,
which provides a model-independent topological definition of the transition state.)

This leads us to a paradox; paradoxes often occur in exponentially complex
problems. Native structures are determined by combining structural information
from diffraction with relaxation of the structure according to molecular dynamics
potentials. In particular, the diffraction data are resolution limited and generally do
not determine hydrogen bonding configurations. Thus a dynamic simulation tech-
nique is used to obtain the full static structure. However, for typical proteins con-
taining 100 or more amino acids, the simulations of protein dynamics cannot be
carried out for much more than tens of nanoseconds, whereas in reality protein
(or glass transition) dynamics usually evolve over milliseconds. More generally,
such difficulties are characteristic of {exponentially complex} physics, and they can
be used to ‘prove’ that proteins cannot have evolved without some kind of special
help; for a typical protein with N~ 100 amino acids, there are about 10°° possible
combinations of the sequences formed from 20 amino acids that determine the
protein; this number of possible combinations could not have evolved haphazardly.
(Biochemists call this {Levinthal’s paradox}.)

What is this special help that made the creation of proteins possible? In the
intermediate state, which is presumably the state in which proteins are formed, the
peptide chains are strain free. Mathematicians in a subfield called ‘graph theory of
rigidity” have studied the flexibility and rigidity of mechanical networks, following
the first work of Maxwell [19] on scaffolds. Their work shows that, when two strain-
free networks are interlaced, the combined network is also strain free. This simple
additivity or closure condition has a startling effect on the combinatorial complexity
of proteins; instead of being exponential in the number N of peptide units in the
protein, the complexity is probably about N, but nearly linear in N practically. Thus
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placing protein dynamics, including protein formation, in the intermediate (strain-
free) phase resolves {Levinthal’s paradox} in principle, even though there may still
be questions about the reliability of native structures and hydrogen bonds for any
particular case. It also explains the origin of the mysterious and not easily quantified
{folding funnels} that are popularly used to explain the evolutionary origin of
protein functionality and reversibility [20].

A special algorithm [4], based on graph theory, called the {pebble game} iden-
tifies the rigid or overconstrained regions of a mechanical network and separates
them from the soft regions. (Similar games are popular in computer science for
solving hierarchical problems by variational techniques. Note that, in games, one
attempts to maximize gain while minimizing risk. In the pebble game, connectivity is
maximized while minimizing strain energy.) This leads to realistic pictures of the
dynamic behaviour of proteins (such as the protein HIV protease shown in figure 10).
Because of the Lagrangian simplifications inherent in restricting the structure to the
intermediate phase, the calculations required to obtain such pictures take only
minutes on a personal computer, even for very large proteins. Main-chain flexibility
appears also to be critical to protein—ligand (drug) interactions (called docking), as
illustrated in a study of binding of a candidate ‘drug’ molecule to a 165-amino-acid
protein [21].

There have been many workshops and conferences devoted to the ‘unconven-
tional’ topological topics discussed here [22, 23]. The general reader, however, may
find it easier to assess the significance of the topological phase by considering it in the

Figure 10. The protein HIV protease is a homodimer containing about 200 amino acid
residues. It can be separated into flexible parts (shown in red, yellow and green) and a rigid
core (shown in blue) using algorithms based on the pebble game [4]. The function of HIV
protease can be inhibited by pinning the flaps at the top by the binding of an appropriate
ligand.
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context of the phase diagrams of impurity band materials. For a long time it was
supposed that there was only one transition with increasing doping in these materi-
als, the insulator-metal transition. According to one-electron energy band theory,
homogeneous (undoped) crystals are insulators if there is a gap in energy between
occupied and unoccupied discrete energy bands indexable by integers. Similarly, in
metals, one has a Fermi surface defined by a continuum of states, so that topologi-
cally speaking the insulator—metal transition is one from integers to the continuum.

This kind of topological transition was first discussed in an entirely mathematical
context by Cantor [24]; his ideas immediately created controversies. The great
French mathematician Henri Poincaré described Cantor’s theory of infinite sets as
a malady, from which mathematics would someday be cured. In response, the
equally famous German mathematician David Hilbert said ‘no one would expel us
from the paradise that George Cantor has opened for us’. Cantor had proved that
the number of real numbers is infinitely larger than the number of integers; more-
over, he conjectured that there was no set with an infinite ‘size’ between the integers
and the reals. This is called the continuum hypothesis. (One might think that the
rational numbers are just such a set, but Cantor showed that there are just as many
rational numbers as there are integers.) Hilbert [24] identified Cantor’s continuum
hypothesis as the first of his list of 23 conjectures to be solved in the twentieth
century and, while about half of the others have been proved, it now appears that
the continuum hypothesis, which everyone had believed to be true, is still unprovable
and must be treated as an independent axiom [24]. Physically this means that some
disordered materials exhibit intermediate phases because of strong local fields, while
others do not, because they are well described by mean-field theory.

In classical treatments of dynamically balanced granular materials, one finds
qualitative differences between systems that depend on the validity of the continuum
hypothesis. If it is valid, mean-field variables are continuous and smooth functions of
space and time and are independent of the averaging length and time scales.
Otherwise, the average variables may be discontinuous and scale dependent, but
the same average balance equations hold within the framework of calculus of gen-
eralized functions [25]. The correspondences here with the physics of insulator—metal
quantum transitions are quite striking. Homogeneous insulator-metal transitions
apparently conform to Cantor’s continuum hypothesis; there are no intermediate
phases between the metal and the insulator, just as he had assumed that there were
no intermediate sets between the integers and the reals. However, impurity band
transitions take place in an intrinsically inhomogeneous medium, and in this rich
context there is an intermediate phase, with a topological connectivity not describ-
able by mean-field theory. There is also an intermediate phase in network glasses, but
these are not in equilibrium. However, the intermediate phase associated with impur-
ity band transitions apparently is in equilibrium. Its existence confirms the opinion
of Paul Cohen, who was awarded the Field Medal for his work on set theory and the
continuum hypothesis [24]. (It also suggests that any theorem whose proof involves
the continuum hypothesis is valid only in the mean-field approximation and is not
applicable to intermediate phases.) The fact that it is this intermediate topological
phase that is also responsible for high-temperature superconductivity in the
cuprates helps to explain why the latter has proved so resistant to the development



3838 Self-organization and physics of glassy networks

of theory [26]. In fact, one could even go so far as to say that Bednorz and Miiller’s
discovery has provided the ‘cure’ requested by Poincaré.
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