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Abstract We outline a framework of multilevel neurocognitive mechanisms that1

incorporates representation and computation. We argue that paradigmatic explanations2

in cognitive neuroscience fit this framework and thus that cognitive neuroscience con-3

stitutes a revolutionary break from traditional cognitive science. Whereas traditional4

cognitive scientific explanations were supposed to be distinct and autonomous from5

mechanistic explanations, neurocognitive explanations aim to be mechanistic through6

and through. Neurocognitive explanations aim to integrate computational and repre-7

sentational functions and structures across multiple levels of organization in order to8

explain cognition. To a large extent, practicing cognitive neuroscientists have already9

accepted this shift, but philosophical theory has not fully acknowledged and appre-10

ciated its significance. As a result, the explanatory framework underlying cognitive11

neuroscience has remained largely implicit. We explicate this framework and demon-12

strate its contrast with previous approaches.13
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1 Introduction16

The traditional framework of cognitive science included (aspects of) six disciplines:17

psychology, computer science, linguistics, anthropology, neuroscience, and philos-18

ophy. These six disciplines were supposed to work together towards understanding19

cognition in accordance with a neat division of labor, to which many practitioners20

conformed. On one side stood psychology, with the help of computer science, linguis-21

tics, anthropology, and philosophy; on the other side stood neuroscience. Psychology22

etc. studied the functional or cognitive level, or—in Marr’s terminology—the compu-23

tational and algorithmic levels; neuroscience investigated the neural, mechanistic, or24

implementation level. Explanations at these two levels were considered distinct and25

autonomous from one another.26

This division of labor leaves no room for cognitive neuroscience. Indeed, from27

this perspective, the very term “cognitive neuroscience” is almost an oxymoron,28

because neuroscience is supposed to deal with the mechanisms that implement cog-29

nitive processes, not with cognition proper. Yet cognitive neuroscience has emerged30

as the new mainstream approach to studying cognition. What gives?31

In this paper, we argue that cognitive science as traditionally conceived is on its way32

out and is being replaced by cognitive neuroscience, broadly construed. Cognitive neu-33

roscience is still an interdisciplinary investigation of cognition. It still includes (aspects34

of) the same six disciplines (psychology, computer science, linguistics, anthropology,35

neuroscience, and philosophy). But the old division of labor is gone, because the strong36

autonomy assumption that supported it has proven wrong.37

The scientific practices based on the old two-level view (functional/cognitive/38

computational vs. neural/mechanistic/implementation) are being replaced by scien-39

tific practices based on the view that there are many levels of mechanistic organization.40

No one level has a monopoly on cognition proper. Instead, different levels are more or41

less cognitive depending on their specific properties. The different levels and the dis-42

ciplines that study them are not autonomous from one another. Instead, the different43

disciplines contribute to the common enterprise of constructing multilevel mecha-44

nistic explanations of cognitive phenomena. In other words, there is no longer any45

meaningful distinction between cognitive psychology and the relevant portions of46

neuroscience—they are merging to form cognitive neuroscience. Or so we will argue.47

By contrast, many philosophers still insist that psychological explanation is distinct48

and autonomous from neuroscientific explanation. Some argue that psychological49

explanations can be satisfactory without being mechanistic (e.g., Weiskopf 2011,50

but see Povich forthcoming for a rejoinder). Others argue that representational and51

computational explanations of cognition belong in an autonomous psychology not in52

neuroscience (Fodor 1998; Burge 2010). A somewhat independent view, which also53

stands in contrast to our framework, is that computational explanation is not mechanis-54

tic (Rusanen and Lappi 2007; Shagrir 2010a; Chirimuuta 2014). In addition, there are55

scientists who argue that current neuroscience is wrong-headed and should be refor-56

mulated in light of a rigorous computational psychology (Gallistel and King 2009).57

While the latter view may be seen as consistent with our integrationist framework, in58

our opinion it underestimates the extent to which current neuroscience is empirically59

well grounded and should constrain our cognitive explanations.60
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We have two primary, closely related goals. The first is to explicate the explanatory61

framework underlying contemporary cognitive neuroscience, contrasting it with tra-62

ditional cognitive scientific explanation. The second is to soften current resistance to63

the mechanistic integration of psychology and neuroscience. We proceed as follows.64

After reconstructing the received view of explanation in cognitive science (Sect. 2),65

we briefly indicate why traditional responses to the received view fail to square with66

cognitive neuroscience as we understand it (Sect. 3). We then articulate a framework67

of multilevel neurocognitive mechanisms (Sect. 4) and the levels that constitute them68

(Sect. 5). We conclude by highlighting three important aspects of cognitive neuro-69

science that illustrate our framework: the incorporation of experimental protocols from70

cognitive psychology into neuroscience experiments, the development and evolution71

of functional neuroimaging, and the movement toward biological realism in compu-72

tational modeling (Sect. 6). One important consequence of the picture we advance is73

that neither structures nor functions have primacy in individuating the scientific kinds74

of cognitive neuroscience. The upshot is that explanation in cognitive neuroscience is75

multilevel, mechanistic, computational, and representational.76

2 Cognitive science as traditionally conceived77

The cognitive revolution of the 1950s is most often juxtaposed against the behaviorist78

program it supplanted. By contrast with behaviorism’s methodology and metaphysics,79

which is widely assumed to reject the postulation of cognitive states and processes,80

cognitive science explicitly postulates internal cognitive states and processes to explain81

intelligent capacities. An important motivation for this approach came from the anal-82

ogy between cognitive systems and digital computers. Computers possess internal83

states and processes that contribute to their capacities, some of which—playing chess,84

solving problems, etc.—are capacities that require intelligence in humans. Since it’s85

patently legitimate to explain a computer’s capacities in terms of its internal states and86

processes, cognitive scientists argued that it is equally legitimate to explain human87

cognition in terms of internal states and processes. More importantly, the internal88

states and processes of computers are representations and computations, which are89

typically considered cognitive notions. Thus, the argument continues, it is legitimate90

to explain human cognition in terms of computations and representations. Indeed,91

in this tradition cognition is often identified with some form of computation—more92

specifically, some form of digital computation over representations (e.g., Newell and93

Simon 1976; Anderson 1983; Johnson-Laird 1983; Pylyshyn 1984).94

This focus on the contrast between behaviorism and cognitive psychology often95

obscures some of the substantive commitments that came out of the cognitive rev-96

olution. At all stages of Western history, available technology has constrained the97

analogies used to think about the operations of the human mind and body. For instance,98

water technologies—pumps, fountains, etc.—provided the dominant metaphor behind99

the ancient Greek concept of the soul—the ‘pneuma’—and the humorist theories that100

dominated Western medicine for 2000 years (Vartanian 1973); the gears and springs of101

clocks and wristwatches played a similar role for early mechanist thinking during the102

enlightenment (e.g., La Mettrie’s L’Homme Machine, 1748); hydraulics for Freud’s103
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concept of libido; telephone switchboards for behaviorist theories of reflexes; and so104

on.1 It is no coincidence that the cognitive revolution co-occurred with the advent of105

computers.106

Whenever technology guides thinking about the human mind or body, there is107

risk that the analogy is taken too far. While it may be true that cognition involves108

transitions between internal states analogous to computations of some kind, the com-109

mitments of traditional cognitive science go far beyond this basic point. Specifically,110

the analogy between cognition and computation has been taken to imply that cogni-111

tion may be studied independently of the nervous system. The main rationale for this112

autonomy is that digital computers—more specifically, universal, program-controlled113

digital computers—reuse the same hardware for the different programs (i.e., software)114

they execute. Each particular program explains a specific capacity, while the hardware115

remains the same. By the same token, a widespread assumption of traditional cognitive116

science is that the brain is a universal, program-controlled digital computer; therefore,117

cognition can be studied simply by figuring out what programs run on such a computer,118

without worrying over the details of the wetware implementation of those programs119

(e.g., Fodor 1968b; Newell and Simon 1976; Pylyshyn 1984). Additionally, many120

who thought of the brain simply as some kind of digital computer (without assuming121

that it is universal and program-controlled) nonetheless agreed that cognition could122

be explained independently of neuroscience (e.g., Cummins 1983).2123

A close ally of this computer analogy and its rationale for the autonomy of psychol-124

ogy is the view that psychological explanation is different in kind from neuroscientific125

explanation. According to this view, psychological explanation captures cognitive126

functions and functional relations between cognitive states and capacities, whereas127

neuroscientific explanation aims at the structures that implement cognitive functions.128

The two types of explanation are supposed to place few constraints on one another129

with the upshot that each can proceed independently from the other.130

The resulting picture of cognitive science is that psychology studies cognition in131

functional terms, which are autonomous from the non-cognitive mechanisms studied132

by neuroscience. Aspects of this two-level picture can be found in the writings of many133

philosophers of cognitive science. Here are a few stark examples:134

The conventional wisdom in the philosophy of mind is that psychological states135

are functional and the laws and theories that figure in psychological explanations136

are autonomous (Fodor 1997, p. 149).137

[I]n the language of neurology …, presumably, notions like computational state138

and representation aren’t accessible (Fodor 1998, p. 96).139

1 See Daugman (1990) for more detailed discussion of the role of technology and metaphor in the study
of the human mind and body.
2 A computer is universal just in case it can compute any computable function until it runs out of memory
and time. A computer is program-controlled just in case it computes different functions depending on which
program it executes. Contemporary digital computers are both universal and program-controlled. Different
kinds of analogies may be drawn between digital computers and brains, some of which are stronger than
others (cf. Piccinini 2008, Sect. 5 for a more detailed discussion). At the same time, it was widely recognized
that there are significant architectural and performance differences between artificial digital computers and
natural cognitive systems.
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We could be made of Swiss cheese and it wouldn’t matter (Putnam 1975, p. 291).140

[F]unctional analysis [which includes psychological explanation] puts very141

indirect constraints on componential analysis [i.e., mechanistic explanation]142

(Cummins 1983, p. 29; 2000, p. 126).143

[E]xplanation in terms of distinctively psychological representational notions is,144

as far as we now know, basic and ineliminable (Burge 2010, p. 27).145

These philosophers were, and in some cases still are, trying to capture what cognitive146

scientists were doing at the time. And while cognitive scientists were perhaps less147

explicit about the two-level picture, something similar to this view can be found in148

many landmark works that came out during the heyday of classical cognitive science149

(e.g., Newell and Simon 1976; Newell 1980; Marr 1982; Anderson 1983; Johnson-150

Laird 1983; Pylyshyn 1984).151

3 Traditional responses to cognitive science152

This traditional two-level picture of cognitive science fails to capture explanation in153

contemporary cognitive neuroscience. Cognitive neuroscience strives to explain cog-154

nition on the basis of neural mechanisms and thus involves integration, not autonomy,155

between psychology and neuroscience. After the cognitive revolution, the mechanis-156

tic integration of psychology and neuroscience amounts to another paradigm shift:157

the cognitive neuroscience revolution. In later sections we will argue that this new158

revolution requires a different way of thinking about levels, cognitive explanation,159

representation, and computation. The resulting explanatory framework, multilevel160

neurocognitive mechanisms, is what we aim to articulate in this paper.161

In seeking an account of explanation in cognitive neuroscience, let’s begin with two162

traditional responses to the two-level picture—reduction and elimination. While we163

lack the space for detailed treatment, we briefly argue that these traditional responses164

to cognitive science fail to adequately capture the kind of integration found in cognitive165

neuroscience. These arguments will motivate our positive proposal (Sect. 4).166

One traditional alternative to autonomy is to eliminate the theoretical constructs167

posited by psychology in favor of the theoretical constructs posited by neuroscience.168

The model for such eliminativism is the past elimination of theoretical constructs, such169

as epicycles, phlogiston, or the ether, from past scientific theories. Just as those theo-170

retical posits were eventually eliminated from our scientific theories of, respectively,171

planetary motion, heat, and the transmission of radiation through space, so the theo-172

retical posits of psychology, such as the language-like mental representations posited173

by classical cognitive psychologists, should be eliminated in favor of posits that are174

more amenable to neuroscience (Churchland 1981, 1986).175

If eliminativism is construed radically enough—that is, as the literal elimination176

of any science of cognition other than neuroscience—it offers a partial solution to177

the problem at hand. That problem is to understand how the disciplines that study178

cognition fit together and how cognition ought to be explained. If any discipline other179

than neuroscience is eliminated, the first half of the problem is solved: since the other180
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disciplines no longer exist, we don’t need to worry about how they fit together with181

neuroscience. But this radical construal is hardly a solution to the most interesting part182

of the problem—how to explain cognition.183

Contemporary cognitive neuroscience aims to explain cognition on the basis of184

neural computation over neural representations (more on this below). If the elimi-185

nativist approach implies that cognition itself—and all “cognitive” theoretical posits,186

such as representation, computation, or information processing—should be eliminated187

or at least deflated (cf. Ramsey 2007), then we are faced with a solution that is anti-188

thetical to cognitive neuroscience.189

Another alternative to traditional (two-level) cognitive science is to reduce psy-190

chological theoretical posits to neuroscientific theoretical posits. The models for this191

reductionist strategy come from examples from physics, such as the reduction of clas-192

sical thermodynamics to statistical mechanics or the reduction of Newton’s theory of193

gravitation to a special case of Einstein’s theory of General Relativity. The main dif-194

ficulty for this reductionist approach in cognitive neuroscience is that, even assuming195

that it works for some physical theories (which has been debated), psychological and196

neuroscientific explanations lack the appropriately general mathematical formulation197

to be conducive to such reductions (cf. Cummins 2000).198

Nevertheless, some have argued that when we can intervene on molecular struc-199

tures in the brain and affect some cognitive behavior, the specific molecular events200

“directly explain” the behavioral data, we thereby reduce the relevant cognitive capac-201

ity to the relevant molecular events, and we thereby obviate the need for intermediate202

levels of explanation (cf. Bickle 2003, 2006). The main problem with this form of203

reductionism is that specific molecular events are at best only partial explanations204

of cognitive phenomena. It is one thing to correlate specific molecular events with205

cognitive phenomena via some specific intervention; to actually explain a cognitive206

phenomenon on the basis of molecular events requires determining the ways in which207

the molecular events are causally relevant to the production of the phenomenon of208

interest. Molecular events are only relevant to the extent that they occur within spe-209

cific neural structures, and locating the relevant neural structures requires more than210

purely molecular neuroscience. In addition, even identifying a molecular event within211

a neural structure that contributes to a cognitive behavior falls short of a full expla-212

nation. A full explanation requires identifying how molecular events contribute to213

relevant neural events, how relevant neural events contribute to circuit and network214

events, how those in turn contribute to relevant systems-level events, and finally how215

the relevant systems, appropriately coupled with the organism’s body and environ-216

ment, produce the behavior. These intermediate links in the causal-mechanistic chain217

are crucial to connecting molecular events to cognitive phenomena in a way that is218

explanatory, as opposed to merely correlational. And identifying these intermediate219

level structures and their causal contributions requires going well beyond molecular220

neuroscience (cf. Craver 2007; Bechtel 2008).221

In spite of their respective limitations, both eliminativism and reductionism put222

pressure on the received view of cognitive science—most helpfully, by pointing out223

that cognitive scientists who ignore neuroscience do so at their peril and by pushing224

towards the integration of psychology and neuroscience. But neither eliminativism225

nor reductionism offers a satisfactory framework for explanation in cognitive neuro-226
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science: the former insofar as it neglects cognition altogether; the latter because it227

offers only partial explanations that lack the necessary contextual factors provided by228

intermediate levels of analysis.229

4 Multilevel neurocognitive mechanisms230

Cognitive neuroscience stands in stark contrast to the traditional two-level picture of231

cognitive science. Broadly, cognitive neuroscience is the scientific study of how neural232

activity explains cognition and the behavior it gives rise to. Cognitive neuroscientists233

study nervous systems using many techniques at many levels. They study how cortical234

areas and other neural systems contribute to various cognitive capacities, how the235

capacities of those systems are explained by the operations of the neural subsystems236

that compose them (columns, nuclei), how networks and circuits contribute to their237

containing systems, how neurons contribute to networks and circuits, and how sub-238

neuronal structures contribute to neuronal capacities. Analyzing systems across such239

varied levels involves coordinating techniques ranging from molecular neuroscience240

and genetics to neurophysiology, neuroimaging, mathematical analysis, computational241

modeling, and a wide range of behavioral tasks.242

Cognitive neuroscience thus strives to explain cognitive phenomena by appealing to243

and analyzing (both separately and conjointly) multiple levels of organization within244

neural systems. Multilevel mechanisms have recently been proposed as a framework for245

thinking about the relations between these levels of organization. A multilevel mech-246

anism is a system of component parts and wholes in which the organized capacities247

of the component parts constitute (and thus mechanistically explain) the capacities of248

the whole (e.g., Craver 2007). Some mechanists prefer to define mechanisms in terms249

of operations, activities, or interactions rather than capacities (e.g., Glennan 2002;250

Bechtel 2008). We see these different formulations as equivalent for the purposes at251

hand because operations, activities, and interactions can be seen as manifestations252

of capacities (Piccinini unpublished). Note that it may take multiple capacities orga-253

nized in specific ways to bring about specific operations, activities, or interactions.254

In this section, we expand this framework, arguing for a specific understanding of255

cognitive neuroscience as a science directed at integrated multilevel neurocognitive256

mechanisms.3257

Multilevel neurocognitive mechanisms have an iterative structure: at any level,258

each component of the mechanism is in turn another mechanism whose capacities259

are explained by the organized capacities of its components; and each whole mech-260

anism is itself a component part that contributes to the capacities of a larger whole.261

This multilevel iterative structure tops off in the capacities of whole organisms and262

their interactions with other organisms, which are studied by social neuroscience263

and neuroeconomics; it bottoms out in structures—such as the atoms that compose264

3 Some argue that at least some explanations in cognitive neuroscience are not mechanistic but are instead
“dynamical” (e.g., Chemero and Silberstein 2008). We lack the space to discuss this putative alternative
to mechanistic explanation, except to point out that mechanistic explanations are often dynamical in the
relevant sense (cf. Bechtel and Abrahamsen 2013) and thus are consistent with describing the dynamics of
a system, whereas dynamical descriptions may or may not be explanatory in the relevant sense (cf. Kaplan
and Craver 2011).
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neurotransmitters—that fall outside the disciplinary boundaries of cognitive neuro-265

science.266

Cognitive neuroscience is not the only science that explains mechanistically, but it267

is one of the few whose mechanisms perform computations over representations (cf.268

Bechtel 2008, 2015). There is a large literature on what constitutes computation and269

representation and we cannot do justice to these topics here. For present purposes, it270

will suffice to sketch an account of computation and representation that squares with271

the framework of multilevel neurocognitive mechanisms.272

A vehicle carries semantic information about a source just in case it reliably cor-273

relates with the states of the source (Dretske 1981; Piccinini and Scarantino 2011;274

Scarantino 2015). For instance, the spike trains generated by neurons in cortical area275

V1 reliably correlate with the presence and location of edges in the visual environ-276

ment; thus, they carry semantic information about the presence and location of edges277

in the visual environment. But correlation alone is insufficient for representation.278

A vehicle represents a source just in case it has the function of carrying information279

about the source (Dretske 1988; Morgan 2014). For a vehicle to have such a function,280

the information it carries must be used by some part of the system in which it is281

embedded. The information is used by the system to the extent that it’s causally282

relevant to other operations of the system. In our example, the spike trains generated by283

neurons in V1 have the function of carrying information about the visual environment284

because this information is used by downstream areas for further processing of visual285

stimuli—i.e., it is causally relevant to the operations of those downstream areas. Thus,286

in the relevant sense, V1 neurons represent the presence and locations of the edges287

with which they correlate.288

Finally, a system performs computations just in case it manipulates vehicles in289

accordance with rules that are sensitive to inputs and internal states and are defined290

in terms of differences between different portions of the vehicles it manipulates.291

Which computations are performed by a system depends on its specific mechanis-292

tic properties—its component types, its vehicle type, and the rules it follows. That293

is, computation here is defined non-semantically based on the mechanistic proper-294

ties of the system and the vehicles it manipulates. Although computation can occur295

in the absence of representation, processing representations is a form of mechanistic296

computation (Piccinini and Scarantino 2011; cf. Fresco 2014; Milkowski 2013).297

A distinctive feature of neural systems is that they pick up information from the298

environment and organism, transmit it through the system via appropriate signals299

(neural representations), and process such signals in conjunction with pre-existing300

representations and rules of manipulation (neural computation) in order to generate301

further signals that regulate the organism’s behavior. This appeal to representation and302

computation distinguishes mechanistic explanations in cognitive neuroscience from303

mechanistic explanations in many other sciences.304

The above account of computation is diametrically opposed to persistent views of305

computation that draw a stark contrast between computational and mechanistic expla-306

nations.4 Such views maintain that computations are abstract or mathematical in a307

4 A recent example: “My key claim is that the use of the term ‘normalization’ in neuroscience retains much
of its original mathematical-engineering sense. It indicates a mathematical operation—a computation—not
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way that evades mechanistic explanation. While it’s true that computation can be math-308

ematically characterized, however, the physical computations performed by nervous309

systems (and artificial computers, for that matter) are functions performed by concrete310

mechanisms.5 Like other functions, information processing via neural computation is311

performed by mechanisms—specifically, neurocomputational mechanisms. With this312

said, an important caveat is that computing mechanisms, like all mechanisms, can be313

characterized at different levels of abstraction. This is an integral aspect of multilevel314

mechanistic explanation, though one that has been a source of recent controversy.315

The mechanistic framework has recently been construed as a call for maximal316

detail in explanation and a rejection of abstraction. A number of recent criticisms have317

been developed along these lines (Barberis 2013; Barrett 2014; Levy and Bechtel318

2013; Levy 2013; Chirimuuta 2014; Weiskopf 2011). A common idea behind these319

objections is that the multilevel mechanistic framework is committed to the claim320

that the explanatory power of a model is primarily a function of the amount of detail321

contained in its description of a particular mechanism—viz. the more detail, the better322

the explanation. Thus, according to this interpretation, mechanistic integration eschews323

any valuable role for abstraction in explanation.6324

As these critics point out, many forms of explanation in cognitive and systems325

neuroscience proceed through systematic abstraction away from the particular details326

of a target system. This is, for instance, how neuroscientists come to characterize327

something like lateral inhibition as a general type of organization of neural circuitry328

found in different brain regions—e.g., peripheral somatosensory and visual processing329

both exhibit this kind of organization. The details—the particular kind of excitatory330

cell, inhibitory interneuron, number and strength of synapse, etc.—are often irrelevant331

to understanding why lateral inhibition is a useful form of circuitry and why it crops332

up in so many circumstances in which these details do in fact differ. It is thus easy333

to see why a view in which explanatory power is tied solely to detail of description334

would face serious problems in cognitive neuroscience.335

But it would be a mistake to conclude that when an explanation intentionally336

excludes some details, the explanation is thereby rendered non-mechanistic. To337

Footnote 4 continued
a biological mechanism” (Chirimuuta 2014, p. 124). Chirimuuta also cites some neuroscientists who draw
a similar contrast between computations and mechanisms.
5 Not all mathematical models in cognitive neuroscience ascribe computations to the nervous system; only
those that explain phenomena through computations performed by the target systems do so.
6 In fairness to the critics, some mechanists may give the impression of advocating such a view: “the more
accurate and detailed the model is for a target system or phenomenon the better it explains that phenomenon,
all other things being equal” (Kaplan 2011, p. 347). Kaplan points out that some details may be omitted from
a model either for reasons of computational tractability or because they are unknown. Similarly, Craver
writes: “Between sketches and complete descriptions lies a continuum of mechanism schemata whose
working is only partially understood” (Craver 2007, p. 114). To drive this point home, Craver aligns the
sketch-schema-mechanism axis with the epistemic axis of “how possibly-plausibly-actually”: “Progress in
building mechanistic explanations involves movement along both the possibly-plausibly-actually axis and
along the sketch-schema-mechanism axis” (Craver 2007, p. 114). Contrary to what Craver appears to imply,
progress may consist in abstracting away from irrelevant details to construct an appropriate schema, and
in some epistemic contexts even a mechanism sketch may provide all the explanatory information that is
needed (more on this in this section). And in fairness to Craver and Kaplan, we should note that there are
also passages where they accept that abstraction and idealization play legitimate roles in explanation.
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the contrary, proponents of the mechanistic framework have often pointed out that338

abstracting away from irrelevant details is as important to mechanistic explanation339

as including relevant details (e.g., Piccinini and Craver 2011; see Boone and Pic-340

cinini unpublished for a more detailed treatment). Which details ought to be included341

and excluded depends on various features of explanatory context. The concepts of342

mechanism sketches and schemata were designed to capture this aspect of mechanis-343

tic explanations (Machamer et al. 2000). Mechanism sketches involve omissions of344

as yet unknown details; mechanism schemata involve deliberate omissions of detail,345

capturing the bare relevant causal structure of a system.346

Examples of schemata abound in neuroscience. A much-discussed example, which347

is particularly relevant to the present context, is the Hodgkin-Huxley model of the348

action potential (Hodgkin and Huxley 1952). The Hodgkin-Huxley model explains349

the voltage profile of the action potential in terms of a neural membrane’s changing350

voltage conductivity. Lower-level mechanistic details about how changes in membrane351

permeability arise were omitted from the model, initially because they were unknown352

(Hodgkin and Huxley 1952, p. 541), but also later because this omission affords353

the model greater generality (Schaffner 2008; Levy 2013; Chirimuuta 2014, p. 141).354

The Hodgkin-Huxley model has been described as non-explanatory (Bogen 2005), as355

providing a non-mechanistic explanation (Weber 2005, 2008), and as a mere sketch356

because it omits information about the role of ion channels in allowing membrane357

permeability (Craver 2007). In our view, none of these characterizations fully hit358

the mark. Rather, the HH model is an example of a mechanism sketch that evolved359

into a mechanism schema—it explains a phenomenon (the action potential) at one360

mechanistic level (changes in membrane conductivity) while abstracting away from361

lower mechanistic levels (ion channels and their components).362

As the preceding example illustrates, mechanistic explanations—particularly those363

that involve computations and representations in the sense outlined above—are often364

presented in the form of (interpreted) mathematical or computational models. Typi-365

cally, such models become analytically insoluble and computationally intractable if366

they include too much detail about their target systems. As such, issues relating to367

solubility and tractability provide another motivation for the exclusion of detail from368

models of neurocomputational mechanisms. Issues regarding tractability are ubiqui-369

tous in computational neuroscience given the vast array of biological detail that could370

potentially figure into modeling scenarios.371

For instance, one controversial but extremely common assumption among com-372

putational neuroscientists is that individual neurons can be treated as integrating a373

linear sum of dendritic inputs, and then initiating an action potential when that sum374

reaches a threshold. The dynamics of actual neurons are more complex than this model375

suggests, which in turn has led to the development of more complex models—e.g.376

Waxman (1972) provides an alternative model, which introduces nonlinearities into377

the branching regions of the dendritic (input) and axonal (output) trees, rather than378

treating those regions as, respectively, collecting and distributing charge linearly. But379

the basic, linear treatment of dendritic input integration has been a powerful tool in a380

wide variety of modeling contexts. One explanation for the success of these simplified381

modeling strategies is that they capture important aspects of neural responses that are382

adequate for particular epistemic purposes.383

123

Journal: 11229-SYNT Article No.: 0783 TYPESET � DISK LE CP Disp.:2015/6/5 Pages: 26 Layout: Small-X



R
ev

is
ed

Pr
oo

f

Synthese

While this topic raises a number of interesting issues, one clear takeaway is that384

an important skill of mathematical and computational modelers is to capture all and385

only those features of the systems they study that are needed to explain phenom-386

ena of interest, often by introducing appropriate idealizations and simplifications.387

Those idealizations and simplifications allow modelers to represent systems to desired388

degrees of approximation while maintaining mathematical solubility or computational389

tractability (cf. Humphreys 2004; Piccinini 2007; Winsberg 2010; Weisberg 2013).7390

Explanations of computational or information processing mechanisms often require391

these forms of detail omission. What is crucial to appreciate here is that computation392

and information processing do not lead outside the multilevel mechanistic framework393

but are instead best seen as a special case of it.8394

Relatedly, as a matter of methodology, we are often interested in one aspect (some395

components or capacities) of a mechanism at the expense of other aspects (other396

components or capacities). This is one type of mechanism sketch, or partial (elliptical)397

mechanistic explanation. Consider what it takes to explain why a mechanism functions398

differently than it normally does. Explaining a deviation from normal functioning may399

require simply pointing out what’s different in the relevant case, while omitting the rest400

of the mechanism (Van Eck and Weber 2014). For instance, to explain why certain401

patients have left-side hemineglect (roughly: inattention to and unawareness of the402

left side of visual space) it may be enough to point out that such patients suffered403

damage to the contralateral (right-side) cortical areas responsible for spatial attention,404

without providing details about the mechanisms involved in normal spatial attention405

and consciousness.406

Special cases of this type of mechanism sketch are descriptions of computational407

(the function computed and why it is adequate to the task, cf. Shagrir 2010b) and408

algorithmic (the computational operations and representations) levels of a system,409

which omit details about the components that carry out the algorithm. There is cer-410

tainly value to such approaches in cognitive neuroscience, particularly in the context411

of discovery. Marr (1982) argued that a neural “algorithm” is “likely to be understood412

more readily by understanding the nature of the problem being solved than by exam-413

ining the mechanism (and the hardware) in which it is embodied” (Marr 1982, p. 27).414

Marr’s arguments have often been cited in defense of autonomist views of cognitive415

7 Issues related to tractability and solubility of mathematical models quickly get into deeper philosophical
water than can be adequately treated here. Such issues spread across most domains of scientific inquiry.
For instance, foundational work in continuum mechanics—i.e. the Navier–Stokes equations—developed
around failures to model the flows of fluids through containers as trajectories of point particles; rather, the
Navier–Stokes equations describe velocity fields at given points in space and time (see Batterman 2013 for
an extended discussion). The extent to which the successes of these “top-down” modeling strategies can be
treated merely as idealizations and approximations rather than reflecting more fundamental differences in
the phenomena under investigation and our understanding of those phenomena at different levels of analysis
is currently a topic of rich philosophical debate.
8 This is not to say that all analyses of neural computation or information-processing are mechanistic.
Some focus only on the information content and efficiency of a neural code without saying anything about
the processing mechanisms (Dayan and Abbott 2001, xiii; Chirimuuta 2014, p. 143ff). These models are
not especially relevant here because they do not provide the kind of constitutive explanations that are the
present topic, and that functional analysis and mechanistic explanation are competing accounts of.
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science.9 We have a different take, consistent with seeing computational and algorith-416

mic accounts (in Marr’s sense) as mechanism sketches (or schemata to the extent that417

underlying details are known but deliberately omitted).418

Understanding the capacities of a system often requires looking “up” to situate419

the system within some higher-level mechanism or environmental context as much420

as looking “down” to understand how those capacities are implemented by the lower421

level components, their capacities, and organization. In addition, more may be known422

about the mechanistic or environmental context of a system than its components and423

their operations. In such cases, investigators may be forced to constrain their models424

primarily by examining the problem being solved rather than the components and their425

operations, even though the likely result of such a method is a “how-possibly” model426

that falls short of explaining how the system actually works. Much of Marr’s work427

belongs in this how-possibly category. We certainly face some of the same problems428

in contemporary cognitive neuroscience, but the field has developed to the point where429

integration, rather than autonomy, is the appropriate framework. The computational-430

level descriptions Marr and others sought are best construed as a valuable step along431

the way to integrated multilevel mechanistic explanations. It is no longer enough to432

simply home in on ways in which problems might be solved in the brain; contemporary433

cognitive neuroscience aims to understand how those problems are actually solved in434

the brain.435

5 Neurocognitive levels436

A primary motivation behind the traditional autonomist picture of cognitive science437

is the idea that functions can be understood independently from the structures that438

perform them. Therein lies the putative distinction between the “functional” level,439

which is cognitive, representational, and computational, and the “structural” level,440

which is non-cognitive, mechanistic, and implementational. Our account of multilevel441

neurocognitive mechanisms adopts a different notion of neurocognitive levels, which442

undermines this traditional dichotomy.443

Contrary to the received view, there is no single “functional,” “cognitive,” or “repre-444

sentational/computational” level of explanation, standing in opposition to a single (or445

even multiple) “structural,” “neural,” or “implementational” level(s).10 In this section446

we analyze each of these concepts from the perspective of neurocognitive mecha-447

nisms in order to highlight how our integrationist framework improves upon traditional448

autonomist and reductionist views.449

In the first place, every level of a multilevel mechanism is both functional and450

structural, because every level contains structures performing functions. This stands in451

stark contrast to traditional views that maintain that structural analyses and functional452

analyses are distinct and autonomous from one another. Traditional reductionists—453

9 Bechtel and Shagrir (forthcoming) is a good entry into the extensive literature on Marr’s levels, including
how they might fit within a mechanistic framework. We cannot do justice to that debate here.
10 This point is reminiscent of Lycan’s underappreciated critique of “two-levelism” (Lycan 1990). But
Lycan lacked the accounts of mechanistic explanation and computational explanation that have been devel-
oped in detail in the past decade, and that provide the foundation that we are building upon.

123

Journal: 11229-SYNT Article No.: 0783 TYPESET � DISK LE CP Disp.:2015/6/5 Pages: 26 Layout: Small-X



R
ev

is
ed

Pr
oo

f

Synthese

e.g. type physicalists (Smart 1959)—strove to identify mental types with physical454

types. As a result, they may be interpreted as focusing on structural properties at455

the expense of functional properties, relegating the latter to “second order states”456

of physical types (Smart 2007). Traditional functionalists do the opposite: they give457

primacy to functional properties at the expense of structural properties (e.g., Putnam458

1967; Fodor 1968a). This is a somewhat unorthodox way of characterizing these views,459

so some brief unpacking is in order.460

Classical reductionist views of the mind-brain relation, specifically type identity461

theorists, look to identify higher-order kinds (e.g. mental kinds, like “pain”) with462

corresponding physical kinds. These reductive views were developed in contrast to463

dualism: the view that the mind and brain are distinct kinds of substance. Dualists have464

a notoriously difficult time specifying the means by which these distinct substances465

interact; type identity theorists provide a dissolution of this problem. To say that water466

is H2O just is to identify a higher-level kind with a lower-level physical kind—an467

arrangement of atoms. With such an identity in hand, it is illegitimate to wonder how468

water and H2O interact. In a similar vein, type identity theorists argued that mental469

kinds, like pain, could be identified with particular neural kinds, like C-fibers firing.470

This identification dissolves dualistic concerns about how mental states interact with471

bodily states. What is noteworthy for present purposes is that the defining features of the472

kinds that figure into higher-level analyses just are the lower-level physical features473

common to instances of those kinds. This identification with lower-level physical474

features downplays the role of functional features of those higher-level kinds. Water475

is not individuated by its ability to quench thirst, nourish plants, etc., nor pain with its476

role in avoidance of noxious stimuli, protecting injured body parts, etc. Instead both477

kinds are identified with particular physical types, which possess the relevant causal478

powers that are, incidentally, associated with these functions.479

Classic functionalist views turn this story on its head: the defining features of480

higher-level kinds, according to such views, are their functional features while the481

structural features are incidental. The crux of this disagreement between functionalists482

and reductionists turns on multiple realizability—i.e., the claim that the same function483

can be realized in distinct physical substrates. Carburetors provide a classic example:484

they are defined by their function in internal combustion engines (mixing fuel and air);485

they retain this function over variations in the stuff they’re made of (e.g. cast iron, zinc,486

aluminum, plastic) and the types of engine they’re found in (e.g. car, motorcycle, lawn487

mower). Putnam’s original arguments for autonomy in the 1960s were based on this488

insight (e.g. Putnam 1967). Fodor took up the torch and used multiple realizability to489

argue for the general autonomy of the special sciences from lower-level sciences—490

physics, in particular (Fodor 1968a, b, 1974). The idea behind these arguments is that,491

while higher-level states are token identical to particular lower-level physical states,492

there is no single lower-level physical kind for the higher-level states to be identified493

with. Rather, when higher-level kinds are realized, the underlying physical kinds will494

form unruly disjunctions (e.g. cast iron OR zinc OR aluminum OR plastic); the only495

thing tying this disjoint set of physical features together is the higher-level kind itself496

(e.g. the function, “mixing fuel and air”). Thus nothing is added to the higher-level497

analysis by looking at its realizers.498
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Neither of these approaches adequately captures the main thrust of work in cogni-499

tive neuroscience, because that work is aimed at understanding the complex interplay500

between structure and function. By contrast, the multilevel mechanistic framework we501

are advocating adequately captures this aspect of cognitive neuroscientific explana-502

tions; in our framework, functions constrain structures and vice versa. Functions cum503

contextual factors—i.e. mechanistic context—constrain the range of structures that504

can perform those functions. Similarly, structures cum contextual factors determine505

the range of functions those structures can perform. In this framework, neither struc-506

tures nor functions are given primacy over the other; neither can explain cognition507

without the other.508

Any given structure is only capable of performing a restricted range of functions. For509

an everyday example, consider again the functions that can be associated with water.510

Structural facts about the chemical composition of water both enable and restrict its511

ability to perform certain functions. For instance, the facts that water is liquid at phys-512

iological temperatures and is composed of hydrogen (positively charged) and oxygen513

(negatively charged) make it appropriate for dissolving ionic compounds into ions514

essential for normal cell function. Contextual factors—like ambient temperature and515

available compounds—combine with structural factors to determine the appropriate516

range of functions. In the context of cognitive science, similar observations abound.517

Consider for instance that neurons have a refractory period, during which they cannot518

fire. This refractory period restricts a neuron’s maximum firing rate to about 1000519

Hz, which in turn limits the kind of codes by which the brain can encode and transmit520

information. The structural properties that determine the recovery period of a neuron—521

blocks that prohibit influx of sodium ions through voltage-gated channels—limit the522

encoding and signaling functions neurons can perform.523

In the other direction, any function can only be performed by a restricted range of524

structures. For an everyday example, reconsider the example of a carburetor. While525

it’s true that carburetors can be made from many different materials, the appropriate526

materials are severely restricted once mechanistic context and desired function are527

considered. A plastic carburetor from a lawn mower engine will cease to function as528

a carburetor in the context of a Ford F150 engine. The function and the context in529

which the function is embedded determine the range of structures that can implement530

that function. In the context of cognitive science, consider the function of storing531

information long term in a read/write, addressable form similar to the way memory532

works in digital computers (Gallistel and King 2009). Fulfilling this function requires533

memory registers whose states persist over a sufficiently long time, which must be534

appropriately connected to the processing components; it also requires a system of535

addresses that are stored in memory components and manipulated by an appropriate536

control structure. None of this comes for free by positing a certain function; for a537

functional hypothesis to prove correct, the structures that perform that function within538

the nervous system must be identified.539

The upshot is that cognition cannot be explained without accounting for the ways540

in which structures constrain functions and vice versa. In the long run, the mutual541

constraints between structures and functions lead cognitive psychologists and neuro-542

scientists to look to each other’s work to inform their analyses. At any given level of543

organization, the goal is to identify both what structures are in play and what functions544
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are performed. The more we know about functions and the context in which they are545

embedded, the more we can formulate sensible hypotheses about which structures546

must be involved. Similarly, the more we know about structures and the contextual547

factors that influence them, the more we can formulate sensible hypotheses about548

which functions they perform. The best strategy is to investigate both structures and549

functions simultaneously. As we will illustrate in the next section, this is the main550

driving force between the merging of neuroscience and cognitive psychology into551

cognitive neuroscience.552

Building on these observations about the relations between structures and func-553

tions, similar points can be made about implementation (or realization): there is no554

single implementation (or realization) level. Every system of organized components555

implements (realizes) the capacities of the whole it composes. Every capacity of a556

whole is implemented (realized) by its organized components. Implementation is thus557

relative to level. In other words, every level of a multilevel mechanism is implementa-558

tional relative to the level above it. The only exceptions to this occur at the (somewhat559

arbitrary) boundaries of cognitive neuroscientific inquiry—e.g., the whole behaving560

organism need not implement anything (at least as far as cognitive neuroscience is561

concerned).11
562

Relatedly, every level of a neurocognitive mechanism is neural—or more precisely,563

every level is either (at least partially) composed of neurons or is a component of a neu-564

ron. The fact that neurocognitive mechanisms “bottom out” in components of neurons565

is a contingent feature of the disciplinary boundaries of cognitive neuroscience. The566

crucial point for present purposes, in terms of deviation from the classical autonomist567

view, is that there is no “non-mechanistic” level of explanation to be added to the568

mechanistic ones.569

Whether a level of a neurocognitive mechanism is representational or compu-570

tational depends on whether it contains representations or performs computations571

(in accord with the above definitions of these terms). Many cortical areas and other572

large neural systems contain representations and perform computations in the rele-573

vant sense, so they are representational and computational. Many of their components574

(columns, nuclei) also contain representations and perform more limited computations575

over them; the computations they perform are component processes of the computa-576

tions performed by their containing systems. Therefore, large neural components are577

representational and computational, and the same holds for their components (e.g. net-578

works and circuits). Again, the computations performed by smaller components are579

constituents of the larger computations performed by their containing systems, and that580

11 Here we depart from Craver (2007, pp. 212ff.), who distinguishes between levels of mechanistic organi-
zation and levels of realization. Craver adopts the view that realization is a relation between two properties
of one and the same whole system, not to be confused with the relation that holds between levels of mecha-
nistic organization. (According to Craver, as according to us, levels of mechanistic organization are systems
of components, their capacities, and their organizational relations, and they are related compositionally to
other levels of mechanistic organization.) We reject the account of realization adopted by Craver; we hold
that each level of mechanistic organization realizes the mechanistic level above it and is realized by the
mechanistic level below it (Piccinini and Maley 2014). Realization, in its most useful sense, is precisely
the relation that obtains between two adjacent mechanistic levels in a multi-level mechanism and is thus a
compositional relation.
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is how the computations of their containing systems are mechanistically explained.581

At a still lower level, the response profiles of some single neurons reliably correlate582

with specific variables and it appears to be their function to correlate in this way; if583

this is correct, then they are representational in the relevant sense. Whether individual584

neurons perform computations over these representations is a matter of debate that can585

be left open. Sub-neuronal structures may or may not contain representations and per-586

form computations depending on the extent to which they satisfy the relevant criteria.587

At some point, we reach explanations that are no longer computational but instead are588

purely biophysical. Here certain biophysical mechanisms explain how certain neural589

systems register and transmit information.12 These purely biophysical (and lower)590

levels are no longer representational and computational in the relevant sense.591

Finally, whether a level of a neurocognitive mechanism is cognitive depends on592

whether and how it contributes to a cognitive capacity. Given our account in the593

previous section, to the effect that explaining cognitive capacities involves neural594

computation and representation, a neurocognitive level is cognitive depending on the595

extent to which the components of that level perform computations over representa-596

tions in a way that is relevant to explaining some cognitive capacity. As above, the597

lowest-level neural computations are explained purely biophysically. In some simple598

organisms, these simple computations may be sufficient to explain the organism’s599

behaviors. In more complex organisms, however, these simple computations combine600

with other simple neural computations to constitute higher level neural computations,601

which in turn constitute still higher level neural computations, and so on, until we602

reach the highest level neural computations, which explain cognitive capacities.603

An example of such an explanatory strategy would be the following sketch of an604

account of vision. Individual cells in V1 selectively respond to particular line orienta-605

tions from the visual scene. Several of these cells in conjunction form an orientation606

column, which provide the basis for edge detection in the visual scene. These orien-607

tation columns combine to constitute V1, which computes the boundaries of visual608

objects. V1 then operates in conjunction with downstream parietal and temporal areas609

to constitute the different “streams” of visual processing and visual object represen-610

tation.13
611

The resulting framework for explaining cognition is a mechanistic version of612

homuncular functionalism, whereby higher-level cognitive capacities are iteratively613

explained by lower-level cognitive capacities until we reach a level at which the lower-614

level capacities are no longer cognitive in the relevant sense (Attneave 1961; Fodor615

1968b; Dennett 1978; Lycan 1981; Maley and Piccinini 2013). The rise of cognitive616

neuroscience illustrates how this framework has developed and been applied (and con-617

tinues to develop and be applied) in scientific practice. In the next section, we highlight618

three aspects of cognitive neuroscience that demonstrate the development and appli-619

12 The purely biophysical level is reached when our explanation of the processes no longer appeals solely
to differences between different portions of the vehicles along relevant dimensions of variation—which
in the case of neural vehicles are mostly spike frequency and timing—in favor of the specific biophysical
properties of neurons, such as the flow of specific ions through their cell membranes.
13 We are not committed to the adequacy of this particular explanation of visual processing, just to its
exemplifying the explanatory strategy of iterated computational mechanisms that we are explicating here.
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cation of this framework: the incorporation of experimental protocols from cognitive620

psychology into neuroscience experiments, the evolution of functional neuroimaging,621

and the movement toward biological realism in computational modeling in cognitive622

science.623

6 How cognitive neuroscience exhibits multilevel mechanistic integration624

Cognitive neuroscience emerged as a discipline in the late 1980s. Prior to that time, cog-625

nitive science and neuroscience had developed largely in isolation from one another.626

Cognitive science developed between the 1950s and the 1970s as an interdisciplinary627

field comprised primarily of aspects of psychology, linguistics, and computer science.628

In linguistics, this involved the development of generative grammars aimed at explain-629

ing the syntax structuring human linguistic behavior. In psychology, researchers began630

developing information processing accounts aimed at explaining capacities like prob-631

lem solving and memory encoding. In computer science, researchers began developing632

computational models, involving discrete state-transitions, in order to model psycho-633

logical capacities like reasoning and problem solving. The development of cognitive634

science accelerated through the 1960s and 1970s, with these approaches proceeding635

on their own terms with little contact with neuroscience. While during this period636

the hypothesis space for cognitive functions was constrained, the lack of contact637

with neuroscientific evidence contributed to a significant underdetermination of these638

hypotheses by available evidence (cf. Anderson 1978).639

Meanwhile, neuroscience developed as an interdisciplinary field investigating both640

normal and abnormal functioning of the nervous system. Neurophysiological investi-641

gations had been carried out since at least the 1890s, at a time when neuroscience and642

psychology were seen as disciplines that should be integrated (e.g., Freud 1895/1966;643

James 1890/1983). But the term “neuroscience” was only coined in the 1960s with the644

development of new techniques for investigating the cellular and molecular levels of645

nervous systems and for relating those investigations to systems and behavioral lev-646

els. As a result, early neuroscience illuminated candidate structures for implementing647

cognitive functions, but it did so with little connection to functional context, thereby648

making limited progress towards explaining cognitive functions.649

Throughout the development of both fields in the 1960s and 1970s, neuroscience650

and cognitive science dealt with domains with a great degree of overlap. In principle,651

they could have merged; in practice, they tended to exclude one another. Concep-652

tual motivation for this exclusion was rooted in views already discussed: autonomist653

commitments (both implicit and explicit) among practicing cognitive scientists ver-654

sus reductionist commitments among many practicing neuroscientists. Meanwhile,655

practical motivation that reinforced the exclusion was rooted in the pace of early656

developments that shaped both fields. In neuroscience, techniques for investigation at657

the cellular and molecular level developed at a pace that outstripped and overshad-658

owed work at the systems level. In cognitive science, rapid developments in computer659

science and artificial intelligence in the 1970s provided a computational framework660

in which processes were decomposed into specific operations performed on symbolic661

(language-like) structures. This framework fostered a gulf between cognitive analyses662
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and neural analyses because there was no obvious way for these symbolic computa-663

tional units to be realized in neural tissue.664

The differences between the fields began to abate in the 1980s. Bechtel (2001)665

cites two chief contributors: the need for more sophisticated behavioral protocols in666

neuroscience, and the related development of functional neuroimaging techniques.667

The former developed naturally as neuroscience researchers shifted focus toward668

determining specific functions performed by recently discovered cellular and mole-669

cular structures, attempting to link those structures to particular behaviors. In order670

to draw these links and target higher-level functions, neuroscientists needed more671

sophisticated behavioral protocols. Cognitive psychologists had developed relatively672

sophisticated behavioral protocols in order to obtain informative data from a limited673

range of dependent variables. At the time, most experiments in cognitive psychology674

involved inference to some cognitive hypothesis based on patterns in two dependent675

variables: characteristic patterns of error human subjects exhibited on some task (error676

rate), and the typical amount of time taken for those subjects to perform the task (reac-677

tion time).678

As neuroscientists began to shift their explanatory ambitions, they ran up against the679

same limited range of dependent variables. Rather than reinventing the wheel, they680

began incorporating behavioral protocols from cognitive psychology and applying681

those protocols to experimental setups in which neural activity could be monitored682

in both humans and model organisms. These more sophisticated behavioral protocols683

allowed neuroscientists to form and test hypotheses about the contributions of cellular684

and molecular structures to higher-level functions.685

This disciplinary shift demonstrates how, in practice, functions constrain structures:686

sophisticated behavioral protocols provided the functional context necessary to con-687

strain the search for the structures involved in performing those functions. Of course,688

many of these protocols were subsequently revised in a give-and-take between the689

incoming physiological data and the existing functional models that motivated the690

protocols. But with the integration of these techniques and protocols, the underdeter-691

mination of structure-function mapping became a tractable empirical issue rather than692

a conceptual one.693

The other main contributor to the practical integration of psychology and neu-694

roscience has been the development of functional neuroimaging techniques, which695

allow measurement of physiological changes in large neural structures in response696

to performance of particular tasks. The first functional neuroimaging technique to697

be developed was Positron Emission Tomography (PET). PET involves injecting a698

radioactive tracer into a subject’s bloodstream, which can then be imaged as it decays699

to illuminate blood flow to different brain regions. In a seminal study, Fox et al. (1986)700

used PET to measure hemodynamic response in particular brain areas during different701

cognitive tasks—their results correlated sensory and motor tasks with increased blood702

flow in primary sensory and motor areas, respectively.703

Prior to the development of neuroimaging, the primary way to attribute specific704

cognitive functions to neural systems and thereby to relate neural activity to behavior705

(in humans) was through the study of behavioral deficits resulting from lesions due706

to some form of traumatic brain injury. While these lesion studies remain an integral707

part of cognitive neuroscience to this day, there are a number of potential confounding708
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factors involved in extrapolating from these data to brain function in non-pathological709

cases (see, e.g., Kosslyn and Van Kleeck 1990). Brain imaging assuages some of these710

concerns, and as a result the early research into the applications of PET for functional711

brain imaging set the stage for the explosion of research in cognitive neuroscience712

precipitated by the development of even more powerful and noninvasive imaging713

techniques like functional Magnetic Resonance Imaging (fMRI).714

The ability to correlate activity in different brain regions with specific tasks has715

improved our ability to map cognitive functions to neural structures. Underdetermi-716

nation problems remain, as cognitive functions cannot be simply read off of tasks and717

functional neuroimaging still has limits on spatial and temporal resolution that place718

corresponding limits on fine-grained attribution of functions to lower-level neural719

structures (see, e.g., Roskies 2009 for further discussion). Nonetheless, these neu-720

roimaging techniques provide valuable data to constrain structure-function mapping721

by situating putative functions within mechanistic context.722

This mechanistic context needs to be supplemented by further modeling in order723

to provide fully integrated explanations of how cognitive phenomena relate to neural724

activity. For instance, the recent trend toward model-based fMRI studies, in which725

models from computational neuroscience are incorporated into traditional fMRI exper-726

imental designs, demonstrates one way in which these integrated explanations are727

currently being approached (e.g., O’Doherty et al. 2007; cf. Egan and Matthews 2006;728

Povich forthcoming). These model-based imaging techniques illustrate, with partic-729

ular clarity, the applications of the multilevel mechanistic framework we have been730

advancing. At a relatively coarse-grained level, neuroimaging allows identification of731

the cortical and subcortical networks that are active in particular tasks. In order to deter-732

mine more precisely the functions performed by these intermediate-level networks,733

researchers look to modeling efforts in computational neuroscience that are highly734

constrained by the neurophysiology of the particular regions involved (more on this735

below). This strategy facilitates integration between different mechanistic levels and736

in so doing allows more precise identification of the functions involved in cognitive737

processes and the specific structures performing those functions. The proliferation of738

neuroimaging studies over the past two decades and, in particular, the current trend739

toward model-based approaches provide further evidence that cognitive neuroscience740

is indeed a science concerned with the complexities of structure-function mapping,741

rather than a science predicated on giving primacy to one over the other.742

Finally, the evolution of computational modeling in cognitive science also exem-743

plifies the shift from autonomist cognitive science to cognitive neuroscience. After744

McCulloch and Pitts (1943) introduced the first model of neural computation, three745

main modeling research programs developed. First, there is classical symbolic com-746

putationalism, which strives to explain cognitive capacities in terms of symbolic747

computation in putative autonomy from neuroscience (e.g., Newell and Simon 1972;748

Anderson 1983). Second is connectionism, which strives to explain cognitive capaci-749

ties in terms of neural network computations, though such neural networks are artificial750

models that are minimally (if at all) constrained by what is known about actual neural751

systems (e.g., Rosenblatt 1962; Feldman and Ballard 1982). The third modeling752

research program is computational neuroscience, which explains cognitive capaci-753

ties by building models of neural systems that are explicitly constrained by known754
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neuroanatomical and neurophysiological evidence (e.g., Hodgkin and Huxley 1952;755

Caianiello 1961; Stein 1965; Knight 1972; Wilson and Cowan 1972). The critical dif-756

ference is that while classicist and connectionist models cannot be mapped onto neural757

structures in any direct way, models from computational neuroscience target specific758

neural structures and form hypotheses about the specific functions they perform and759

how those functions contribute to cognitive behaviors (cf. Kaplan 2011). Thus, com-760

putational neuroscience models exhibit the integration of functions and structures that761

we have argued characterizes cognitive neuroscience.762

For much of their history, these three traditions developed largely independently763

from one another. Classical computationalism gained a solid footing in the 1970s and764

was based on the idea (outlined above in Sect. 2) that the brain is a universal, program-765

controlled digital computer. The idea behind this modeling paradigm was that cognitive766

processes can be seen as the software that is implemented on such computers and thus767

can be studied independently from the hardware/wetware implementing the software.768

But this analogy between natural cognitive systems and digital computers is problem-769

atic for two reasons. First, whether nervous systems are universal, program-controlled770

digital computers is an empirical question; such a question cannot be settled indepen-771

dently of neuroscience. Further, and more importantly, evidence from neuroscience772

suggests that neural computation, in the general case, is in fact not a form of digital com-773

putation (Piccinini and Bahar 2013). Since digital computation is a necessary (though774

insufficient) condition for a system to be a universal, program-controlled digital com-775

puter, current best evidence suggests that nervous systems are in fact not such systems.776

In the 1980s, connectionism re-emerged and challenged the hardware/software777

analogy in favor of “neurally inspired” network models (Rumelhart et al. 1986, p. 131).778

But typical neo-connectionist psychology was not grounded in known neural processes779

and mechanisms. Connectionists made largely arbitrary assumptions about the number780

of neurons, number of layers, connectivity between neurons, response properties of781

neurons, and learning methods. Connectionist psychology made such assumptions782

in order to model and explain psychological phenomena. Since these assumptions783

were not grounded in neuroscience, connectionists were merely developing a different784

take on the standard computer analogy, replete with their own commitment to the785

autonomy of psychology from neuroscience. Thus, while connectionism pushed in786

the right direction, it fell short of actually integrating psychology and neuroscience.787

From the point of view of cognitive neuroscience, this kind of connectionism was788

more on the side of classical, autonomist cognitive science than it was on the side of789

neuroscience. As a result, both classical computationalism and connectionism foster790

models of cognitive systems that are autonomous from structural (neuroscientific)791

constraints (cf. Weiskopf 2011).792

While philosophers were captivated by the divide between classical computation-793

alism and connectionism, computational neuroscientists developed powerful tools for794

modeling and explaining cognitive phenomena in terms of actual biological processes.795

They imported theoretical tools from mathematics and physics and took advantage of796

the exponentially increasing power of modern computers. By now, there are many797

highly sophisticated research programs developing detailed models of how specific798

neural structures perform cognitive functions at various levels of organization (e.g.,799

Dayan and Abbott 2001; Ermentrout and Terman 2010; Eliasmith 2013).800
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The field has matured to a point where connectionism is disappearing as an inde-801

pendent research tradition, instead merging into computational cognitive neuroscience802

(O’Reilly and Munakata 2000; O’Reilly et al. 2014). Most of the classicist research803

programs are also being shaped by this emergence of computational neuroscience.804

While we lack space for more detailed treatment, recent pronouncements of some key805

figures in classical and connectionist modeling indicate that the field is undergoing a806

deep transformation.807

Early attempts at building classical cognitive architectures were based on produc-808

tion systems (Anderson 1983; Laird and Newell 1987). Production systems model809

cognitive processes as software packages specifying a series of “if… then…” state-810

ments (rules) taking inputs to outputs. Initially, these quintessentially symbolic models811

were in no way constrained by neural data. Nevertheless, their proponents expressed812

great confidence: “Cognitive skills are realized by production rules. This is one of813

the most astounding and important discoveries in psychology and may provide a base814

around which to come to a general understanding of human cognition” (Anderson815

1993, p. 1). More recently, work on these same cognitive architectures has evolved to816

respect multiple levels of computational organization that are constrained by evidence817

from neuroscience. A stark transition can be seen, in particular, in Anderson’s work,818

where his initial ambitions for his ACT-R production system architecture (as a univocal819

model for cognition) have been replaced by the acknowledgement that hybrid archi-820

tectures are more promising. In a recent paper, Anderson et al. argue that “theories at821

different levels of detail and from different perspectives are mutually informative and822

constraining, and furthermore no single level can capture the full richness of cognition”823

(Jilk et al. 2008). Similarly, Laird’s most recent presentation of his Soar architecture824

advocates constraint by evidence from neuroscience (as well as from psychology and825

AI): “we have found that combining what is known in psychology, in neuroscience,826

and in AI is an effective strategy to building a comprehensive cognitive architecture”827

(Laird 2012, p. 22).828

Similar transitions can be seen in the works of other leading cognitive scientists.829

Stephen Kosslyn, a pioneer of mental imagery and the view that mental imagery830

involves a special, pictorial representational format, went from a traditional theory831

based primarily on behavioral data (Kosslyn 1980) to a thoroughly cognitive neu-832

roscientific framework (Kosslyn 1994; Kosslyn et al. 2006). Kosslyn’s trajectory is833

a good illustration of the process of deepening explanations via the investigation of834

underlying mechanisms (Thagard 2007), which is the hallmark of cognitive neuro-835

science. Kosslyn’s early theory of mental imagery faced skeptical resistance from836

defenders of a non-pictorial alternative (Pylyshyn 1981). By appealing to fMRI and837

neuropsychological evidence, Kosslyn later gained widespread acceptance for his pic-838

torial theory. The debate over the format of mental images is not entirely over, but the839

way to resolve it is not to reject neuroscientific evidence as irrelevant or insufficient840

(cf. Pylyshyn 2002, 2003). The way to resolve it is to learn even more about how the841

brain realizes and processes mental images.842

An analogous shift from traditional cognitive science to cognitive neuroscience843

can be seen in Anne Treisman’s landmark work on attention (Treisman and Gelade844

1980; Treisman 1996, 2009). James McClelland, who pioneered the neo-connectionist845

models that were developed autonomously from neuroscience (Rumelhart et al. 1986),846
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subsequently co-founded the Center for the Neural Basis of Cognition (a collaboration847

between Carnegie-Mellon University and the University of Pittsburgh) and has become848

a computational cognitive neuroscientist (e.g., McClelland and Lambon Ralph 2013).849

Michael Posner’s authoritative treatment of the subtractive method employed in cogni-850

tive psychology (Posner 1976) became the basis for the rigorous use of neuroimaging851

methods, beginning with PET, that are the backbone of much cognitive neuroscience852

(Posner and Raichle 1994).853

Because we are still in the midst of this interdisciplinary shift toward the integration854

of psychology and neuroscience, it is easy to miss how revolutionary it is. The old855

view of psychology as autonomous from neuroscience (as well as the faith in the856

reductionist program, from the other direction) has been effectively supplanted by a857

new framework where multilevel integration rules the day.858

7 Conclusion859

The cognitive neuroscience revolution consists in rejecting the scientific practices860

stemming from the traditional two-level view of cognitive science and replacing them861

with a fully integrated science of cognition. The traditional two-level view maintained862

a division of labor between the sciences of cognition proper (psychology, linguistics,863

anthropology, AI, and philosophy) and sciences of implementation (neuroscience).864

This framework has fallen by the wayside as cognitive neuroscience has risen to865

prominence.866

The old two-level picture fell apart for several reasons. First, new modeling and867

empirical techniques—including the emergence of neuroimaging methods—have pro-868

vided more sophisticated ways to link cognitive capacities to the activities of specific869

neural systems. Second, the dubious assumptions about the nervous system that bol-870

stered the received view, such as the assumption that the nervous system is a universal,871

program-controlled digital computer, simply have not panned out. Third, the received872

view of cognitive explanation, according to which there is one privileged cognitive873

level and one distinctive and autonomous explanatory style—functional analysis—has874

turned out to be faulty.875

We have argued that philosophy of cognitive science should take heed. In place876

of the eliminative/reductive and classical functionalist/autonomist views of cognitive877

science, we have proposed the framework of integrated, multilevel, representational,878

and computational neural mechanisms as capturing the essence of successful expla-879

nation in cognitive neuroscience. Any discipline that studies cognition can fruitfully880

contribute to this project by characterizing one or more neurocognitive level(s) using881

the various empirical and analytical techniques at its disposal. In addition to avoid-882

ing the problems of the old two-level view, this framework also avoids the pitfalls883

of both reduction and elimination by retaining a role for organization within each884

neurocognitive level. While much work remains to be done in order to more fully885

understand the implications, applications, and limitations of this framework, the first886

step lies in accepting the revolutionary shift in our understanding of the physical bases887

of cognition that has already taken place.888
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