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Abstract We study cardinal invariants connected to certain classical orderings on
the family of ideals on ω. We give topological and analytic characterizations of these
invariants using the idealized version of Fréchet-Urysohn property and, in a spe-
cial case, using sequential properties of the space of finitely-supported probability
measures with the weak∗ topology. We investigate consistency of some inequalities
between these invariants and classical ones, and other related combinatorial questions.
At last, we discuss maximality properties of almost disjoint families related to certain
ordering on ideals.
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188 P. Borodulin-Nadzieja, B. Farkas

1 Introduction

Recall that an infinite set P ⊆ ω is a pseudo-intersection of a family A ⊆ P(ω) if
P ⊆∗ A (which means that P\A is finite) for every A ∈ A.

The pseudo-intersection number p is the minimal size of a family A with the strong
finite intersection property (SFIP in short, i.e.

⋂
A′ is infinite for every nonempty

finite A′ ⊆ A) without a pseudo-intersection.
One can consider other ideals than Fin = [ω]<ω in the above definitions. It was

done in various ways in many papers. We always assume that each ideal I on ω con-
tains Fin and ω /∈ I. By I∗ we denote the filter dual to I, i.e. I∗ = {ω\I : I ∈ I},
and by I+ the family of all sets outside I, i.e. I+ = P(ω)\I. The analogous nota-
tion is used also for filters. For an ideal I on ω one can define the analogs of the
pseudo-intersection number for I as e.g.

• the minimal cardinality of a family of elements of the dual filter I∗ which does not
have a pseudo-intersection in I∗ (p(I∗), see [5]; add∗(I), see [8]);

• the minimal cardinality of a family of elements of the dual filter I∗ which does not
have a pseudo-intersection (χp(I∗), see [5]; cov∗(I), see [8]) ;

• the minimal cardinality of a family A with the I-strong finite intersection property
(every finite subfamily has an intersection outside I) without a set outside I which
is almost included (in the sense of I) in every member of A (pI , see [9]; p(I), see
[4]).

The aim of this paper is to present another way of generalizing the pseudo-inter-
section number. This generalization is, we believe, quite natural, particularly in the
context of topological motivations.

In Sect. 2 we recall some classical definitions and theorems about ideals on ω

which will be used later in the paper. We introduce here also the main definition of our
paper: a generalization of pseudo-intersection number with respect to different orders
on ideals. So, we define the Katětov-intersection number, pK(I) for any ideal I: the
minimal character of an ideal J with J �K I. We define analogously pKB(I) for
Katětov-Blass order and p1−1(I) for the variant of Katětov-Blass order in which we
consider only one-to-one functions.

The idea of these coefficients came from considerations which are far away, at
least outwardly, from the combinatorics of ω. This is explained in Sect. 3 which is
devoted to applications of the defined coefficients in topology and functional analysis.
We show that pK(I) is the smallest weight of a (locally) countable space which is
not I-Fréchet-Urysohn. Furthermore, we show the connection between pK(Z) and
certain sequential properties of finitely-supported probability measures.

In Sect. 4 we present a couple of results concerning inequalities between our coeffi-
cients and the classical ones. We show that pKB(I) ≤ b for each meager ideal I. Then
we discuss the values of these invariants in the Cohen-model. At last in this section,
we present a model of 2ω1 = 2ω in which pKB(I) ≤ ω1 for each ideal I.

In Sect. 5 we discuss the existence of MAD families which cannot be permuted
into a fixed ideal under cardinal assumptions and under Martin’s Axiom for σ -cen-
tered posets. This section is inspired by the question if the almost-disjointness number
generalized with respect to the one-to-one order is well-defined.
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Cardinal coefficients 189

2 Preliminaries and basic definitions

We say that an ideal I on ω is analytic (Borel, Fσ , meager, null, etc.) if it is analytic
(Borel, Fσ , meager, null, etc.) as a subset of 2ω. An ideal I is a P-ideal if for every
{An : n ∈ ω} ⊆ I there is A ∈ I such that An ⊆∗ A for every n. An ideal on ω is tall
if its dual filter does not have a pseudo-intersection, i.e. each infinite X ⊆ ω contains
an infinite element of the ideal. The following families are well-known examples of
tall analytic P-ideals: the density zero ideal: Z = {

A ⊆ ω : limn→∞ |A∩n|
n = 0

}
, and

the summable ideal: I 1
n

= {
A ⊆ ω : ∑

n∈A
1

n+1 < ∞}
.

Sierpiński proved that if an ideal is measurable, then it has measure zero; and if it
has the Baire-property, then it is meager. In particular, all analytic ideals are meager
null sets. Furthermore, there is a nice characterization of meager ideals (and filters):

Proposition 2.1 ([2, Proposition 9.4]) An ideal I on ω is meager if, and only if I∗
is feeble which means that there is a partition (Pn) of ω into finite sets such that
{n ∈ ω : X ∩ Pn = ∅} is finite for each X ∈ I∗, i.e. {n ∈ ω : Pn ⊆ A} is finite for
each A ∈ I.

We will use the characterizations of Fσ ideals and analytic P-ideals as ideals asso-
ciated to submeasures. A lower semicontinuous (LSC) submeasure on ω is a function
ϕ : P(ω) → [0,∞] such that

(0) ϕ(∅) = 0;
(1) ϕ(A) ≤ ϕ(A ∪ B) ≤ ϕ(A) + ϕ(B) for each A, B ⊆ ω;
(2) ϕ({n}) < ∞ for each n ∈ ω;
(3) ϕ(A) = limn→∞ ϕ(A ∩ n) for each A ⊆ ω.

We will use the notation ‖A‖ϕ = limn→∞ ϕ(A\n) for A ⊆ ω. Clearly, ‖A∪ B‖ϕ ≤
‖A‖ϕ + ‖B‖ϕ if A, B ⊆ ω but it does not necessarily hold for infinitely many sets.
With every LSC submeasure we can associate two ideals defined by

Fin(ϕ) = {A ⊆ ω : ϕ(A) < ∞},
Exh(ϕ) = {A ⊆ ω : ‖A‖ϕ = 0}.

It is easy to see that Fin(ϕ) is an Fσ (i.e. �0
2) ideal and Exh(ϕ) is an Fσδ (i.e. �0

3)
P-ideal if they are not equal to P(ω), and Exh(ϕ) ⊆ Fin(ϕ). From now on, if we dis-
cuss Fin(ϕ) (resp. Exh(ϕ)), we always assume that Fin(ϕ) = P(ω) (Exh(ϕ) = P(ω)).
Hence, without loss of generality we can assume that ‖ω‖ϕ = 1. Note that Exh(ϕ) is
tall iff limn→∞ ϕ({n}) = 0.

We will use the following characterization due to Mazur and Solecki:

Theorem 2.2 ([11] and [14]) If I is an ideal on ω, then

• I is an Fσ ideal iff I = Fin(ϕ) for some LSC submeasure ϕ;
• I is an analytic P-ideal iff I = Exh(ϕ) for some LSC submeasure ϕ;
• I is an Fσ P-ideal iff I = Fin(ϕ) = Exh(ϕ) for some LSC submeasure ϕ.

Using the representation of analytic P-ideals of the form Exh(ϕ) and Proposition
2.1, it is easy to prove that analytic P-ideals are meager sets (without using Sierpiński’s
result).
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190 P. Borodulin-Nadzieja, B. Farkas

If f : X → Y, A ⊆ X , and A ⊆ P(X) then denote f [A] = { f (a) : a ∈ A} ⊆ Y
and f ′′[A] = { f [A] : A ∈ A} ⊆ P(Y ). Similarly, we will use f −1[B] and ( f −1)′′[B]
for B ⊆ Y and B ⊆ P(Y ).

Recall the definition of the Katětov order on the family of ideals on ω:

I ≤K J iff there is an f : ω → ω such that A ∈ I ⇒ f −1[A] ∈ J .

Of course, we can use the Katětov-order (and other orders) for filters as well:
F ≤K G iff F∗ ≤K G∗.

Several deep results were proved about the Katětov and other classical partial orders
and preorders on ideals, see e.g. [9] and [12]. We will need the following properties
of the Katětov-order:

Proposition 2.3 ([12, Proposition 1.7.2] and A. Blass (private communication)) The
Katětov-order is c+-downward and c+-upward directed, that is, every family of ideals
on ω with cardinality at most c has both a ≤K-lower bound and a ≤K-upper bound.

Proof Assume {Iα : α < c} is a family of ideals on ω. We will show that it has a
≤K-lower bound I and a ≤K-upper bound J . Let {Aα : α < c} ⊆ [ω]ω be an almost
disjoint family on ω (i.e. |Aα ∩ Aβ | < ω for each α < β < c) and fix bijections
eα : ω → Aα . The ideal I generated by

⋃{e′′
α[Iα] : α < c} is then a Katětov-lower

bound of {Iα : α < c} because eα witnesses I ≤K Iα for each α.
Now, let { fα : α < c} ⊆ ωω be an independent family of functions, that is, for every

α0, . . . , αk−1 < c and n0, . . . , nk−1 ∈ ω there is some x ∈ ω such that fαi (x) = ni

for all i < k (see [6, Theorem 3] for the proof of the existence of such a family).
Let J be the ideal generated by the family

⋃{( f −1
α )′′[Iα] : α < c}. Notice that no

finite union of elements from the family covers ω, so ω /∈ J . Indeed, if Ai ∈ Iαi and
ni ∈ ω\Ai for i < k ∈ ω, then there is an x ∈ ω such that fαi (x) = ni for each i < k
so x /∈ ⋃{ f −1

αi
[Ai ] : i < k}. Clearly, Iα ≤K J is witnessed by fα for each α. ��

Proposition 2.4 Meager filters are cofinal in the Katětov-order.

Proof Let F be an arbitrary filter on ω. Fix a partition (Pn) of ω into finite sets
such that |Pn| = n, Pn = {pn

k : k < n}. Let G be the filter generated by the sets
F̃ = {pn

k : k ∈ F ∩ n} for F ∈ F . The filter G is meager because F̃ ∩ Pn = ∅ for each
n > min(F) and because of Proposition 2.1. Now, the function g : ω → ω defined by
g(pn

k ) = k witnesses that F ≤K G. ��
The character of a filter F , denoted by χ(F), is the minimal cardinality of a family

generating F . Similarly, the character of an ideal I is the character of its dual filter.
The following theorem reveals some properties of the characters of nonmeager filters.
Denote by b the unbounding number, i.e. the minimal cardinality of a set B ⊆ ωω that
is ≤∗-unbounded where f ≤∗ g iff {n ∈ ω : f (n) > g(n)} is finite.

Theorem 2.5 (R. C. Solomon [15] and P. Simon [unpublished], see [2, Theorem
9.10]) If an ideal (or filter) has character less than b, then it is meager but there is a
nonmeager ideal (filter) generated by b sets.
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Cardinal coefficients 191

Recall the definition of the Katětov-Blass order: I ≤KB J if there is a finite-to-one
f : ω → ω such that A ∈ I ⇒ f −1[A] ∈ J . We will use one more preorder stronger
than the Katětov-Blass:

Definition 2.6 (One-to-one order) For ideals I and J let I ≤1−1 J if there is a
one-to-one f : ω → ω such that A ∈ I ⇒ f −1[A] ∈ J .

One can think about one more natural order here, defined in the same way as ≤1−1
but with “bijection” instead of “one-to-one function”. However, the following fact
shows that it would not give us anything new.

Proposition 2.7 If J strictly extends Fin then I ≤1−1 J if and only if there is a
permutation g : ω → ω such that A ∈ I ⇒ g−1[A] ∈ J .

Proof The “if” part is trivial. Conversely, assume f is one-to-one and A ∈ I ⇒
f −1[A] ∈ J . We can modify f on an infinite element B of J to be a permutation g
such that g � (ω\B) ≡ f � (ω\B) and g[B] = f [B] ∪ (ω \ ran( f )). Then g is as
required. ��

Using the above proposition, I ≤1−1 J ( = Fin) means that I can be permuted into
J (by g−1). Clearly, Fin ≤1−1 J for each J , and J is maximal in this order iff J is a
prime ideal. There is no largest element in this order because there are 2c many prime
ideals but only c many permutations.

For all unexplained terminology concerning cardinal invariants we refer the reader
to [2].

We will finish this section with the main definitions of the paper. We will start with
a general one.

Definition 2.8 For a partial order (or simply a relation) � on ideals on ω the �-inter-
section number of an ideal I on ω is

p�(I) = min{χ(J ) : J � I}

provided there is an ideal J such that J � I.
The �-intersection number of a filter F is p�(F) = p�(F∗).

We will be interested only in the Katětov-intersection number (which we will denote
for simplicity by pK(I)), Katětov-Blass-intersection number (pKB(I)), and one-to-
one-intersection number (p1−1(I)).

We list some immediate facts.

Proposition 2.9

(a) p ≤ p1−1(I) ≤ pKB(I) ≤ pK(I);
(b) if I � J , then p�(I) ≤ p�(J ) for any partial order (or preorder) �;
(c) pK(I) = p for any I which is not tall.

The last part of the above proposition explains why pK and other cardinal coeffi-
cients defined above in a sense generalize the pseudo-intersection number. In fact, we
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192 P. Borodulin-Nadzieja, B. Farkas

can indicate also the generalization of the notion of pseudo-intersection itself in this
context. Assume I is an ideal on ω. For an injective sequence x̄ = (xn) ∈ ωω, the
copy of I on x̄ is the ideal

I(x̄) = {A ⊆ ω : {n ∈ ω : xn ∈ A} ∈ I}.

Let F be a family with SFIP (or simply a filter) and assume that I is an ideal. We say
that an injective sequence x̄ = (xn) ∈ ωω is an I-intersection of F if ω\F ∈ I(x̄)

for each F ∈ F . In other words, a set X = ran(x̄) is an I-intersection of F if we can
reorder the elements of X in such a way that elements of F are in the copy of I∗ on
the rearranged X . Notice that x̄ is a Fin-intersection of F iff ran(x̄) is a pseudo-inter-
section of F . Plainly, p1−1(I) is the minimal cardinality of a family with SFIP without
an I-intersection.

3 Analytic background of the problem

Orders on ideals have gained some attention recently, mainly because it turned out
to be a useful tool in investigating properties of forcings of the form P(ω)/I and
Mathias forcings M(I), where I is an ideal (see e.g. [9] or [10]). In this section we
will show that the Katětov-intersection number has applications in certain topological
and analytical considerations.

All topological spaces in what follows are Hausdorff. The weight of a space X
(denoted by w(X)) is the minimal cardinality of a base of topology of X . Recall that
a topological space is Fréchet-Urysohn (FU) if for every subset A of this space and
every x ∈ A there is a sequence in A converging to x . The definition of the pseudo-
intersection number can be reformulated in topological terms: the pseudo-intersection
number is the smallest weight of a (locally) countable (even completely regular or
normal) space which is not FU (it is a special case of Theorem 3.2).

We can generalize the FU property for ideals using the notion of I-convergency.
A sequence (xn) in a space X I-converges to x if

∀ U open
(
x ∈ U ⇒ {n ∈ ω : xn /∈ U } ∈ I

)
.

Definition 3.1 Let I be an ideal on ω. A space X satisfies the I-Fréchet-Urysohn
(I-FU) condition if for every A ⊆ X and every x ∈ A there is a sequence in A
I-converging to x .

Clearly, if I is not tall, then the I-FU condition is equivalent to the (Fin-)FU
condition.

Theorem 3.2 pK(I) is the smallest weight of a countable space which is not I-FU.

Proof Let F be a filter, χ(F) = pK(I), and F �K I∗. Let X = ω ∪{F} be equipped
with the topology inherited from the Stone space of the Boolean algebra generated by
F , that is
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Cardinal coefficients 193

(a) subsets of ω are open;
(b) U ∪ {F} is an open neighborhood of F iff U ∩ ω ∈ F .

Clearly, w(X) = χ(F) and F ∈ ω. We claim that there is no sequence (xn) in ω which
I-converges to F . Assume (xn) is a sequence in ω and let f ∈ ωω, f (n) = xn . Using
the assumptionF �K I∗ we deduce that there is a V ∈ F such that f −1[V ] /∈ I∗. Con-
sider the open neighborhood U = V ∪{F} of F . Then {n : xn /∈ U } = ω\ f −1[V ] /∈ I
so (xn) does not I-converge to F .

Conversely, let X be a countable space with w(X) < pK(I), let A ⊆ X , and
x ∈ A\A. Then the family {A ∩ U : U is an open neighborhood of x} forms a filter-
base on A. Let F be the generated filter. Since χ(F) ≤ w(X) we know that F ≤K I∗
is witnessed by a function f ∈ ωω.

We claim that the sequence defined by xn = f (n) I-converges to x . Let U be
an open neighborhood of x . Then {n : xn /∈ U } = ω\ f −1[A ∩ U ] ∈ I and we are
done. ��

We can give another characterization of pK(I) in the special case when I = Z .
Recall that a completely regular space X can be seen as a closed subspace of the space
of Borel probability measures P(X) on X with the weak∗ topology.

The subbase of this topology is given by the following sets:

U f,ε(μ) =
⎧
⎨

⎩
ν ∈ P(X) :

∣
∣
∣
∣
∣
∣

∫

X

f dμ −
∫

X

f dν

∣
∣
∣
∣
∣
∣
< ε

⎫
⎬

⎭

where μ ∈ P(X), f ∈ Cb(X) = {bounded continuous real-valued functions on X},
and ε > 0. Recall that in this topology (μn) converges to μ if and only if

∫

X

f dμn →
∫

X

f dμ

for every f ∈ Cb(X).
The embedding X → P(X) is given by x �→ δx where δx is the Dirac-measure

concentrated on x . We will use the notation Aδ = {δy : y ∈ A} for A ⊆ X .
Denote by conv (A) the convex hull of A for A ⊆ P(X). We will be interested in

conv (X δ), i.e. in the probability measures with finite support.

Definition 3.3 We say that X satisfies the convex Fréchet-Urysohn condition if for
every A ⊆ X , if x ∈ A then there is a sequence in conv (Aδ) which converges to δx .

In [13, Theorem 1] the following result was proved:

Theorem 3.4 Assume X is compact. A measure μ ∈ P(X) is a weak∗ limit of mea-
sures of finite support if and only if μ has a uniformly distributed sequence (xk) in X,
that is

μ = lim
n→∞

1

n

∑

k<n

δxk .
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194 P. Borodulin-Nadzieja, B. Farkas

Remark 3.5 (1) In [13] this theorem was formulated only for compact spaces, but
the proof presented there does not use the assumption of compactness and the
assertion is true for every (completely regular) topological space.

(2) It is clear from the proof of this theorem that if μn ∈ conv (X δ) and μn → μ,
then the sequence (xk) can be chosen from

⋃
n<ω supp(μn).

(3) Using this theorem, a space X is convex FU iff if for every A ⊆ X , if x ∈ A then
there is a sequence (xk) in A such that δx = limn→∞ 1

n

∑
k<n δxk .

Theorem 3.6 Assume X is completely regular. Then X satisfies the convex FU con-
dition if and only if X satisfies the Z-FU condition.

Proof Assume X satisfies the convex FU condition and let A ⊆ X, x ∈ A\A.
Then, according to Remark 3.5 there is a sequence (xk) in A such that δx =
limn→∞ 1

n

∑
k<n δxk .

We claim that (xk) Z-converges to x . Assume on the contrary that there is an open
neighborhood U of x such that H = {n : xn /∈ U } /∈ Z . Using complete regularity of
X , there is a continuous f : X → [0, 1] such that f (x) = 0 but f � {xn : n ∈ H} ≡ 1.
Then by the assumption on (xk) we have

∫

X
f d

(
1

n

∑

k<n

δxk

)

= 1

n

∑

k<n

f (xk) → f (x) = 0

but 1
n

∑
k<n f (xk) ≥ |H∩n|

n for each n, a contradiction because H /∈ Z .
Conversely, assume that X is Z-FU and let A ⊆ X, x ∈ A\A. Then there is a

sequence (xk) in A which Z-converges to x .
We claim that δx = limn→∞ 1

n

∑
k<n δxk . Let f ∈ Cb(X), | f | ≤ c, ε > 0 and

x ∈ U be an open set such that | f (x) − f (y)| < ε for each y ∈ U . If H = {k : xk ∈
U } ∈ Z∗, then

∣
∣
∣
∣
∣

f (x) − 1

n

∑

k<n

f (xk)

∣
∣
∣
∣
∣
= 1

n

∣
∣
∣
∣
∣
∣

∑

k∈n∩H

(
f (x) − f (xk)

) +
∑

k∈n\H

(
f (x) − f (xk)

)
∣
∣
∣
∣
∣
∣

≤ 1

n

(|H ∩ n| · ε + |n\H | · 2c
) → ε if n → ∞.

Because ε was arbitrary, we are done. ��
So, in a sense we can call pK (Z) the convex pseudo-intersection number.
The idea of the cardinal invariant pK(I) came from certain analytic considerations

contained in [3], where authors were exploring a problem if there is a Mazur space
without the Gelfand-Phillips property. The Gelfand-Phillips condition is widely used
in functional analysis. The Mazur property is a certain condition weaker than reflex-
ivity used in the theory of Pettis integrability (for the detailed discussion about these
properties, confront [3]). It is known that there is a Gelfand-Phillips space without the
Mazur property. It is still open if every Mazur space is Gelfand-Phillips.

In [3] the following question connected to the above considerations was raised.
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Cardinal coefficients 195

Problem 3.7 Is there a minimally generated Boolean algebra A ⊆ P(ω) such that
no ultrafilter on A has a pseudo-intersection but for every ultrafilter F on A we have
F ≤K Z∗?

In [3] it was shown that if there is such a Boolean algebra and this Boolean algebra
is dense in P(ω), then there is a space which is Mazur but not Gelfand-Phillips1.
Briefly speaking, the minimal generation implies that every measure on A is in the
sequential closure of measures of finite support. Since F ≤K Z∗ for every ultrafilter
F on A, every measure of finite support is a limit of measures finitely supported on
ω (cf. Remark 3.5 and Theorem 3.6 above) and so every measure is in the sequen-
tial closure of measures finitely supported on ω. This property simplifies the form of
functionals on the space of measures on A and in this way it can be used to achieve
Mazur property. In [3] it was also proved that if pK(Z) > h, then there is a Boolean
algebra as described above.

In the next section we will show that consistently there is an ideal (unfortunately,
not Z) with the above property (see Theorem 4.7).

Problem 3.8 Do there exist reasonable topological characterizations of pKB(I) and
p1−1(I)?

4 Consistency results

The cardinal sup{pK(I) : I is an ideal on ω} ≤ c is the smallest cardinal κ such that
there is no ≤K-upper bound of all ideals generated by at most κ many elements. First
we show that this supremum is determined by cardinal exponentiation.

Proposition 4.1 pK(I) ≤ κ for each ideal I if and only if 2κ > 2ω.

Proof First, we prove the “if” part. Let {(A0
α, A1

α) : α < κ} ⊆ ([ω]ω)2 be an indepen-
dent system, that is A1

α = ω\A0
α for each α, and if D ∈ [κ]<ω and f : D → 2 then

| ⋂{A f (α)
α : α ∈ D}| = ω (see [2, Proposition 8.9]).

For an F ∈ 2κ let IF be the ideal generated by {AF(α)
α : α < κ}. Observe that

χ(IF ) = κ for every F . Suppose for a contradiction that there is an ideal I such that
IF ≤K I for each F witnessed by gF ∈ ωω. Since 2κ > c there are distinct F0, F1 ∈ 2κ

such that gF0 = gF1 . Let α be such that F0(α) = F1(α). Then AF0(α)
α ∪ AF1(α)

α = ω.
Consequently

g−1
F0

[AF0(α)
α ] ∪ g−1

F1
[AF1(α)

α ] = g−1
F0

[AF0(α)
α ] ∪ g−1

F0
[AF1(α)

α ]
= g−1

F0
[AF0(α)

α ∪ AF1(α)
α ] = ω

so ω ∈ I, a contradiction.
Now, we prove the converse implication. Assume that 2κ = 2ω. Then the family of

ideals generated by at most κ elements has cardinality c. Using Proposition 2.3, this
family has a ≤K-upper bound I and so pK(I) > κ , a contradiction. ��

We have an easy upper bound for pKB(I) if I is meager:

1 In fact, in [3] it was shown for the case of one-to-one order but it can be immediately generalized.
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196 P. Borodulin-Nadzieja, B. Farkas

Proposition 4.2 If I is meager, then pKB(I) ≤ b.

Proof It is enough to show that if I is meager and J ≤KB I, then J is also meager
because then we can use Theorem 2.5 (there is a nonmeager ideal of character b).

Assume the partition (Pn) witnesses that I is meager (see Proposition 2.1), and
assume f : ω → ω is finite-to-one and witnesses J ≤KB I. We can define a par-
tition (P ′

n) of ran( f ) into finite sets by recursion on n such that ∀ n ∈ ω ∃ k ∈ ω

Pk ⊆ f −1[P ′
n]. Then (P ′

n) witnesses that J � ran( f ) is meager and it clearly implies
that J is meager too because of the natural homeomorphism P(ω) → P(ran( f )) ×
P(ω \ ran( f )). ��

The assumption on meagerness of the ideal and the use of finite-to-one functions
are necessary because of part (a) and part (b) of the following theorem. Denote by
Cα the standard Cohen forcing which adds α many Cohen reals and let C = C1. It is
well-known that if κ > ω, then V Cκ |� b = ω1.

Theorem 4.3 Assume GCH. Then in V Cω2 the following hold:

(a) there is a filter F with p1−1(F) = ω2;
(b) there is a meager filter G with pK(G) = ω2;
(c) pK(I) = ω1 for all Fσ ideals and analytic P-ideals.

Proof (a): We interpret Cω2 as the ω2 stage finite support iteration of C where now
let C be the set of finite injective sequences from ω ordered by reverse inclusion.
A trivial density argument shows that if ċ is the generic (Cohen-)real, then �C“ċ
is a permutation on ω.”

Notice that for every subfamily of [ω]ω in V Cω2 of size ω1, a nice name of it appears
already in some V Cα for α < ω2. Additionally, there are ω

ω1
2 = ω2 such families in

V Cω2 so we can fix an enumeration {Ḟα : α < ω2} of all names of bases of filters of
cardinality ω1 in V Cω2 in such a way that Ḟα ∈ V Cα for each α.

If ċα ∈ V Cα+1 is the α’s Cohen-real, then |ċα[X ] ∩ Y | = ω for each X, Y ∈
[ω]ω ∩ V Cα : if X = {xn : n ∈ ω}, then Dk = {p ∈ C : ∃ n ≥ k p(xn) ∈ Y } is dense
in C for each k ∈ ω.

We show that

V Cω2 |� “
⋃ {

ċ′′
α[Ḟα] : α < ω2

}
forms a base of a filter.”

Indeed, consider α < β < ω2 and F ∈ Ḟα, G ∈ Ḟβ . Since ċα[F] ∈ V Cα+1 ⊆ V Cβ

is infinite, the set ċβ [G] ∩ ċα[F] is also infinite. By induction we can show that every
finite subfamily of this family has infinite intersection.

Clearly, the filter F generated by this family satisfies p1−1(F) = ω2.

(b) follows from part (a), Proposition 2.9 and Proposition 2.4.
(c) Now let Cω2 be the set of finite functions from ω2 × ω to 2 ordered by reverse

inclusion. Let J be the ideal generated by the first ω1 Cohen-reals, i.e. by
{c−1

α [{1}] : α < ω1}
where cα : ω → 2 is the α’s Cohen-real. We show that J witnesses part (c), i.e. for
each I as in the theorem J �K I.
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Case 1: Let I = Fin(ϕ) be an Fσ ideal. Assume G is a (V, Cω2)-generic filter
and f ∈ ωω in V [G]. Then there is a countable H ⊆ ω2 such that both
ϕ � Fin and f are in V [G ∩ CH ] where CH is the Cohen-forcing which
adds Cohen-reals indexed by elements of H . If α ∈ ω1\H then cα is Cohen
over V [G ∩ CH ] so it is enough to show that

Dn =
{

p ∈ C : ϕ
(

f −1[p−1[{1}]]
)

> n
}

is dense in C for each n ∈ ω because then f cannot witness J ≤K I in the
extension. Assume q ∈ C is defined on an initial segment. If ϕ( f −1[|q|]) =
∞, then we are done, because f cannot show any Katětov-reduction (so
we do not have to deal with Dn). If not, then f −1[|q|] ∈ Fin(ϕ) so we can
choose a large enough � > |q| such that ϕ( f −1[�\|q|]) > n. Define p ∈ C
by p � |q| = q and p � [|q|, �) ≡ 1. Then p ≤ q and p ∈ Dn .

Case 2: Assume I = Exh(ϕ) is an analytic P-ideal, ‖ω‖ϕ = 1. Similarly to the
previous case it is enough to show that

Dn =
{

p ∈ C : ϕ
(

f −1[p−1[{1}]]\n
)

> 0.5
}

is dense in C for each n. Assume q ∈ C is defined on an initial segment. If
‖ f −1[|q|]‖ϕ > 0 then there is nothing to worry about. If not, then we can
choose a large enough � > |q| such that ϕ( f −1[�\|q|]\n) > 0.5. Let p be
chosen as in Case 1.

��
We list here some related questions:

Problem 4.4

• Is pK(I) ≤ b for each analytic (P-)ideal I?
• Is p1−1(I) = pKB(I) for each ideal I?
• Is p < p1−1(I) (or at least p < pKB(I)) consistent for some meager (or even ana-

lytic (P-)) ideal I? Also, for the purposes described in Section 3, the consistency
of h < pK(Z) is particularly interesting.

• Is pKB(I) < b (or at least p1−1(I) < b) consistent for some tall ideal I?

In Proposition 4.1 we showed that 2κ > 2ω implies that pK(I) ≤ κ and thus
pKB(I) ≤ κ for each ideal I, and that for the Katětov-order the converse implication
also holds. Now, we show that ∀ I pKB(I) ≤ ω1 does not imply 2ω1 > 2ω. We present
a model of 2ω1 = 2ω in which pKB(F) ≤ ω1 for each filter F .

Moreover, in this model ≤KB (so ≤1−1 too) will not be upward directed on filters
generated by ω1 sets (it clearly implies that pKB(F) ≤ ω1 for each filter F).

Theorem 4.5 It is consistent with ZFC that 2ω1 = 2ω is arbitrarily large and the
Katětov-Blass-order is not upward directed on filters generated by ω1 sets. In partic-
ular, pKB(F) ≤ ω1 for each filter F .
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Proof Let 2ω = 2ω1 be arbitrarily large. We will construct two filters F and G gener-
ated by ⊆∗-descending sequences {Ẋα : α < ω1} and {Ẏα : α < ω1} inductively in a
model obtained by an ω1 stage finite-support iteration of σ -centered forcing notions
(Pα, Q̇β)α≤ω1,β<ω1 .

It is well-known that a ≤c-step finite-support iteration of σ -centered forcing notions
is σ -centered, in particular ccc, so it does not collapse cardinals. It will be trivial that

|Pω1 | = c so cV Pω1 = cV and (2ω1)V Pω1 = (2ω1)V .
At the α’s stage (in V Pα ) we have initial segments {Xξ : ξ < α} and {Yξ : ξ < α}.

Let X ′
α and Y ′

α be pseudo-intersections of these sequences. We want to add Ẋα ∈ [X ′
α]ω

and Ẏα ∈ [Y ′
α]ω such that | f −1[Ẋα] ∩ g−1[Ẏα]| < ω for each pairs ( f, g) ∈ V Pα of

finite-to-one functions from ω to ω. Then in the final extension F and G cannot have
a common upper bound in ≤KB.

Let X = X ′
α and Y = Y ′

α , and let Q = Q̇α be the following forcing notion:
(s, t, �) ∈ Q if s ∈ [X ]<ω, t ∈ [Y ]<ω, and � is a finite partial function from FO × FO
to ω such that | f −1[s] ∩ g−1[t]| ≤ �( f, g) for every ( f, g) ∈ dom(�) (where FO
denotes the set of all finite-to-one functions from ω to ω). Define the order in the
following way: (s, t, �) ≤ (s′, t ′, �′) if s ⊇ s′, t ⊇ t ′, dom(�) ⊇ dom(�′), and
�( f, g) ≤ �′( f, g) for each ( f, g) ∈ dom(�′).

Clearly, it is a partial order. It is also σ -centered: fix s ∈ [X ]<ω, t ∈ [Y ]<ω, and
consider conditions (s, t, �i ) ∈ Q for i < n ∈ ω. Let � be the following partial func-
tion: dom(�) = ⋃{dom(�i ) : i < n} and �( f, g) = min{�i ( f, g) : i < n, ( f, g) ∈
dom(�i )}. Then (s, t, �) ≤ (s, t, �i ) for every i < n.

Let Ȧ and Ḃ be Q-names for the union of the first and respectively second coordi-
nates of the conditions in the generic filter. We claim that these sets can serve as Ẋα

and Ẏα .
�Q“ Ȧ is infinite”: The set Dn = {p ∈ Q : |s p| > n} is dense in Q for each n

(where p = (s p, t p, �p)) because if p ∈ Q is arbitrary, then s p can be extended by
any element of the infinite set ω \ ⋃{ f ′′[g−1[t]] : ( f, g) ∈ dom(�)}.

Similarly, �Q“Ḃ is infinite.”
At last, we have to show that E( f,g) = {p ∈ Q : ( f, g) ∈ dom(�p)} is dense in Q.

Any p ∈ Q can be extended by adding ( f, g) to dom(�p) and choosing �( f, g) to be
large enough. ��
Problem 4.6 Is it consistent with ZFC that 2ω1 = 2ω and pKB(I) ≤ ω1 (or p1−1(I) ≤
ω1) for each ideal I but ≤KB (respectively ≤1−1) is upward directed on ideals generated
by ω1 elements?

Note that if it is possible for ≤1−1, then in such a model c ≥ ω3: It is easy to see
that if ≤1−1 is upward directed on ideals generated by ω1 sets, then any ω2 ideals with
character ω1 have an upper bound in ≤1−1. If there would be only 2ω = 2ω1 = ω2
many ideals with character ω1, then they would form a ≤1−1-bounded set, i.e. there
would be an ideal I with p1−1(I) > ω1.

Remark 4.7 In [3, Theorem 7.4] the authors proved that consistently there is a Bool-
ean algebra A ⊆ P(ω) such that all ultrafilters on A are meager but none of them has
a pseudo-intersection. Using Theorem 4.3(a) and the fact that h = ω1 in the Cohen
model, we can mimic this proof to show a similar result. Namely, we can prove that,
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consistently, there is an ideal I and a Boolean algebra A ⊆ P(ω) such that for each
ultrafiler F on A there is no pseudo-intersection of F but F ≤K I∗.

5 Permuting MAD families into ideals

The pseudo-intersection number is not the only cardinal coefficient which can be
generalized in the way presented in the paper. E.g. we can easily define the analog
of the tower number. Recall that a tower is a family with SFIP whose elements can
well-ordered by ⊆∗. Define e.g.

t1−1(I) = min{χ(fr(T )) : T is a tower and fr(T ) �1−1 I∗},

where I is an ideal and fr(T ) is the filter generated by T . As in the case of p1−1, we have
t1−1(Fin) = t. However, in general this coefficient may be not well defined, i.e. maybe
the family of all (filters generated by) towers are ≤1−1-bounded. E.g. consider the filter
F from Theorem 4.3(a). Since in the Cohen-model there are no towers of character
ω2 [Kunen, unpublished] and every filter generated by ω1 sets is one-to-one-below F ,
every tower is one-to-one–below F , and t1−1(F∗) in undefined.

Similarly, we can define the cardinal coefficient a1−1(I) analogous to the almost-
disjointness number a. An infinite family A = {Aα : α < λ} ⊆ [ω]ω is almost disjoint
(AD) if Aα ∩ Aβ is finite for every α = β. A is maximal almost disjoint (MAD)
family if for every X ∈ [ω]ω there is α < λ such that Aα ∩ X is infinite, i.e. A is
⊆-maximal among AD families. For an almost disjoint family A denote by id(A) the
ideal generated by A. Equivalently, an almost disjoint family is maximal if the filter
dual to id(A) does not have a pseudo-intersection. The almost disjointness number a
is the minimal cardinality of a MAD family.

Definition 5.1 Let I be an ideal on ω. An almost disjoint family A is I-maximal if
id(A) �1−1 I.

Using Proposition 2.7, if I = Fin then an AD family is I-maximal iff it cannot be
permuted into I.

Clearly, an AD family is Fin-maximal iff it is a MAD family. Furthermore, if
I ≤1−1 J and an AD family is J -maximal, then it is I-maximal as well. In particular,
each I-maximal AD family is a MAD family. From now on we will use the phrase
“I-maximal MAD family.” It is trivial that if I is not tall, then each MAD family is
I-maximal.

As before, let

a1−1(I) = min{χ(id(A)) : A is I − maximal}.

This section is devoted to study when the above cardinal coefficient is well-defined,
i.e. when there is an I-maximal MAD family.

Note that it is easy to see that id(A) is meager for each AD family A.
Recall that add∗(I) is one of the generalizations of p mentioned in Introduction.

Proposition 5.2 add∗(I) = c implies that there is an I-maximal MAD family.
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Proof Fix an enumeration { fα : ω ≤ α < c} of injective sequences of natural numbers.
We will construct the desired MAD family inductively. Start with a disjoint partition
(An) of ω into infinite sets and assume we have constructed all Aξ ’s for ξ < α < c.

If for some ξ < α we have f −1
α [Aξ ] /∈ I, then take Aα = Aξ .

If not, then consider the family { f −1
α [Aξ ] : ξ < α} ⊆ I. Using the assumption

add∗(I) = c we can find a set B ∈ I such that f −1
α [Aξ ] ⊆∗ B for every ξ < α. Let

Aα = f ′′
α [ω\B]. Then {Aξ : ξ ≤ α} is an AD family, and f −1

α [Aα] ∈ I∗.
In this way we will construct an AD family A = {Aα : α < c} such that

id(A) ≤1−1 I. ��
In generalizing Proposition 5.2 we have to be careful. It is easy to construct an almost

disjoint family which can be extended only by a set from a given ideal I. Indeed, con-
sider ω = A ∪ B, where A ∈ I and define a MAD family B = {Bα : α < c} on B and
a non-maximal almost disjoint family A = {Aα : α < c} on A. The family defined by
{Aα ∪ Bα : α < c} can be extended only by sets from I.

We will show that under Martin’s Axiom for σ -centered posets (i.e. p = c, see [1])
there are I-maximal MAD families for each Fσ ideal and analytic P-ideal I. Recall that
this axiom does not imply that add(N ) = c (see [7, 522S]) and add∗(I) = add(N )

for a lot of tall analytic P-ideals (e.g. for tall summable and tall density ideals, see [8,
Theorem 2.2]).

Theorem 5.3 Let I be a tall Fσ ideal or a tall analytic P-ideal. Then MA(σ -centered)

implies that there is an I-maximal MAD family.

Proof Let I be a tall analytic P-ideal and fix an enumeration { fα : ω ≤ α < c} of
injective sequences of natural numbers. As in the proof of Proposition 5.2, we con-
struct the desired MAD family inductively. Start with a disjoint partition (An) of ω

into infinite sets and assume we have constructed all Aξ ’s for ξ < α < c.
As before, if for some ξ < α we have f −1

α [Aξ ] /∈ I, then let Aα = Aξ . If not,
consider the almost disjoint family A of sets f −1

α [Aξ ] ∈ I for ξ < α.
We claim that MA(σ -centered) implies that A can be extended to an AD family

by a set C from I+. It would be enough because then we can let Aα = f ′′
α [C] and

proceed as in the proof of Proposition 5.2.
Let I be a tall Fσ ideal or a tall analytic P-ideal and assume that A ⊆ I is an AD

family. Then we have to find a σ -centered forcing notion P(A) such that in V P(A) the
family A can be extended by an I-positive set.

Let P(A) be the natural forcing notion that extends A with a new element. Namely,
let p = (n p, s p,B p) ∈ P(A) iff n p ∈ ω, s p ⊆ n, and B p ∈ [A]<ω. We say that
p ≤ q iff n p ≥ nq , s p ∩ nq = sq , and (s p\sq) ∩ ⋃

Bq = ∅.
It is easy to see that P(A) isσ -centered and that the sets Dk = {p ∈ P(A) : |s p| > k}

and DA = {p ∈ P(A) : A ∈ B p} are dense in P(A) for each k ∈ ω and A ∈ A. Con-
sequently, if Ṡ is a P(A)-name such that �P(A) Ṡ = ⋃{s p : p ∈ Ġ} (where Ġ is the
canonical name of the generic filter), then �P(A) Ṡ ∈ [ω]ω and �P(A) |Ṡ ∩ A| < ω

for each A ∈ A.
We have to show that �P(A) Ṡ ∈ I+. We have two cases:

Case I: I = Fin(ϕ) is a tall Fσ ideal. We will show that �P(A) ϕ(Ṡ) = ∞. It
is enough to prove that Ek = {p ∈ P(A) : ϕ(s p) > k} is dense in P(A)
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for each k ∈ ω. Fix a p ∈ P(A). Since A ⊆ I and ϕ is subadditive we
have

ϕ
(
ω\

(
n p ∪

⋃
B p

))
= ∞

so by the LSC property of ϕ we can find a finite F ⊆ ω\(n p ∪ ⋃
B p

)

such that ϕ(F) > k. If q = (max(F) + 1, s p ∪ F,B p), then q ∈ Ek

and q ≤ p. We are done.
Case II: I = Exh(ϕ) is a tall analytic P-ideal, ‖ω‖ϕ = 1. We will show

that �P(A) ‖Ṡ‖ϕ = 1. It is enough to prove that H ε
k = {p ∈

P(A) : ϕ(s p\k) > ε} is dense in P(A) for each ε < 1 and k ∈ ω.
To see this, fix a condition p ∈ P(A). Since A ⊆ I and ‖ · ‖ϕ is
subadditive we conclude that

ϕ
(
ω\

(
n p ∪ k ∪

⋃
B p

))
≥

∥
∥
∥ω\

(
n p ∪ k ∪

⋃
B p

)∥
∥
∥

ϕ
= 1

so by the LSC property of ϕ we can find a finite F ⊆ ω\(n p ∪k∪⋃
B p

)

such that ϕ(F) > ε. If q = (max(F) + 1, s p ∪ F,B p), then q ∈ H ε
k

and q ≤ p. The proof is complete.

��
We finish with some related questions:

Problem 5.4

• Does there exist an I-maximal MAD family for a tall (analytic) ideal I in ZFC?
• Is it consistent with ZFC that there is no I-maximal MAD family for some (nice)

I?
• Is it consistent with ZFC+¬CH that there are I-maximal MAD families for each

ideal?
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