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Abstract

In 2016 Béziau, introduces a restricted notion of paraconsistency, the
so-called genuine paraconsistency. A logic is genuine paraconsistent if it
rejects the laws ϕ,¬ϕ ` ψ and ` ¬(ϕ ∧ ¬ϕ). In that paper the author
analyzes, among the three-valued logics, which of them satisfy this prop-
erty. If we consider multiple-conclusion consequence relations, the dual
properties of those above mentioned are ` ϕ,¬ϕ and ¬(ψ ∨ ¬ψ) `. We
call genuine paracomplete logics those rejecting the mentioned properties.
We present here an analysis of the three-valued genuine paracomplete
logics. A very natural twist structures semantics for these logics is also
found in a systematic way. This semantics produces automatically a sim-
ple and elegant Hilbert-style characterization for all these logics. Finally,
we introduce the logic LGP which is genuine paracomplete, is not genuine
paraconsistent, not even paraconsistent, and cannot be characterized by
a single finite logical matrix.

Keywords: Three-valued logics; Paraconsistent logics; Paracomplete logics; Dual
logic; Twist structures semantics.

1 Introduction: from genuine paraconsistency to gen-
uine paracompleteness

Classically, a negation ¬ for a given logic L is semantically characterized by two
properties: (1) for no sentence ϕ it is the case that ϕ and ¬ϕ are simultaneously
true; and (2) for no sentence ϕ it is the case that ϕ and ¬ϕ are simultaneously
false. Principle (1) is known as the law of non-contradiction (NC), while (2) is
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usually called the law of excluded middle (EM). In terms of multiple-conclusion
consequence relations,1 both laws can be represented as follows:

(NC) ϕ,¬ϕ ` and (EM) ` ϕ,¬ϕ.

This is why both laws are usually considered as being dual one from the
other. If L has a conjunction ∧ (which corresponds to commas on the left-hand
side of `) and a disjunction ∨ (which corresponds to commas on the right-hand
side of `), then both laws can be written as2

(NC) ϕ ∧ ¬ϕ ` and (EM) ` ϕ ∨ ¬ϕ.

Let L be a logic with a negation ¬. If it satisfies (NC), then the negation ¬ is
said to be explosive, and L is explosive (w.r.t. ¬). On the other hand, L is said
to be paraconsistent (w.r.t. ¬) if (NC) does not hold in general, that is: ϕ,¬ϕ 0
in general. This means that there are formulas ϕ and ψ such that ϕ,¬ϕ 0 ψ (or
ϕ∧¬ϕ 0 ψ, if L has a conjunction). Dually, a logic L is paracomplete (w.r.t. ¬)
if (EM) does not hold in general, that is: 0 ϕ,¬ϕ in general. That is, there are
formulas ϕ and ψ such that ψ 0 ϕ,¬ϕ (or ψ 0 ϕ ∨ ¬ϕ, if L has a disjunction).

As observed in [2], (NC) is sometimes expressed as follows:

(NC′) ` ¬(ϕ ∧ ¬ϕ).

However, as the authors have shown in [2], both principles are independent.
Moreover, they show that many paraconsistent logics (for instance, several three-
valued paraconsistent logics such as Priest’s logic LP) validate (NC′), which is
arguably counterintuitive or undesirable. This motivates the definition of a
strong paraconsistent logic as being a logic in which both principles, (NC) and
(NC′), are not valid in general. In subsequent papers (see, for instance, [1])
strong paraconsistent logics were rebaptized as genuine paraconsistent logics.
Thus, a logic L with negation and conjunction is genuine paraconsistent if, for
some formulas ϕ and ψ,

(GP1) ϕ ∧ ¬ϕ 0 and (GP2) 0 ¬(ψ ∧ ¬ψ).

Given the duality between (NC) and (EM), it makes sense to consider (in a
logic with disjunction) the dual property of (NC′), namely

(EM′) ¬(ϕ ∨ ¬ϕ) ` .

This motivates the following definition, which is the subject of the present
paper:

1We can consider a multiple-conclusion consequence relation ` as a binary relation between
sets of formulas Γ and ∆, such that Γ ` ∆ means that any model of every γ ∈ Γ is also a
model for some δ ∈ ∆ [21].

2It should be observed that in [2] the authors use NC for representing that, for any set Γ
of formulas, it is the case that Γ ` ¬(ϕ ∧ ¬ϕ).
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Definition 1.1 A logic L with negation and disjunction is said to be a genuine
paracomplete logic (or a strong paracomplete logic) if neither (EM) nor (EM′)
are valid, that is: for some formulas ϕ and ψ,

(GP1D) 0 ϕ ∨ ¬ϕ and (GP2D) ¬(ψ ∨ ¬ψ) 0 .

Observe that, in terms of a Tarskian (single-conclusion) consequence relation
(see Definition 2.1), (GP2D) is equivalent to the following:

(GP2∗D) ¬(ψ ∨ ¬ψ) 0 ϕ for some formulas ϕ,ψ.

In semantical terms, if (GP2D) holds then ¬(ψ ∨ ¬ψ) is satisfiable, that is: it
has some model.

The aim of this paper, which is a continuation of our previous work [14], is
the study of some basic systems of genuine paracomplete logics. An interesting
start point is considering all the three-valued systems that can be defined, taking
into account some reasonable restrictions, this will be the subject of Section 3.
Another genuine paracomplete system called LGP, which cannot be character-
ized by a single finite-valued logic matrix, will be presented in the remaining
sections.

The notions of genuine paraconsistent and genuine paracomplete logics can
be analyzed in view of the logic principles above mentioned, as well as its con-
nection with the basic properties of connectives.

Let L be a logic with negation ¬ and conjunction ∧. In the case ¬ satisfies
the right-introduction rule:

Γ, ϕ ` ∆ implies that Γ ` ¬ϕ,∆

it is easy to see that (EM) is valid, hence L is not paracomplete. Indeed, from
ϕ ` ϕ it follows that ` ϕ,¬ϕ, by the right-introduction rule for ¬. Moreover, if
L additionally satisfies (NC) then clearly it will satisfy (NC′): from ϕ,¬ϕ ` it
follows that ϕ ∧ ¬ϕ ` and then ` ¬(ϕ ∧ ¬ϕ).

If L satisfies the right-introduction rule and satisfies (GP2) for some formula,
then it is genuine paraconsistent. Indeed, if (GP2) holds for some formula ϕ
then 0 ¬(ϕ∧¬ϕ) and so, by contraposition of the right-introduction rule for ¬,
we infer that ϕ ∧ ¬ϕ 0. That is, (GP1) also holds for ϕ.

Dually, if L is a logic with negation ¬ and disjunction ∨ such that ¬ satisfies
the left-introduction rule:

Γ ` ϕ,∆ implies that Γ,¬ϕ ` ∆

then (NC) is valid in L, that is, L is not paraconsistent. Indeed, note that from
ϕ ` ϕ it follows that ϕ,¬ϕ ` for every ϕ. Moreover, if L additionally satisfies
(EM) then it satisfies (EM′).
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Now, if L satisfies the left-introduction rule and (GP2D) for some formula,
then it is genuine paracomplete. Indeed, if (GP2D) holds for some ϕ, then
(GP1D) also holds for ϕ, by taking contraposition of the left-introduction rule
of ¬.

Example 1.2

1. Propositional intuitionistic logic IPL is paracomplete, but it is not genuine
paracomplete: the formula ¬(ϕ ∨ ¬ϕ) is unsatisfiable.

2. The Belnap-Dunn logic FOUR (with the standard truth ordering) is both
genuine paraconsistent and genuine paracomplete.

3. Nelson logic N4 (see [19]) is both genuine paraconsistent and genuine para-
complete.

4. The three-valued logic MH, introduced in [3], is genuine paracomplete and
explosive. As we shall see, it is one of the possible three-valued genuine
paracomplete logics which extend the 2-valued truth functions of classical
propositional logic CPL, to be studied in Section 3.

The organization of the paper is as follows: after introducing in Section 2
some basic concepts and notation to be used along the paper, in Section 3 all
the possible three-valued genuine paracomplete logics (satisfying certain basic
requirements) will be characterized. In Section 4 we show in detail how to
characterize one of the three-valued logics described in the previous section
by means of a useful algebraic semantics known as twist structures semantics.
This semantics can be systematically extended to the other logics, as we shall
see. Moreover, it is possible to find from such semantics a simple Hilbert-style
axiomatization for all these logics, as we show in Section 6. In Section 7 an
example of a genuine paracomplete (not paraconsistent) logic called LGP is
given, showing in Section 8 that this logic cannot be characterized by a single
finite logical matrix. Finally, in Section 9 we present some concluding remarks.

2 Basic concepts

We consider propositional signatures Θ, which are families of connectives to-
gether with their arities. By simplicity, we will only consider signatures with
a finite set of connectives. Consider, from now on, an infinite denumerable set
V = {pn : n ∈ N} of propositional variables. The (absolutely free) algebra of
formulas over Θ generated by V will be denoted by For(Θ), and its elements
will be called formulas (over Θ). The propositional variables are also called
atoms (or atomic formulas). Formulas will be denoted by lowercase Greek let-
ters, while theories, which are sets of formulas, will be denoted by uppercase
Greek letters.
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Definition 2.1 A (Tarskian) consequence relation ` between theories and formu-
las is a relation satisfying the following properties, for every theory Γ∪∆∪{ϕ}:

(Reflexivity) if ϕ ∈ Γ, then Γ ` ϕ;

(Monotonicity) if Γ ` ϕ and Γ ⊆ ∆, then ∆ ` ϕ;

(Transitivity) if ∆ ` ϕ and Γ ` ψ for every ψ ∈ ∆, then Γ ` ϕ.

` is called structural if, in addition, it holds: Γ ` ϕ implies that ρ[Γ] ` ρ(ϕ),
for every substitution ρ over Θ.3 If there exists some non-empty theory Γ and
some ϕ such that Γ 6` ϕ, ` is called non-trivial.

Sometimes, in order to define a logic it is required that ` be finitary (or
compact).4 However, here we consider a logic as it is established in Definition 2.2.

Definition 2.2 A logic over Θ is a pair L = 〈For(Θ),`L〉, where `L is a struc-
tural and non-trivial Tarskian consequence relation such that if its signature Θ
contains a binary connective →, Modus Ponens (MP) must be satisfied, that is:
ϕ→ ψ,ϕ `L ψ for any formulas ϕ and ψ.

As usual, the fact that ϕ can be inferred from Γ in L will be denoted by
Γ `L ϕ. The subscript L will be dropped whenever the logic is clear from the
context.

The expressiveness of a logic depends on the available connectives in its
signature: thus, as we have pointed out in the introduction, for talking about
paracompleteness we need a negation and a disjunction satisfying particular
conditions. In order to obtain more expressive logics, we are going to complete
the signature with an appropriate conjunction and an appropriate implication.
In Definition 2.3 we establish some conditions on connectives so they can be
considered as conjunction, disjunction, and implication.

Definition 2.3 Let L be a logic over the signature Θ with binary connectives ∧,
∨ and →. Then:

1. ∧ is a conjunction for L when: Γ ` ϕ ∧ ψ iff Γ ` ϕ and Γ ` ψ.

2. ∨ is a disjunction for L when: Γ, ϕ ∨ ψ ` σ iff Γ, ϕ ` σ and Γ, ψ ` σ.

3. → is an implication for L when: Γ, ϕ ` ψ iff Γ ` ϕ→ ψ.

Observe that the notions of conjunction and disjunction are the usual ones
considered in abstract logic, see for instance [23]. In order to find a suitable
implication for the genuine paraconsistent logics L3A and L3B investigated

3That is, for every endomorphism ρ over the algebra For(Θ) of formulas. From now on,
we will write f [X] to denote the set {f(x) : x ∈ X} for any function f and set X contained
in its domain.

4Informally speaking, it means that every deduction can be obtained from a finite number
of hypothesis. In formal terms: if Γ ` ϕ then Γ0 ` ϕ for some finite Γ0 contained in Γ.
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in [13], the authors define the concept of classical implication. It is not difficult
to prove in the context of Tarskian consequence relations that the notion of
implication of Definition 2.3 implies the notion of classical implication given
in [13]. The usual manner to define many-valued logics is by means of a logical
matrix.

Definition 2.4 A (logical) matrix over the signature Θ is a structure M =
〈V, F,D〉, where:

V is a non-empty set of truth values (domain);

F := {fc : c ∈ Θ} is a family of truth functions, such that fc : Dn → D
if c is a logical connective in Θ with arity n;

D is a subset of V (set of designated values).

Observe that A = 〈V, F 〉 is an algebra for the signature Θ.

Definition 2.5 Given a matrix M over Θ, a function v : V −→ V that maps
atoms into elements of the domain is called a valuation over M.

Any valuation v can be uniquely extended, as usual, to a homomorphism
v : For(Θ) −→ V such that v(c(α1, . . . , αn)) = fc(v(α1), . . . , v(αn)). Now we
can define the notion of model:

Definition 2.6 A valuation v over M is a model of the formula ϕ if v(ϕ) ∈ D.
A model of a set of formulas is a model of each of its elements. A formula ϕ is
a tautology in M, denoted by |=M ϕ, if every valuation is a model of ϕ.

Whenever the matrix is clear from the context, the subscript will be dropped.
It is also possible to define a consequence relation by means of a matrix.

Definition 2.7 Given a matrix M, its induced consequence relation, denoted by
`M, is defined by: Γ `M ϕ if every model of Γ is a model of ϕ. We denote by
LM = 〈For(Θ),`M〉 the logic obtained from this consequence relation.

In case a logic is defined via the induced consequence relation of a matrix
M and the cardinality of the set of truth values ofM is n < ω then the logic is
called an n-valued logic.

Now we define neoclassical connectives. This name can be easily understood
if we identify the ‘True’ value with ‘designated value’ and the ‘False’ value with
‘non-designated value’. These conditions are generalizations of those that satisfy
and in some way define the nature of the connectives in classical logic. The next
definition is common in the literature [13, 2].

Definition 2.8 Let M = 〈V, F,D〉 be a matrix, D the set of non-designated
values (i.e. D = V \D), and v any valuation over M. Then:
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1. ∧ is a neoclassical conjunction, if it holds that:
v(ϕ ∧ ψ) ∈ D iff v(ϕ) ∈ D and v(ϕ) ∈ D.

2. ∨ is a neoclassical disjunction, if it holds that:
v(ϕ ∨ ψ) ∈ D iff v(ϕ) ∈ D and v(ϕ) ∈ D.

3. → is a neoclassical implication, if it holds that:
v(ϕ→ ψ) ∈ D iff either v(ϕ) ∈ D or v(ψ) ∈ D.

Observe that conditions of neoclassicality of Definition 2.8 are more restric-
tive than those on Definition 2.3. Specifically, we have that items 2 and 3
on Definition 2.8 imply items 2 and 3 on Definition 2.3. Moreover, item 1 on
Definition 2.8 is equivalent to item 1 on Definition 2.3.

Definition 2.9 (see [2]) Let V and V1 be sets with n and m elements, respectively,
such that V1 ( V . We say that a function � : V k −→ V is an enlargement of
a function � : V k

1 −→ V1, if the restriction of � to V1 coincides with � (i.e.
�|V k

1
= �).

Definition 2.10 Let L1 be a n-valued logic whose set of truth values is V1 and
L2 a m-valued logic whose set of truth values is V2, such that V1 ( V2 and the
set of connectives of L1 is a subset of the connectives of L2. L2 is called a
enlargement of L1 if all the truth functions in L2 are enlargements of the truth
functions in L1.

The last definition can be recast in algebraic terms as follows: given L1 and
L2 as above, let Ai be the algebra underlying the matrixMi of Li, for i = 1, 2.
Then, L2 is an enlargement of L1 if and only if A1 is a proper subalgebra of the
reduct of A2 to the signature of A1.

By adapting the proof of Lemma 2.3 in [9] we get the following result:

Proposition 2.11 Let L2 be an enlargement of L1 such that, if Di is the set of
designated values of Li (for i = 1, 2), then D1 = D2 ∩ V1. Then, the reduct of
L2 to the signature of L1 is a sublogic of L1, that is: for every set of formulas
Γ ∪ {ϕ} over the signature of L1, Γ `L2 ϕ implies that Γ `L1 ϕ. In particular,
if both logics have the same signature then L2 is a sublogic of L1.

3 Three-valued genuine paracomplete logics

In this section we study the notion of genuine paracompleteness among logics
LM = 〈For(Θ),`M〉, where M = 〈{0, 1

2 , 1}, F,D〉, i.e. three-valued logics
defined over a suitable signature Θ. Particularly 0 and 1 are identified with
False and True respectively. This implies that 1 ∈ D and 0 6∈ D. The goal is
to make a detailed analysis to find all the three-valued genuine paracomplete
logics such that are enlargements of classical logic, apart from some nice features
like being neoclassical, classical, and symmetric,5 whenever it is possible. As a
consequence of Proposition 2.11, all of them will be sublogics of classical logic.

5A binary connective � is called symmetric if a� b = b� a.
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ϕ ¬ϕ
0 1
1
2 n

1 0

(a)

∨ 0 1
2 1

0 0 d1 1
1
2 d1 d2 d3

1 1 d3 1

(b)

Table 1: Partial tables for negation and disjunction

3.1 Minimal Paracomplete logics

There are two connectives involved in Definition 1.1, namely ¬ and ∨ i.e. nega-
tion and disjunction. In other words, to get a three-valued genuine paracomplete
logic we need to consider a signature containing at least ¬ and ∨ and define a
suitable set D of designated values, as well as the interpretation F (the truth
tables) for ¬ and ∨ in the logical matrix M = 〈{0, 1

2 , 1}, F,D〉.

First of all, since we are considering connectives that are enlargements of
the 2-valued truth functions of classical logic, we have already fixed some of the
values of the truth tables, namely those that are boxed in Table 1. As a result
of this, only the second row in the table of negation and five entries in the table
of disjunction should be analyzed in order to fix their values. However we want
our connectives to be well behaved, therefore we add the following restrictions
to the connectives:

Connective Enlargement Neoclassical Symmetric
¬ X N/A N/A
∨ X X X

These conditions reduce the set of unknown values to n, d1, d2 and d3 as
shown in Table 1.

Let us start by analyzing the characteristics that must obey this pair of
connectives in order to satisfy condition GP1D of Definition 1.1. In other words
it is necessary to set the values in such a way that ϕ ∨ ¬ϕ is not a tautology.

Note that if we assign 1 to n in Table 1(a) then, in every row, either ϕ or ¬ϕ
are designated and, since disjunction is neoclassical, ϕ∨¬ϕ is always designated.
Therefore, n must be in {0, 1

2}. Up to this point, we know that 1 ∈ D and 0 6∈ D
but, if we set 1

2 as designated, once again in every row either ϕ or ¬ϕ will be
designated, thus ϕ∨¬ϕ becomes a tautology. Hence, in a three-valued genuine
paracomplete logic we must have D = {1}. This last result in combination with
neoclassicality of ∨ forces to have d1, d2 ∈ {0, 1

2} and d3 = 1 in Table 1(b). As
a result, all the variables considered now are n, d1 and d2, and all of them take
values in {0, 1

2}.

On the other hand, condition GP2D of Definition 1.1 corresponds to the
condition of ¬(ϕ ∨ ¬ϕ) being satisfiable. Let us analyze it by cases:
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ϕ ¬ϕ ϕ ∨ ¬ϕ ¬(ϕ ∨ ¬ϕ)
0 1 1 0
1
2 0 0 1
1 0 1 0

Table 2: Truth table case n = 0 and d1 = 0

ϕ ¬ϕ ϕ ∨ ¬ϕ ¬(ϕ ∨ ¬ϕ)
0 1 1 0
1
2

1
2 0 1

1 0 1 0

Table 3: Truth table case n = 1
2 and d2 = 0

Case n = 0

Considering the negation whose table takes the value 0 for n, we have the
following sub-cases:

1. If d1 = 0, GP1D and GP2D hold and Definition 1.1 is satisfied, regardless
of the value of d2, as Table 2 shows. GP1D holds since, in the third
column, ϕ ∨ ¬ϕ is not a tautology due to the value 0 in the second row.
On the other hand, GP2D holds since, in the fourth column, ¬(ϕ ∨ ¬ϕ)
has a model due to the value 1 in the second row.

2. If d1 = 1
2 then, for any valuation, v(¬(ϕ ∨ ¬ϕ)) = 0 and so GP2D does

not hold.

Therefore, if n = 0 the only feasible value for d1 is 0. Thus we have two possible
combinations d1 = 0, d2 = 1

2 , and d1 = d2 = 0. See Table 4(a) and Table 4(c)
respectively.

Case n = 1
2

When n = 1
2 , we have the following sub-cases:

1. If d2 = 0, then GP1D as well as GP2D hold as desired, without considering
d1, as we can see in Table 3 analogously to Table 2.

2. If d2 = 1, then v(¬(ϕ ∨ ¬ϕ)) ∈ D and GP2D does not hold.

Analogously to the case n = 0 we have only two choices to get a genuine
paracomplete disjunction, namely d1 = 1

2 and d2 = 0, and d1 = d2 = 0. See
Table 4(b) and Table 4(d) respectively.

The previous analysis leads us to four different three-valued genuine para-
complete logics in the signature {¬,∨} as shown in the following definition.
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.
ϕ ¬0ϕ
0 1
1
2 0
1 0

∨0 0 1
2 1

0 0 0 1
1
2 0 1

2 1
1 1 1 1

(a)

.
ϕ ¬1ϕ
0 1
1
2

1
2

1 0

∨1 0 1
2 1

0 0 1
2 1

1
2

1
2 0 1

1 1 1 1

(b)

.
ϕ ¬0ϕ
0 1
1
2 0
1 0

∨2 0 1
2 1

0 0 0 1
1
2 0 0 1
1 1 1 1

(c)

.
ϕ ¬1ϕ
0 1
1
2

1
2

1 0

∨2 0 1
2 1

0 0 0 1
1
2 0 0 1
1 1 1 1

(d)

Table 4: Possible truth tables for ¬ and ∨ in a genuine paracomplete three-
valued logic.
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∧ 0 1
2 1

0 0 c1 0
1
2 c1 c2 c3

1 0 c3 1

Table 5: Partial table for conjunction

Definition 3.1 A three-valued logic LM = 〈For(Θ0),`M〉 over the signature
Θ0 = {¬,∨}, where M is the matrix with set of values {0, 1

2 , 1} and 1 as the
only designated value will be called:

1. L3AD if the truth tables for ¬ and ∨ are those from Table 4(a).

2. L3BD if the truth tables for ¬ and ∨ are those from Table 4(b).

3. L3CD if the truth tables for ¬ and ∨ are those from Table 4(c).

4. L3DD if the truth tables for ¬ and ∨ are those from Table 4(d).

Remark 3.2 As we can see in any of the logics in Definition 3.1 both, ⊥ and >
are definable. For the case of L3AD and L3CD we have that ⊥ def

= ¬(¬α∨¬¬α)

and > def
= ¬α∨¬¬α. Finally for L3BD and L3DD ⊥ def

= ¬((α∨¬α)∨¬(α∨α))

and > def
= (α ∨ ¬α) ∨ ¬(α ∨ α).

3.2 Adequate Conjunctions

Since the definition of genuine paracompleteness does not impose conditions
over the conjunction we can choose any of the definable conjunctions in a three-
valued logic. Considering restrictions imposed to disjunction we ask the same
for conjunction, namely: enlargement of classical conjunction, neoclassical and
symmetric.

These restrictions allow us to have a partial table for the conjunction like the
one in Table 5 where c1, c2 and c3 ∈ D. Then, there are 8 different conjunctions
satisfying all these restrictions as shown in Table 6. Choosing one of these
conjunctions to extend each of the logics in Definition 3.1 lead us to 32 different
genuine paracomplete logics in the signature {¬,∨,∧}.

3.3 Adequate Implications

Now we search for suitable implications for L3AD, L3BD, L3CD and L3DD.
One can consider the same restrictions imposed to disjunction and conjunction
except for symmetry, and then we request implication to be an enlargement of
classical implication and neoclassical.

The condition of being an enlargement fix four values, see boxes in Table
7. If we ask for neoclassicality to be satisfied too, see Definition 2.8, then the
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∧0 0 1
2 1

0 0 0 0
1
2 0 0 0
1 0 0 1

∧1 0 1
2 1

0 0 0 0
1
2 0 0 1

2
1 0 1

2 1

∧2 0 1
2 1

0 0 0 0
1
2 0 1

2 0
1 0 0 1

∧3 0 1
2 1

0 0 0 0
1
2 0 1

2
1
2

1 0 1
2 1

∧4 0 1
2 1

0 0 1
2 0

1
2

1
2 0 0

1 0 0 1

∧5 0 1
2 1

0 0 1
2 0

1
2

1
2 0 1

2
1 0 1

2 1

∧6 0 1
2 1

0 0 1
2 0

1
2

1
2

1
2 0

1 0 0 1

∧7 0 1
2 1

0 0 1
2 0

1
2

1
2

1
2

1
2

1 0 1
2 1

Table 6: Possible conjunctions

→ 0 1
2 1

0 1 i1 1
1
2 i2 i3 i4

1 0 i5 1

Table 7: Partial table for implication

values of i1, i2, i3 and i4 are designated and i5 is not designated. Therefore
there are only two different implications that fulfill the conditions, namely →0

and →1 defined in Table 8. In fact →0 and →1 are implications according to
Definition 2.3.

One nice additional feature of connectives →0 and →1 is that any of the
logics obtained by extending L3AD, L3BD, L3CD or L3DD with any of the
connectives →0 or →1, satisfies the positive fragment of classical logic.

There is a criterion for the construction of a ‘paraconsistent’ logic, but in
terms of implication and negation. It is due to Jaśkowski and consists on the
rejection of ` ϕ→ (¬ϕ→ ψ) (the law of Duns Scotus). Clearly, this definition
is not equivalent to the definition of paraconsistency in terms of (NC) but pro-
vides another approach to study paraconsistency in case the language has an
implication connective. By analogy, for the paracompleteness case there is also
a criterion in terms of implication and negation. According to Karpenko and

→0 0 1
2 1

0 1 1 1
1
2 1 1 1
1 0 0 1

→1 0 1
2 1

0 1 1 1
1
2 1 1 1
1 0 1

2 1

Table 8: Possible implications
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Tomova [17], a logic is ‘paracomplete’ iff ` (¬ϕ→ ϕ)→ ϕ (the law of Clavius),
is not valid in it. This definition does not correspond with the definition of
paracompleteness in terms of (EM) but it gives an intuitionistic flavor to the
implication connective. This kind of logics are called weakly-intuitionistic log-
ics, see [20] and [8]. Observe that the logics L3AD, L3BD, L3CD and L3DD

extended with the implications →0 or →1 from Table 8 reject the Clavius law,
therefore they are paracomplete in Karpenko and Tomova’s sense.

3.4 The family of logics GP3D

It is possible to extend the genuine paracomplete logics from Definition 3.1 with
any of the conjunctions and implications from Sections 3.2 and 3.3.

Definition 3.3 The logics L3AD, L3BD, L3CD and L3DD can be extended to
the signature Σ0 = {∧,∨,→,¬} in the following way. Let X ∈ {A,B,C,D}, let
i ∈ {0, 1, . . . , 7} and j ∈ {0, 1}. The logic L3XD

i,j over Σ0 is defined as being the

logic L3XD extended with conjunction ∧i from Table 6 and with the implication
→j from Table 8.

Definition 3.4 The family of logics GP3D is the family of 64 genuine para-
complete three-valued logics: L3AD

i,j, L3BD
i,j, L3CD

i,j and L3DD
i,j where i ∈

{0, 1, . . . , 7} and j ∈ {0, 1}.

Remark 3.5 The logic obtained by extending L3BD with ∧3 and →0, namely
L3BD

3,0, coincides with the logic MH introduced in [3], where a Hilbert system
for it was presented. A new axiomatization for this logic, as well as for every
logic in Definition 3.4, will be presented in Section 6.

It is usual to compare new logics with some important well-known systems
in order to have a better understanding of them. Let us start by comparing the
family GP3D with CPL. To do this we need the following definition:

Definition 3.6 Let L1 and L2 be two propositional logics defined over the same
signature such that L1 is a proper sublogic of L2, i.e. such that `L1 ( `L2 ,
where `Li denotes the consequence relation of Li (for i = 1, 2). Then, L1 is
said to be maximal w.r.t. L2 if, for every formula ϕ such that `L2

ϕ but 6`L1
ϕ,

the logic L+
1 obtained from L1 by adding ϕ as a theorem coincides with L2.

According to this definition we can see that any of the logics in the family
GP3D is a proper sublogic of CPL, by virtue of Proposition 2.11 and by the
fact that they do not validate (EM). Moreover, the following result holds:

Proposition 3.7 Let L ∈ GP3D, then L is maximal with respect to CPL.

Proof: In Corollary 2.6 of [9] it is shown that if L1 and L2 are two matrix logics
defined over the same signature Θ such that:

1. L1 is the logic defined by the matrixM1 = 〈{0, 1
2 , 1}, F,D

∗〉 where 0 /∈ D∗
and 1 ∈ D∗.
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2. L2 is the logic defined by the matrixM2 which is the restriction ofM1 to
the domain {0, 1} (which constitutes a subalgebra over Θ of 〈{0, 1

2 , 1}, F 〉),
and L2 is a presentation of classical propositional logic CPL over the
signature Θ.

3. L1 6= L2.

4. There are formulas >(p) and ⊥(p) on one variable p such that v(>(p)) = 1
and v(⊥(p)) = 0, for every valuation v for L1.

Then, L1 is maximal with respect to CPL (presented as L2).

First of all we have that, given L ∈ GP3D, all the connectives in L are
enlargements of the classical ones, hence hypothesis 1 and 2 are satisfied. Clearly
for any L ∈ GP3D we have that L 6= CPL since ϕ ∨ ¬ϕ fails to be a valid
schema; and finally, it is possible to define the logical constants ⊥(p) and >(p)
for each one of them as pointed out in Remark 3.2. �

In addition, it is possible to define a determinedness operator for each logic
L ∈ GP3D in order to recover the law of excluded middle in a controlled way, as

it was proposed in [6]. Indeed, this operator can be defined as α
def
= α∨¬α.

Even more, the following Derivability Adjustment Theorem can be proved:

Proposition 3.8 Let L ∈ GP3D, Γ be a set of formulas, and p1, . . . , pn be the
set of atomic formulas occurring in Γ ∪ {ϕ}. Then, it holds that:

Γ `CPL ϕ iff Γ, p1, . . . , pn `L ϕ

Proof: From left to right: it is an immediate consequence of the fact that the
connectives of L are enlargements of the classical ones and the fact that, for any
valuation v for L, v( p) = 1 iff v(p) ∈ {0, 1}, for any atomic formula p. Hence,
assuming that Γ `CPL ϕ, let v be a valuation for L such that v( pi) = 1 for any
i = 1, . . . , n, and v(γ) = 1 for every γ ∈ Γ. Then, v can be seen as a classical
valuation over Γ ∪ {ϕ} such that v(γ) = 1 for every γ ∈ Γ. By hypothesis,
v(ϕ) = 1 as well.

From right to left: assume that Γ, p1, . . . , pn `L ϕ, and let v be a classical
valuation such that v(γ) = 1 for every γ ∈ Γ. Then, v is a valuation for L such
that v( pi) = 1 for any i = 1, . . . , n. Hence, by hypothesis, v(ϕ) = 1. �

Intuitively, the last result states that every classical derivation can be recov-
ered in L by ‘adjusting’ the premises by requiring that every atomic formula
involved in the reasoning in L must have a ‘classical’ behavior.

4 Twist structures semantics for the logic L3AD
3,0

In this section we will show how to extend the given three-valued semantics of
the logics defined in the previous section to a class of algebras known as twist
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strutures. To fix ideas, we first analyze in detail the case of the logic L3AD
3,0

(recall Definition 3.4). The general case will be analyzed in Section 6.

Twist structures were independently introduced by M. Fidel [11] and D.
Vakarelov [22] in order to semantically characterize Nelson’s logic N4 (recall
Example 1.2(3)). The basic idea of twist structures is considering ordered pairs
(a, b) (called snapshots, following the terminology for swap structures introduced
in [4, Chapter 6]) of elements over a certain class of lattices which represent
truth-values for formulas ϕ and ¬ϕ, respectively. More information about twist
structures semantics for N4 can be found in [19]. As observed in [7], Fidel and
Vakalerov’s ideas were anticipated by a very general construction over distribu-
tive lattices due to Kalman (see [15]). Similar ideas can be found in J. M.
Dunn’s PhD thesis [10], where he found a representation of De Morgan lattices
by means of pairs of sets called proposition surrogates. The operations pro-
posed by Dunn coincide with the ones proposed by Kalman, and by Fidel and
Vakarelov, namely:

¬̃ (a, b) = (b, a);

(a, b) ∧̃ (c, d) = (a ∧ c, b ∨ d);

(a, b) ∨̃ (c, d) = (a ∨ c, b ∧ d).

Observe that the negation ¬̃ is involutive: if the negation of a is b, the
negation of the negation of bmust be precisely a. On the other hand, conjunction
∧̃ and disjunction ∨̃ are defined in order to satisfy the De Morgan laws. It is
interesting to observe that, starting with a distributive lattice A, a new operator
¬̃ over A × A is obtained, giving origin to a De Morgan lattice, which is a
structure richer than the original one. This duality between the first coordinate
and the second coordinate of the pairs justifies the name of the structures: both
coordinates are logically ‘twisted’. On the other hand, the coordinates of the
pairs obtained by means of the operations over pairs are obtained from the
coordinates of the pairs by using the operations of the original lattice. Twist
structures semantics have been afterwards generalized in the literature to several
classes of logics, including modal logics.

In order to define twist structures semantics for L3AD
3,0, consider the sig-

natures Σ+ = {∧,∨,→} and Σ = {∧,∨,→,¬,⊥}. From now on we will write
α ↔ β as an abbreviation of the formula (α → β) ∧ (β → α). The formula
∼α will be an abbreviation for α → ⊥, expressing a classical negation defin-
able in L3AD

3,0. We recall below the truth-tables for L3AD
3,0, and describe the

truth-table of the derived connective ∼.

¬
0 1
1
2 0
1 0

∨ 0 1
2 1

0 0 0 1
1
2 0 1

2 1
1 1 1 1

∧ 0 1
2 1

0 0 0 0
1
2 0 1

2
1
2

1 0 1
2 1

→ 0 1
2 1

0 1 1 1
1
2 1 1 1
1 0 0 1

∼
0 1
1
2 1
1 0
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Let Σ⊥ = {∧,∨,→,⊥} be the ¬-less fragment of Σ. It is easy to prove
that classical propositional logic CPL, presented in the signature Σ⊥ (where

∼α def
= α → ⊥ denotes the negation), coincides with the Σ⊥-fragment of

L3AD
3,0.

Proposition 4.1 Let CPL presented over the signature Σ⊥ by means of the usual
2-valued truth-tables, such that v(⊥) = 0 for every valuation v for CPL. Then,
the Σ⊥-fragment of L3AD

3,0 coincides with CPL, that is: for every Γ ∪ {ϕ} ⊆
For(Σ⊥), Γ |=CPL ϕ iff Γ |=L3AD

3,0
ϕ.

Proof: By Proposition 2.11, Γ |=L3AD
3,0

ϕ implies that Γ |=CPL ϕ. Conversely,

suppose that Γ |=CPL ϕ, and let v be a valuation for L3AD
3,0 such that v(ψ) = 1

for every ψ ∈ Γ. Let v̄0 : V → {0, 1} be a function such that v̄0(p) = ∼∼v(p), for
every p ∈ V. Let v̄ be the unique homomorphic extension of v̄0 to For(Σ⊥) by
using the operators of L3AD

3,0. Since L3AD
3,0 is an enlargement of CPL over Σ⊥,

it follows that the image of v̄ is contained in {0, 1}, and so v̄ : For(Σ⊥)→ {0, 1}
is a valuation for CPL. Moreover, by induction on the complexity of the formula
ψ it is easy to prove that v(ψ) = 1 iff v̄(ψ) = 1. From this, v̄(ψ) = 1 for every
ψ ∈ Γ. By hypothesis, v̄(ϕ) = 1 and so v(ψ) = 1. This shows that Γ |=L3AD

3,0
ϕ.

�

The last proposition shows that L3AD
3,0, which is defined over Σ, is a conser-

vative expansion of CPL (defined over Σ⊥) by adding a (paracomplete) negation
¬. Because of this, in order to define twist structures for L3AD

3,0, the snapshots
(a, b) can be defined over an arbitrary Boolean algebra instead of using just a
distributive lattice. As in the case of the original Kalman construction, the only
condition required to the pairs (a, b) is that a∧b = 0, by virtue of the validity of
the explosion law in L3AD

3,0 w.r.t. ¬ (and recalling that a and b represent the
truth values assigned to the formulas ϕ and ¬ϕ, respectively). The designated
elements should be the snapshots (a, b) such that a = 1. Since the first coordi-
nate of a snapshot represents the truth-value of a given formula, it makes sense
to define any binary operation # ∈ {∧,∨,→} over snapshots by computing the
corresponding value of # between the first coordinates of the two given snap-
shots over the underlying Boolean algebra, and declare this result as being the
first component of the resulting snapshot. This is entirely analogous to Kalman
and Fidel-Vakarelov construction. The second component of the resulting snap-
shot should represent the value of the negation of such operation. Namely, if #̃
represents the operation # over pairs then

(a, b)#̃(c, d) = (a#c, F#(a, b, c, d))

where F#(a, b, c, d) is a Boolean combination of a, b, c, d to be determined. To
be more precise, F#(a, b, c, d) is a term in the signature Σ⊥ for Boolean algebras
depending on the variables a, b, c, d, which represents, in an analytical way, the
expression of the second coordinate of the snapshot obtained by applying the
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twist operator #̃ to the generic snapshots (a, b) and (c, d). In order to obtain
such operations from the given three-valued truth-tables of L3AD

3,0 described
above, it makes sense to consider the two-element Boolean algebra A2 with
domain A2 = {0, 1}. This is justified by the fact that the variety of Boolean
algebras is generated by A2, which implies that an equation is valid in every
Boolean algebra iff it is valid in A2. Now, the only possible snapshots over A2

are {>, f,⊥} where > = (1, 0), f = (0, 0) and ⊥ = (0, 1), with > being the
unique designated element. From now on we will identify >, f and ⊥ with
1, 1

2 and 0, respectively. Consider the case # = ∨. With the identification
between truth-values we made, the following equations should be satisfied, from
the truth-table of ∨:

F∨(0, 1, 0, 1) = F∨(0, 1, 0, 0) = F∨(0, 0, 0, 1) = 1,

since 0 ∨ 0 = 0 ∨ 1
2 = 1

2 ∨ 0 = 0 ' (0, 1);

F∨(0, 1, 1, 0) = F∨(0, 0, 1, 0) = F∨(1, 0, c, d) = 0,

since 0 ∨ 1 = 1
2 ∨ 1 = 1 ∨ z = 1 ' (1, 0);

F∨(0, 0, 0, 0) = 0,

since 1
2 ∨

1
2 = 1

2 ' (0, 0).

By using Karnaugh maps [16] it is easy to see that the solution of such
equations can be expressed by the truth-function F∨(a, b, c, d) = (∼a∧ d)∨ (b∧
∼c) over {0, 1}. The same technique can be used for determining the second
coordinate of the operators ∧̃ and →̃:

F∧(a, b, c, d) = b ∨ d;

F→(a, b, c, d) = a ∧ ∼c.

Concerning the negation ¬̃(a, b) = (c, d), it is clear that c should coincide
with b (since b represents the negation of a), while d should represent the nega-
tion of b, that is, the double negation of a (note that not necessarily d = a,
since ¬ is not involutive in L3AD

3,0). By observing the table for ¬ we found the
following:

F¬(0, 1) = 0,

since ¬0 = 1 ' (1, 0);

F¬(0, 0) = F¬(1, 0) = 1,

since ¬ 1
2 = ¬1 = 0 ' (0, 1).

From this, it is easy to see that the solution of these equations can be ex-
pressed by the truth-function F¬(a, b) = ∼b over {0, 1}. This lead us to the
following class of twist structures, when moving from A2 to any non-trivial
Boolean algebra A:
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Definition 4.2 Let A be a non-trivial Boolean algebra (that is, 0 6= 1) with do-
main A, and let BA = {(a, b) ∈ A × A : a ∧ b = 0}. The twist structure for

L3AD
3,0 generated by A is the algebra TA

def
= 〈BA, ∧̃, ∨̃, →̃, ¬̃, ⊥̃〉 over Σ such

that

(i) ⊥̃ = (0, 1);

(ii) ¬̃ (a, b) = (b,∼b);

(iii) (a, b) ∧̃ (c, d) = (a ∧ c, b ∨ d);

(iv) (a, b) ∨̃ (c, d) = (a ∨ c, (∼a ∧ d) ∨ (b ∧ ∼c));

(v) (a, b) →̃ (c, d) = (a→ c, a ∧ ∼c).

Definition 4.3 Given (a, b) ∈ BA let ⊥(a,b)
def
= (a, b) ∧̃ ¬̃ (a, b). Observe that

⊥(a,b) = ⊥̃ for every (a, b) ∈ BA. Let >̃ def
= ¬̃ ⊥̃; then >̃ = (1, 0). Let

∼̃ (a, b)
def
= (a, b) →̃ ⊥̃. Then ∼̃ (a, b) = (∼a, a) for every (a, b) ∈ BA. Finally,

let (a, b) ↔̃ (c, d)
def
=

(
(a, b) →̃ (c, d)

)
∧̃
(
(c, d) →̃ (a, b)

)
. Then (a, b) ↔̃ (c, d) =

(a↔ c,∼(a↔ c)) where, for any a, c ∈ A, a↔ c
def
= (a→ c) ∧ (c→ a).

Observe that, for any (a, b) ∈ BA, a = 1 implies that b = 0. Thus, {(a, b) ∈
BA : a = 1} = {>̃}.

Definition 4.4 The logical matrix generated by TA is MA
def
= 〈TA, {>̃}〉.

Remark 4.5 Consider once again the two-element Boolean algebra A2 with do-
main A2 = {0, 1}. As observed above, TA2

has domain BA2
= {>, f,⊥} where

> = (1, 0), f = (0, 0) and ⊥ = (0, 1), and > is the unique designated element.
It is immediate to see that the operations on the 3-valued algebra TA2 coincide
with the ones defined for the 3-valued characteristic matrix for L3AD

3,0 by iden-

tifying ⊥, f and > with 0, 1
2 and 1, respectively. Thus, up to names, MA2

is
the 3-valued matrix which defines L3AD

3,0. Hence, Γ |=MA2
ϕ iff Γ |=L3AD

3,0
ϕ.

Definition 4.6 Let Γ ∪ {ϕ} be a set of formulas in For(Σ). Then ϕ is said to
be a consequence of Γ w.r.t. twist-structures semantics for L3AD

3,0, denoted by

Γ |=T
L3AD

3,0
ϕ, if Γ |=MA ϕ for every matrix MA and every Boolean algebra A.

Remark 4.7 By Definitions 4.3 and 4.4 we have the following, for every valu-
ation v over MA: v(ϕ ∧ ¬ϕ) = ⊥̃; v(ϕ → ϕ) = >̃; v(∼ϕ) = ∼̃ v(ϕ). Finally,
suppose that v(ϕ) = (a, b) and v(ψ) = (c, d); then, v(ϕ↔ ψ) = >̃ iff a = c.

5 The Hilbert calculus L3AD
3,0h for L3AD

3,0

Now, inspired by the definition of twist structures for L3AD
3,0 given in Defini-

tion 4.2, a Hilbert calculus adequate to such semantics will be obtained in a
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natural way. Recall that, for # ∈ {∧,∨,→}, (a, b)#̃(c, d) = (a#c, F#(a, b, c, d))
and ¬̃(a, b) = (b, F¬(a, b)). Here, F#(a, b, c, d) and F¬(a, b) are terms in the sig-
nature Σ⊥ for Boolean algebras. This means that they can be also interpreted
as formulas in For(Σ⊥) depending on the propositional variables a, b, c, d. On
the other hand, the intended meaning of a snapshot (a, b) is that it represents
a pair of formulas of the form (α,¬α), that is, the first coordinate represents
α while the second one represents ¬α. Thus, at the logical level, the following
formulas should be valid, for # ∈ {∧,∨,→}:

¬(α#β)↔ F#(α,¬α, β,¬β)

¬¬α↔ F¬(α,¬α).

For instance, assuming that (a, b) represents the pair of formulas (α,¬α), the
formula ¬¬α↔ ∼¬α describes in the logic that the second coordinate of ¬̃ (a, b)
(corresponding to ¬¬α) is ∼b, according to Definition 4.2, where ∼b represents
∼¬α. On the other hand, assuming that (a, b) and (c, d) represent, respectively,
the pairs of formulas (α,¬α) and (β,¬β), the formula ¬(α → β) ↔ (α ∧ ∼β)
describes the fact that the second coordinate of (a, b) →̃ (c, d) (corresponding to
the formula ¬(α→ β)) is a ∧ ∼c (corresponding the formula (α ∧ ∼β)).

Taking this into consideration, and by recalling that the logic L3AD
3,0 con-

tains classical logic, as stated in Proposition 4.1, we arrive to the Hilbert calculus
for L3AD

3,0 to be described in Definition 5.2 below. We start by recalling the
standard Hilbert calculus for classical positive logic.

Definition 5.1 (Classical Positive Logic) The classical positive logic CPL+ is de-
fined over the language For(Σ+) by the following Hilbert calculus:

Axiom schemas:

α→
(
β → α

)
(Ax1)(

α→
(
β → γ

))
→
((
α→ β

)
→
(
α→ γ

))
(Ax2)

α→
(
β →

(
α ∧ β

))
(Ax3)(

α ∧ β
)
→ α (Ax4)(

α ∧ β
)
→ β (Ax5)

α→
(
α ∨ β

)
(Ax6)

β →
(
α ∨ β

)
(Ax7)(

α→ γ
)
→
(

(β → γ)→
(
(α ∨ β)→ γ

))
(Ax8)(

α→ β
)
∨ α (Ax9)

Inference rule:
α α→ β

β
(MP)
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Definition 5.2 The logic L3AD
3,0h, defined over signature Σ, is given by the

Hilbert calculus obtained from CPL+ by adding the following axiom schemas:

⊥ → α (bot)

¬⊥ (top)

α→
(
¬α→ β

)
(exp)

¬¬α↔ ∼¬α (NN)

¬
(
α ∧ β

)
↔
(
¬α ∨ ¬β

)
(NC)

¬
(
α ∨ β

)
↔
(
(∼α ∧ ¬β) ∨ (¬α ∧ ∼β)

)
(ND)

¬
(
α→ β

)
↔
(
α ∧ ∼β

)
(NI)

Now, soundness and completeness of L3AD
3,0h with respect to the corre-

sponding twist structures semantics |=T
L3AD

3,0
will be proved. From this, sound-

ness and completeness of L3AD
3,0h w.r.t. the 3-valued matrix logic L3AD

3,0 will
be obtained by using general results on Boolean algebras, as we shall see in
Theorem 5.9 below. Firstly, some previous definitions and results are needed.

Definition 5.3 Let L be a logic. A set of formulas Γ is closed in L if, for every
formula ψ: Γ ` ψ iff ψ ∈ Γ.

Definition 5.4 Let L be a logic, and let Γ ∪ {ϕ} be a set of formulas. The set Γ
is maximal non-trivial w.r.t. ϕ in L, or ϕ-saturated in L, if Γ 0 ϕ but Γ, ψ ` ϕ
for any ψ 6∈ Γ.

It is easy to prove that any ϕ-saturated set of formulas in a logic is closed.
Recall now the following classical result (see [23, Theorem 22.2]):

Theorem 5.5 (Lindenbaum- Los) Let L be a finitary logic, and let Γ ∪ {ϕ} be a
set of formulas such that Γ 0 ϕ. Then, there exists a set of formulas ∆ such
that ∆ is ϕ-saturated in L and Γ ⊆ ∆.

Remark 5.6 Clearly L3AD
3,0h is a finitary logic, then Theorem 5.5 applies to it.

Theorem 5.7 (Soundness and completeness of L3AD
3,0h w.r.t. twist structures)

Let Γ∪{ϕ} be a set of formulas in For(Σ). Then, Γ `L3AD
3,0h

ϕ iff Γ |=T
L3AD

3,0
ϕ.

Proof: ‘Only if’ part (Soundness): It is easy to see that every axiom in L3AD
3,0h

is valid in any twist structure, that is: for every MA and for every valuation
v over MA, v(ϕ) = >̃ for every instance ϕ of every axiom of L3AD

3,0h. In-

deed, the axioms of CPL+ are obviously valid in every MA, by Definitions 4.2
and 2.7. Axioms (bot) and (top) are clearly valid in every MA. For (exp),
let v be a valuation over MA and let v(α) = (a, b) and v(β) = (c, d). Then
v(α → (¬α → β)) = (a, b) →̃ (¬̃ (a, b) →̃ (c, d)) = (a, b) →̃ ((b,∼b) →̃ (c, d)) =
(a, b) →̃ (b → c, b ∧ ∼c) = (a → (b → c), a ∧ ∼(b → c)) = ((a ∧ b) →
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c, (a ∧ b) ∧ ∼c) = (1, 0) = >̃ since a ∧ b = 0. The validity of the other ax-
ioms follows easily by Definition 4.2 and the last observation in Remark 4.7.
In addition, satisfaction is preserved by (MP). Indeed, suppose that v is a val-
uation over MA such that v(ϕ) = v(ϕ → ψ) = >̃. Let v(ψ) = (a, b). Then
>̃ = v(ϕ) →̃ v(ψ) = >̃ →̃ (a, b) = (1 → a, 1 ∧ ∼a) = (a,∼a). Hence a = 1 and
so b = 0. That is, v(ψ) = >̃. Using this, the result follows by induction on the
length of derivations.

‘If’ part (Completeness): Suppose that Γ 0L3AD
3,0h

ϕ. By Theorem 5.5 and

Remark 5.6 there exists a set ∆ which is ϕ-saturated in L3AD
3,0h such that Γ ⊆

∆. Define the following relation in For(Σ): β ≡∆ γ iff ∆ `L3AD
3,0h

β ↔ γ. By

the properties of CPL+ it is easy to prove that ≡∆ is a congruence over For(Σ)

with respect to the connectives ∧, ∨ and →. Moreover, A∆
def
= For(Σ)/≡∆

is a Boolean algebra such that 1 = [β → β]∆ and 0 = [⊥]∆ for any formula β,
where [γ]∆ denotes the equivalence class of the formula γ w.r.t. ≡∆. From this
[∼β]∆ = ∼[β]∆ in A∆. Consider the twist structure TA∆ generated by A∆ as
in Definition 4.2 and let MA∆

be the corresponding logical matrix. It is worth
noting that [γ]∆ = 1 iff ∆ `L3AD

3,0h
γ iff γ ∈ ∆. Observe that [β]∆ ∧ [¬β]∆ =

[β ∧ ¬β]∆ = 0 for every β, by axiom (exp). Then, ([β]∆, [¬β]∆) ∈ BA∆
for

every β, where BA∆
is the domain of TA∆

. Therefore, there is a function v∆ :
For(Σ) → BA∆ given by v∆(γ) = ([γ]∆, [¬γ]∆). Moreover, v∆(γ) = (1, 0) = >̃
iff [γ]∆ = 1 iff γ ∈ ∆. It is easy to see that v∆ is a valuation over MA∆ .
Indeed, it is clear that v∆(⊥) = (0, 1) = ⊥̃, by axioms (bot) and (top). On
the other hand, v∆(¬γ) = ([¬γ]∆, [¬¬γ]∆) = ([¬γ]∆, [∼¬γ]∆), by axiom (NN).
But [∼¬γ]∆ = ∼[¬γ]∆. Hence v∆(¬γ) = ¬̃ v∆(γ). Let # ∈ {∧,∨,→}. Then
v∆(β#γ) = v∆(β) #̃ v∆(γ), by axioms (NC), (ND) and (NI) and the definition
of the operations in the Boolean algebra A∆. Therefore, v∆ is a valuation over
MA∆

such that v∆(γ) = >̃ for every γ ∈ Γ but v∆(ϕ) 6= >̃, since ϕ /∈ ∆. This
shows that Γ 6|=T

L3AD
3,0

ϕ. �

From Remark 4.5 and from soundness and completeness of L3AD
3,0h w.r.t.

twist structures semantics, it can be obtained soundness and completeness of
L3AD

3,0h w.r.t. the 3-valued matrix logic L3AD
3,0. In order to prove this, some

well-known results from Boolean algebras will be recalled (see, for instance, [12]):

Proposition 5.8 Let A be a Boolean algebra with domain A.

(1) If a is an element of A different from 1, then there exists an ultrafilter F
over A such that a /∈ F .

(2) If F is an ultrafilter over A, then the characteristic funcion hF : A→ {0, 1}
of F (that is, hF (x) = 1 iff x ∈ F ) is a homomorphism of Boolean algebras
between A and the two-element Boolean algebra A2.

Theorem 5.9 (Soundness and completeness of L3AD
3,0h w.r.t. L3AD

3,0)
Let Γ∪{ϕ} be a set of formulas in For(Σ). Then, Γ `L3AD

3,0h
ϕ iff Γ |=L3AD

3,0
ϕ.
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Proof: ‘Only if’ part (Soundness): It follows from Theorem 5.7 (Soundness) and
from the last observation in Remark 4.5.

‘If’ part (Completeness): Suppose that Γ 0L3AD
3,0h

ϕ. By completeness of

L3AD
3,0h w.r.t. twist structures semantics (Theorem 5.7), Γ 6|=T

L3AD
3,0

ϕ. Then,

there exists a Boolean algebra A and a valuation v overMA such that v(γ) = >̃
for every γ ∈ Γ, but v(ϕ) 6= >̃. Consider the following notation: for every
formula α we will write v(α) = (v(α)1, v(α)2). Then, v(γ)1 = 1 for every
γ ∈ Γ, but v(ϕ)1 6= 1. By Proposition 5.8(1), there is an ultrafilter F over
A such that v(ϕ)1 /∈ F . Let hF : A → {0, 1} be the characteristic funcion
of F . By Proposition 5.8(2), hF is a homomorphism of Boolean algebras be-
tween A and the two-element Boolean algebra A2. Let v̄ : For(Σ) → BA2

given by v̄(α) = (hF (v(α)1), hF (v(α)2)). Since hF is a homomorphism of
Boolean algebras, it follows that v̄(α) indeed belongs to BA2

for every α. Mor-
ever, v̄ is a valuation over the matrix MA2

. For instance, we can prove that
v̄(α→ β) = v̄(α) →̃ v̄(β) as follows:

v̄(α→ β) = (hF (v(α→ β)1), hF (v(α→ β)2))

= (hF (v(α)1 → v(β)1), hF (v(α)1 ∧ ∼v(β)2))

= (hF (v(α)1)→ hF (v(β)1), hF (v(α)1) ∧ ∼hF (v(β)2))

= (hF (v(α)1), hF (v(α)2)) →̃ (hF (v(β)1), hF (v(β)2))

= v̄(α) →̃ v̄(β).

In addition, the valuation v̄ is such that v̄(γ) = > for every γ ∈ Γ (since
v(γ)1 = 1, hence hF (v(γ)1) = 1), but v̄(ϕ) 6= > (since v(ϕ)1 /∈ F , hence
hF (v(ϕ)1) = 0). This shows that Γ 6|=MA2

ϕ. By Remark 4.5, Γ 6|=L3AD
3,0

ϕ. �

6 Twist structures and Hilbert calculus for the family

GP3D

As observed above, the logics in the family of three-valued genuine paracomplete
logics GP3D are pretty similar. In most of the cases they just change one entry
of the truth table for some of their connectives. These small changes can be
easily captured by the twist structures, allowing us to define them in a modular
way. Hence, by following the steps shown in Sections 4 and 5, we can easily
obtain twist stuctures and Hilbert systems for each of the logics in the family.
Let us start by generalizing Definition 4.2.

Definition 6.1 Let A be a non-trivial Boolean algebra with domain A, and let
BA = {(a, b) ∈ A × A : a ∧ b = 0}. For X ∈ {A,B,C,D}, i ∈ {0, 1, . . . , 7}
and j ∈ {0, 1}, the twist structure for L3XD

i,j generated by A is the algebra

TA
def
= 〈BA, ∧̃, ∨̃, →̃, ¬̃, ⊥̃〉 over Σ such that ⊥̃, ¬̃, ∧̃, ∨̃ and →̃ are defined as

follows:
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Connective Operation on snapshots

¬0 ¬̃ (a, b) = (b,∼b)
¬1 ¬̃ (a, b) = (b, a)
∨0 (a, b) ∨̃ (c, d) = (a ∨ c, (∼a ∧ d) ∨ (b ∧ ∼c))
∨1 (a, b) ∨̃ (c, d) = (a ∨ c,∼((a ∨ b) ∨ (c ∨ d)) ∨ (b ∧ d))
∨2 (a, b) ∨̃ (c, d) = (a ∨ c,∼a ∧ ∼c)
∧0 (a, b) ∧̃ (c, d) = (a ∧ c,∼a ∨ ∼c)
∧1 (a, b) ∧̃ (c, d) = (a ∧ c, (∼a ∧ ∼c) ∨ b ∨ d)
∧2 (a, b) ∧̃ (c, d) = (a ∧ c, (a ∧ ∼c) ∨ (∼a ∧ c) ∨ b ∨ d)
∧3 (a, b) ∧̃ (c, d) = (a ∧ c, b ∨ d)
∧4 (a, b) ∧̃ (c, d) = (a ∧ c, (a ∧ ∼c) ∨ (∼a ∧ c) ∨ (b ∧ d) ∨ (∼b ∧ ∼c ∧ ∼d))
∧5 (a, b) ∧̃ (c, d) = (a ∧ c, (a ∧ d) ∨ (b ∧ c) ∨ (b ∧ d) ∨ (∼a ∧ ∼b ∧ ∼c ∧ ∼d))
∧6 (a, b) ∧̃ (c, d) = (a ∧ c, (a ∧ ∼c) ∨ (∼a ∧ c) ∨ (b ∧ d))
∧7 (a, b) ∧̃ (c, d) = (a ∧ c, (a ∧ d) ∨ (b ∧ c) ∨ (b ∧ d))
→0 (a, b) →̃ (c, d) = (a→ c, a ∧ ∼c)
→1 (a, b) →̃ (c, d) = (a→ c, a ∧ d)

Table 9: Twist operations

Connective Axiom

¬0 NN0 ¬¬α↔ ∼¬α
¬1 NN1 ¬¬α↔ α

∨0 ND0 ¬
(
α ∨ β

)
↔
(
(∼α ∧ ¬β) ∨ (¬α ∧ ∼β)

)
∨1 ND1 ¬

(
α ∨ β

)
↔
(
((α ∨ ¬α) ∨ (β ∨ ¬β))→ (¬α ∧ ¬β)

)
∨2 ND2 ¬

(
α ∨ β

)
↔
(
∼α ∧ ∼β

)
∧0 NC0 ¬

(
α ∧ β

)
↔ (∼α ∨ ∼β)

∧1 NC1 ¬
(
α ∧ β

)
↔ (∼α ∧ ∼β) ∨ ¬α ∨ ¬β

∧2 NC2 ¬
(
α ∧ β

)
↔ (α ∧ ∼β) ∨ (∼α ∧ β) ∨ ¬α ∨ ¬β

∧3 NC3 ¬
(
α ∧ β

)
↔
(
¬α ∨ ¬β

)
∧4 NC4 ¬

(
α ∧ β

)
↔ (α ∧ ∼β) ∨ (∼α ∧ β) ∨ (¬α ∧ ¬β) ∨ (∼¬α ∧ ∼β ∧ ∼¬β)

∧5 NC5 ¬
(
α ∧ β

)
↔ (α ∧ ¬β) ∨ (¬α ∧ β) ∨ (¬α ∧ ¬β) ∨ (∼α ∧ ∼¬α ∧ ∼β ∧ ∼¬β)

∧6 NC6 ¬
(
α ∧ β

)
↔ (α ∧ ∼β) ∨ (∼α ∧ β) ∨ (¬α ∧ ¬β)

∧7 NC7 ¬
(
α ∧ β

)
↔ (α ∧ ¬β) ∨ (¬α ∧ β) ∨ (¬α ∧ ¬β)

→0 NI0 ¬
(
α→ β

)
↔
(
α ∧ ∼β

)
→1 NI1 ¬

(
α→ β

)
↔
(
α ∧ ¬β

)
Table 10: Axiom schemes
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(i) ⊥̃ = (0, 1);

(ii) ¬̃ (a, b) corresponds with the operation for ¬0 in Table 9 if X ∈ {A,C} or
corresponds with the operation for ¬1 in Table 9 if X ∈ {B,D};

(iii) (a, b) ∧̃ (c, d) corresponds with the operation for ∧i in Table 9.

(iv) (a, b) ∨̃ (c, d) corresponds with the operation for ∨0 in Table 9 if X = A,
corresponds with the operation for ∨1 in Table 9 if X = B, or
corresponds with the operation for ∨2 in Table 9 if X ∈ {C,D};

(v) (a, b) →̃ (c, d) corresponds with the operation for →j in Table 9.

Definition 6.2 The logic L3XD
i,jh, defined over signature Σ, is given by the Hilbert

calculus obtained from L3AD
3,0h (recall Definition 5.2) by changing axiom schemas

(NN), (NC), (ND) and (NI) respectively by the following axiom schemes from
Table 10:

• NN0 if X ∈ {A,C} or NN1 if X ∈ {B,D};

• NCi;

• ND0 if X = A, ND1 if X = B or ND2 if X ∈ {C,D};

• NIj.

For L ∈ {L3XD
i,j : X ∈ {A,B,C,D}, i ∈ {0, 1, . . . , 7} and j ∈ {0, 1}}, let

Lh be the corresponding Hilbert calculus. The consequence relation w.r.t. Lh,
twist structures semantics and the original 3-valued matrices will be denoted
by `Lh

, |=T
L and |=L, respectively. The following results can be proven by a

straightforward adaptation of the proofs for L3AD
3,0:

Theorem 6.3 (Soundness and completeness of Lh w.r.t. twist structures)
Let Γ ∪ {ϕ} be a set of formulas in For(Σ). Then, Γ `Lh

ϕ iff Γ |=T
L ϕ.

Theorem 6.4 (Soundness and completeness of Lh w.r.t. L)
Let Γ ∪ {ϕ} be a set of formulas in For(Σ). Then, Γ `Lh

ϕ iff Γ |=L ϕ.

7 LGP: a genuine paracomplete, non-finite-valued logic

Observe that every example of genuine paracomplete (not paraconsistent) logic
given up to now consists of three-valued logics. In this section we will intro-
duce a logic, called LGP, which is genuine paracomplete (but not paraconsis-
tent), on the one hand, and it cannot be semantically characterized by a single
finite-valued logical matrix, on the other. The logic LGP will be defined as an
axiomatic extension of CPL+ by adding a (genuine) paracomplete negation ¬
satisfying basic properties of classical negation (including explosion).

Recall from Definition 3.3 the propositional signature Σ0 = {∧,∨,→,¬},
and let For(Σ0) be the algebra of formulas generated over Σ0 by the set V =
{pn : n ∈ N} of propositional variables.
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Definition 7.1 The logic LGP, defined over signature Σ0, is obtained from CPL+

(recall Definition 5.1) by adding the following axiom schemas:

α→
(
¬α→ β

)
(exp)

α↔ ¬¬α (dn)

¬α↔ ¬β if `CPL+ α↔ β (eq)

Remark 7.2 In the axiom schema (eq), `CPL+ represents the consequence re-
lation of CPL+ expanded to the signature Σ0 (which is a conservative expan-
sion of the original logic CPL+ defined over the signature Σ+). An alterna-
tive, equivalent (and maybe more precise) formulation of (eq) is as follows:
¬α ↔ ¬β if there exist formulas α′, β′ ∈ For(Σ+) and a homomorphism
ρ : For(Σ+) → For(Σ0) of Σ+-algebras such that ρ(α′) = α, ρ(β′) = β, and
`CPL+ α′ ↔ β′. This is the formulation adopted in Definition 7.4 below.

Observe that, since CPL+ is decidable (by the usual two-valued truth-tables),
it is effective decidable whether a given formula in For(Σ0) is an instance of
axiom (eq) or not. Obviously (eq) is stable under substitutions: if ϕ = ¬α↔ ¬β
is an instance of (eq) and ρ : For(Σ0)→ For(Σ0) is a substitution then, given
that α ↔ β is a tautology in CPL+ over Σ0, so is ρ(α) ↔ ρ(β). By (eq), the
formula ¬ρ(α)↔ ¬ρ(β) is an axiom of LGP. That is, ρ(ϕ) is an axiom of LGP.
For example, `CPL+ (p1∧¬p2)↔ (¬p2∧p1). Hence, ¬(p1∧¬p2)↔ ¬(¬p2∧p1)
is an instance of (eq). By substitution, ¬(α ∧ ¬β)↔ ¬(¬β ∧ α) is an instance
of (eq), for every α, β ∈ For(Σ0). Analogously, ¬(α ∧ β) ↔ ¬(β ∧ α) is an
instance of (eq), for every α, β ∈ For(Σ0).6

Proposition 7.3 The logic LGP satisfies the Deduction Metatheorem: for every
set of formulas Γ ∪ {ϕ,ψ} ⊆ For(Σ0), Γ, ϕ `LGP ψ iff Γ `LGP ϕ→ ψ.

Proof: It is an immediate consequence of the fact that LGP contains axioms
(Ax1) and (Ax2), taking into account that (MP) is the only inference rule. �

Definition 7.4 A function µ : For(Σ0) →
{

0, 1
}

is a bivaluation for LGP if it
satisfies the following clauses:

(vAnd) µ(α ∧ β) = 1 iff µ(α) = 1 and µ(β) = 1

(vOr) µ(α ∨ β) = 1 iff µ(α) = 1 or µ(β) = 1

(vImp) µ(α→ β) = 1 iff µ(α) = 0 or µ(β) = 1

(vNeg) µ(α) = 1 implies µ(¬α) = 0

6One could consider the possibility of defining (eq) as an inference rule instead of an axiom.
This is the way taken, for instance, by Lemmon in [18], when defining the (non-normal) modal
system S0.5, in which the usual necessitation rule (2ϕ follows if ϕ is provable) is changed to the
following: 2ϕ follows if ϕ is provable in classical logic CPL expanded to the modal language.
We prefer to keep (eq) as a schema axiom, since it guarantees immediately the validity of the
Deduction Metatheorem (see Proposition 7.3) and, as discussed above, the resulting Hilbert
calculus is still recursively axiomatizable and structural. It should be observed that the same
move could be made with S0.5 and similar systems.
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(vDneg) µ(α) = 1 iff µ(¬¬α) = 1

(vEq) µ(¬α) = µ(¬β) if α = ρ(α′) and β = ρ(β′) for some homomorphism
ρ : For(Σ+) → For(Σ0) of Σ+-algebras and some α′, β′ ∈ For(Σ+) such that
`CPL+ α′ ↔ β′.

The consequence relation of LGP w.r.t. bivaluations is defined as follows: for
every set of formulas Γ ∪ {ϕ} ⊆ For(Σ0), Γ |=2

LGP ϕ iff µ(ϕ) = 1 for every
bivaluation for LGP such that µ[Γ] ⊆ {1}.

Remark 7.5 Observe that, if α = ρ(α′) and β = ρ(β′) for some homomorphism
ρ : For(Σ+) → For(Σ0) of Σ+-algebras and some α′, β′ ∈ For(Σ+) such that
`CPL+ α′ ↔ β′, then µ(α) = µ(β) (besides having µ(¬α) = µ(¬β) by (vEq)).
Given a bivaluation µ and a formula α such that µ(α) = 0, then µ(¬α) can take
any value in {0, 1}. Thus, taking into account (vNeg) and (vDneg), there are
three possibilities for the sequence of formulas α, ¬α, ¬¬α, ¬¬¬α, . . . : it takes
the values 1, 0, 1, 0, . . .; or it takes the values 0, 1, 0, 1, . . .; or it takes the values
0, 0, 0, 0, . . ..

By adapting the proof of completeness of LFIs w.r.t. bivaluations (see, for
instance, [5] and [4]), the following result can be obtained:

Theorem 7.6 For every set of formulas Γ ∪ {ϕ} ⊆ For(Σ0): Γ `LGP ϕ iff
Γ |=2

LGP ϕ.

Corollary 7.7 The logic LGP is genuine paracomplete, and it is not paraconsis-
tent.

Proof: Let α and β be formulas. By (exp) and Modus Ponens it follows that
α,¬α `LGP β. Hence, LGP is not paraconsistent.

Now, let p be a propositional variable and let µ be a bivaluation such that
µ(p) = µ(¬p) = 0. Then µ(p ∨ ¬p) = 0, showing that 6|=2

LGP p ∨ ¬p. By
soundness, 6`LGP p ∨ ¬p. Morever, assume that µ additionally satisfies that
µ(¬(p ∨ ¬p)) = 1 (this is always possible, by Definition 7.4). Then µ shows
that ¬(p ∨ ¬p) 6|=2

LGP p. By soundness, ¬(p ∨ ¬p) 0LGP p. From this, LGP is
genuine paracomplete. �

8 Uncharacterizability of LGP by finite matrices

It is well-known that Dugundji showed in 1940 that no modal system between
S1 and S5 can be characterized by a single finite logical matrix. By adapting
his proof, it was shown in [5] and [4] that several LFIs cannot be characterized
by a single finite logical matrix. In this section it will be shown that LGP is not
semantically characterizable by a single finite logical matrix.

To begin with, some notation will be introduced. If Γ = {γ1, . . . , γn} is a
finite family of n distinct formulas in For(Σ0), with n ≥ 3, then

∨
(Γ) will denote
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the formula (. . . ((γ1∨γ2)∨γ3)∨. . .)∨γn. Define
∨

({γ1}) = γ1 and
∨

({γ1, γ2}) =
γ1 ∨ γ2. Given a natural number n ≥ 1 and n different propositional variables
p1, . . . , pn, let αn :=

∨
({pj : 1 ≤ j ≤ n}) and βi

n :=
∨

({pj : 1 ≤ j ≤ n, j 6=
i}) for 1 ≤ i ≤ n (in the latter, n ≥ 2).

Definition 8.1 Let n ≥ 3 be a natural number, and let p1, . . . , pn be n different
propositional variables. We define the following formula schema:

δ(n) =
∨(
{(¬αn → ¬βi

n) : 1 ≤ i ≤ n}
)
.

Proposition 8.2 Let M = 〈V, F,D〉 be a logical matrix such that V has n ≥ 2
elements, and M is a model of LGP. Then, M validates the formula δ(n+ 1).

Proof: LetM = 〈V, F,D〉 be an n-valued logical matrix which is a model of the
logic LGP, and consider a valuation h overM. Since V has n values, there exists
1 ≤ i < k ≤ n + 1 such that h(pi) = h(pk), by the Pigeonhole Principle. Let
α′n+1 be the formula obtained from αn+1 by substituting the unique occurrence
of pi by pk. It is clear that α′n+1 ↔ βi

n+1 is a theorem of CPL+, since the only
difference between α′n+1 and βi

n+1 is that the former has two occurrences of pk
while the latter has just one. By axiom (eq), the formula ¬α′n+1 ↔ ¬βi

n+1 is
a theorem of LGP. This means that h(¬α′n+1) ∈ D iff h(¬βi

n+1) ∈ D. But
h(αn+1) = h(α′n+1), since h(pi) = h(pk). From this h(¬αn+1) = h(¬α′n+1),
since h is a homomorphism. Therefore: h(¬αn+1) ∈ D iff h(¬βi

n+1) ∈ D. Thus,
h(¬αn+1 → ¬βi

n+1) ∈ D, given that M is a model of CPL+. Using again that
M is a model of CPL+, we infer that h(δ(n+1)) ∈ D. Since this holds for every
valuation h, the result follows. �

Proposition 8.3 The formula δ(n) is not a theorem of LGP, for every n ≥ 3.

Proof: Let µ be a bivaluation for LGP such that µ(pj) = 0 for every 1 ≤ j ≤ n.
Hence, µ(αn) = µ(βi

n) = 0, for every 1 ≤ i ≤ n. Assume also that µ(¬αn) = 1
and µ(¬βi

n) = 0, for every 1 ≤ i ≤ n. It is worth noting that this choice is
always possible, from Definition 7.4, taking into consideration that αn 6= βi

n

for every 1 ≤ i ≤ n. From this, it follows that µ(¬αn → ¬βi
n) = 0, for every

1 ≤ i ≤ n. Therefore µ(δ(n)) = 0 and so 6|=2
LGP δ(n)). By soundness of LGP

w.r.t. bivaluations, δ(n) is not a theorem of LGP. �

Theorem 8.4 The logic LGP cannot be characterized by a single finite logical
matrix.

Proof: Suppose, by absurd, that LGP can be semantically characterized by a
finite logical matrix M with, say, n elements. Observe that n ≥ 2 (otherwise,
the logic LGP would be trivial, which is not the case). Given thatM is a matrix
model of LGP with n ≥ 2 values, it validates δ(n + 1), by Proposition 8.2. By
completeness of LGP w.r.t. M, the formula δ(n+1) must be a theorem of LGP.
But this is an absurd, in view of Proposition 8.3. This means that LGP cannot
be characterized by a single finite logical matrix. �
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9 Conclusions

In this paper the notion of genuine paracomplete logics, which are logics rejecting
the dual principles that define genuine paraconsistent logics, where introduced
and analyzed. First, in a similar way to the analysis done in [2] for genuine
paraconsistent logics, we develop a study among three-valued logics in order to
find all the (standard) connectives defining genuine paracomplete logics. This
analysis allows us to define 64 different three-valued systems. After this, we
found in a systematic way an algebraic semantics for each of these systems by
means of twist structures semantics. These algebraic semantics allow us to find,
in a natural and direct way, simple and uniform Hilbert-style axiomatizations
of all these systems. In particular, the logic MH introduced in [3], is one of
the 64 systems we found here, and so a new (and shorter) axiomatization of
MH is presented here. Finally, we show an example of a genuine paracomplete
(non paraconsistent) logic called LGP which cannot be characterized by a single
finite logical matrix.

We believe that genuine paracomplete logics are interesting not only from
a conceptual perspective, but also for applications. It should be interesting
to observe that the methodology presented here for finding twist structures
semantics generalizing a given three-valued matrix semantics, as well as the
Hilbert calculus obtained from there, could be successfully adapted to other
logics presented by means of a finite logical matrix. This is a topic that deserves
future research.
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[2] Jean-Yves Béziau and Anna Franceschetto. Strong three-valued paracon-
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[13] Alejandro Hernández-Tello, José Arrazola Ramı́rez, and Mauricio Oso-
rio Galindo. The pursuit of an implication for the logics L3A and L3B.
Logica Universalis, 11(4):507–524, 2017.

[14] Alejandro Hernández-Tello, Verónica Borja-Maćıas, and Marcelo E.
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