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Abstract. This paper reports on a multiresolution analysis of EEG signals. The
dominant frequency components of signals with and without observed epileptic
discharges were compared. The study showed that there were significant dif-
ferences in dominant frequency between the signals with epileptic discharges
and the signals without discharges. This gives the ability to identify epilepsy
during EEG examination. The frequency of the signals coming from the frontal,
central, parietal and occipital channels are similar. Multiresolution analysis can
be used to describe the activity of brain waves and to try to predict epileptic
seizures, thereby contributing to precise medical diagnoses.

Introduction

Human brain electrical activity can be measured from the scalp in a non-
invasive way by means of electroencephalography. Due to the conductive
properties of biological tissue, this activity reflects the effect of proximal
and distal sources of synchronized neuronal activities. The electroencephalo-
gram (EEG) is one of the techniques used in clinical neurophysiology to ac-
cess information about the condition of the brain. Although EEG recordings
have been in clinical use for more than half a century, conventional EEG
analysis relies mostly on visual inspection and pattern recognition. Even
while this methodology is quite useful, the visual inspection of the EEG is
subjective and hardly allows for any systematization. In order to overcome
this obstacle, quantitative EEG analysis (qEEG) introduces objective mea-
sures reflecting the characteristics of brain activity, as well as its associated
dynamics (Rosenblatt et al., 2014).
There is a need to check various methods of mathematical interpretation

of recorded time series. One of them is spectral analysis, which is based on
the application of the Fourier transform in order to decompose signals into
sinusoidal components with fixed frequencies. The power spectrum gives
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the information about frequencies occurring in signals and the dominant
frequency for these signals. Wavelet analysis allows one to analyze time
and frequency contents of signals simultaneously. It is achieved by fixing
a function called mother wavelet (e.g. Morlet wavelet) and decomposing
the signal into shifted and scaled versions of this function. It allows one to
precisely distinguish local characteristics of signals. Computing the wavelet
power spectrum, one can obtain information about occurring frequencies as
well as when these frequencies occur. Multiresolution analysis allows one to
visualize details and approximations of the given signal on several levels of
accuracy. In this paper, the wavelet power spectrum of EEG signals was
computed for all levels.

Multiresolution Analysis

The main mechanism for information signals in the frequency domain is
the Fourier transform, which assigns any element of the set X from the time
domain to a specific element of a set Y with the frequency domain. Analysis
in the frequency domain (or spectral analysis) may provide an answer to the
question of whether a registered EEG signal is a harmonic component of
a particular frequency. Data recorded electroencephalogram have the form
of discrete samples and are sequences of finite length. Therefore, for the
spectral analysis of an EEG sequence, the Discrete Fourier Transform (DFT)
(Mallat, 1989) should be used:

X(ω) =
∞
∑

−∞

x(n) · e−j2π ω

ωs
n,

where: X(ω) – Fourier Transform, x(n) – input signal, ω – pulsation, ωs –
sampling frequency, n – number of samples.

The power spectrum or power spectral density function:

P (ω) = |X(ω)|2

gives a measure of the part to the signal made by each of its sine wave
components.
The Fourier transform is not suitable for the analysis of non-stationary

signals, or processes of transition characteristics. It uses the sinusoidal car-
riers that are compact in the frequency domain but not in time domain.
For cases in which non-stationary signal analysis is necessary, the windowed
Fourier transform or wavelet analysis can be used (Klonowski, 1997).
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One of the most modern approaches to the analysis of time – frequency
is wavelet analysis (Gentile et al., 2003). Wavelet representation signal is
a function of two variables, which is a linear combination of scalable and
shifting function that is Mother Wavelet ψ (Pinsky, 2002).
Wavelet Transform represents a signal in the form of individual short

timelines (Lou et al., 2004; Mallat, 1999):

ga,b(t) =
1√
a
g

(

t− b

a

)

,

where: ga,b(t) – analyzing wavelet, g(t) – function parent, a – scale factor,
b – time shift.

Continuous Wavelet Transform (CWT) is defined as follows (Pin-
sky, 2002):

CWT (a, b) =
1√
a

+∞
∫

−∞

x(t) ∗ g
(

t− b

a

)

.

This equation represents the filtered signal analyzed by the signal
analyzer, which is scaled in the time domain coefficients. This signal is
“stretched” to a > 1, and “compressed” for a < 1.
Continuous wavelet transform contains a lot of redundant information.

As a result of time-sample and scale factor, the number of the wavelet
coefficient can be chosen by substituting b = n2−m, a = 2−m, where m is
resolution and n is discrete shift. The resulting series of Discrete Wavelet
Transform is a wavelet DWT (Hu et al., 2007; Lou et al., 2004).
DWT can be described by the formula (Gawędzki et al., 2015):

gm,k(t) =
1√
2m

g

(

t− k ∗ 2m
2m

)

.

The wavelet spectrum is obtained by time integration of the continuous
wavelet transform (Strambi et al., 2004). Kronland-Martinet et al. (1987)
developed an algorithm that allows using the wavelets to provide time fre-
quency representation of the signal. The listing of the program in Matlab
implementing this procedure can be found in Muthuswamy et al. (1998).
In the Discrete Wavelet Transformation process, the signal passed

through two filters (one for high-frequency and other low-frequency) is di-
vided into so-called approximation and detail. Approximation is subjected
to further divisions on the approximation and detail. Details are not subject
to further divisions (Stark, 2005).
The main concept associated with the wavelet transform is the scale

and the associated different levels of transformation, leading to the so-called
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multiresolution. The lowest level of the scale enables details, such as instan-
taneous change signals, to be captured. These details can enable the exact
scale to be detailed (Lee et al., 2011).
A multiresolution analysis (MRA) was initiated by Mallat (1987). This

approach to the analysis of signals consists of a multi-level representation
of the signal. Multiresolution analysis is rooted in the fact that a signal is
represented as the sum of approximations and details. On each subsequent
level, approximations are divided into approximation and details. The ap-
proximation does not change with the next iteration.
A multiresolution analysis of L2(R) is a collection of subsets of L2(R)

such that:
1. . . . ⊂ V−1 ⊂ V0 ⊂ V1 ⊂ . . .,
that satisfies certain self-similarity relations in time/space and scale/fre-
quency, as well as completeness and regularity relations;

2.
⋃

j∈Z Vj = L2(R),
closing all spaces Vj gives a space of finite energy L2(R);

3.
⋂

j∈Z Vj = {0},
there is no signal approximating function, which belongs also to the
space of all resolutions;

4. There are many sequence spaces Vj , which comply with conditions 1–3,
f ∈ Vj ⇔ f(2−j.) ∈ V0,
all spaces Vj are scaled variations of space V0 relative to the total dis-
placements;

5. f ∈ V0 ⇔ f(.−m) ∈ V0 for all m ∈ Z;
6. Function Φ is a scaling function or father wavelet. Φ ∈ V0, such that

{Φ(.−m)}m∈Z is ortagonal base in V0.
Generally, the MRA proposes that the scaling function has a significant

role in the piecewise approximation of the continuous function f(t) and
depends on the scaling index. Note that the MRA is not unique and relies
on the selection of the mother wavelet function. The selection of the mother
wavelet and scaling function is application-dependent; therefore, no specific
selection of the mother wavelet and scaling function can be employed for all
applications with the desired results (Ravanfar et al., 2015).

Biomedical Application of Multiresolution Analysis

Multiresolution analysis is widely applied to solve various problems in-
cluding data compression, biomedical signal analysis, feature extraction,
noise elimination and so on. Gandhi et al. (2011) constructed features
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of EEG signals using MRA analysis. For this purpose, they selected en-
ergy, entropy, and standard deviation as parameters for further analysis.
They found the most suitable candidate among the wavelet coefficients for
accurate classification of the EEG signals. Subha et al. (2010) used dif-
ferent signal processing methods: frequency domain, time – frequency and
non-linear techniques to extract the hidden information from normal EEG
signals with different events on them. Mirzaei et al. (2010) detected epileptic
seizures applying a discrete wavelet-spectral entropy. The EEG signal was
decomposed by discrete wavelet transform into its sub-bands. They con-
cluded that this method can discriminate between ictal and healthy sub-
jects of the alpha sub-band. Guo et al. (2010) presented a method for auto-
matic epileptic seizure detection. They used approximate entropy features
derived from multiresolution analysis, combined with an artificial neural
network, to classify the EEG signals regarding the existence or absence
of seizure.
Pal et al. (2010) employed the multiresolution wavelet transform for

detection and evaluation of the QRS complex. The test result showed an
over 99% true detection rate for R peak and base accuracy over 97%,
96%, 95%, 98% for heart rate, P wave, QRS complex and T wave, respec-
tively. Banerjee et al. (2012) used the discrete wavelet transform to clear
out noise of ECG signals and detect R-peaks by adapting the multireso-
lution approach. Kumar et al. (2015) explored a method for ECG signal
compression based on multiresolution analysis. The results showed that the
proposed method achieves a high compression ratio at relatively low dis-
tortion.
The method proposed by Subasi (2012) automatically classifies the

EMG signals as normal, neurogenic or myopathic. In this research, the use-
fulness of the different feature extraction methods based on MRI analysis
for describing MUP morphology was investigated. Kitlas et al. (2010) pre-
sented results of synchronization measures: power spectrum, coherence mea-
sure, wavelet power spectrum and wavelet coherence measure for patients
with primary dysmenorrhea, uterine myomas, and endometriosis and for
a healthy woman. They used multiresolution analysis to choose the appro-
priate frequency level as the base for computation of the wavelet coherence
function. Ali et al. (2016) studied voice disorders that are associated with
irregular vibrations of vocal folds. They suggested a multiband approach
based on a three-level discrete wavelet transformation. In each band, the
fractal dimension (FD) of the estimated power spectrum was estimated.
The experiments indicated a significant difference in the spectrum of a nor-
mal and pathological subject.
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Application of Multiresolution Analysis for EEG Signals

The EEGs used in this study, which have been analyzed using MRA
analysis, come from PhysioNet. This website offers access to collections
of recorded physiologic signals (PhysioBank) (Goldberger et al., 2000).
The CHB-MIT database, collected at the Children’s Hospital Boston, con-
sists of EEG recordings from pediatric subjects with intractable seizures
(Shoeb, 2009). The sampling frequency was 256 Hz. The International 10–
20 system of EEG electrode positions was used. The signal recording time
is about 60 min. Next, fragments of signals were selected in such a way that
the length of each analyzed signal was 2048 samples. In this paper, 20 sam-
ples containing discharge – group A – and 20 samples without epileptic
discharges – group B – were compared. Sharp waves, with approximately
90% of cases occurring in the temporal region, are associated with a his-
tory of seizures. Most of the observed sharp waves were seen in leads F7/F8
(frontal temporal), and T3/T4 (central electrode temporal) (Shoeb, 2009).
Multiresolution analysis will be performed on the EEG signals from channels
F7-T7, F8-T8, T7-P7, T8-P8, P7-O1, P8-O2. In order to analyze selected
EEG recordings, computer programs have been developed in Matlab.
Figure 1 shows a fragment of wavelet decomposition of the EEG signal

between epileptic discharges obtained from a patient suffering from epilepsy
a) frontal temporal left (F7-T7) levels 1–7 b) frontal temporal right (F8-T8)
levels 1–7.

Figure 1. Multiresolution analysis of EEG signal between epileptic discharges:
D1-D7 details, A7 – approximation from channels a) F7-T7, b) F8-T8

Figure 2 shows the fragment of wavelet decomposition of the EEG sig-
nal during epileptic discharges in the channel with a) the left frontal tem-
poral (F7-T7) levels 1–7, b) the right frontal temporal (F8-T8) levels 1–7.
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Figure 2. Multi-resolution signal analysis of discharges: D1-D7 details, A7 –
approximation from channels a) F7-T7, b) F8-T8

After wavelet decomposition of EEG signals, dominant frequency, the
frequency at which most signal energy is transmitted, was calculated for
all details and approximation from studied channels. Figure 3 shows the
example of spectral analysis of an EEG signal: power spectrum using wavelet
analysis.

Figure 3. The EEG signal and power spectrum using wavelet transform. Black
dot – dominant frequency, the frequency at which most signal energy
is transmitted
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Table 1. The results of dominant frequencies for signals from channels F7-T7
and F8-T8 in studied groups (Mann-Whitney test)

F7-T7 F8-T8

Group A Group B Group A Group B

original 2.016±1.371** 0.600±0.237** 1.853±0.966** 0.650±0.271**

A7 0.579±0.237 0.531±0.162 0.679±0.196 0.600±0.203

D1 83.116±1.402 80.525±4.472 83.074±2.140* 80.531±4.510*

D2 37.811±1.178 38.463±6.216 37.221±1.632 38.519±6.431

D3 20.647±3.404 21.138±3.368 20.247±2.448 21.631±3.784

D4 10.026±1.210 10.038±1.375 10.221±1.153 10.188±1.428

D5 4.942±0.507 4.763±0.268 4.958±0.569 4.975±0.507

D6 2.689±0.533 2.544±0.299 2.663±0.474 2.675±0.277

D7 1.495±0.244 1.344±0.273 1.495±0.303 1.306±0.173

* p < 0.05, ** p < 0.001

Table 2. The results of dominant frequencies for signals from channels T7-P7
and T8-P8 in studied groups (Mann-Whitney test)

T7-P7 T8-P8

Group A Group B Group A Group B

original 1.900±1.587** 0.669±0.320** 2.084±1.349** 0.606±0.302**

A7 0.547±0.135 0.538±0.182 0.679±0.220* 0.519±0.194*

D1 83.126±1.346** 79.581±4.348** 83.863±1.427** 81.306±2.729**

D2 38.211±0.943 38.438±6.387 37.842±1.486 38.169±2.509

D3 21.116±3.065 20.469±3.112 21.305±3.141 21.781±3.683

D4 9.795±1.217 10.444±2.013 9.632±0.852 10.275±1.611

D5 5.137±0.706 4.994±0.623 4.916±0.609 4.838±0.697

D6 2.547±0.399 2.563±0.324 2.653±0.525 2.438±0.236

D7 1.405±0.212 1.350±0.183 1.547±0.284* 1.306±0.208*

* p < 0.05, ** p < 0.001

The values of dominant frequencies of original signals ranged from 0.3Hz
to 6.9 Hz for wavelet analysis. The values of dominant frequencies for these
six channels are very similar. Statistical analysis was performed by means
of the non-parametric Mann-Whitney test. A significant increase (p < 0.05)
of dominant frequency of EEG was found in patients with epileptic dis-
charges (group A) (Table 1, Table 2, and Table 3). The levels of details of de-
composition were characterized by a decreasing difference between the mean
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Table 3. The results of dominant frequencies for signals from channels P7-O1
and P8-O2 in studied groups (Mann-Whitney test)

P7-O1 P8-O2

Group A Group B Group A Group B

original 2.321±1.611** 0.619±0.269** 2.300±1.538** 0.619±0.232**

A7 0.647±0.217 0.575±0.198 0.616±0.192 0.506±0.112

D1 82.489±1.828* 80.250±3.568* 83.426±3.228* 80.100±4.256*

D2 37.168±1.818 38.825±3.214 37.884±1.471 36.744±3.148

D3 20.816±3.281 20.938±3.637 21.121±3.197 20.100±3.292

D4 9.700±0.906 9.869±1.374 10.000±1.422 10.038±1.559

D5 5.011±0.661 4.863±0.413 4.958±0.707 4.794±0.349

D6 2.789±0.516 2.519±0.331 2.684±0.497 2.431±0.311

D7 1.537±0.304* 1.300±0.222* 1.532±0.291* 1.306±0.224*

* p < 0.05, ** p < 0.001

dominant frequencies. Significant differences were for details D1 and D7.
We did not find statistically significant differences between results obtained
by means these six different channels of wavelet analysis (Table 1, Table 2,
and Table 3). The standard deviation data indicate that we’re more focused
around the mean of the results of group B.

Conclusions

Wavelet analysis allows one to simultaneously show time and frequency
signal properties and their distribution. Multiresolution analysis gives an
opportunity to see approximations and details of a signal and select the
appropriate level of detail for further research. The advantage of this type
of analysis is high accuracy when considering the local characteristics of the
signals.
EEG analysis showed significant differences between the dominant fre-

quency of epileptic discharge signals and signals without discharge. This
gives one the ability to identify when the EEG showed a seizure. The lev-
els of details of decomposition are characterized by a decreasing difference
between the mean dominant frequencies. Significant differences were for
D1 and D7, which gives the opportunity for further research into these de-
tails. In conclusion, as supported by research presented herein, multiresolu-
tion analysis can be used to test the prediction of epileptic seizures, thereby
contributing to a precise medical diagnosis.
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