
 1

Complexity of a modelling exercise: a discussion of the role of computer
simulation in Complex System Science

Fabio Boschetti, David McDonald and Randall Gray

CSIRO – CMAR, Australia

Abstract

Shifting the emphasis from a model to a modelling task, which involves both a
computer model and a modeller, we ask what makes a problem complex. We propose
that a modelling task can be seen as a set of questions-and-answers, nested at multiple
levels. The role of the modeller then lies in posing the questions and choosing the best
procedure to answer them, while the role of the model lies in answering the questions,
via algorithmic, thus logically simple, procedures. Within this framework, complexity
is broadly related to the number of question-answer levels involved in the process and
the nature of the questions posed. Addressing this complexity depends crucially on the
ingenuity and creativity of the modeller. This may lead to a view of complexity which
is no more observer-independent, but rather accounts for both historical and cultural
development, that is the context of the problem at hand.

1 Introduction

A fundamental concept underpinning Complex System Science (CSS) is that local
interactions between relatively simple components can lead to considerably more
complex non-local behaviours. A fundamental conjecture CSS attempts to study is
that these local interactions are the drivers for processes like self-organisation and
emergence and, in turn, are responsible for the immense variety of structures, patterns
and phenomena we see in Nature. These two ideas can be found, in slightly different
form, in most ‘manifestos’ of CSS, which, implicitly or explicitly, associate CSS with
an attempt to go beyond the constraints of the reductionist framework which has
guided most past and current scientific successes.

A natural question arising from this observation is how much of the current scientific
arsenal can be saved by giving up reductionism; is the scientific method as we know it
today suitable to study processes like self-organisation, emergence and adaptation? In
his extensive body of work, Rosen [1,2] gives a negative answer to those questions,
and a similar conjecture is proposed in Kauffman [3]. Along those lines, in the
present paper work we discuss the use of computer modelling and we ask what it
means to carry out CSS by computer modelling and what kind of complexity can we
study with this approach. We believe these are important questions, given that so
much work in CSS is done with the aid of computer modelling and since much of the
development of CSS was made possible by the availability of fast computing.

Both our approach and aim are less general that those presented by Rosen and
Kaufman. In particular we discuss a) if and how computer modelling differs when it is
applied to a complex rather than to a non-complex problem, b) what is the role of the
modeller in overall complex-problem solving and c) whether common measures of
process and model complexity match human perception of the difficulty of solving a
‘complex’ problem by employing a computer model.

 2

We argue that, in practise, only a small fraction of a CSS problem is addressed via
computation. Rather, the choice of the problem, its formulation, the selection of the
numeral tools to address it, the interpretation of the results and the choice of how to
act in response to such results, are all steps which involve the creativity and ingenuity
of CS researchers. We believe that the complexity of a modelling exercise cannot be
estimated without accounting for this crucial contribution and we propose some initial
steps in this direction.

Our target audience consists of modellers in a multidisciplinary sense; consequently
we aim to discuss this subject in a fairly informal manner, trying to avoid technical
terms and referring the interested reader to the ample available literature.

2 Background concepts

In this section we introduce some of the definitions, assumptions and concepts we
discuss in the rest of the paper.

2.1 Definitions and Measures of Complexity

Complex system concepts like self-organisation, emergence and complexity itself,
often have different meaning to different researchers, both within the same field and
among different scientific fields. For communication to be possible, these concepts
need to be defined, at least broadly. A large number of definitions have been proposed
in the literature (see http://bruce.edmonds.name for an extensive collection). In this
paper we refer mostly to a set of information-theoretic definitions proposed in
Prokopenko et al [4], where extensive references for further reading can also be
found.

One of the most popular definitions of complexity is Kolmogorov’s algorithmic
complexity (also called Kolmogorov-Chaitin complexity, see [5,6]). Given a data set,
this is defined as the length (in bits of information) of the minimal program which can
reproduce the data. According to this definition, fully periodic data have low
complexity since a very short program (which stores 1 period and outputs it
indefinitely) can reproduce the entire data set exactly. Departures from periodic
behaviour towards randomness would require programs of increasing length and
consequently display increasing algorithmic complexity. Because random data are by
definition not predictable and consequently not compressible, they have maximum
complexity according to Kolmogorov’s definition: the only program which can
reproduce it is a program which stores and outputs the data set itself.

This somehow contradicts our intuition about complexity, which is usually seen as
something between order and randomness. To circumvent some of these problems,
Crutchfield and Young [7] propose that complexity be characterised by the amount of
information needed to perform useful “statistical” prediction. In other words, it
measures the minimum number of statistically different configuration states we need
to store in order to capture and reproduce the statistical properties of a time series,
rather that the exact time series itself. As in the case of algorithmic complexity, little

 3

information is needed to capture the statistical properties of a simple periodic
function. Unlike Kolmogorov’s definition though, very little information is needed to
statistically reproduce a random time series, since no amount of memory (effort) can
help improving our predictive ability, i.e., an ‘optimal’ prediction can be performed
with zero memory (there is no point in storing the outcomes of roulette draws to bet
on the next draw). Since these information-theoretic views of complexity are closely
related to predictability and in particular to the amount of information required to
achieve useful or optimal prediction, they can be applied to scientific modelling in a
straightforward manner [8].

From an information-theoretic perspective, the information processing capabilities of
an agent (be this a cell, a bacterium or a higher organism) are equivalent to a set of
rules which allows the agent to take an action in response to an input signal or
stimulus. These capabilities can be viewed as adaptations to the environment as a
result of evolution or learning. In information-theoretical jargon, this is a set of
instructions that is usually described as a ‘model’ of the environment [9]. Thus, within
this framework, model building is analogous to ‘understanding’: a model displays and
represents ‘understanding”, since it allows for a prediction (a guess, or expectation) of
what the environment will look like in the immediate future, according to which the
agent can choose what action it should take next.

At the level of human knowledge, this model building may enable a scientist or
engineer to predict the behaviour of natural processes and to devise ways to modify
them. According to this view, the concepts of information processing, computation,
modelling and prediction are relevant to all levels of investigation of a complex
system and encompass both the system and the observer trying to study it.

2.2 Formal Logic and Computation

The discussion which follows relies crucially on the equivalence between the
workings of formal systems and computation [5,10,11,12]. Both start from a set of
axioms and input data (defined a priori) and a set of inference rules (transformation
rules and computer instructions). These generate outputs such as theorems and
computational results.

As discussed in [13], in a formal system the truth of a statement is a property which
depends only on the set of axioms and inference rules and the values assigned to its
variables. If these are given, then every such statement (without unassigned
variables) is inevitably true or false, and remains so for all possible scenarios and,
consequently, confers no information about the real world. A typical example is the
statement ‘I will get wet if I go outside’, which may or may not be true depending on
the weather conditions. If our colleague tells us that it is currently raining, then our
variables for location and weather have been defined for us, and the statement is an
inescapable consequence of the unalterable parts of the system: it may not correspond
to reality if our colleague is wrong about the local weather, but it is true in the context
of the system. If, on the other hand, we must peek out of the window to assign a
value to the local weather variables (and we do so correctly), then our statement does
give us information pertinent to the real world. Thus, it is the process of assigning
values to the variables in a statement, and assessing whether the statement is true or

 4

not, which provides information about the real world. In contrast, a mathematical
theorem is true independently of Nature’s vagaries. Within an information-theoretic
framework, from the definitions of algorithmic and statistical complexities we
presented above, it thud follows that true statements are transformations of sentences
containing information, not statements of new information.

The PCs on our desks are equivalent to a finite tape Turing Machine (TM), an abstract
and general computational device commonly employed in theoretical computer
science. Because the working of a TM is equivalent to that of a formal system [10], it
follows that the running of any computer model transforms the information contained
in the input via the coded algorithm, but does not generate information. Clearly, a
model’s output helps our finite mental capability to see consequences of what we code
(which at times we cannot envisage), but its truth and relevance to the real world is
limited to the truth and relevance of what the user codes and the input fed to the
computation. No actual information about the real world is produced by a simulation.
In a modelling exercise, information is thus generated solely by the writing of the
code, the choice of the input and the interpretation and comparison of the outputs to
what we observe in Nature which, in turn, tells us about the appropriateness of the
rules we implement and the input we choose. This suggests that the modeller plays a
crucial role in a CSS modelling exercise which should be properly accounted for.

2.3 Forward and Inverse Modelling

Let’s assume that we work with a model F of a physical process and we consider the
model to be a black box. The process which, given a certain input i, determines an
output o, (o=F[i]) represents our understanding of cause-effect relations. By changing
the input i, we consequently change the output o; that is, we can control the output o,
by acting on i, as we satisfy an operative definition of causality [14,15] which allows
us to timidly circumvent known philosophical problems. Since F respects our
perception of the ‘arrow of time’ (cause leads to an effect), it is usually called a
‘forward’ model.

Many engineering and scientific problems however ask questions like “what is the
cause of this effect?” (“what caused this flood?”, “what causes this disease?”, “what
can stop the next pandemic?”). This implies a hypothetical model I which, given an
effect (o) as input, gives a possible cause as an output (i=I[o]). Because I reverses the
‘arrow of time’, it is usually called an inverse model.

Unfortunately, inverse models such as I can be written explicitly for only a very small
set of forward models F. This is true not only for closed-form models but also for
purely numerical models. As a result, most inverse engineering and scientific
problems need to be solved by iterative methods using forward models in which sets
of inputs i are tested until a reasonable match between F[i] and the expected output, o,
is found. The procedure which allows us to recover i from F and o is called inversion,
optimisation, or regression, depending on the discipline, and we refer to it generally as
inverse modelling.

 5

3 Complexity, Modelling and Understanding

We can summarise the previous sections as follows:

1) a computer model is equivalent to a formal system; that is, it is a closed
system whose dynamics and evolution is fully determined by the set of
acceptable initial conditions and transformation rules;

2) this ensures that there is an equivalence between a model and its output; in
principle, an output can be compressed into the model, since we can
reconstruct the output (or at least its statistical features) by simply running the
model. This equivalence is what the definitions of algorithmic and statistical
complexities are based upon;

3) employing the ‘Occam’s razor’ principle, this model represents the best
‘understanding’ of the output/process since it is the most compact
representation of the process which generates the data and can be used for
prediction (provided we have the ‘right’ model, of course).

Ideally, we can thus apply these 3 steps to the working of a scientist. We can imagine:

1) measuring a natural process by collecting data arising from it;
2) reconstructing a model which is able to reproduce the measured data with a

specified accuracy and then
3) ‘measuring’ the size of the model; if the model is ‘large’ the natural process is

described as ‘complex’, otherwise it is described as ‘simple’.

Does this capture our intuition of the challenges faced by a scientist in addressing a
complex problem? In our opinion, it does not. There are a number of reasons for our
concern:

1) Consider some classes of models which have been extensively used in CSS
research. Cellular automata are supposed to generate emergent patterns, sand-
pile algorithms are supposed to generate self-organisation, scale-free networks
generate ‘small worlds’ behaviors, and genetic algorithms, neural networks,
ant colony algorithms and simulated annealing (among others) are supposed to
provide learning and adaptation. Nevertheless, all of these models are very
‘small’, containing only a few simple rules and, according to algorithmic and
statistical complexity definitions, they would be classified as ‘simple’.
However, they have long been considered as stereotypical examples of
‘complex’ models, and humans find it hard to predict the behaviour of these
‘simple’ models. This suggests that there is a mismatch between the
information-theoretic concept of complexity and shortcomings in the ability of
humans to ‘understand’.

2) Most information-theoretic measures, which are based on statistical principles,
require processes and data to be stationary. It is unclear that our understanding
of self-organization, adaptation and emergence are compatible with this
assumption.

3) Information-theoretic measures of complexity also do not account for the time
it may take for a scientist to solve problems. The concept of computation time
as a measure of complexity is employed in the definition of ‘logical-depth’
[16], roughly, the time which a TM would take to carry out a specific task.

 6

Once gain, it is not obvious that the human perception of complexity matches
this measure; a code may take a very long time to generate large amounts of
easily-predictable data, while other fast computations may appear to be very
complex (a chaotic process for example).

Most important for our discussion is that these measures do not account for the
process which an agent/scientist needs to employ in order to reconstruct the model;
rather, they assume that the shortest model is already available. In fact, when dealing
with algorithmic complexity, not only a method which ensures the reconstruction of
the shortest model is unavailable, but also, given a model, we cannot even prove that
such model is the shortest possible [5]. Regarding statistical complexity, a method to
reconstruct the shortest model is available [17], but the resulting model is provably
shortest only given the language we use to measure the data, represent the data and
code the model. In Crutchfield [9], step improvements in the modelling capabilities of
an agent are linked to the discovery of new, more powerful, languages. How such
discovery might happen is not known, nor is it known whether such discovery is
computable at all. It thus appear to us that the concept of complexity needs to account
for the role of the modeller, not only because the modeller is necessary in
reconstructing a model and interpreting it, but also because the model itself cannot be
modeller-independent, since the modeller will determine the language used in the
reconstruction.

Finally, it is not at all obvious that the information-theoretic interpretation of
‘understanding’ (that is, model-building) applies to human understanding, or our
perception of it. Among many definitions of the concept of ‘human understanding’, a
particularly insightful one is the ‘ability to translate’ [18], which implies the ability to
express and employ rules within different languages and contexts; so far, automated
systems (algorithms) have proved particularly ineffective at tasks of this kind, which
suggests that measures used to evaluate the complexity of algorithms may not be
suitable to estimate the human perception of the complexity of a problem.

We attempt to address some of these concerns in the following sections.

4 Studying a Complex System via Numerical Modelling

In this section we consider a hypothetical Complex System Model (CSM) and draw
some conclusions about the way it is commonly used in CSS research. In order to
represent a stereotypical complex system model, we imagine that our CSM is an
agent-based model in which a relatively large set of agents interact with one another
by using simple local rules. We also imagine that the purpose of the modelling
exercise is to study the global pattern arising from the resulting dynamics, which, as is
commonly assumed, results in self-organisation and emergent behaviours.

Following Section 2.3, the CSM is a forward model, which takes the local rules and an
initial configuration as input i and generates an emergent behaviour and self-organised
dynamics as output o, o=CSM[i]. Also, because the CSM is an algorithm, the
discussion at Section 2.2 applies, and we infer that any dynamical behaviour in o is
implicitly determined by i and the CSM. Indeed, no matter how complex, large,

 7

apparently unpredictable and surprising o is, its entire information content can be
compressed into i and the CSM [5].

The discussion in Section 2.2 seems to rule out the possibility of novelty or creative
processes solely via numerical modelling (see also [15,13]). It also points out that,
from a purely logical perspective, no difference exists between modelling a complex
and a non complex system, as long as the modelling is carried out on some machine
which is equivalent to a finite tape Turing Machine, as is the case for the computers
we typically use.

It is also obvious form the previous discussion that the execution of a numerical
model is equivalent to the running of a mechanical device (indeed, the very first
computers were mechanical instruments), and it is normally accepted in the CSS
community that a mechanical device, no matter how complicated, is not complex.
This highlights a sort of contradiction: in trying to simulate a complex process, we
resort to using a tool which is not commonly viewed as complex. This contradiction
may be resolved by one or more of these statements:

1) either the natural processes we want to study are not complex, in which case
our entire view of complexity or approach to CSS needs to be revised;

2) or our models will never simulate the very features which make natural
processes complex; this also would imply a considerable revision of the way
we carry out CSS;

3) or the roots of what we perceive as complex do not lay solely in the process
itself, but also in the effort required by us to understanding it.

Some of the issues related to points 1 and 2 have been addressed in [15] and [13] and
we refer the reader to that work and the references listed therein. Here we address
point 3.

Consider the standard scenario under which our CSM could be used in CSS research.
Supposedly, the scientist has some expectation of what kind of global behaviour
arising from a natural process he/she intends to model or which kind of local rules
he/she wants to study. We imagine the following steps:

1) the CSM is written and some input i is chosen;
2) the CSM is run and the output o (an image, an animation, numerical data, etc.)

is obtained;
3) the user analyses the output, often visually and subjectively (sometimes

numerically), and expresses a judgement on whether the output matches the
expectations (possibly a pattern seen in Nature which he/she wants to
reproduce or a result of the local rules which he/she judges to be ‘realistic’ or
‘interesting’);

4) if the outcome is not satisfactory, or something unexpected in the output
sparks new insights, the user may decide to change the input i or the rules in
the CSM and go back to 2.

This process, the writing and “tuning” of the model, is actually an iterative inversion
process as described in Section 2.3. The ‘non mechanical’ steps are 1, 3 and 4, in
which the user is required to use ingenuity and expertise to design or adjust the code,

 8

to interpret the results, to judge the output realism or accuracy (by analysing its inner
patterns) and to select further input for testing. Step 2, the running of the CSM, is the
mechanical one, the one in which no information is generated, but only transformed
according to pre-defined rules. It is also clear that the only ‘logically nontrivial’
information we can recover from the exercise in steps 1-4 is the ‘inverse’ deduction of
the suitable input and the suitable transformation rules in the CSM, not the generation
of the patterns in the output, since they contain no information which is not already
contained in i and the CSM.

In principle, algorithms which would, at least superficially, carry out steps 3 and 4,
are abundant in the numerical optimisation literature, and algorithms which
reconstruct a CSM at point 1 have been proposed in the machine learning literature.
However, this simply obscures, rather than removes, the role of the modeller. First the
algorithms to carry out steps 1, 3 and 4 still need to be developed by the modeller.
Second, the choice of algorithms will constrain the solution set and thus their
applicability; Third, once written, they are cannot be modified by the algorithm
themselves; once the user has realised that the current architecture does not model the
process appropriately, the algorithm must be re-written/modified, a step which
requires the modeller intervention. In other words, optimisation algorithms (even the
ones inspired by natural processes like genetic algorithms) are still algorithms and as
such undergo the constraints discussed in Section 2.2.

We can summarise our discussion so far as follows:

1) information-theoretic measures of model complexity do not match our
perception of what makes a natural processes complex;

2) ‘understanding’ a natural process is an inverse process;
3) this inverse process cannot be carried out solely by an algorithm, rather it

requires the modeller intervention.

In the following section we propose an approach towards a definition of complexity
which accounts for these points.

5 What makes a modelling exercise ‘complex’?

Here we shift the question of complexity from the model to the modelling exercise,
which involves a model and a modeller who uses the model to answer specific
questions.

As we discussed in Section 2.3, within the context of a numerical inversion, solving a
inverse problem can be seen as a (possibly iterative) process of asking and answering
questions. The role of the modeller lies in posing the questions and devising a
procedure to answer them; both require intuition and creativity. Once this has been
done, answering the question (if possible) is then a mechanical process which is
carried out by the model.

Within this framework, we propose that the complexity of a modelling exercise is
represented by the number of levels at which questions are asked and answered. Here
we describe what we mean by levels. At a high level, any modelling exercise aims to

 9

answer a broad question (“what factors lead to a market crash?”, “what decision will
improve the resilience of this ecosystem?”, “what is the square root of 10?”, “what is
the optimal scheduling for this process?”). Some problems, which we define as
‘simple’, can be solved (within required numerical precision1) algorithmically in a
single call of a numerical routine (“what is the square root of 10?”). Solving this
problem does not involve an iterative inverse problem once the question is posed and
a method to answer it (the algorithm) has been devised. We say this problem has
‘level 1’ complexity

Other problems cannot be solved in a single step and require a numerical iterative
search of a parameter space via the use of a forward model. This search involves
questions and answers at 2 levels. Let’s consider the problem “what is the optimal
scheduling for this process?”. The high level question is given by the problem itself.
The lower level questions are given by the individual runs of the forward model,
which, given a candidate input, check whether the resulting schedule is optimal; each
run of a forward model effectively answers the question “is the scheduling arising
from this input parameter set good?”, thus the modeller must devise a clever
numerical procedure to judge how ‘good’ a certain schedule is, given our
expectations. We say this problem has ‘level 2’ complexity.

Unlike in ‘level 1’, in a ‘level 2’ problem the modeller has a further role. First, he/she
must pose the ‘global’ question. Second, he/she must pose the lower level questions in
the iterative search. Traditionally, this is done by the modeller employing his/her
judgment to evaluate which configuration in the parameter space should be tested
next. Alternatively, it can be done automatically, by using a numerical optimisation
routine [19], in which case the role of the user is to choose the suitable optimisation
routine and tune it for the problem at hand (which can be seen as an inverse problem
itself).

Next, we find inverse problems for which the quality of the outcome cannot be judged
numerically [20]. Artistic problems fall in this category [21], but so do many scientific
and engineering problems [22]. An example of such questions may be “does this
agent-based model generate an emergence pattern?” or “does it display self-
organisation?”. Here, in addition to the questions mentioned in the previous
paragraph, the user needs to judge (visually, for example) the global patterns arising
from the forward model; expertise, experience, creativity and imagination in this
further step are required to evaluate patterns, since novelty and surprise are possible
outcomes of this process, and to possible develop instruments and/or procedures
capable of carrying out such assessment. We say this problem has ‘level 3’
complexity.

Finally, we consider problems like “what factors result in a market crash?” and “what
decision will improve the resilience of this ecosystem?”. In these problems, the
modeller is required to carry out another crucial judgment in answering another level
of questions like “is the numerical model I am using appropriate for this task?”, “does
it include all important processes which affect my results?”. If the answer to these
questions is negative, the modeller needs to intervene by modifying or augmenting the

1 This requirement is essential, or we must admit that any problem leading to an irrational number
would be unsolvable numerically.

 10

model itself. It should be clear than neither of these tasks (judging the appropriateness
of the model and improving it) can be carried out by the model itself with current
technologies [15] and both involve a creative intervention from the modeller. We say
this problem has ‘level 4’ complexity.

We summarise this proposed classification in Table 1.

Table 1. Classification levels of problem complexity and some examples.
Complexity
Level

Type of problems Example

Level 1 Problems which can be solved by
a single call of a routine/model

• ?10
• “is file.dat stored in my

computer?”
• “what is the temperature today?”

Level 2 Inverse problems for which a
‘suitable’ forward model is
available and which can be
automated by the choice of an
appropriate optimisation routine.

• “what is the optimal scheduling
for this process?”

• “what aerodynamic design for
this wing is optimal?”

• “what type of fuel can make this
engine more efficient?”

Level 3 Inverse problems for which a
‘suitable’ forward model is
available but cannot be
automated by the choice of an
appropriate optimisation routine

• “does this agent-based model
generate an emergence pattern?”

• “does it display self-
organisation?”

• “does this program generate nice
pictures/music?”

Level 4 Inverse problems for which we
are not sure a ‘suitable’ forward
model is available and in which
the model may need to be
modified.

• “what factors result in a market
crash?”

• “what decision will improve the
resilience of this ecosystem?”

• “what is the best policy to
address global warming?”

6 Discussion and Implications

The classification proposed in the previous section is neither unique, nor observer
independent; the same process will appear of different complexity to different
scientists, according to their own expertise. Also, process complexity may change in
time. Let’s consider the ‘simple’, complexity level 1, “ ?10 ” problem. In our
discussion we assumed this can be solved by a simple routine call. This is correct only
provided we do not concern ourselves with what the routine does. In reality, a square
root is itself calculated with an iterative procedure, albeit one which can be coded
fully algorithmically, given a limited required accuracy [23]. Someone developed the
algorithm2, using his/her own creativity and ingenuity. So is it really correct to assign
to it a ‘level 1’ complexity? A similar consideration applies to the scheduling problem

2 Actually several algorithms to calculate a square root exist, see for example [23].

 11

discussed above; from a purely computational perspective a code may contain both a
forward complex model and a numerical inverse routine, thereby performing an
iterative search in a way that may be transparent to the user. In both cases, an
originally complex modelling task can be turned into a ‘simple’ black-box operation,
if we do not concern ourselves with what the code actually does. As a further
example, Kaltwasser et al. [24] attempted to reproduce algorithmically the subjective
evaluation of problems for which a numerical cost function could not be easily
designed; in principle, this would also turn the iterative, subjective problem at ‘level
3’ into a ‘level 1’, ‘simple’ problem.

In our opinion, this captures the process of cultural development and scientific
understanding: the ability to ‘de-complexify’ a process turns a previously ‘complex’
problem into a ‘simpler’ one, thereby climbing down the complexity ladder. This can
be achieved either by a single individual or by the scientific community as a whole.
According to this view, the ?10 problem, which previously require lengthy
calculations, now can be solved by pressing a button, without any need to concern
ourselves with what the algorithm does; for us, today, ?10 is not complex; at least is
simpler than it was for previous generations.

This view raises the issue of how this understanding or ‘de-complexification’ is
transmitted culturally. In the information-theoretic formulations we discussed above,
‘understanding’ implies ability to predict. The model, which can be used to carry out
the prediction, represents ‘understanding’. As we discussed above, we do not believe
that ability to predict implies ultimate understanding, however we subscribe to the
view that the ability to predict is a minimum requirement to show understanding.
From this perspective, a scientist who has devised a model which predicts a process
with a required precision can be said to have achieved a satisfactory understating of a
process. More generally, we may say that another scientist who adopts such model has
at least understood that the use of the model leads to prediction. This is perhaps a little
too loose, we admit, but the difference between the model developer and the user may
be dismissed for ‘simple’ level 1 and 2 problems.

The identification of ‘understanding’ with a model becomes weaker the higher we
climb the ‘complexity’ ladder, however. While the algorithm which solves ?10 can
solve all other square root questions (for most practical purposes), this becomes less
and less true for more complex problems. An ecological model built to study an
Australian marine ecosystem, may not be suited to the study of an Antarctic marine
ecosystem without suitable modification, and even less to study non-marine
ecosystems. The model will then require intervention and modification; to what extent
this modification is possible, and to what extent this is helped by the existence of a
starting model (which may have been built by generations of previous modellers) is
not clear and may be an avenue for further research.

7 Conclusions

Most real-world problems involving computation need to be solved via an inverse
process, involving iterative trial-and-error runs of a forward model. This is not
different from how most Complex System Science problems are addressed, in which a

 12

modeller tests several input parameters and model architectures in order to generate a
desired global outcome. Disregarding this observation, thereby focussing only on the
computer model, leads to ignoring the role of the modeller in addressing a complex
problem.

We propose switching the focus from the analysis of a model to the analysis of a
modelling exercise and we argue that most of the complexity lies in the task the
modeller must carry out, rather than merely in the computation involved.

We suggest that the complexity of a modelling task is related to the level and amount
of intervention, in terms of ingenuity and creativity, which is required by the
modeller, and that the content of the model represents the amount of complex
knowledge which is transmitted within the scientific community.

8 Acknowledgments

This research was carried out as a part of the CSIRO Emergence Interaction Task,
http://www.per.marine.csiro.au/staff/Fabio.Boschetti/CSS emergence.htm. The
authors wish to thank Dr. Nicky Griggs and Dr. Francis Pantus for useful comments
on an early manuscript.

9 References
123456789101112131415161718192021222324

1 Rosen, R, 2000 Essays on life itself, Columbia University Press, New York
2 Rosen, R, 2001, Life Itself, A Comprehensive Inquiry into the Nature, Origin, and
Fabrication of Life, Columbia University Press.
3 Kauffman, S., 2000, Investigations, Oxford University Press.
4 Prokopenko M, F.Boschetti, and Ryan A, 2007, An Information-Theoretic Primer
On Complexity, Self-Organisation And Emergence, Advances in Complex Systems,
submitted.
5 Chaitin, G., 1997, The limits of mathematics : a course on information theory &
limits of formal reasoning, Springer, New York.
6 Chaitin, Gregory J. 1974, Information-theoretic limitations of formal systems.
Journal of the ACM, vol. 21, pp. 403-424
7 Crutchfield, J. P. and Young, K., 1989, Inferring Statistical Complexity. Physical
Review Letters 63: 105-108.
8 Boschetti, F., 2007, Mapping the complexity of ecological models, Ecological
Complexity, submitted.
9 Crutchfield, J. P. (1994) The Calculi of Emergence: Computation, Dynamics, and
Induction. Physica D 75: 11-54.
10 Turing, MA 1936. On Computable Numbers, with an Application to the
Entscheidungsproblem, Proceedings of the London Mathematical Society 42:230-265
11 Ord, T., ‘Hypercomputation: computing more than the turing machine’, CoRR
math.LO/0209332 (2002).
12 Penrose, R., 1989, The emperor's new mind : concerning computers, minds, and the
laws of physics, Vintage: London, Melbourne

 13

13 Boschetti & Gray , 2006, Emergence, Novelty and Computability, in preparation.
14 Pattee, H.H. (1997), "Causation, Control, and the Evolution of Complexity".
Downward Causation, P.B. Anderson, P.V Christiansen, C. Emmeche, and N.O.
Finnemann. In Press.
15 Pearl, J., 2000, Causality: models, reasoning and inference, Cambridge, Mass., MIT
Press, 2000, 384 pages.
16 Bennett,CH; 1988, Logical Depth and Physical Complexity, in The Universal
Turing Machine, A Half-Century Survey, Eds.Herken,R; , Oxford University Press,
Oxford, pages 227-257
17 Shalizi, C. R. and Shalizi, K. L. (2004). Blind Construction of Optimal Nonlinear
Recursive Predictors for Discrete Sequences. In “Uncertainty in Artificial
Intelligence: Proceedings of the Twentieth Conference", Arlington, Virginia, Max
Chickering and Joseph Halpern, AUAI Press. p. 504-511
18 Hübler, A., Understanding Complex Systems: Defining an abstract Concept,
Complexity 12(5), 5-9(2007).
19 Tarantola, A., 1987. Inverse Problem Theory. Elsevier, Amsterdam, 613pp..
20 Takagi, H., 2001, Interactive evolutionary computation: Fusion of the capacities of
EC: optimization and human evaluation: Proceedings of the IEEE, v. 89 (9), p. 1275–
1296.
21 Baluja, S., Pomerleau, D., and Jochem, T., 1994, Towards Automated Artificial
Evolution for Computer-generated Images, Connection Science, 6, pp 325-354.
22 F. Boschetti and L. Moresi, 2001, "Interactive Inversion in Geosciences",
Geophysics, 64, 1226-1235.
23 Weisstein, Eric W. "Square Root." From MathWorld--A Wolfram Web Resource.
http://mathworld.wolfram.com/SquareRoot.html
24 Kaltwasser P., Boschetti F., and Hornby P., 2004, Measure of similarity between
geological sections accounting for subjective criteria, Computer & Geosciences, Vol
31/1 pp 29-34 .

