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Abstract 
 

Shifting the emphasis from a model to a modelling task, which involves both a 
computer model and a modeller, we ask what makes a problem complex. We propose 
that a modelling task can be seen as a set of questions-and-answers, nested at multiple 
levels. The role of the modeller then lies in posing the questions and choosing the best 
procedure to answer them, while the role of the model lies in answering the questions, 
via algorithmic, thus logically simple, procedures. Within this framework, complexity 
is broadly related to the number of question-answer levels involved in the process and 
the nature of the questions posed. Addressing this complexity depends crucially on the 
ingenuity and creativity of the modeller. This may lead to a view of complexity which 
is no more observer-independent, but rather accounts for both historical and cultural 
development, that is the context of the problem at hand. 
 

1 Introduction  
 
A fundamental concept underpinning Complex System Science (CSS) is that local 
interactions between relatively simple components can lead to considerably more 
complex non-local behaviours. A fundamental conjecture CSS attempts to study is 
that these local interactions are the drivers for processes like self-organisation and 
emergence and, in turn, are responsible for the immense variety of structures, patterns 
and phenomena we see in Nature.  These two ideas can be found, in slightly different 
form, in most ‘manifestos’ of CSS, which, implicitly or explicitly, associate CSS with 
an attempt to go beyond the constraints of the reductionist framework which has 
guided most past and current scientific successes.  
 
A natural question arising from this observation is how much of the current scientific 
arsenal can be saved by giving up reductionism; is the scientific method as we know it 
today suitable to study processes like self-organisation, emergence and adaptation? In 
his extensive body of work, Rosen [1,2] gives a negative answer to those questions, 
and a similar conjecture is proposed in Kauffman [3].  Along those lines, in the 
present paper work we discuss the use of computer modelling and we ask what it 
means to carry out CSS by computer modelling and what kind of complexity can we 
study with this approach. We believe these are important questions, given that so 
much work in CSS is done with the aid of computer modelling and since much of the 
development of CSS was made possible by the availability of fast computing. 
 
Both our approach and aim are less general that those presented by Rosen and 
Kaufman. In particular we discuss a) if and how computer modelling differs when it is 
applied to a complex rather than to a non-complex problem, b) what is the role of the 
modeller in overall complex-problem solving and c) whether common measures of 
process and model complexity match human perception of the difficulty of solving a 
‘complex’ problem by employing a computer model.  
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We argue that, in practise, only a small fraction of a CSS problem is addressed via 
computation. Rather, the choice of the problem, its formulation, the selection of the 
numeral tools to address it, the interpretation of the results and the choice of how to 
act in response to such results, are all steps which involve the creativity and ingenuity 
of CS researchers. We believe that the complexity of a modelling exercise cannot be 
estimated without accounting for this crucial contribution and we propose some initial 
steps in this direction.   
 
Our target audience consists of modellers in a multidisciplinary sense; consequently 
we aim to discuss this subject in a fairly informal manner, trying to avoid technical 
terms and referring the interested reader to the ample available literature.  
 

2 Background concepts 
 
In this section we introduce some of the definitions, assumptions and concepts we 
discuss in the rest of the paper.   
 

2.1 Definitions and Measures of Complexity 
 
Complex system concepts like self-organisation, emergence and complexity itself, 
often have different meaning to different researchers, both within the same field and 
among different scientific fields. For communication to be possible, these concepts 
need to be defined, at least broadly. A large number of definitions have been proposed 
in the literature (see http://bruce.edmonds.name for an extensive collection). In this 
paper we refer mostly to a set of information-theoretic definitions proposed in 
Prokopenko et al [4], where extensive references for further reading can also be 
found. 
 
One of the most popular definitions of complexity is Kolmogorov’s algorithmic 
complexity (also called Kolmogorov-Chaitin complexity, see [5,6]). Given a data set, 
this is defined as the length (in bits of information) of the minimal program which can 
reproduce the data. According to this definition, fully periodic data have low 
complexity since a very short program (which stores 1 period and outputs it 
indefinitely) can reproduce the entire data set exactly.  Departures from periodic 
behaviour towards randomness would require programs of increasing length and 
consequently display increasing algorithmic complexity. Because random data are by 
definition not predictable and consequently not compressible, they have maximum 
complexity according to Kolmogorov’s definition: the only program which can 
reproduce it is a program which stores and outputs the data set itself.  
 
This somehow contradicts our intuition about complexity, which is usually seen as 
something between order and randomness. To circumvent some of these problems, 
Crutchfield and Young [7] propose that complexity be characterised by the amount of 
information needed to perform useful “statistical” prediction. In other words, it 
measures the minimum number of statistically different configuration states we need 
to store in order to capture and reproduce the statistical properties of a time series, 
rather that the exact time series itself. As in the case of algorithmic complexity, little 
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information is needed to capture the statistical properties of a simple periodic 
function. Unlike Kolmogorov’s definition though, very little information is needed to 
statistically reproduce a random time series, since no amount of memory (effort) can 
help improving our predictive ability, i.e., an ‘optimal’ prediction can be performed 
with zero memory (there is no point in storing the outcomes of roulette draws to bet 
on the next draw).  Since these information-theoretic views of complexity are closely 
related to predictability and in particular to the amount of information required to 
achieve useful or optimal prediction, they can be applied to scientific modelling in a 
straightforward manner [8].  
 
From an information-theoretic perspective, the information processing capabilities of 
an agent (be this a cell, a bacterium or a higher organism) are equivalent to a set of 
rules which allows the agent to take an action in response to an input signal or 
stimulus. These capabilities can be viewed as adaptations to the environment as a 
result of evolution or learning. In information-theoretical jargon, this is a set of 
instructions that is usually described as a ‘model’ of the environment [9]. Thus, within 
this framework, model building is analogous to ‘understanding’: a model displays and 
represents ‘understanding”, since it allows for a prediction (a guess, or expectation) of 
what the environment will look like in the immediate future, according to which the 
agent can choose what action it should take next.  
 
At the level of human knowledge, this model building may enable a scientist or 
engineer to predict the behaviour of natural processes and to devise ways to modify 
them. According to this view, the concepts of information processing, computation, 
modelling and prediction are relevant to all levels of investigation of a complex 
system and encompass both the system and the observer trying to study it. 
 

2.2 Formal Logic and Computation 
 
The discussion which follows relies crucially on the equivalence between the 
workings of formal systems and computation [5,10,11,12]. Both start from a set of 
axioms and input data (defined a priori) and a set of inference rules (transformation 
rules and computer instructions). These generate outputs such as theorems and 
computational results.  
 
As discussed in [13], in a formal system the truth of a statement is a property which 
depends only on the set of axioms and inference rules and the values assigned to its 
variables.  If these are given, then every such statement (without unassigned 
variables) is inevitably true or false, and remains so for all possible scenarios and, 
consequently, confers no information about the real world. A typical example is the 
statement ‘I will get wet if I go outside’, which may or may not be true depending on 
the weather conditions. If our colleague tells us that it is currently raining, then our 
variables for location and weather have been defined for us, and the statement is an 
inescapable consequence of the unalterable parts of the system: it may not correspond 
to reality if our colleague is wrong about the local weather, but it is true in the context 
of the system.  If, on the other hand, we must peek out of the window to assign a 
value to the local weather variables (and we do so correctly), then our statement does 
give us information pertinent to the real world. Thus, it is the process of assigning 
values to the variables in a statement, and assessing whether the statement is true or 
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not, which provides information about the real world. In contrast, a mathematical 
theorem is true independently of Nature’s vagaries. Within an information-theoretic 
framework, from the definitions of algorithmic and statistical complexities we 
presented above, it thud follows that true statements are transformations of sentences 
containing information, not statements of new information. 
 
The PCs on our desks are equivalent to a finite tape Turing Machine (TM), an abstract 
and general computational device commonly employed in theoretical computer 
science. Because the working of a TM is equivalent to that of a formal system [10], it 
follows that the running of any computer model transforms the information contained 
in the input via the coded algorithm, but does not generate information. Clearly, a 
model’s output helps our finite mental capability to see consequences of what we code 
(which at times we cannot envisage), but its truth and relevance to the real world is 
limited to the truth and relevance of what the user codes and the input fed to the 
computation. No actual information about the real world is produced by a simulation. 
In a modelling exercise, information is thus generated solely by the writing of the 
code, the choice of the input and the interpretation and comparison of the outputs to 
what we observe in Nature which, in turn, tells us about the appropriateness of the 
rules we implement and the input we choose. This suggests that the modeller plays a 
crucial role in a CSS modelling exercise which should be properly accounted for. 
 

2.3 Forward and Inverse Modelling 
 
Let’s assume that we work with a model F of a physical process and we consider the 
model to be a black box. The process which, given a certain input i, determines an 
output o, (o=F[i]) represents our understanding of cause-effect relations. By changing 
the input i, we consequently change the output o; that is, we can control the output o, 
by acting on i, as we satisfy an operative definition of causality [14,15] which allows 
us to timidly circumvent known philosophical problems.  Since F respects our 
perception of the ‘arrow of time’ (cause leads to an effect), it is usually called a 
‘forward’ model.  
 
Many engineering and scientific problems however ask questions like “what is the 
cause of this effect?” (“what caused this flood?”, “what causes this disease?”, “what 
can stop the next pandemic?”). This implies a hypothetical model I which, given an 
effect (o) as input, gives a possible cause as an output (i=I[o]). Because I reverses the 
‘arrow of time’, it is usually called an inverse model.  
 
Unfortunately, inverse models such as I can be written explicitly for only a very small 
set of forward models F. This is true not only for closed-form models but also for 
purely numerical models. As a result, most inverse engineering and scientific 
problems need to be solved by iterative methods using forward models in which sets 
of inputs i are tested until a reasonable match between F[i] and the expected output, o, 
is found. The procedure which allows us to recover i from F and o is called inversion, 
optimisation, or regression, depending on the discipline, and we refer to it generally as 
inverse modelling. 
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3 Complexity, Modelling and Understanding 
 
We can summarise the previous sections as follows: 
 

1) a computer model is equivalent to a formal system; that is, it is a closed 
system whose dynamics and evolution is fully determined by the set of 
acceptable initial conditions and transformation rules; 

2) this ensures that there is an equivalence between a model and its output; in 
principle, an output can be compressed into the model, since we can 
reconstruct the output (or at least its statistical features) by simply running the 
model. This equivalence is what the definitions of algorithmic and statistical 
complexities are based upon; 

3) employing the ‘Occam’s razor’ principle, this model represents the best 
‘understanding’ of the output/process since it is the most compact 
representation of the process which generates the data and can be used for 
prediction (provided we have the ‘right’ model, of course). 

 
Ideally, we can thus apply these 3 steps to the working of a scientist. We can imagine: 
 

1) measuring a natural process by collecting data arising from it; 
2) reconstructing a model which is able to reproduce the measured data with a 

specified accuracy and then 
3) ‘measuring’ the size of the model; if the model is ‘large’ the natural process is 

described as ‘complex’, otherwise it is described as ‘simple’. 
 
Does this capture our intuition of the challenges faced by a scientist in addressing a 
complex problem? In our opinion, it does not. There are a number of reasons for our 
concern: 
 

1) Consider some classes of models which have been extensively used in CSS 
research. Cellular automata are supposed to generate emergent patterns, sand-
pile algorithms are supposed to generate self-organisation, scale-free networks 
generate ‘small worlds’ behaviors, and genetic algorithms, neural networks, 
ant colony algorithms and simulated annealing (among others) are supposed to 
provide learning and adaptation. Nevertheless, all of these models are very 
‘small’, containing only a few simple rules and, according to algorithmic and 
statistical complexity definitions, they would be classified as ‘simple’. 
However, they have long been considered as stereotypical examples of 
‘complex’ models, and humans find it hard to predict the behaviour of these 
‘simple’ models. This suggests that there is a mismatch between the 
information-theoretic concept of complexity and shortcomings in the ability of 
humans to ‘understand’. 

2) Most information-theoretic measures, which are based on statistical principles, 
require processes and data to be stationary. It is unclear that our understanding 
of self-organization, adaptation and emergence are compatible with this 
assumption. 

3) Information-theoretic measures of complexity also do not account for the time 
it may take for a scientist to solve problems. The concept of computation time 
as a measure of complexity is employed in the definition of ‘logical-depth’ 
[16], roughly, the time which a TM would take to carry out a specific task. 
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Once gain, it is not obvious that the human perception of complexity matches 
this measure; a code may take a very long time to generate large amounts of 
easily-predictable data, while other fast computations may appear to be very 
complex (a chaotic process for example). 

 
Most important for our discussion is that these measures do not account for the 
process which an agent/scientist needs to employ in order to reconstruct the model; 
rather, they assume that the shortest model is already available. In fact, when dealing 
with algorithmic complexity, not only a method which ensures the reconstruction of 
the shortest model is unavailable, but also, given a model, we cannot even prove that 
such model is the shortest possible [5]. Regarding statistical complexity, a method to 
reconstruct the shortest model is available [17], but the resulting model is provably 
shortest only given the language we use to measure the data, represent the data and 
code the model. In Crutchfield [9], step improvements in the modelling capabilities of 
an agent are linked to the discovery of new, more powerful, languages. How such 
discovery might happen is not known, nor is it known whether such discovery is 
computable at all. It thus appear to us that the concept of complexity needs to account 
for the role of the modeller, not only because the modeller is necessary in 
reconstructing a model and interpreting it, but also because the model itself cannot be 
modeller-independent, since the modeller will determine the language used in the 
reconstruction.  
 
Finally, it is not at all obvious that the information-theoretic interpretation of 
‘understanding’ (that is, model-building) applies to human understanding, or our 
perception of it. Among many definitions of the concept of ‘human understanding’, a 
particularly insightful one is the ‘ability to translate’ [18], which implies the ability to 
express and employ rules within different languages and contexts; so far, automated 
systems (algorithms) have proved particularly ineffective at tasks of this kind, which 
suggests that measures used to evaluate the complexity of algorithms may not be 
suitable to estimate the human perception of the complexity of a problem. 

 
We attempt to address some of these concerns in the following sections. 
 

4 Studying a Complex System via Numerical Modelling 
 
In this section we consider a hypothetical Complex System Model (CSM) and draw 
some conclusions about the way it is commonly used in CSS research.  In order to 
represent a stereotypical complex system model, we imagine that our CSM is an 
agent-based model in which a relatively large set of agents interact with one another 
by using simple local rules.  We also imagine that the purpose of the modelling 
exercise is to study the global pattern arising from the resulting dynamics, which, as is 
commonly assumed, results in self-organisation and emergent behaviours.  
 
Following Section 2.3, the CSM is a forward model, which takes the local rules and an 
initial configuration as input i and generates an emergent behaviour and self-organised 
dynamics as output o, o=CSM[i]. Also, because the CSM is an algorithm, the 
discussion at Section 2.2  applies, and we infer that any dynamical behaviour in o is 
implicitly determined by i and the CSM. Indeed, no matter how complex, large, 
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apparently unpredictable and surprising o is, its entire information content can be 
compressed into i and the CSM [5].  
 
The discussion in Section 2.2 seems to rule out the possibility of novelty or creative 
processes solely via numerical modelling (see also [15,13]). It also points out that, 
from a purely logical perspective, no difference exists between modelling a complex 
and a non complex system, as long as the modelling is carried out on some machine 
which is equivalent to a finite tape Turing Machine, as is the case for the computers 
we typically use.  
 
It is also obvious form the previous discussion that the execution of a numerical 
model is equivalent to the running of a mechanical device (indeed, the very first 
computers were mechanical instruments), and it is normally accepted in the CSS 
community that a mechanical device, no matter how complicated, is not complex.  
This highlights a sort of contradiction: in trying to simulate a complex process, we 
resort to using a tool which is not commonly viewed as complex. This contradiction 
may be resolved by one or more of these statements: 
 

1) either the natural processes we want to study are not complex, in which case 
our entire view of complexity or approach to CSS needs to be revised; 

2) or our models will never simulate the very features which make natural 
processes complex; this also would imply a considerable revision of the way 
we carry out CSS; 

3) or the roots of what we perceive as complex do not lay solely in the process 
itself, but also in the effort required by us to understanding it. 

 
Some of the issues related to points 1 and 2 have been addressed in [15] and [13] and 
we refer the reader to that work and the references listed therein. Here we address 
point 3. 
 
Consider the standard scenario under which our CSM could be used in CSS research. 
Supposedly, the scientist has some expectation of what kind of global behaviour 
arising from a natural process he/she intends to model or which kind of local rules 
he/she wants to study. We imagine the following steps: 
 

1) the CSM is written and some input i is chosen; 
2) the CSM is run and the output o (an image, an animation, numerical data, etc.) 

is obtained; 
3) the user analyses the output, often visually and subjectively (sometimes 

numerically), and expresses a judgement on whether the output matches the 
expectations (possibly a pattern seen in Nature which he/she wants to 
reproduce or a result of the local rules which he/she judges to be ‘realistic’ or 
‘interesting’); 

4) if the outcome is not satisfactory, or something unexpected in the output 
sparks new insights, the user may decide to change the input i or the rules in 
the CSM and go back to 2. 

 
This process, the writing and “tuning” of the model, is actually an iterative inversion 
process as described in Section 2.3. The ‘non mechanical’ steps are 1, 3 and 4, in 
which the user is required to use ingenuity and expertise to design or adjust the code, 
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to interpret the results, to judge the output realism or accuracy (by analysing its inner 
patterns) and to select further input for testing. Step 2, the running of the CSM, is the 
mechanical one, the one in which no information is generated, but only transformed 
according to pre-defined rules. It is also clear that the only ‘logically nontrivial’ 
information we can recover from the exercise in steps 1-4 is the ‘inverse’ deduction of 
the suitable input and the suitable transformation rules in the CSM, not the generation 
of the patterns in the output, since they contain no information which is not already 
contained in i and the CSM.  
 
In principle, algorithms which would, at least superficially, carry out steps 3 and 4, 
are abundant in the numerical optimisation literature, and algorithms which 
reconstruct a CSM at point 1 have been proposed in the machine learning literature. 
However, this simply obscures, rather than removes, the role of the modeller. First the 
algorithms to carry out steps 1, 3 and 4 still need to be developed by the modeller. 
Second, the choice of algorithms will constrain the solution set and thus their 
applicability; Third, once written, they are cannot be modified by the algorithm 
themselves; once the user has realised that the current architecture does not model the 
process appropriately, the algorithm must be re-written/modified, a step which 
requires the modeller intervention. In other words, optimisation algorithms (even the 
ones inspired by natural processes like genetic algorithms) are still algorithms and as 
such undergo the constraints discussed in Section 2.2. 
 
We can summarise our discussion so far as follows: 
 

1) information-theoretic measures of model complexity do not match our 
perception of what makes a natural processes complex; 

2) ‘understanding’ a natural process is an inverse process; 
3) this inverse process cannot be carried out solely by an algorithm, rather it 

requires the modeller intervention. 
 

In the following section we propose an approach towards a definition of complexity 
which accounts for these points. 
 

5 What makes a modelling exercise ‘complex’? 
 
Here we shift the question of complexity from the model to the modelling exercise, 
which involves a model and a modeller who uses the model to answer specific 
questions. 
 
As we discussed in Section 2.3, within the context of a numerical inversion, solving a 
inverse problem can be seen as a (possibly iterative) process of asking and answering 
questions. The role of the modeller lies in posing the questions and devising a 
procedure to answer them; both require intuition and creativity. Once this has been 
done, answering the question (if possible) is then a mechanical process which is 
carried out by the model.  
 
Within this framework, we propose that the complexity of a modelling exercise is 
represented by the number of levels at which questions are asked and answered. Here 
we describe what we mean by levels. At a high level, any modelling exercise aims to 
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answer a broad question (“what factors lead to a market crash?”, “what decision will 
improve the resilience of this ecosystem?”, “what is the square root of 10?”, “what is 
the optimal scheduling for this process?”).  Some problems, which we define as 
‘simple’, can be solved (within required numerical precision1) algorithmically in a 
single call of a numerical routine (“what is the square root of 10?”). Solving this 
problem does not involve an iterative inverse problem once the question is posed and 
a method to answer it (the algorithm) has been devised. We say this problem has 
‘level 1’ complexity 
 
Other problems cannot be solved in a single step and require a numerical iterative 
search of a parameter space via the use of a forward model. This search involves 
questions and answers at 2 levels. Let’s consider the problem “what is the optimal 
scheduling for this process?”. The high level question is given by the problem itself. 
The lower level questions are given by the individual runs of the forward model, 
which, given a candidate input, check whether the resulting schedule is optimal;  each 
run of a forward model effectively answers the question “is the scheduling arising 
from this input parameter set good?”, thus the modeller must devise a clever 
numerical procedure to judge how ‘good’ a certain schedule is, given our 
expectations. We say this problem has ‘level 2’ complexity. 
 
Unlike in ‘level 1’, in a ‘level 2’ problem the modeller has a further role. First, he/she 
must pose the ‘global’ question. Second, he/she must pose the lower level questions in 
the iterative search. Traditionally, this is done by the modeller employing his/her 
judgment to evaluate which configuration in the parameter space should be tested 
next. Alternatively, it can be done automatically, by using a numerical optimisation 
routine [19], in which case the role of the user is to choose the suitable optimisation 
routine and tune it for the problem at hand (which can be seen as an inverse problem 
itself ). 
 
Next, we find inverse problems for which the quality of the outcome cannot be judged 
numerically [20]. Artistic problems fall in this category [21], but so do many scientific 
and engineering problems [22]. An example of such questions may be “does this 
agent-based model generate an emergence pattern?” or “does it display self-
organisation?”. Here, in addition to the questions mentioned in the previous 
paragraph, the user needs to judge (visually, for example) the global patterns arising 
from the forward model; expertise, experience, creativity and imagination in this 
further step are required to evaluate patterns, since novelty and surprise are possible 
outcomes of this process, and to possible develop instruments and/or procedures 
capable of carrying out such assessment.  We say this problem has ‘level 3’ 
complexity. 
 
Finally, we consider problems like “what factors result in a market crash?” and “what 
decision will improve the resilience of this ecosystem?”. In these problems, the 
modeller is required to carry out another crucial judgment in answering another level 
of questions like “is the numerical model I am using appropriate for this task?”, “does 
it include all important processes which affect my results?”. If the answer to these 
questions is negative, the modeller needs to intervene by modifying or augmenting the 

                                                 
1 This requirement is essential, or we must admit that any problem leading to an irrational number 
would be unsolvable numerically. 
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model itself. It should be clear than neither of these tasks (judging the appropriateness 
of the model and improving it) can be carried out by the model itself with current 
technologies [15] and both involve a creative intervention from the modeller. We say 
this problem has ‘level 4’ complexity. 
 
We summarise this proposed classification in Table 1. 
 
Table 1. Classification levels of problem complexity and some examples. 
Complexity 
Level 

Type of problems Example 

Level 1 Problems which can be solved by 
a single call of a routine/model 

• ?10  
• “is file.dat stored in my 

computer?” 
• “what is the temperature today?”

Level 2 Inverse problems for which a 
‘suitable’ forward model is 
available and which can be 
automated by the choice of an 
appropriate optimisation routine. 

• “what is the optimal scheduling 
for this process?” 

• “what aerodynamic design for 
this wing is optimal?” 

• “what type of fuel can make this 
engine more efficient?” 

Level 3 Inverse problems for which a 
‘suitable’ forward model is 
available but cannot be 
automated by the choice of an 
appropriate optimisation routine 

• “does this agent-based model 
generate an emergence pattern?” 

• “does it display self-
organisation?” 

• “does this program generate nice 
pictures/music?” 

Level 4 Inverse problems for which we 
are not sure a ‘suitable’ forward 
model is available and in which 
the model may need to be 
modified.  

• “what factors result in a market 
crash?”  

• “what decision will improve the 
resilience of this ecosystem?” 

• “what is the best policy to 
address global warming?” 

 
 

6 Discussion and Implications 
 
The classification proposed in the previous section is neither unique, nor observer 
independent; the same process will appear of different complexity to different 
scientists, according to their own expertise. Also, process complexity may change in 
time.  Let’s consider the ‘simple’, complexity level 1, “ ?10 ” problem. In our 
discussion we assumed this can be solved by a simple routine call. This is correct only 
provided we do not concern ourselves with what the routine does. In reality, a square 
root is itself calculated with an iterative procedure, albeit one which can be coded 
fully algorithmically, given a limited required accuracy [23]. Someone developed the 
algorithm2, using his/her own creativity and ingenuity. So is it really correct to assign 
to it a ‘level 1’ complexity? A similar consideration applies to the scheduling problem 
                                                 
2 Actually several algorithms to calculate a square root exist, see for example [23]. 



 11

discussed above; from a purely computational perspective a code may contain both a 
forward complex model and a numerical inverse routine, thereby performing an 
iterative search in a way that may be transparent to the user. In both cases, an 
originally complex modelling task can be turned into a ‘simple’ black-box operation, 
if we do not concern ourselves with what the code actually does. As a further 
example, Kaltwasser et al. [24] attempted to reproduce algorithmically the subjective 
evaluation of problems for which a numerical cost function could not be easily 
designed; in principle, this would also turn the iterative, subjective problem at ‘level 
3’ into a ‘level 1’, ‘simple’ problem.  
 
In our opinion, this captures the process of cultural development and scientific 
understanding: the ability to ‘de-complexify’ a process turns a previously ‘complex’ 
problem into a ‘simpler’ one, thereby climbing down the complexity ladder. This can 
be achieved either by a single individual or by the scientific community as a whole. 
According to this view, the ?10 problem, which previously require lengthy 
calculations, now can be solved by pressing a button, without any need to concern 
ourselves with what the algorithm does; for us, today, ?10  is not complex; at least is 
simpler than it was for previous generations. 
 
This view raises the issue of how this understanding or ‘de-complexification’ is 
transmitted culturally. In the information-theoretic formulations we discussed above, 
‘understanding’ implies ability to predict. The model, which can be used to carry out 
the prediction, represents ‘understanding’. As we discussed above, we do not believe 
that ability to predict implies ultimate understanding, however we subscribe to the 
view that the ability to predict is a minimum requirement to show understanding.  
From this perspective, a scientist who has devised a model which predicts a process 
with a required precision can be said to have achieved a satisfactory understating of a 
process. More generally, we may say that another scientist who adopts such model has 
at least understood that the use of the model leads to prediction. This is perhaps a little 
too loose, we admit, but the difference between the model developer and the user may 
be dismissed for ‘simple’ level 1 and 2 problems.  
 
The identification of ‘understanding’ with a model becomes weaker the higher we 
climb the ‘complexity’ ladder, however.  While the algorithm which solves ?10 can 
solve all other square root questions (for most practical purposes), this becomes less 
and less true for more complex problems. An ecological model built to study an 
Australian marine ecosystem, may not be suited to the study of an Antarctic marine 
ecosystem without suitable modification, and even less to study non-marine 
ecosystems. The model will then require intervention and modification; to what extent 
this modification is possible, and to what extent this is helped by the existence of a 
starting model (which may have been built by generations of previous modellers) is 
not clear and may be an avenue for further research.  
 

7 Conclusions 
 
Most real-world problems involving computation need to be solved via an inverse 
process, involving iterative trial-and-error runs of a forward model. This is not 
different from how most Complex System Science problems are addressed, in which a 
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modeller tests several input parameters and model architectures in order to generate a 
desired global outcome. Disregarding this observation, thereby focussing only on the 
computer model, leads to ignoring the role of the modeller in addressing a complex 
problem.  
 
We propose switching the focus from the analysis of a model to the analysis of a 
modelling exercise and we argue that most of the complexity lies in the task the 
modeller must carry out, rather than merely in the computation involved. 
 
We suggest that the complexity of a modelling task is related to the level and amount 
of intervention, in terms of ingenuity and creativity, which is required by the 
modeller, and that the content of the model represents the amount of complex 
knowledge which is transmitted within the scientific community. 
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