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This essay contains, in the opinion of the author, substantial

errors in Sec 2.1 and 2.2. A revised version is in work.

Howard [1985, 1989, 1992] has argued that the, experimentally confirmed, vio-
lation of the Bell inequalities forces us to to reject at least one of two physical

principles, which he terms locality and separability principle. To this end, he
provides a proof [Howard, 1992] of the equivalence of the separability condition,
a formal condition to which the separability principle gives rise, with the con-
dition of “outcome independence”. If this proof is sound, then Howard’s claim
would gain strong support in that “outcome independence” and “parameter
independence”, where the latter arises from Howard’s locality principle, have
been shown by [Jarrett, 1984] to conjunctively constitute a necessary condition
for the derivation of the Bell inequalities [Clauser and Horne, 1974]. However,
Howard’s proof has been contested in a number of ways.

In this essay I will discuss several criticisms of Howard’s equivalence proof
that focus on the sufficiency of the separability principle for outcome inde-
pendence. I will argue that, while none of these criticisms succeeds, they do
constrain the possible form of Howard’s argument. To do so, I will first intro-
duce both the separability principle and outcome independence in the context
of EPR-like experiments before I discuss the individual arguments.

1 Howard’s equivalence proof

Set-up

Following [Laudisa, 1995],1 a typical (Bohm type-) experimental set-up to pro-
duce Bell inequalities is that of two particles (named 1 and 2) being fired simul-
taneously in opposite directions from a common source. On these particles some
binary quantity is then measured by placing detectors with adjustable parame-
ters along their trajectories. This procedure can be formalised in the framework

1
For the sake of clarity, throughout the essay I will stick to the terminology and formal

representations of Laudisa’s paper and discuss or even mention differing naming only where

necessary.
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of stochastic hidden variable theories in the following way: With respect to par-
ticles 1 and 2, if we denote the detector parameters a and b, outcomes m and
n and the complete state λ of the two particles, then we read read pi

λ
(x|a,b)

as the conditional probability that for a given λ outcome x will be measured
on particle i under the condition that detector parameters are set to a and b.
Analogous probabilities are construed in the obvious fashion. By further speci-
fying the measurement events to be space-like separated this set-up allows one
to derive Bell’s inequality (or the CHSH-inequality in the more general form).

Now while the set-up described can give rise to different sets of premises to
derive the Bell inequalities, Jarrett [1984] demonstrated that all of them include
a factorizability condition, which is expressed as:

p12λ (m,n|a,b) = p1λ(m|a)p2λ(n|b)

Factorizability can further be decomposed into two independent conditions, the
conjunct of which is equivalent to the latter. These are Parameter Indepen-

dence (PI)

p1λ(m|a,b) = p1λ(m|a)

p2λ(n|a,b) = p2λ(n|a)

and Outcome Independence (OI)

p1λ(m|a,b,n) = p1λ(m|a,b)

p2λ(n|a,b,m) = p2λ(n|a,b)

While the question what physical principles underlie these conditions lacks
canonical agreement, their stochastic meaning is clear: PI implies that the
probability of measuring an outcome at one detector does not depend on the
parameter setting of the other. OI implies that the probability of measuring
an outcome at one detector does not depend on the outcome measured at the
other.

The argument

Initially motivated by Einstein’s attempts to construct an argument to the effect
that quantum mechanics (QM) was incomplete, Howard argues that the physi-
cal content behind factorizability is given by identifying the PI with a locality
principle and OI with a separability principle. But the separability principle, in
Howard’s [1989, 226] formulation, asserts that

[SP]: the contents of any two regions of space-time separated by a
non-vanishing spatio-temporal interval constitute separable physical
systems, in the sense that each possesses its own, distinct physi-
cal state [SP(1)], and the joint state of the two systems is wholly
determined by these separate states [SP(2)].
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Hence, Howard concludes, unless we are willing to give up locality and with
it the validity of all special relativistic theories, we are forced into accepting
non-separability, from which a kind of “ontological holism” follows (ibid.225).

To motivate his identification of outcome independence with the separability
principle, Howard defines a “state separability condition”2, stating that two
systems 1 and 2 are state separable if there exist separate states α and β for
these systems such that

p12λ (m,n|a,b) = p1α(m|a)p2β(n|b) (SEP)

Together with the two identifications

p1α(m|a,b) = p1λ(m|a,b) (ID I)

p2β(n|a,b) = p2λ(n|a,b) (ID II)

it can then easily be proven that OI and SEP are equivalent [Laudisa, 1995,
317]. This equivalence implies that

[SIOI]: SP entails OI

SIOI then grounds, in Howard’s view, a physical interpretation of OI and the
implications that he ascribes to the latter’s falsehood.

2 Discussion

After this brief overview of Howard’s argument, let me now introduce and assess
the most note-worthy criticisms.

Unsoundness of the proof

Laudisa (1995) argues that Howard’s equivalence proof is unsound, because ID
I/II, necessary for the proof’s validity, are not generally true. This, Laudisa
argues, arises from the fact that it is possible in general to conceive of probabil-
ities for measuring an outcome on either system being different depending on
whether the complete state or only the separate state for that system are given.
However, in order to be convincing state separability needs to be defined for all
possible complete states. Therefore, state separability is either ill-defined or not
equivalent to outcome independence.

Of course, Laudisa needs to support the claim that there can be cases, at
least one, where pα and pλ differ. To do so, he employs a distinction between
two state concepts in quantum mechanics, initially proposed by van Fraassen
[1991] in a modality context: States have two components, where the value

component is “fully specified by stating which observables have values and what

2
As Howard is aware, there is the possibility of defining system separability, according to

which not only do the states have to be distinct, but also the systems on which the states are

defined. System separability will not be discussed here, see Laudisa (1995:319) for more.
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they are”, while the dynamic component is “fully specified by stating how the
system will develop if isolated, and how if acted upon in any definite, given fash-
ion” (ibid.:274). Importantly, since measurement is an interaction, the outcome
probabilities are comprised in the dynamic component of a state. Hence,

[g]iven this distinction, it is perfectly possible that pα differs from
pλ. The probability pλ is actually related to the dynamic component
of λ, which is the (complete) state of the composite system at the
source. This probability, being induced by λ, could well be different
from pα: The latter is the probability induced by α and the dynamic
component of α, which pα is related to, is in general different from
the dynamic component of λ (Laudisa, 1995:318).

While unfortunately this is not made quite clear by Laudisa himself,3 the way
in which Laudisa takes van Fraassen’s distinction to support his argument is
apparently that, if acted upon, the joint state will in general develop differ-
ently from either of the separate states and that hence the probabilities which
represent these dynamics may differ. It is, then, for this reason that (identifi-
cations) are not generally true and hence, SEP and OI are not equivalent with
the consequence that stochastic hidden variable theories that violate SEP but
are factorizable are possible, according to Laudisa.

Laudisa’s argument, I want to suggest, is invalid. This is because he fails to
recognise the reference to systems in the definition of states, as they figure in
the separability principle. To show this, it is necessary to have a closer look at
the way Howard motivates ID I/II from the separability principle SP.

From the above definition it follows that, if the separability principle is true,
then given that the space-time regions, on the contents of which the detector
measurements are performed, are separated by a non-vanishing spatio-temporal
interval, these contents constitute two systems with distinct states α and β
(SP(1)). But states are defined by Howard as “a conditional probability mea-
sure assigning probabilities to outcomes conditional upon the presence of global
measurement contexts” (Howard, 1989: 230). In this case, these probabilities
are pα, pβ resp. for global measurement context represented by full knowledge
of both parameter settings i,j. Further, these states wholly determine the joint
state of the two systems (SP(2)). Here, the “wholly determine” says that the
joint state can be completely mapped on α and β and the “distinct” assures
that such a mapping will be single-valued, f : λ → α ∨ β.

But this is just formally summarised in ID I/II: The conditioned outcome
probability for measuring an outcome at some-space-time region is completely
determined by the state of the system in that region (which is defined against the

3
Belousek [1999, 6f.] takes Laudisa’s argument to be that neither SEP nor the identifi-

cations, both of which refer to the dynamic components, are motivated by the separability

principle, which itself “should be characterised generally in terms of value, rather than dy-

namical states (i.e., in terms of definite properties rather than probabilities)”. But not only

is this not what Laudisa says, from my reading, it also appears to involve invalid reasoning in

that there is no obvious reason why space-time individuation should not be accomplishable

by means of probabilities rather than properties.
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global context). But by Howard’s definition of state and SP(2) all and exclusive
reference to 1 in λ is comprised in α.4 This is important because it is here that
Laudisa’s argument goes wrong: Although his employment of van Fraassen’s
distinction seems valid in that it is in accord with Howard’s definition of states,
Laudisa is wrong in asserting that the dynamic component of the complete state
for a given system generally differs from that of the separate state for this given
system. This is because p1α, by SP(2), captures exclusively and exhaustively all
the information that λ contains about system 1.

Therefore, while the dynamics comprised in pλ in general will be different
from that in pα, if we are concerned solely with the dynamics with respect to
system 1 - and if the separability principle is true -, then the identification of
p1
λ
with p1α is correct. Thus Laudisa’a argument is found lacking.

Formalization of SEP-the minimalist non sequitur

Fine and Winsberg [2003](FW) put forward another counter-argument worth
discussing, yet advancing from a different vantage point. While sympathetic
to Howard’s definition of separability, they do disagree with Howard’s formal-
ization of it. This is because the definition of separability, while requiring a
complete determination of the joint state from the distinct states, does not
specify the formal representation of this determination. Howard’s choice of the
arithmetic product function in SEP is thus only one of many functions that
provides a “wholly determinate” mapping of the separate states to their joint.
Consequently, while factorizability implies separability, this is not the case vice
versa.

To support this argument, the authors develop an algorithm that, given a
joint state λ, first identifies bijectively the “marginal distributions” pλ(m|a), pλ(n|b)
at either wing, which they understand as the local states, and in a second step
finds a two-placed function F (..) that completely reproduces the joint state dis-
tribution. Crucially, the gained freedom in being able to assign different F (..)
in the second step means that the decomposition in the first step is not unique.
Instead the local states need only satisfy a number of inequalities. Together
with parameter independence constraints which the authors include in their
formalism, all of this effectively allows for certain choices of the local states (or,
more precisely, the probabilities that constitute these states) that satisfy the
separability principle while at the same time violating the Bell inequalities (and
thus both factorizability and outcome independence).

The underlying position that motivates FW’s analysis is known as minimal-
ism, which asserts that the violation of the Bell inequalities by theories like
quantum mechanics (QM) arises from the way joint probabilities are defined
in it, rather than from some physical principle. Muller and Placek [2001](MP)

4
In quantum mechanics, this operation of disregarding information in a joint state that

does not contribute to some designated compound state, is, of course, represented by the

partial trace operator, which, in the case of being applied to joint state that can be expressed

as the tensor product of its substates, results exactly in that substate.
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provide a rigorous criticism of this position which, if correct, undermines the
above reasoning and restores Howard’s argument.

In order to see their point, it is essential to understand that in the the-
ory of joint probabilities, it is always possible to define a measure of the joint
probability p12 for some binary observable on a corresponding Boolean algebra
B12 := B1×B2 (where these measures are the F (..) in Winsberg and Fine) such
that it satisfies a “marginal property” which states that the joint probability
can be reduced to the local probabilities, i.e.

p12(m,1n) = p1(m); p12(1m, n) = p2(n)

where 1m/n is the probability identity.
The specific motivation for minimalism is an asserted inability in QM to

rigorously define joint probabilities for non-commutative observables. For the
minimalist it is then this feature that, by definition, dooms QM to violate
the Bell inequalities, where non-commutative class of observables may be in-
volved, on grounds of mathematics and not the physics. However, MP show
that joint probabilities can actually be well-defined for all observables includ-
ing non-commutative ones as long as outcome independence (among others) is
assumed to hold true.

This is important for the assessment of FW’s counter-argument in that, if
we accept MP’s proof, the set of admissible joint probability measures F (..)
is constrained by the outcome independence condition. More specifically, any
F (..) can serve to define joint probability in general (i.e. including joint prob-
abilities for non-commutative observables) only if it satisfies OI (among other
premises). In other words, if we take A to be the set that contains all functions
that produce joint probabilities satisfying separability (and parameter indepen-
dence), that is F (..) ∈ A , all FQM (..) ∈ B, where B is the set of F (..) consistent
with quantum mechanics (and probably most other stochastic hidden variable
theories involving non-commutative algebra) have to lie within the subset C of
functions FOI(..) that satisfy outcome independence, giving B ⊂ C ⊂ A. Since
the FQM (..) are the only F (..) we are concerned with in the separability condi-
tion, no admissible function FQM (..) can produce joint probabilities consistent
with separability and be inconsistent with outcome independence. But these
are the only counter-examples against the statement that separability implies
outcome independence.

It should be emphasized that MP’s work does not establish direct support
for SIOI. That is, the above argument does not assert that only subset C is
admissible because SIOI is true. Instead, they show only that no F(...) that
can both be produced by FW’s algorithm and that is adequate to define joint
probabilities for all possible observables, can serve to falsify SIOI.

Well localized particles and superluminal communication

Two more arguments worth note have been proposed: One by Berkovitz [1998]
and one by Maudlin [2011], which I will discuss in this order.
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Berkovitz (op.cit:1998:213) asserts that Howard’s equivalence proof “pre-
supposes that particles in Bell-type experiments are well localized during the
measurements.” and that, since the separability principle does not imply this
latter fact, it follows that SIOI is false. To asses this assertion we need to check
whether (a) Howard’s proof requires the above presupposition and (b) in case
that it does, under which, if any, conditions it may be implied by the separability
principle.

To do so, let us first get clear about the notion of “being well localized”.
Berkovitz gives the only hint for his understanding of it as

...systems involved [in a Bell-type experiment] are well localized
in space-time, so that the particle and the apparatus in the L-wing
are space-like separated from the particle and the apparatus in the
R-wing (ibid., 210).

Space-like separation of the wing contents here appears as a necessary condition
for the truth of being well-localized (in a Bell-type experiment). Berkovitz’s
statement, however, leaves us uncertain about exactly which aspect of a systems’
being well localized suffices for their space-like separation. Le me, therefore,
adopt a working definition sufficiently general to cover this uncertainty:

[WL]: A system A is well localized in space-time iff for any space-
time region the question whether A is constituted by the contents
(not necessarily completely) of this region has a well-defined answer
and this answer is either “yes” or “no”.5

As can easily be seen, if WL holds, then in a working Bell-type experimental

context we know the marginal systems to be space-like separated; the working
definition is consistent with Berkovitz’ statement.

Now, if Berkovitz is right regarding (a), SIOI becomes invalid if WL is not
satisfied during the measurements. Berkovitz does not expand on Howard’s
requirement of the particles’ being well localised. The easiest way to allocate
it is by seeing that (SEP) is defined only for systems that I already know to
be distinct (however, not necessarily separable!). And the decidability of a
particle’s being distinct from another would then, it seems crucially depend on
its being well-localised. In this sense, at least, Berkovitz assertion (a) is true.

We thus have to look at (b). If SP implies WL, then it must be impossible
for SP to hold and WL to be false, i.e. in no case where distinct contents of
two regions of space-time constitute distinct systems such that the marginal
states together wholly determine the joint state, is it unclear whether a system
stretches over a space-time region or not. But this is true, because the concept
of distinctness used in SP necessarily requires WL in order to be well defined.
To see this, suppose that there are two space-time regions the contents of which

5
Note that this last part is necessary because otherwise one may conceive of a system’s

being well localised as a superposition of “yes” and “no”, which, unless expansion coefficients

are equal, I take to be a kind of localisation which is possible but not consistent with what

Berkovitz has in mind.
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constitute distinct systems (i.e. if SP is true). This distinctness can only be
meaningful if I can ask whether two space-time regions contain the same system
or not (with the answer being “no”). Thus, when we understand distinctness as
well defined to be a sufficient condition for the satisfaction of WL and WL as
sufficient for something to be well localized, then since the use of distinctness
in SP implies the latter to be well defined (besides its truth), SP implies WL
and consequently SIOI holds, thus refuting Berkovitz’ criticism.

However, other ways of understanding something as well localized or distinct
are probably defendable. Thus, we can only say that SIOI holds for the specific
conditions given above. The value of Berkovitz’ criticism lies in its highlighting
the difference between state and system separability, together with the question
to what extent their corresponding separability conditions can be constured
independently and brought into relation: Even if the falsehood of a state sepa-
rability principle can be defended in this essay, the stronger version concerning
systems is left untouched here. In fact, if, following the above formulation of
the separability principle, systems are constituted by the contents of space-time
regions, then non-separability of systems could imply the indistinguishability of
these contents and require a complete reformulation of the principle in a less
substantivalist way.

Maudlin’s argument applies to the case where particles are actually well
localized. It bases on the premise that we cannot exclude the possibility of
superluminal signaling: Maudlin (2011) opens for the possibility of communica-
tion between the two particles by means of superluminal and massless tachyons
as signal carriers, where the particles alter their state depending on whether
or not they receive a message from their partner. In such a model, accord-
ing to Maudlin, all particles “have perfectly determinate intrinsic states at all
times,and the joint state of two distinct regions of systems is just the sum of
their individual systems” (ibid., 89f.), hence satisfying SEP but violating OI.
Berkovitz (1998, 214) raises worries about this argument: Such a model would
be separable, only if the communication instructions “could be realized by the
qualitative, intrinsic properties of each of these particle [not the tachyons]”,
requiring a highly problematic “open line of communication” between them.
With this criticism Berkovitz seems to anticipate a by now established result of
recent quantum information theory: The no-communication theorem, accord-
ing to which “no instantaneous information transfer can result from a distant
intervention” [Peres and Terno, 2004, 8]. Now while Maudlin (op.cit: 90) ar-
gues that his tachyons do not even require energy to constitute a counter-case
to Howard’s separability, it seems clear they have to carry extractable informa-
tion to do so. But since this is ruled out by the no-communication theorem, at
least in quantum mechanics, Maudlin’s argument stands little chance of being
empirically sound.
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3 Conclusion

To conclude, I have shown that neither of the criticisms advanced succeeds in
showing that state separability is not a sufficient condition for outcome indepen-
dence. However, for this to hold true our freedom of interpreting separability
has to be significantly reduced: Only state separability was discussed. We
require that distinctness of states implies that they are well localized in the
sense defined above and these states to be dynamical states as discussed by
van Fraassen. Further, future generalizations of the separability principle in
other formalisms, can be guaranteed to maintain the truth of SIOI so far only
for stochastic hidden variable theories involving non-commutative algebra and
obeying the no-communications theorem. Since, however, all of these restric-
tions seem to have a good chance of enduring, Howard’s claim that giving up on
outcome independence forces us to accept some kind of separability continues
to be an option for interpreting the physical implications of the violation of Bell
inequalities, an option that should be taken seriously.

word count 3000
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