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Introduction 
The present study deals with a famous historical problem: Kepler’s 
equation [1-10]. This well-known equation has been encountered in 
the context of a classical bound two-body problem, where one of two 
targeted bodies follows an elliptical trajectory or orbit (Fig. 1). 
Despite having many possible parameterizations, the major part of 
studies used the set of geometrical angles called anomalies. 

The first formulations of the Kepler’s equation, as described [1-3] 
in the beginning of the XVIIth, traduces the mathematical links 
between these anomalies. Given the fundamental importance and 
frequent application of Kepler’s equation, numerous mathematicians 
and scientists have developed, during three centuries, different 
methods for solving it numerically. Those methods involved typically 
initial-values protocols [2-10]. 

In this paper, an analytical investigation of the Kepler’s equation 
roots, for given mean anomaly values, is presented. The main 
advantages of the proposed method are the non-necessity of any first 
guess, and the mathematical properties of the solutions expression 
which are continuous and infinitely differentiable. 

Kepler’s equation 
In the Keplerian two-body problem, a body A follows an elliptical 
orbit whose a focus F is identified to the second body B. The 
instantaneous location of the body A is parameterized by two main 
parameters (Fig.1): 

 The eccentric anomaly E : the angle between the pericentre 
direction and the auxiliary point P (deduced from the true 
position of the body A), measured from the centre of the 
elliptic trajectory. 
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 The true anomaly θ : the angle between the pericentre 
direction and the instantaneous location of the body A, as 
seen from the main focus F of the elliptic trajectory. 

 
Figure 1: Kepler problem parameterization scheme. 

It has been demonstrated [2-6] that the eccentric anomaly, as well 
as the true anomaly, does not increase uniformly with time. 

For this purpose, and according to Kepler’s second law (area law), 
the mean anomaly M  was defined as the O-summit angle (Fig.1) 
which is proportional to the area swept by the vector FA  line since the 
last cross with the pericentre direction. This mean anomaly, which 
increases uniformly from 0 to 2π radians during each orbit, does not 
have any simple interpretation as a geometric angle, it could be 
considered as time measured in radians. 

Kepler’s equation relates the eccentric anomaly E  as an intrinsic 
parameter to the already defined mean anomaly: 
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 MEeE =×− sin   (1)

where e  is the elliptic orbital eccentricity ( 10 <≤ e ). 

As this equation is transcendental, its solutions had to be found either 
empirically or iteratively. 

Resolution historical glossary 
In the XVIIth, attempts to solve (Eq. 1) were not numerous. The 
earliest published solutions were proposed, more than one century 
after Kepler, by J. Wallis [3] and Newton [4], using the prolate cycloid 
geometrical properties. 

The end of the XIXth brought several solutions of Kepler's equation 
by graphical-iterative methods as proposed by P. Horrebow [5], H. 
Simpson et al. [6] and L. Euler [7]. 

In the last two centuries, the searches of a real root to Eq. (1), for a 
given value of M, have been the subject of J. Machin [8], N. Fergola 
[9], P. Clowell [10] and J. De Pacassi [11] developed studies. It is 
recognized that, except the results published by Siewart et al. [12], and 
L. Gergely et al. [13-15], the proposed solutions [2-11,16-30] were 
generally numerical and approximated. 

BPES-related solution 
In this study, an analytical solution is proposed to the standardized 
system (Eq. 2): 
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where 0M is a given value of mean anomaly. 

The resolution algorithm is essentially based on the Boubaker 
polynomials expansion scheme (BPES)[31-49]. 

This scheme is an analytical tool that was used in several applied 
physics, numerical analysis and mathematics investigations. During 
the last decade, O. B. Awojoyogbe et al. [36] developed many 
solutions to human blood flow system using the BPES. S. Slama et al. 
[39-42] proposed also several BPES-related models of dynamic 
processes. Many other investigations used the BPES in order to solve 
semiconductors binary compounds characterization [43,44], 
multimode heat transfer [45,46] or biophysical [47] problems. 

The resolution algorithm is applied to system (Eq. 2), by assuming 
the relations: 
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where qB4  is the 4q-order Boubaker polynomial, qβ  is the 

minimal positive root [34,49] of qB4 , 
00 ..1

'

..1
,

NqqNqq ==
μμ  are unknown 

coefficients, and 0N  is a given integer. 

This expansion presents primly the advantage of verifying the main 
boundary conditions: 
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since qβ  is a root of qB4 . 

By introducing the expression (3) in the system (2), one obtains: 
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then, by differentiating: 
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At this step, the integral 
0NΘ is defined on [0;π/2] : 
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Since 0)(4 =qqB α and 2)0(4 −=qB , one has: 
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Consequently, a physically acceptable solution to Eq. (6) is the set 
of coefficients 

0
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′μμ  that minimize the integral 

0NΘ  under the given boundary conditions. Finally, the problem is 
reduced to the 02N variables system: 
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Since the solution of the system (9) depends on 0M , it is noted 

0ME , and consequently : 
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Application to Mercury orbital 
A BPES-related solution to the equation (1) is proposed in the case of 
the system Sun-Mercury orbital [12]. This orbital is known to have the 
highest eccentricity (e≈0.2056) of all the solar system planets for the 
smallest planet size, as mentioned by R. J. Buenker [49]. The solution 
is presented in Figure 2 along with the solutions GHE − proposed 
around 1640 by J. Horrocks [50] and revised (Eq. 11) three centuries 
later by S. Gaythorpe [51]. 
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Figure 2: PBES solution to Kepler’s problem 
(along with precedent solutions: ref [50,51]) 

 
 It can be noticed that the BPES-related solution is not very far 
from the precedent referred expression [50,51]. The behaviours of the 
two curves are approximately the same at the critical points 

0=E and 2
π=E . Nevertheless, the quadratic error ef , as 
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established by R Ivanov et al. [52], and calculated using (Eq. 12) was 
of about 9.9% for the values of [ ]3.1,1.0∈E . 
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where is the number of recorded points, 
ni

i
HGE

...1=−  are the values 

yielded by S. Gaythorpe [51], and 
ni

i
BPESE

...1=
are the values yielded 

by the actual study. 
 In reference to the recent works of J.M. Danby et al. [17,18], an 
iterative solution yielded, for the same problem, the accurate value 
( 1.402738=E ) for a mean anomaly ( 1.2=M ). In Fig. 2, it is 
obvious that the PBES solution gives a closer value ( 1.4≈E ) than 
the precedent model ( 1.3≈E ). 

Conclusion 
This work presents an attempt to find an analytical solution to the 
well-known Kepler’s problem [1-10]. Since its establishment in 1609 
by J. Kepler [1-2], the problem of finding the real-valued root of 
Kepler’s equation was continuously analysed and discussed during 
three centuries, nevertheless, the few proposed analytical solutions 
were relatively complicated and difficult to apply elsewhere. As 
shown in Fig. 2, the proposed solution is in good agreement with some 
precedent ones [50,51]. 
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