DENIS BOUYSSOU AND JEAN-CLAUDE VANSNICK

NONCOMPENSATORY AND GENERALIZED
NONCOMPENSATORY PREFERENCE STRUCTURES

1. INTRODUCTION

The aim of this paper is to provide a general study of noncompensatory
preference structures. These structures have not been studied very much
yet, the attention of most decision theorists being almost exclusively
devoted to structures allowing some kind of utility representation. They
nevertheless appear frequently in practice both as heuristic approaches to
analyse multidimensional evaluations (e.g. disjunctive and lexicographic
models, see MacCrimmon, 1973) and as easy to implement methods to
perform an aggregation of several attributes for decision-aid (ELECTRE
methods, see Roy, 1968, 1971; Roy and Bertier, 1972).

The paper is organized as follows. We present our notations in
Section 2. In Section 3 we recall some definitions and propositions about
noncompensatory preference structures and introduce the notion of
concordance preference structure. In Section 4 we propose a generali-
zation of these notions introducing the idea of discordance. Section 5
provides a brief description of how such preference structures can be used
for decision-aid.

2. NOTATIONS AND PRELIMINARY DEFINITIONS

Throughout the paper we will note:

Ry the set of strictly positive real numbers,

IN={0; 1, 2, ...}, No=N X\ {0],

Q={1, 2, ..., n) with neN and n>2,

P(Q) the set of all subsets of Q,

S the set of all pairs of disjoint subsets of Q,

S={(A, B) | A, BeE P(Q) and AnB=0],

Xy, X5, ..., X, n nonempty sets which can be interpreted as n sets of
levels defining n attributes in a multi-attribute decision problem,
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X=X7_; X; the Cartesian product of these sets,
(i, (7)); ) the element of X (¥, Y2, -.ey Yie 1, Xjy Vi 1s +oes )
> an asymmetric binary relation on X which can be interpreted as a
(strict) preference relation.
(X, >) will be called a Preference Structure (P.S.).

We will classically note ~ the binary relation on X defined by x ~yiff
not (x > y) and not (y > x) and >* the binary relation on X such that x =y
iff not (y > x).

DEFINITION 2.1. For all i € Q we define a binary relation > ;on X; by
X;p > yi Mff (g, (@)j20) > O, (@)); ;) for all 0) e €EX5- 0 X
From > ; we define ~; and }=, as above.

The asymmetry of > obviously implies the asymmetry of each > ;. The
definition of >; does not imply any notion of preferential independence
since we have x; >, y; only if (x;, @)= > O, (a;);+;) for all vectors
(@)~

DEFINITION 2.2. An attribute X is essential iff x; >; y; for some x;,
yieX;.

We will assume hereafter that all attributes are essential which will
prove unrestrictive for our purposes.

DEFINITION 2.3. For each ordered pair (x, y)eX? we will note
Px, y)=[ieQ|x; >; y].

Thus P(x, y) denotes the set of attributes for which there is a partial
preference for x on y. The asymmetry of each > ; implies that
P(x, y)nP(y, x)=0 for all x, yex.

DEFINITION 2.4. We will note > and = the binary relations on P(Q)
defined respectively by 4> B iff (P(x, ¥), P(y, x))=(A, B) for some x,
y€X such that x > y and 4=B iff AnB=6 and not (A B) and not
(B> A).

It is clear that 4[> B implies (A4, B) € S and that the following lemma
holds for all 4, Be P(Q).

LEMMA. 2.1. A=B& AnB=0 and [Vx, yeX: (P(x, y), P(y, x))=
(A, B)=x~y].



NONCOMPENSATORY PREFERENCE STRUCTURES 253

DEFINITION 2.5. We will note » the binary relation on P(Q) defined
by: A>Biff AnB=#0and [Vx, ye X: (P(x, y), P(y, X)) =(A4, B)=x>)].

Contrary to [>, » is asymmetric when all attributes are essential.
According to Definition 2.5. > can be interpreted as a ‘“more important
than’’ relation on P(Q2).

DEFINITION 2.6. A P.S. (X, >) has the properties:

— P, super additivity iff [(AuC)N(BuD)=0, AD>B and CDD]
=2AuCP>BUD,

— P, decisivity iff [(4, B)e S and (4, B)# (@, #)]=not (4 =RB),

— Pj attribute acyclicity iff > has no cycles,

— P, attribute transitivity iff [AD> B, B> C and AnC=0]=AD C,

— Ps double essentiality iff V ie Q, x; >; y; and y; > z, for some x;, y;,
Z,‘EX,'.

3. NONCOMPENSATORY PREFERENCE STRUCTURES (NPS)

In this section we first recall some definitions and propositions about the
notion of noncompensatory preference structures introduced indepen-
dently by Fishburn (1974, 1975 and 1976) and Plott et al. (1975). Two
special important cases of NPS are analysed: the classical lexicographic
preferences and the new concept of concordance preference structures.

DEFINITION 3.1. A P.S. (X, >) is noncompensatory iff vV x, y, z, we X:
1) (P, »), PO, x))=(P(z, w), P(w, 2))]=(x > y=z2>w).
(2) [P(x, y)#9 and P(y, x)=0]=x > y.

The idea of noncompensation appears clearly in this definition since the
global preference of x on y only depends on the subsets of 2 on which
there is a partial preference of x on y and of y on x. This definition
corresponds to a ‘‘regular noncompensatory preference structure’’ in
Fishburn (1976). Condition (2) of Definition 3.1. could be omitted, but
from a practical point of view only regular structures are of interest.

It results immediately from Definition 3.1. that if (X, >) is a NPS
then the attributes are mutually preferentially independent (cf. Keeney
and Raiffa, 1976) (which can be shown to be implied by condition (1)
alone). We have:
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LEMMA 3.1. A P.S. (X, >) is a NPS iff:
(1) v A, BEP(Q), AD B=A>B.
Q) vAeP(Q) \ 0, A>0.
Proof. Left to the reader. E

Condition (1) of Lemma 3.1. obviously implies that for a NPSDis
asymmetric and that @=@.

Lexicographic preference structures are an important particular case of
NPS.

DEFINITION 3.2. A P.S. (X, >) is lexicographic iff there is a permu-
tation o on Q such that v x, ye X, x > y iff not (x; ~;y;) for some ieQ
and X, > o) Yo(i fOr the smallest i for which not (Xy4) ~ oty Yo)-

Fishburn (1976) Theorem 1, proves the following results:

THEOREM 3.1. If (X, >) is a NPS, then:
(a) P, and P3;= Py,
(b) P, and P, and Py (X, >)1s lexicographic,
(c) Ps and > is a weak order = (X, >) is lexicographic.

The notion of NPS also provides a new insight into the idea of
concordance which appears in a wide variety of multicriteria decision-aid
methods such as ELECTRE. We formalize here this notion using an idea
introduced by Vansnick (1986). For another approach to the idea of
concordance we refer to Huber (1974 and 1979).

DEFINITION 3.3. A P.S. (X, >)isaconcordance P.S. of type p (CPSp)
with p=1 a rational number, iff
3 f1, for -0» Jn€RS such that vV x, yeX

x>yeXicp w »JfiZP Lier ¢, 0 Ji

Figure 1 gives a graphical interpretation of this definition.
We have the following lemmas:

LEMMA 3.2. V p=1, a CPSp is a NPS verifying Ps.
Proof. Obvious (left to the reader). B



NONCOMPENSATORY PREFERENCE STRUCTURES 255

Ejef' o, x)f/

y »X

X~y
x>y
- EieP (x, )’)f;'
Fig. 1. Graphical interpretation of a CPSp (here p=1/tg 0).
LEMMA 3.3. A4 lexicographic NPS is a CPS].
Proof. Follows immediately from taking f,= 2" +1=9, [ ]

The following theorem gives necessary and sufficient conditions for the
existence of a CPSp. These conditions are very similar to those appearing
in representation theorems of comparative probabilities (see Scott, 1964;
Domotor and Stelzer, 1971, Fishburn, 1969; Krantz ef al., 1971, chap. 9;
Roberts, 1979, chap. 8). This is not surprising because the relation “more
important than’’ between attributes has strong connections with a ‘“more
probable than” relation between events. In this theorem, V x, YeX,
M(x, y) will denote the 1 x n matrix (a,, ay, ..., a,) wherevieQ, a,=1
iff x; >; ¥, and a;=0 otherwise.

THEOREM 3.2. 4 P.S. (X, >) is a CPSp iff:
(X, >) is a NPS and
(3.1) v m, ke Ng

Y MO, yP)4p Y MY, wi)#
i=1

O0</j<k
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(G2 p Y MO, XN+ Y MWD, 20)
i=1 0<j<k
whenever
XV, yWeX and X7 >y v ie(l, 2, ..., m)
9, we X and w9~z v jeN such that 0<j<k.

Let us notice that condition (3.2) of Theorem 3.2. contains in fact an
infinity of conditions which are rather delicate to interpret as this is the
case for the theory of comparative probability. We refer to Vansnick
(1986) for a more general presentation of a similar theorem including a

threshold.
Proof. Theorem 3.2. can be stated:
Si
J2
aF . lelRz]2"! such that, ¥ x, ye X
Jn

x>y=M(x, y)-F>p M(y, x)'F
x~y=Mx, y)-F<p M(y, x)-F
iff (3.1) and (3.2).

(a) Necessity

The necessity of (3.1) is obvious. Let m, ke N, xX? >=yP vie(l, ...

and w¥~zU v jeN such that 0<j<k.
By assumption, there is a Fe[RZ 1”1 such that

M@ED, yO)-F>p M(O?, xP)-Fv iell, ..., m)

p M(zZ9P, w)-F>MWY, zV-F v jeN such that 0<j<k.
After summation, we obtain:

(Y MO, O +p ¥ M, wO)F>

O<j<k

16) i M(_y(’), x"))+ Z M(W(D, z(’))]-F

o0<j<k

which implies (3.2).

, m]
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(b) Sufficiency
Let us observe that it is sufficient to establish that (3.1) and (3.2) imply:

h

S
aF . leR"* ! such that, vV x, ye X:

Jn
x>y=M(x, y)-F>p M(y, x)-F and
x~y=M(x, y)-F<p M(y, x)'F
since (3.1) and (3.3) imply that f;>0 Vv i€ Q. We will show that (3.1) and
not (3.3)=not (3.2). Let Y? be a set containing one element from each
equivalence class of the relation E defined on X2 by:
(x, y) E (z, w) iff P(x, y)=P(z, w) and P(y, x)=P(w, 2).

n being finite, Y2 contains a finite number of elements.

(3.3)

Let {(s®, 1) | i=1, 2, ..., I} be the set of elements in Y? such that
s > D

Let (U, v9) | j=1, 2, ..., J} be the set of elements in Y? such that
u ~

Given (3.1), not (3.3) is equivalent to: 4 Fe R™"*1 such that:
C MED, (D) F>pM(E®D, sV)-Fvie(l, 2, ..., I}
and
Mu?, v9)- F<pMOP, u)-Fv je(l, 2, ..., J.

Each attribute being essential, we have I >n>0. Therefore, according
to Motzkin’s transposition theorem (see Vansnick, 1984), there are 4,,
Ay s Apy H1s Mo, ---» Ly€R™ with 4,0 for at least one iefl, 2, ..., I}
such that

I J
Y A MO, (P)+p Y p; MO, u0)=
i=1

J=1

74 I
p Y A MEP, s+ Y Mu®, V),
i=1 Jj=1

As the elements of M(s?, 1?), M(t?, s®), M(v?, u¥)) and MY, vV)
are either 0 or 1 and p is a rational number, there exist ], A3, -.-, A7,
K3, 13, ..., 4y€MN such that
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E A7 MG, (D) +p i u; MOO, u0)=

i=1 J=1

7 J
p Y, A MUP, SO+ Y u; MO, V)
i=1 J=1
with
4 L3
(3.4 ) Ai>0.
i=1

(3.4) implies that (3.2) does not hold. Indeed, if we let:

W m=Y k=Y

2) fori=1,2,..,Iand h=1,2, ..., m
XM =5 and yM =D jf

E A} <h and h< ix;
1=0 =0

3) for j=1, 2, ..., Jand A’ €N such that O<h'<k
w) =y and zM) =V if

j=1 J
Z uy <h'and A'< Z 1)
=0 =0

were by convention pug=1y=0
we have:
k, meN,
XM>y®W v hell, 2, ..., m
w) — 2" v h'e N such that 0<h’'<k
and 3.4. can be written

Y MU®, y o V. ME, wih=
h=1

O<h' <k

p Y MO®, xPys Y Mw, 20
h=1

O<h' <k

which completes the proof.
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4. GENERALIZED NONCOMPENSATORY
PREFERENCE STRUCTURES (GNPS)

It is often interesting, from a practical point of view, to weaken the
absolute noncompensation of NPS in order to obtain more realistic
comparisons (see Roy, 1974; Huber, 1979; and Vansnick, 1986). This is
the purpose of the following definition:

DEFINITION 4.1. A P.S. (X, >)isa GNPSiff v x, y, z, we X:
(1) [(Px, y), PO, x))=(P(z, ), P(w, 2)]=[x > y=2z 3 w].
(2) [P(x, y)#0 and P(y, x)=0]=x >y.

This definition represents a natural generalization of Definition 3.1.
allowing to have at the same time (P(x, y), P(y, x))=(P(z, w), P(w, 7)),
X >y and z~w. The possibility of an absence of preference between z
and w aims to encompass the notion of discordance between evaluations
(see Roy, 1968; and Roy and Bertier, 1972). In fact, when the difference
between the evaluations of z and w becomes important on the attributes
belonging to P(w, z) it is unrealistic to Suppose z > w.

Definition 4.1. obviously implies mutual preferential independence in
a GNPS. We have:

LEMMA 4.1. A P.S. (X, >) is a GNPS iff
(1) D is asymmetric.
2) VAeEP(Q) \ 0, A>0.
Proof. Follows immediately from essentiality and Definition 4.1. H

It is obvious from the definition that a NPS is also a GNPS. The following
definition establishes an interesting link between NPS and GNPS.

DEFINITION 4.2. Let (X, >) be a GNPS. We define on X a binary
relation > by x > y iff P(x, y)> P(y, x).

We have:
LEMMA 4.2. If (X, >) is a GNPS, then v Xy Se X

(1) x>y=x*>y.
(2) (X, *) is a NPS.




260 DENIS BOUYSSOU AND JEAN-CLAUDE VANSNICK
Proof. Obvious; left to the reader. =

Thus, there is a natural way to extend a GNPS into a NPS. For instance
let X={x;, »,} X [x2, ¥2, 22). We can represent a P.S. by mean of the
following matrix:

(x;, X) (xy, ¥2) (14 25) O, X)) O ¥2) 0 22)
(x;, x3) - > > > = =
(1, ) . > > = >
(x), 25) - ~ ~ >
015 x2) = o= >
O 22 — >
01> 2) =

It is easily seen that this P.S. is a GNPS with x; > | y;, x5 > 5 Vo,
Y > 5 25, X3 =5 2 and {1]>0, (2}>0, (1, 2]>6 and (1] 2].

In order to obtain its corresponding NPS, it suffices to add (x,, z,) >
01, x2) and (x, 25) > (1, »2)-

Any configuration in the darkened area of the matrix with at least one
> would have lead to the same associated NPS.

The following considerations allow to specify better the way the discor-
dance effect can work in a GNPS.

DEFINITION 4.3. A GNPS is discordant iff

V x, ye X such that x > y:

[IVJjePW, x), 3 (x1)ixj» O1)ise;€X;ix; X; such that
(ODiejp X) > (ODigejp Y)I=X > y.

In order to be able to interpret this definition, we will use the following:

DEFINITION 4.4. v jeQ, we define a binary relation V; on X, by
X; V; y; iff 4 (X7)ij» O7)i=j € Xix; X; such that
W5, (y;)i#:j) =, (X;)i:#j)'
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The following lemma establishes the link between these two definitions:

LEMMA 4.3. In a discordant GNPS
x > yiff x>y and not Y;i Vix; for all jeP(y, x).
Proof. Follows immediately from Definitions 4.3. and 4.4. |

Therefore, in a discordant GNPS, the discordance effect is introduced
whenever there is an attribute j in P(y, x) for which ¥; V; x; which can
be interpreted as “‘y; is far better than x;”’. It should be noticed that this
definition implies that each attribute must be considered separately in
order to decide for the discordance. Thus, there is no possibility of
interaction between the attributes in P(y, X).

We have:

LEMMA 4.4. v jeQ, V; is asymmetric.

Proof. x; > ; y; implies by definition not ¥;j V;jx;. Thus y; V; x; implies:
— either y; > ; x; and x; V; y; is impossible
— or y; ~;x;. The definition of a GNPS and essentially of attribute k thus
imply Ok, ¥j» ODisek, ) > (ks Xj, 7)isx, ;) for some O izk, j €
Xixk, j X;- Thus we cannot have x; vy [ |

In the case where a weak order underlies each > i» SOme monotonicity
conditions on >, give rise to a semi-order structure for each V;.

Let us first recall (see for instance Vincke, 1980) that if >, 1is a
semi-order on X;, the binary relation 7T; on X, defined by:

2> i Vit X

yi T; x; iff v z;e X;:
Xi > iZi=Yi>i%

is transitive and strongly connected.

Its asymmetric part 7% is thus a weak order and its symmetric part 75
an equivalence.

We can now state the following:

THEOREM 4.1. If a discordant GNPS is such that:

4.1) > is a semi-order v jeQ,
X >y=[VjeQ, Vv wieX; such that Yol
x > (ODiz; W)L,
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then each V, is an interval order. Furthermore, if the GNPS also verifies
(4.3) x> y=[vjeQ, Vv z;eX; such that z; T
((x)ixjp 2)) > V)
then V; is a semi-order.

In order to prove Theorem 4.1, we need the following:

LEMMA 4.5. Under the assumptions (4.1) and (4.2), we have v jeQ,

Vi xi iff y; T4 z; for all z;€S(x;) where S(x)) = [yjeX such that
3 (Xl)x;e/: (yl)lquEX:;tJ X; verifying ((x:)mtjv X;) > ((y ) )’,)]

Proof of the lemma. Suppose that z; T, yj for some z; € S(x;). We have:
(CDiens X) > (@)ins 7)) fOT sOME ()i jy @i ;€ Xinj Xic

(4.2) implies (o izo %) = (z; )i +j» ¥;) which contradicts y; V; x;. The
other part of the implication is established as follows:

Suppose that not y; V; x;. Then: ((x; Yoz XN ((y,),ij, y,) for
some (X} ) Wi )i EXj; X, and thus y; € S(x;). As not y; T Y
this completes the proof. |

Proof of Theorem 4.1.
(1) (4.1) and (4.2)= V; interval order. By Lemma 4.4., V;is asymme-
tric. Thus, all we have to prove is that, V x;, ¥}, z;, w,€ X}
X Vi yj x; Viw;
and } = { or
z; Vv 2 V; ;-
By Lemma 4.5, we have:
x; T y; for all yje S())
z; T wj for all wjeS(w)).
Suppose now that not (x; V; w)) so that w; T, x; for some w; e S(w)). As
Z Tj‘ w; and x; Tj‘ y; for all y;€ S(y)), we have z; Tj’ y; for all y;€ S(y)),
T/ being a weak order. Thus z; V; y;.
(2) (4.1), (4.2) and (4.3)=V; semi-order. Given the first part of the
theorem, all we have to prove is that Vv x;, y;, z;€ X}

X V¥ x; Viw;
and } =V w,eX; [or

YiViz w; Vi z;
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First suppose that w; T; y;. As y; V; z;, y; Tj’ z; for all zje S(z;). Thus
w; T/ zj for all zje S(z;) and w; V; z;.

Suppose now that y; Tj-’ w;. For any WjeS(wj), we have (w), (w,f),-ij)
> (W, (W));x,) for some (W;)i.;, (W));.,€X,.; X, and by (4.3)
(07 (w;—),-;tj)) > (W}, (W), which implies that w; e S(y;) for all w; € S(w)).
We have x; V; y;: therefore x; TJA yj for all y;e S(y;). As S(w)) C S(¥)), we
have x; V; w;. |

Theorem 4.1. is particularly useful because it generally allows (when
there is a numerical representation of the relation V) to define for each
X; a ‘‘veto threshold”’.

The reader may be puzzled by the dissymmetry existing between (4.2)
and (4.3), (4.3) being slightly weaker than (4.2). Hereafter, we study the
consequences of replacing (4.3) by:

x >y=[v jeQ, V¥ z;€ X; such that

Z5 106530 (0 1 s Zj) > 1.
Let us first observe that, denoting U, the transitive and strongly connected
relation underlying V;, neither U, C T; nor 7; C U, is a logical consequence
of Theorem 4.1. When ¥ is empty, it is obvious that U;C T; does not
hold. In order to prove that we may not have 7;C U; let us consider the
following example of GNPS:

X=X1 XXZ
X=Xy, y1, 24}
Xy = (X2, ¥

(X1, %) 0, x2) (21, X%3) (X1, ¥2) Wy, v2) (z,5)

(x1, %) -~ > — >~ — >
X)) ~ - > > =
(z1,x3) = = > >
(e, 05) ~ = ==

<
!
!
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We have:
X1>1 YY1 ~12, X171 %
X2 > 2 Y2
(1]>0, 2)>0
(1, 2}]>0
2)>{1].

It can be verified that this GNPS is discordant, that each > ; is a
weak-order and that > satisfies (4.2), (4.3) but not (4.4) because:
01, X2) > (x1, ¥2) and (25, Xp) ~ (x;, ¥2), though z; 7% y,.

In this example, V, is empty and we have x; V; z;. We have therefore

x1 Uy 24, x; Uy yy and y; U, z4
but, at the same time

xy Ty 2y, x; Ty ¥y, y1 Ty 2y and z; T, y;.
We complete our study of discordant GNPS by establishing:

THEOREM 4.2. In a discordant GNPS verifying (4.1), (4.2) and (4.4),
we have T;CU; V jeQ.

Remark before proof. T; and U; being strongly connected i U,
implies T C U5 and U;' C T4

Proof of Theorem 4.2. Suppose ¥; T; x; and not (v; U; x;). Not (y; U;
x;) implies:

either z; V; »; and not gz; V; x; for some z; € X

or . X; V; w; and not y; V; w; for some w; e X.
Not (z; V; x)= (xj, ()i 2 )> (2> (27)i) for some (X7); 1 1,27 )i € Xinj X

(4.4) therefore implies:

v (x;)iqtj) =z, (Z;)#j)
which contradicts Z Ky

Not (v; V; w)=(w;, (W))i,) > (7, ()i, for some
(0 L2l O )i EX X,

and the application of (4.2) contradicts x; Vi w; E
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5. GNPS AND DECISION-AID

We mentioned in the introduction that the concept of noncompensation
has been used in several multi-attribute decision-aid methods. Our pur-
pose in this section is to outline how the theoretical considerations
developed above can be helpful in order to design a new method using
these concepts (the TACTIC method) and to implement it.

The idea of the TACTIC method is to “‘build”’ a global preference
relation (see Bouyssou, 1984; and Roy and Bouyssou, 1986 on this notion
of construction) given a set of several attributes. Technically, the global
preference relation takes the form of a discordant GNPS verifying the
conditions (4.1), (4.2) and (4.4), which associated NPS is a CPSp.
Following Vansnick (1986), we will call such P.S. ‘“‘noncompensatory
preference structures with veto’’. The method first seeks to determine, in
agreement with the decision-maker, the semi-orders >;and V; for each
attribute /, with ¥; C > . This can be done simply by assessing a measur-
able value function on each attribute and determining two constant
thresholds. The method then asks the decision-maker to compare several
simple actions in order to obtain inter-criteria information. From this
information, it determines simultaneously, following a number of reason-
able principles, the ‘weights’ f; and the coefficient p. Once this infor-
mation is obtained, the determination of > for the complete set of actions
is performed easily. For more details on this topic, we refer to Vansnick
(1986).

REFERENECES

Bouyssou, D.: 1984, Approches constructives et descriptives d’aide a la décision: fonde-
ments et comparaison, unpublished doctoral dissertation, Université de Paris-Dauphine,
France.

Domotor, Z. and S. Stelzer: 1971, ‘Representation of Finetely Additive Semi-Ordered
Qualitative Probability Structures’, Journal of Mathematical Psychology 8, 145-168.
Fishburn, P. C.: 1969, ‘Weak Qualitative Probability on Finite Sets’, The Annals of

Mathematical Statistics 40, 2118-2126.

Fishburn, P. C.: 1974, ‘Lexicographic Orders, Utilities and Decision Rules: A Survey’,
Management Science 20, 1442-1471.

Fishburn, P. C.: 1975, ‘Axioms for Lexicographic Preferences’, The Review of Economic
Studies 42, 415-419.

Fishburn, P. C.: 1976, ‘Noncompensatory Preferences’, Synrhese 33, 393-403.

Huber, O.: 1974, ‘An Axiomatic System for Multidimensional Preferences’, Theory and
Decision 5, 161-184.



266 DENIS BOUYSSOU AND JEAN-CLAUDE VANSNICK

Huber, O: 1979, ‘Nontransitive Multidimensional Preferences: Theoretical Analysis of a
Model’, Theory and Decision 10, 147-165.

Keeney, R. L. and H. Raiffa: 1976, Decisions with Multiple Objectives: Preferences and
Value Tradeoffs, Wiley, New York.

Krantz, D. H., R. D. Luce, P. Suppes, and A. Tversky: 1971, Foundations of Measurement
Vol. I, Academic Press, New York.

MacCrimmon, K.: 1973, ‘An Overview of Multiple Objective Decision Making’, in

J. L. Cochrane and M. Zeleny (eds.), Multiple Criteria Decision Making, University of
South Carolina Press.

Plott, C. R., J. T. Little, and R. P. Parks: 1975, ‘Individual Choice When Objects Have
“‘Ordinal’’ Properties’, The Review of Economic Studies 32, 403-413.

Roberts, F. S.: 1979, Measurement Theory with Applications to Decision-Making, Ulility
and the Social Sciences, Addison-Wesley, London.

Roy, B.: 1968, ‘Classement et choix en présence de points de vue multiples (la méthode
ELECTRE)’, RIRO 8, 57-75.

Roy, B.: 1971, ‘Problems and Methods with Multiple Objective Functions’, Mathematical
Programming 1, 239-266.

Roy, B.: 1974, ‘Critéres multiples et modélisation des préférences: I’apport des relations
de surclassement’, Revue d’Economie Politique 84, 1-44.

Roy, B. and P. Bertier: 1972, ‘La méthode ELECTRE II — Une application au média-plan-
ning’, in M. Ross (ed.), OR ’72, Proceedings of the JFORS Conference in Dublin,
North-Holland, Amsterdam, pp. 291-302.

Roy, B. and D. Bouyssou: 1986, ‘Comparison of Two Decision-Aid Models Applied to a
Nuclear Plant Sitting Example’, EJOR 25, 200-215.

Scott, D.: 1964, ‘Measurement Structures and Linear Inequalities’, Journal of Mathemati-
cal Psychology 1, 233-247.

Vansnick, J. C.: 1986, ‘On the Problem of Weights in Multiple Criteria Decision Making’,
EJOR 24, 288-294.

Vincke, P.: 1980, ‘Linear Utility Functions on Semi-Ordered Mixture Space’, Econometrica
48, 771-775.

Université de Paris-Dauphine,
F-75775 Paris Cédex 16,
France.



