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The logic of distributive bilattices

Félix Bou1,∗ and Umberto Rivieccio2,†

1Institut d'Investigació en Intel.ligència Artificial, IIIA - CSIC, Campus
UAB, Bellaterra 08193, Spain and 2Department of Philosophy, University of
Genoa, Via Balbi 4, Genova 16126, Italy

Abstract
Bilattices, introduced by Ginsberg (1988, Comput. Intell., 265–316) as a uniform framework for inference in artificial
intelligence, are algebraic structures that proved useful in many fields. In recent years, Arieli and Avron (1996,
J. Logic Lang. Inform., 5, 25–63) developed a logical system based on a class of bilattice-based matrices, called
logical bilattices, and provided a Gentzen-style calculus for it. This logic is essentially an expansion of the well-known
Belnap–Dunn four-valued logic to the standard language of bilattices. Our aim is to study Arieli and Avron’s logic
from the perspective of abstract algebraic logic (AAL). We introduce a Hilbert-style axiomatization in order to
investigate the properties of the algebraic models of this logic, proving that every formula can be reduced to an
equivalent normal form and that our axiomatization is complete w.r.t. Arieli and Avron’s semantics. In this way, we
are able to classify this logic according to the criteria of AAL. We show, for instance, that it is non-protoalgebraic
and non-self-extensional. We also characterize its Tarski congruence and the class of algebraic reducts of its reduced
generalized models, which in the general theory of AAL is usually taken to be the algebraic counterpart of a
sentential logic. This class turns out to be the variety generated by the smallest non-trivial bilattice, which is
strictly contained in the class of algebraic reducts of logical bilattices. On the other hand, we prove that the class
of algebraic reducts of reduced models of our logic is strictly included in the class of algebraic reducts of its reduced
generalized models. Another interesting result obtained is that, as happens with some implicationless fragments
of well-known logics, we can associate with our logic a Gentzen calculus which is algebraizable in the sense of
Rebagliato and Verdú (1995, Algebraizable Gentzen Systems and the Deduction of Theorem for Gentzen Systems)
(even if the logic itself is not algebraizable). We also prove some purely algebraic results concerning bilattices, for
instance that the variety of (unbounded) distributive bilattices is generated by the smallest non-trivial bilattice.
This result is based on an improvement of a theorem by Avron (1996, Math. Struct. Comput. Sci., 6, 287–299)
stating that every bounded interlaced bilattice is isomorphic to a certain product of two bounded lattices. We
generalize it to the case of unbounded interlaced bilattices (of which distributive bilattices are a proper subclass).

Keywords: Bilattice, many-valued logic, abstract algebraic logic, reduced model, non-protoalgebraic logic,
algebraizable Gentzen system.

1 Introduction and Preliminares

Bilattices are algebraic structures introduced by Ginsberg [26] as a uniform framework for
inference in artificial intelligence, in particular within default and non-monotonic reasoning.
In the last two decades, these structures have proved useful in many fields, of which we shall
here mention just a few.
Bilattices were extensively investigated by Fitting, who considered applications to logic
programming [15, 16, 27, 28], to philosophical problems such as the theory of truth [14, 19]
and studied the relatioship with a family of many-valued systems generalizing Kleene’s
three-valued logics [17, 18]. Other interesting applications include the analysis of entailment,
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implicature and presupposition in natural language [34], the semantics of natural language
questions [31] and epistemic logic [35].
In the 90s, bilattices were investigated in depth by Arieli and Avron, both from an alge-
braic [5, 6] and a logical point of view [2, 4]. In order to deal with paraconsistency and
non-monotonic reasoning in artificial intelligence, Arieli and Avron [3] developed the first
logical system in the traditional sense based on bilattices. This logic, which we shall call
LB, is defined semantically from a class of matrices called logical bilattices, and is essentially
an expansion of the well-known Belnap–Dunn four-valued logic to the standard language of
bilattices. In [3], a Gentzen-style calculus is presented as a syntactic counterpart of LB, and
completeness and cut elimination are proved. Our main concern in the following sections
will be to investigate LB from the point of view of abstract algebraic logic (AAL). For all
definitions and general results from AAL that we will use, the reader is referred to [13, 22].
Besides the relationship with the aforementioned bilattice-based formal systems, one of
our main interests in this logic comes from the fact that it is one of the few known natural
examples of what in AAL are called non-protoalgebraic logics.
Recall that a logic 〈L,�〉 is said to be protoalgebraic (see [9, 13]) if and only if there is
a set �(p,q) of formulas (in two variables) such that ��(p,p) and {p,�(p,q)}�q. Roughly
speaking, the class of protoalgebraic logics is the broadest class of logical systems that are
relatively well-behaved from an algebraic point of view. One of the great open issues in
AAL is whether it is possible to obtain for non-protoalgebraic logics results concerning the
connection between a logic and its associated class of algebras that may be compared to
those that have been established for the protoalgebraic ones.
Some examples of non-protoalgebraic logics are the implicationless fragment of classical
and intuitionistic logics, modal logics with strict implication and many-valued logics pre-
serving lower bounds of degrees of truth. One of the reasons why a satisfying general theory
is still missing is that relatively few examples of non-protoalgebraic logics have been studied
up to now. We believe that the study of particular logics belonging to this class may help
to better understand the non-protoalgebraic landscape and in the long run might allow to
improve the general theory of their algebraization.
The article is organized as follows. In the remaining part of this section, we recall some
basic definitions and facts concerning bilattices and the logic LB of Arieli and Avron (for
proofs and details the reader is referred to [3, 15, 16]).
In Section 2, in order to investigate the properties of the algebraic models of LB, we
introduce a Hilbert-style calculus which is an extension of the one given by Font [20] for the
Belnap–Dunn logic. We establish a normal form theorem for our calculus and, using this
result, prove completeness with respect to the semantics of LB.
In Section 3, we prove some purely algebraic results concerning bilattices that will later
be used to study LB from the perspective of AAL: among these is a generalization of a
well-known representation theorem, stating that every interlaced bilattice is isomoprhic to
a certain product of two lattices.
In Section 4, we investigate in depth the algebraic models of LB. We characterize the

classes of reduced models and of reduced generalized models of LB, as well as the cor-
responding classes of algebraic reducts Alg∗LB and AlgLB. Finally, we consider a slight
variant of the Gentzen-style calculus introduced by Arieli and Avron [3]: we show that this
calculus is algebraizable in the sense of Rebagliato and Verdú [33] with respect to the variety
of distributive bilattices, which is also the class of algebraic reducts of reduced generalized
models of LB.
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The terminology concerning bilattices is not uniform.1 In this section, we explain the
terminology used in the present article. We adopt the convention of using the name ‘bilattice’
when there is a negation operator, since this has become more or less standard in recent
papers about bilattices.
A pre-bilattice is an algebra B=〈B,∧,∨,⊗,⊕〉 such that 〈B,∧,∨〉 and 〈B,⊗,⊕〉 are both
lattices. The order associated with the lattice 〈B,∧,∨〉 is denoted by ≤t and called the
truth order, while the order ≤k associated with 〈B,⊗,⊕〉 is the knowledge order. Usually in
literature, it is required that the lattices be complete or at least bounded, but here none of
these assumptions is made. The minimum and maximum of the truth lattice, in case they
exist, will be denoted by f and t; similarly, ⊥ and � will refer to the minimum and maximum
of the knowledge lattice.

CONVENTION 1.1 (Depicting pre-bilattices)
It is well-known that all finite lattices (indeed, all finite partial orders) can be depicted in
the Euclidean plane as Hasse diagrams, and it is common to represent the involved order
in the vertical axis. The upward line segments depicted in a Hasse diagram correspond
to the covering relation associated with the partial order. We remind the reader that the
covering relation <1 associated with a partial order ≤ is the strict order (i.e. irreflexive and
transitive) such that x<1 y holds iff y is an immediate successor of x . So the order given by a
Hasse diagram is the reflexive transitive closure of the upward line segments depicted in the
Hasse diagram. In the literature on bilattices, it is common to adopt a similar convention
for depicting some bilattices, but as far as the authors are aware this convention has not
been explicitly stated.2 Under this convention, the elements of a bilattice are represented
by points of the Euclidean plane and the diagram representing the bilattice connects two
different points x and y by a

(rep1): horizontal-rightward line segment iff x<1t y and x �≤k y and x �≥k y,
(rep2): upward-vertical line segment iff x<1k y and x �≤t y and x �≥t y,
(rep3): upward-rightward line segment iff 〈x,y〉∈(≤k ∩≤t)∩(<1k ∪<1t ),
(rep4): upward-leftward line segment iff 〈x,y〉∈(≤k ∩≥t)∩(<1k ∪>1t ).

Hence, the truth order is the transitive closure of the rightward line segments given in the
depicted diagram, and the knowledge order is the transitive closure of the upward line segments
given in the depicted diagram. The reader can find the diagrams of some pre-bilattices in
Figure 1. We stress that not all finite pre-bilattices can be represented in this way. It is worth
pointing out that under this convention connected points are related (in some direction)
by either <1k or <

1
t . However, in general, it is not true

3 that the upward line segments
correspond to the relation <1k and the rightward line segments correspond to the relation
<1t . As a counterexample, observe that in the second pre-bilattice given in Figure 1 it holds
that ⊥�<1k t (but ≤k). �

1This was already pointed out in [29, p. 111].
2The only attempt to write this down has been made by Avron [5] introducing the notion of ‘graphically

representable’ pre-bilattice (and a restricted version of it called ‘precisely representable’). This notion corresponds
exactly to the one we introduce, restricted to conditions (rep3) and (rep4) (i.e. neither horizontal nor vertical line
segments are allowed in ‘graphically representable’ pre-bilattices). In our opinion, this definition is too restrictive:
for example, the pre-billatice FIVE given in Figure 1 is not ‘graphically representable’ in the sense of [5].

3It is worth pointing out that in [5], it is proved that all interlaced bilattices can be represented in such a way.
The upward line segments correspond to the relation <1k , the rightward segments correspond to <

1
t , and there are

neither horizontal nor vertical line segments.
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FIG. 1. Some examples of (pre-)bilattices.

The literature explaining the motivation behind the two lattice orders in bilattices is quite
broad. In this article, we focus on the mathematical aspects of previous definition, but as
far as the motivation is concerned, let us quote the following paragraph by Fitting [19]:

The ordering ≤k should be thought of as ranking ‘degree of information’. Thus if
x≤k y, y gives us at least as much information as x (and possibly more). I suppose
this really should be written as≤i , using i for information instead of k for knowledge.
In some papers in the literature i is used, but I have always written ≤k , and now
I’m stuck with it.

Following Fitting and the tradition, we also adopt the notation ≤k , but we agree that ≤i
might have been a better choice.
Of course, the interest in pre-bilattices increases when there is some connection between
the orders. Such a connection has been introduced in the literature in at least two different
ways. A first way is to impose certain monotonicity properties: a pre-bilattice is said to be
interlaced when each one of the four lattice operations ∧,∨,⊗ and ⊕ is monotonic with
respect to both partial orders ≤t and ≤k . That is, when the quasi-equations

x≤t y⇒ x⊗z≤t y⊗z x≤k y⇒ x∧z≤k y∧z
x≤t y⇒ x⊕z≤t y⊕z x≤k y⇒ x∨z≤k y∨z

hold. A pre-bilattice is said to be distributive when all twelve distributive laws

x ∗(y•z)≈(x ∗y)•(x ∗z) for every ∗,•∈{∧,∨,⊗,⊕}.

hold. We will denote the classes of pre-bilattices, interlaced pre-bilattices and distributive
pre-bilattices by PreBiLat, IntPreBiLat and DPreBiLat, respectively. It is known [6] that all
these classes are equational4 and that DPreBiLat⊆ IntPreBiLat⊆PreBiLat.
A second way to establish a link between the two lattice orders is to expand the algebraic
language with a new connective. This is the method originally used by Ginsberg to introduce

4Pre-bilattices in [6] are always bounded in both orders, but the reader can easily check that the proofs
given there for these results do not use this fact. However, this is not the case for the representation theorem
[6, Theorem 3.3], that uses crucially the boundedness assumption.
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bilattices. A bilattice is an algebra B=〈B,∧,∨,⊗,⊕,¬〉 such that the reduct 〈B,∧,∨,⊗,⊕〉
is a pre-bilattice and the negation ¬ is a unary operation satisfying that for every a,b∈B,
(bil1): if a≤t b, then ¬b≤t¬a,
(bil2): if a≤k b, then ¬a≤k¬b,
(bil3): a=¬¬a.
It is known that the following equations (De Morgan laws) hold in any bilattice

¬(x∧y)≈¬x∨¬y ¬(x∨y)≈¬x∧¬y
¬(x⊗y)≈¬x⊗¬y ¬(x⊕y)≈¬x⊕¬y

and that ¬�=�, ¬⊥=⊥, ¬t= f and ¬f= t. It is then easy to see that the class of bilattices,
denoted by BiLat, is equationally axiomatizable. Analogously to what we did in the case of
pre-billatices, we will denote by IntBiLat and DBiLat the classes of interlaced bilattices and
distributive bilattices, which are also equational. It is also clear that DBiLat⊆ IntBiLat⊆BiLat.

CONVENTION 1.2 (Depicting bilattices)
Given a finite bilattice represented as explained in Convention 1.1, we will assume that the
negation is precisely the symmetry given by the vertical axis joining ⊥ and �. Hence, by the
involutive law the pictures corresponding to bilattices must have a vertical symmetry axis,
i.e. a left-right symmetry.5 It is easy to check that all pictures in Figure 1 correspond indeed
to bilattices. For example, the negation in the last picture satisfies ¬a=b and ¬c=c. �
All the bilattices shown in Figure 1 have been previosly considered in the literature [3, 26],

so we adopt the names that are more or less standard by now.6 Note that we will use
these names (FOUR, FIVE , etc.), except where otherwise stated, when they are viewed
as bilattices (so endowed with a negation). It is known [3] that FOUR and NINE are
distributive bilattices (hence interlaced), while neither FIVE nor DEFAULT are interlaced.
The smallest non-trivial bilattice is the four-element algebra FOUR depicted in Figure 1.

FOUR is distributive and it is a simple algebra (this follows from cardinal minimality). As
pointed out in [3], the role of FOUR is a special one among bilattices, analogous to the role
played among Boolean algebras by the two-element one. Let us note that the {∧,∨,¬}-reduct
of FOUR is the four-element De Morgan lattice that is known to generate the variety of
De Morgan lattices [20]. Indeed, the Belnap–Dunn four-valued logic is the logic determined
by the logical matrix 〈A,Tr〉 where A is this four-element Morgan lattice and Tr={�,t} [20,
Proposition 2.3]. According to the interpretation proposed by Belnap and Dunn for their
logic [1, 7, 8], which has become standard, the elements of FOUR may be thought of as
only true (t), only false (f), both true and false (�), and neither true nor false (⊥). Thus, it
is reasonable to take as set of designated elements those values which are at least true (but
possibly also false), that is, to take Tr={�,t}. This is what Arieli and Avron [3] did when
they introduced the logic LB into the realm of bilattices.

DEFINITION 1.3
LB=〈Fm,�LB〉 is the logic determined by the logical matrix 〈FOUR,Tr〉.

5Fitting [18] also studied the case of a connective corresponding to a top-bottom symmetry, that he called
conflation.

6In the rest of cases, we will use boldface roman letters A,B,C,...,Fm to denote algebras.
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TABLE 1. A complete sequent calculus for the logic LB.

Axiom: (Ax) �,ϕ�ϕ,�.
Rules: Cut Rule plus the following logical rules.

(∧�)
�,ϕ,ψ��

�,ϕ∧ψ��
(�∧) ���,ϕ ���,ψ

���,ϕ∧ψ
(¬∧�)

�,¬ϕ�� �,¬ψ��

�,¬(ϕ∧ψ)�� (�¬∧) ���,¬ϕ,¬ψ
���,¬(ϕ∧ψ)

(∨�)
�,ϕ�� �,ψ��

�,ϕ∨ψ��
(�∨) ���,ϕ,ψ

���,ϕ∨ψ
(¬∨�)

�,¬ϕ,¬ψ��

�,¬(ϕ∨ψ)�� (�¬∨) ���,¬ϕ ���,¬ψ
���,¬(ϕ∨ψ)

(⊗�)
�,ϕ,ψ��

�,ϕ⊗ψ��
(�⊗) ���,ϕ ���,ψ

���,ϕ⊗ψ
(¬⊗�)

�,¬ϕ,¬ψ��

�,¬(ϕ⊗ψ)�� (�¬⊗) ���,¬ϕ ���,¬ψ
���,¬(ϕ⊗ψ)

(⊕�)
�,ϕ�� �,ψ��

�,ϕ⊕ψ��
(�⊕) ���,ϕ,ψ

���,ϕ⊕ψ
(¬⊕�)

�,¬ϕ�� �,¬ψ��

�,¬(ϕ⊕ψ)�� (�¬⊕) ���,¬ϕ,¬ψ
���,¬(ϕ⊕ψ)

(¬¬�)
�,ϕ��

�,¬¬ϕ��
(�¬¬) ���,ϕ

���,¬¬ϕ

The algebra Fm of formulas is the free algebra generated by a countable set Var of
variables using the algebraic language {∧,∨,⊗,⊕,¬}. Note that there are no constants in
the language. By definition, for every set �∪{ϕ} of formulas it holds that
• ��LB ϕ, iff
• for every valuation h∈Hom(Fm,FOUR), if h[�]⊆Tr then h(ϕ)∈Tr.

The study of LB was already started in [3]; to close this section we will remind two important
results obtained there. The first is the introduction of a complete axiomatization by means
of a sequent calculus. By a sequent we mean a pair 〈�,�〉 where � and � are both finite
non-empty sets of formulas; we will denote the sequent 〈�,�〉 by ��ϕ in order to avoid any
misunderstanding with other symbols that are sometimes used as sequent separator, such
as �,→ or ⇒. The Gentzen system introduced in [3] is7 the one defined by the axioms and
rules given in Table 1, which we call GLB. Since the left-hand and right-hand side of our
sequents are (finite) sets of formulas, rather than multisets or sequences, it is not necessary
to include the structural rules of contraction and exchange, as they are, so to speak, built-in
in the formalism. Note also that, using (Ax), Cut, (∧�) and (�∨), it is easy to prove that

7Note that our presentation requires that both sides of sequents be non-empty. However, it is straightforward
to see that the two presentations generate essentially the same consequence relation.
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the sequent ��� is equivalent to
∧
��

∨
�. Taking this into account, we may obtain formal

proofs of the rules of left weakening (W�) and right weakening (�W ), as follows:

(Ax)∧
�,ϕ�

∧
�

���∧
��

∨
�

(Cut) ∧
�,ϕ�

∨
�

�,ϕ��

���∧
��

∨
�

(Ax)∨
��

∨
�,ϕ

(Cut)∧
��

∨
�,ϕ

���,ϕ

Therefore, all structural rules hold in this calculus. Reference [3] contains a proof that
this calculus admits Cut Elimination (i.e., the Cut Rule is admissible) and the following
completeness result [3, Theorem 3.7]:

THEOREM 1.4
The calculus GLB is complete with respect to �LB. That is, ��LB ϕ iff the sequent ��ϕ is
derivable, without any assumption, in GLB.

The second result from [3] we want to recall is the one that explains why LB is called the
logic of logical bilattices, and amounts to saying that in order to define �LB we can replace
the logical matrix 〈FOUR,Tr〉 by many other matrices.
Let B be a bilattice. A bifilter of B is a non-empty set F⊆B such that it is a lattice filter
of both orders ≤t and ≤k . That is, F is a subset such that, for every a,b∈B,
(bifilter): a∧b∈F iff a∈F and b∈F iff a⊗b∈F .
A prime bifilter is a proper (i.e. F�B) bifilter such that, for every a,b∈B,
(prime): a∨b∈F iff a∈F or b∈F iff a⊕b∈F .

FOUR only has one non-trivial bifilter, i.e. Tr, which is also prime. The notion of logical
bilattice, introduced in [3], denotes a pair 〈B,F〉 where B is a bilattice and F is a prime
bifilter of B. It is obvious that logical bilattices are also logical matrices in the sense of
AAL, so each logical bilattice determines a logic. The second key result from [3] is then that
all logical bilattices define the same logic, namely �LB.

THEOREM 1.5
For any logical bilattice 〈B,F〉, the logic determined by the matrix 〈B,F〉 coincides with
�LB. That is, for every set �∪{ϕ} of formulas

��LB ϕ iff � |=〈B,F〉ϕ.
The previous theorem is indeed a straightforward consequence of the following result (cf. [3,
Theorem 2.17]):

LEMMA 1.6
Let B∈BiLat and F�B. Then the following statements are equivalent:

1. F is a prime bifilter of B
2. There is a unique epimorphism πF :B−→FOUR such that F=π−1F [Tr]
3. There is an epimorphism πF :B−→FOUR such that F=π−1F [Tr].
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It may be interesting to point out that the epimorhism πF is the map defined by

πF (b) :=

⎧⎪⎪⎨⎪⎪⎩
� if b∈F and ¬b∈F
t if b∈F and ¬b �∈F
f if b �∈F and ¬b∈F
⊥ if b �∈F and ¬b �∈F .

2 Hilbert-style Presentation

So far in the literature, no Hilbert-style presentation for the logic LB of logical bilattices
has been given. The aim of this section is to fill in this gap by introducing a strongly
complete Hilbert-style calculus for this logic. Although from a proof theoretic point of view
sequent calculi (especially the ones enjoying cut elimination and the subformula property)
are better suited for searching proofs than Hilbert-style ones, this is just the opposite from
the point of view of AAL. The reason is that using a Hilbert-style presentation is quite easy
to characterize, in any algebraic model of a logic, the sets of elements that are closed under
the rules of the logic (i.e. the filters of the logic [22, 23]). In other words, from the AAL
point of view, the fact of having a Hilbert-style presentation means a lot of benefits.
Using the fact that {⊥} is a subalgebra of FOUR, it is easy to see that LB has no theorems:
this is so because the map that assigns ⊥ to all variables is a homomorphism, so there can
be no formula that takes a designated value (i.e. t or �) for any valuation.8 Therefore, all
Hilbert-style presentations for LB have to be free of axioms and based only on (proper)
rules. But as noted in [20], and contrary to what is claimed in [3, p. 37], this absence of
theorems does not mean that there can be no Hilbert-style presentation for LB.
By the semantical definition of LB it is obvious that this logic is a conservative expansion
of the Belnap–Dunn four-valued logic. Hence, in order to present a Hilbert-style presentation
for LB, we can try to expand any known Hilbert-style axiomatization for the Belnap–Dunn
logic. An example of such axiomatization is the calculus introduced by Font [20], consisting
in the first fifteen rules of Table 2.
DEFINITION 2.1
The logic �H is the consequence relation defined through the rules (there are no axioms)
stated in Table 2. The closure operator associated with �H will be denoted by CH .
In the rest of the section, we will prove that this calculus is strongly complete w.r.t. the
semantics of LB. The strategy of our proof is very similar to the one used in [20] for the
Belnap–Dunn logic, and is based on a normal form representation of formulas.

PROPOSITION 2.2 (Soundness)
Given a set of formulas �⊆Fm and a formula ϕ∈Fm, if ��H ϕ, then ��LB ϕ.

PROOF. It is sufficient to check that the set Tr is closed w.r.t. all the rules given in Table 2.

PROPOSITION 2.3
The following rules follow from (R1) to (R23):

(a) The rule
ϕ

(Ri+)
ψ
, for each one of the rules

ϕ∨r
(Ri)

ψ∨r (where i∈{10,...,23}).
8Here it is crucial that we do not have any of the constants �,t,f in the language, because otherwise ⊥ would

no longer be a subalgebra of FOUR.
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TABLE 2. A complete Hilbert-style calculus for the logic LB.

p∧q
(R1) p

p∧q
(R2) q

p q
(R3) p∧q

p
(R4) p∨q

p∨q
(R5) q∨p

p∨p
(R6) p

p∨(q∨r)
(R7)

(p∨q)∨r
p∨(q∧r)

(R8)
(p∨q)∧(p∨r)

(p∨q)∧(p∨r)
(R9)

p∨(q∧r)
p∨r

(R10) ¬¬p∨r
¬¬p∨r

(R11) p∨r
¬(p∨q)∨r

(R12)
(¬p∧¬q)∨r

(¬p∧¬q)∨r
(R13) ¬(p∨q)∨r

¬(p∧q)∨r
(R14)

(¬p∨¬q)∨r
(¬p∨¬q)∨r

(R15) ¬(p∧q)∨r
(p⊗q)∨r

(R16)
(p∧q)∨r

(p∧q)∨r
(R17)

(p⊗q)∨r
(p⊕q)∨r

(R18)
(p∨q)∨r

(p∨q)∨r
(R19)

(p⊕q)∨r
(¬p⊗¬q)∨r

(R20) ¬(p⊗q)∨r
¬(p⊗q)∨r

(R21)
(¬p⊗¬q)∨r

(¬p⊕¬q)∨r
(R22) ¬(p⊕q)∨r

¬(p⊕q)∨r
(R23)

(¬p⊕¬q)∨r

(b) The rule
ϕ∧r
ψ∧r in the same cases.

PROOF. (a) From ϕ by (R4) we obtain ϕ∨ψ. Then we apply (Ri) to get ψ∨ψ and by (R6)
we obtain ψ.
(b) From ϕ∧r by (R1) we obtain ϕ. Now using (a) we get ψ. Also from ϕ∧r , by (R2),

follows r . Thus applying (R3) we get ψ∧r .
PROPOSITION 2.4
From (R1), …, (R9) and (R16+),..., (R19+) we can easily derive the following rules:

(R1')
p⊗q
p

(R2')
p⊗q
q

(R3')
p q
p⊗q

(R4')
p
p⊕q (R5')

p⊕q
q⊕p (R6')

p⊕p
p

(R7')
p⊕(q⊕r)
(p⊕q)⊕r (R8')

p⊕(q⊗r)
(p⊕q)⊗(p⊕r) (R9')

(p⊕q)⊗(p⊕r)
p⊕(q⊗r)

PROPOSITION 2.5
The interderivability relation ��H is a congruence w.r.t. the operations ∧ and ∨.
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PROOF. It is sufficient to show that the following two rules
p∧r q∧r
(p∧q)∧r

p∨r q∨r
(p∧q)∨r

together with the rules
ϕ∨r
ψ∨r and

ϕ∧r
ψ∧r (for each rule

ϕ

ψ
in Table 2) are all of them

derivable in �H . For the rules in Table 2 that belong to the 〈∧,∨〉 fragment it is known that
they follow just from rules (R1) to (R9). And for (R10) to (R23) the conjunction case is
shown by Proposition 2.3(b), while the disjunction case can be easily shown by using the
associativity of ∨.
DEFINITION 2.6
Lit=Var∪{¬p :p∈Var} is the set of literals. Cl , the set of clauses, is the least set containing
Lit and closed under ∨. For any ϕ∈Fm, the set var (ϕ) of variables of ϕ is defined in the
usual way; for �⊆Fm, var (�)=⋃

ϕ∈�var (ϕ). For any ϕ∈Cl , the set lit (ϕ) of literals of
ϕ is defined inductively by lit (ϕ)={ϕ} if ϕ∈Lit and lit (ϕ∨ψ)= lit (ϕ)∪ lit (ψ). For �⊆Cl ,
lit (�)=⋃

ϕ∈� lit (ϕ).

PROPOSITION 2.7
For all ϕ∈Fm there is a finite �⊆Cl such that var (ϕ)=var (�) and for every ψ∈Fm,
CH (ϕ∨ψ)=CH ({γ∨ψ :γ ∈�}).
PROOF. By induction on the length of ϕ.

If ϕ=p∈Var then �={p}.
If ϕ=ϕ1∧ϕ2 and by inductive hypothesis �1,�2 correspond to ϕ1 and ϕ2, respectively, then
we may take �=�1∪�2 and we have var (ϕ)=var (�). We also have

CH (ϕ∨ψ) = CH ((ϕ1∧ϕ2)∨ψ)
= CH ((ϕ1∨ψ)∧(ϕ2∨ψ))
= CH (ϕ1∨ψ,ϕ2∨ψ)
= by (R1), (R2), (R3)
= CH (CH (ϕ1∨ψ)∪CH (ϕ2∨ψ))
= CH (CH ({γ1∨ψ :γ1∈�1})∪CH ({γ2∨ψ :γ2∈�2}))
= CH ({γ∨ψ :γ ∈�}).

If ϕ=ϕ1∨ϕ2 and �1,�2 correspond to ϕ1 and ϕ2, respectively, then take �=
{γ1∨γ2 :γ1∈�1,γ2∈�2} and we have var (ϕ)=var (�). We also have:

CH (ϕ∨ψ) = CH ((ϕ1∨ϕ2)∨ψ)
= CH (ϕ1∨(ϕ2∨ψ))
= (by inductive hypothesis)
= CH

({
γ1∨(ϕ2∨ψ) :γ1∈�1

})
= CH

({
ϕ2∨(γ1∨ψ) :γ1∈�1

})
= CH

({
γ2∨(γ1∨ψ) :γ1∈�1,γ2∈�2

})
= CH

({
(γ1∨γ2)∨ψ :γ1∈�1,γ2∈�2

})
.
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If ϕ=ϕ1⊗ϕ2 then CH (ϕ∨ψ)=CH ((ϕ1⊗ϕ2)∨ψ). By (R16) and (R17) we have
CH ((ϕ1⊗ϕ2)∨ψ)=CH ((ϕ1∧ϕ2)∨ψ), so we may apply the procedure for ϕ=ϕ1∧ϕ2.

If ϕ=ϕ1⊕ϕ2 then CH (ϕ∨ψ)=CH ((ϕ1⊕ϕ2)∨ψ). By (R18) and (R19) we have
CH ((ϕ1⊕ϕ2)∨ψ)=CH ((ϕ1∨ϕ2)∨ψ), so we may apply the procedure for ϕ=ϕ1∨ϕ2.

If ϕ=¬ϕ′ we have to distinguish several cases on ϕ′.
If ϕ′ =p∈Var then ϕ∈Lit⊆Cl , so we may take �={ϕ}.
If ϕ′ =¬ϕ′′, then ϕ=¬¬ϕ′′ and by (R10) and (R11) we have CH (ϕ∨ψ)=CH (ϕ′′ ∨ψ).
ϕ′′ is shorter that ϕ and its corresponding set � also works for ϕ.
If ϕ′ =ϕ1∧ϕ2 then ϕ=¬(ϕ1∧ϕ2) and by (R14) and (R15) we have CH (ϕ∨ψ)=
CH ((¬ϕ1∨¬ϕ2)∨ψ). Both ¬ϕ1 and ¬ϕ2 are shorter than ¬(ϕ1∧ϕ2), so the same
procedure for the case of ϕ=ϕ1∨ϕ2 works.
If ϕ′ =ϕ1∨ϕ2 then ϕ=¬(ϕ1∨ϕ2) and by (R12) and (R13) we have CH (ϕ∨ψ)=
CH ((¬ϕ1∧¬ϕ2)∨ψ). Both ¬ϕ1 and ¬ϕ2 are shorter than ¬(ϕ1∨ϕ2), so the same
procedure for the case of ϕ=ϕ1∧ϕ2 works.
If ϕ′ =ϕ1⊗ϕ2, then ϕ=¬(ϕ1⊗ϕ2) and by (R20) and (R21) we have CH (ϕ∨ψ)=
CH ((¬ϕ1⊗¬ϕ2)∨ψ). Both ¬ϕ1 and ¬ϕ2 are shorter than ¬(ϕ1⊗ϕ2) and the procedure
applied for ϕ=ϕ1⊗ϕ2 works.
If ϕ′ =ϕ1⊕ϕ2, then ϕ=¬(ϕ1⊕ϕ2) and by (R22) and (R23) we have CH (ϕ∨ψ)=
CH ((¬ϕ1⊕¬ϕ2)∨ψ). Both ¬ϕ1 and ¬ϕ2 are shorter than ¬(ϕ1⊕ϕ2) and again the
procedure applied for ϕ=ϕ1⊕ϕ2 works.

PROPOSITION 2.8
For all ϕ∈Fm there is a finite �ϕ⊆Cl such that var (ϕ)=var (�ϕ) and CH (ϕ)=CH (�ϕ).
PROOF. By induction on the length of ϕ.

If ϕ=p∈Var , then take �ϕ={ϕ}.
If ϕ=ϕ1∧ϕ2 by (R1), (R2) and (R3) we have CH (ϕ)=CH (ϕ1,ϕ2). So we may take �ϕ=
�ϕ1∪�ϕ2 and we are done.

If ϕ=ϕ1∨ϕ2 then by Proposition 2.7 and (R5), we have:

CH (ϕ) = CH ({γ1∨ϕ2 :γ1∈�1})
= CH ({ϕ2∨γ1 :γ1∈�1})
= CH ({γ2∨γ1 :γ1∈�1,γ2∈�2}).

Since �1,�2⊆Cl are finite, �ϕ={γ1∨γ2 :γ1∈�1,γ2∈�2}⊆Cl is also finite and we are done.
If ϕ=ϕ1⊗ϕ2, by (R16+) and (R17+) we have CH (ϕ)=CH (ϕ1,ϕ2), so we may take �ϕ=
�ϕ1∪�ϕ2 and we are done.

If ϕ=ϕ1⊕ϕ2, since by (R18+) and (R19+) we have CH (ϕ1⊕ϕ2)=CH (ϕ1∨ϕ2), we may apply
the procedure for ϕ=ϕ1∨ϕ2.

If ϕ=¬ϕ′ we have to distinguish several cases.
If ϕ′ =p∈Var , then ϕ∈Cl , so we may take �ϕ={ϕ}.
If ϕ′ =¬ϕ′′, then by (R10+) and (R11+) we have CH (ϕ)=CH (ϕ′′) and since ϕ′′ is shorter
that ϕ we are done.
If ϕ′ =ϕ1∧ϕ2 then by (R14+) and (R15+) we have CH (ϕ)=CH (¬ϕ1∨¬ϕ2), so we may
apply the procedure for ϕ=ϕ1∨ϕ2.
If ϕ′ =ϕ1∨ϕ2 then by (R12+) and (R13+) we have CH (ϕ)=CH (¬ϕ1,¬ϕ2), so applying
the inductive hypothesis we are done.
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If ϕ′ =ϕ1⊗ϕ2, then ϕ=¬(ϕ1⊗ϕ2) and by (R20+) and (R21+) we have CH (ϕ)=
CH (¬ϕ1⊗¬ϕ2), so the procedure applied for ϕ=ϕ1⊗ϕ2 works.
If ϕ′ =ϕ1⊕ϕ2, then ϕ=¬(ϕ1⊕ϕ2) and by (R22+) and (R23+) we have CH (ϕ)=
CH (¬ϕ1⊕¬ϕ2), so the procedure applied for ϕ=ϕ1⊕ϕ2 works.

THEOREM 2.9 (Normal Form)
Every formula is equivalent, both through ��H and =||=LB, to a ∧-conjunction of clauses
with the same variables.

PROOF. By Proposition 2.8, we have that ϕ��H ∧
�ϕ, where

∧
�ϕ is any conjunction of all

the clauses in �ϕ. By Proposition 2.2 this implies also that
∧
�ϕ=||=LB ϕ.

LEMMA 2.10
For all �⊆Cl and ϕ∈Cl , the following are equivalent:

1. ��H ϕ,
2. ��LB ϕ,
3. ∃γ ∈� such that lit (γ)⊆ lit (ϕ),
4. ∃γ ∈� such that γ�H ϕ.
PROOF. 1⇒2 follows from Proposition 2.2.
2⇒3. For a fixed ϕ∈Cl define a homomorphism h :Fm→FOUR as follows. For every

p∈Var :

h (p)=

⎧⎪⎪⎨⎪⎪⎩
t if p /∈ lit (ϕ) and ¬p∈ lit (ϕ)
� if p,¬p /∈ lit (ϕ)
⊥ if p,¬p∈ lit (ϕ)
f if p∈ lit (ϕ) and ¬p /∈ lit (ϕ)

If p∈ lit (ϕ) then h (p)∈{f,⊥} and also h (¬p)∈{f,⊥} when ¬p∈ lit (ϕ). Since f≤t⊥, we have
h (ϕ)∈{f,⊥}. Suppose (1) fails: then for any γ ∈� there would be ψγ ∈ lit (γ) such that ψγ /∈
lit (ϕ). Then, we would have h (ψγ)∈{t,�} and as a consequence h (γ)∈{t,�}. Thus, we would
have, against (2), h [�]⊆{t,�} while h (ϕ) /∈{t,�}.
3⇒4. If lit (γ)⊆ lit (ϕ) and γ,ϕ∈Cl , then ϕ is a disjunction of the same literals appearing

in γ plus other ones, modulo some associations, permutations etc. Therefore applying rules
(R4) to (R7) and repeatedly using Proposition 2.5 we get γ�H ϕ.
4⇒1. Immediate.

THEOREM 2.11 (Completeness)
For all �⊆Fm and ϕ∈Fm, it holds that ��LB ϕ iff ��H ϕ.
PROOF. By Theorem 2.9 and Lemma 2.10.

3 Algebraic Study of (Pre-)bilattices

The motivation behind the birth of AAL is to establish a connection between the logic and
the algebraic machineries in such a way that results from one side (logic or algebraic) can be
translated into the other side. In the same spirit, the purpose of this section is to develop the
algebraic apparatus behind the logic of logical bilattices, which will be used in Section 4 to
study the connections between the logic LB and the algebraic bilattice framework. For this
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purpose, it would be enough to focus on the class DBiLat of distributive bilattices, but for
the sake of generality we will consider a broader class. We will thus obtain some algebraic
results that, although not essential to the study of LB, have in our opinion an independent
interest.

3.1 Representation theorem for interlaced pre-bilattices
Recall that the class IntPreBiLat of interlaced pre-bilattices is formed by those pre-bilattices
satisfying that each one of the four lattice operations is monotone with respect to both orders
≤t and ≤k . This condition means that every order ≤ belonging to the set {≤t,≥t,≤k ,≥k}
satisfies the quasi-equations

x≤y& z≤u ⇒ x ∗z≤y∗u for every ∗∈{∧,∨,⊗,⊕},
i.e. ≤ is compatible with respect to all four lattice operations.
For bounded interlaced pre-bilattices there is a nice representation theorem due to
Avron [6] stating that every bounded pre-bilattice can be obtained, up to isomorphism, as
a particular product of two bounded lattices.9 As far as the authors are aware, all published
proofs of this result [6, 29, 32] rely in an essential way on the boundedness assumption. The
aim of this subsection is to prove that the theorem is also valid when we drop the bound-
edness assumption.10 Our proof uses a new method based on the study of principal bifilters
(and also filter-ideals, as we shall see) of interlaced pre-bilattices, but this connection will
not be explicitly stated until Section 3.3.

DEFINITION 3.1
Let L1=〈L1,�1,�1〉 and L2=〈L2,�2,�2〉 be two lattices with associated orders ≤1 and ≤2.
Then the product pre-bilattice L1�L2=〈L1×L2,∧,∨,⊗,⊕〉 is defined as follows. For all
〈a1,a2〉,〈b1,b2〉∈L1×L2,

〈a1,a2〉∧〈b1,b2〉=〈a1�1b1,a2�2b2〉
〈a1,a2〉∨〈b1,b2〉=〈a1�1b1,a2�2b2〉
〈a1,a2〉⊗〈b1,b2〉=〈a1�1b1,a2�2b2〉
〈a1,a2〉⊕〈b1,b2〉=〈a1�1b1,a2�2b2〉.

It easy to check that the structure L1�L2 is always an interlaced pre-bilattice. By the
definition it is obvious that

〈a1,a2〉≤k 〈b1,b1〉 iff a1≤1 a2 and a2≤2 b2
and

〈a1,a2〉≤t 〈b1,b1〉 iff a1≤1 a2 and a2≥2 b2.
In Figure 2, the reader can find a ‘graphical representation’ of the upward closed set, for
each one of the orders, generated by an element x=〈a1,a2〉.
It is worth pointing out that the product pre-bilattice construction is a particular case
of a direct product construction. It is obvious that any lattice L=〈L,�,�〉 can be seen as

9For the particular case of distributive pre-bilattices this result had already been obtained by Ginsberg [26] and
also by Fitting [15, 16].
10In the recent publication [30], it is claimed that this statement holds, but no proof is given.
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FIG. 2. The cones determined by the orders in a product pre-bilattice.

a degenerated pre-bilattice in at least four different ways; we can consider the following
four pre-bilattices: L++ :=〈L,�,�,�,�〉, L+− :=〈L,�,�,�,�〉, L−+ :=〈L,�,�,�,�〉 and L−− :=
〈L,�,�,�,�〉. The first superscript, + or −, says whether we are taking as truth order the
same order than in the original lattice or the dual one; the second superscript refers to the
same for the knowledge order. Using this notation, it is obvious that the product pre-bilattice
L1�L2 coincides with the direct product L++1 ×L−+2 . We stress that L++1 =〈L1,�1,�1,�1,�1〉
and L−+2 =〈L2,�2,�2,�2,�2〉.
The rest of this subsection is devoted the proof of the following theorem.

THEOREM 3.2 (Representation)
Let B be a pre-bilattice. The following statements are equivalent.

1. B is an interlaced pre-bilattice.
2. There are two lattices L1 and L2 such that B is isomorphic to L1�L2.
For this we will need to state some more properties of interlaced pre-bilattices; but first of
all let us note that there is a duality implicit in the definition of IntPreBiLat that will allow
to simplify many of our proofs.

REMARK 3.3 (Duality Principle)
A dual algebra of a pre-bilattice B=〈B,∧,∨,⊗,⊕〉 is any pre-bilattice such that its two orders
belong to {≤t,≥t,≤k ,≥k}. In particular, 〈B,∨,∧,⊕,⊗〉, 〈B,⊗,⊕,∧,∨〉 and 〈B,∧,∨,∧,∨〉 are
examples of dual algebras of B. It is easy to see that the class IntPreBiLat is closed under
dual algebras: hence any property that holds for all members of IntPreBiLat also holds in
any dual algebra of an interlaced pre-bilattice.

In Proposition 3.4 and Corollary 3.5, we state a result that is in our opinion crucial to
understand the structure of interlaced pre-bilattices.

PROPOSITION 3.4
Let B be an interlaced pre-bilattice. Then, for all a,b∈B,
1. a≤k a∧b iff 〈a,b〉∈≤k ◦≤t iff a≤t a⊗b iff 〈a,b〉∈≤t ◦≤k iff
a∨b≤k b iff 〈b,a〉∈≥k ◦≥t iff a⊕b≤t b iff 〈b,a〉∈≥t ◦≥k .

2. a≤k a∨b iff 〈a,b〉∈≤k ◦≥t iff a≥t a⊗b iff 〈a,b〉∈≥t ◦≤k iff
a∧b≤k b iff 〈b,a〉∈≥k ◦≤t iff a⊕b≥t b iff 〈b,a〉∈≤t ◦≥k .

3. a≥k a∧b iff 〈a,b〉∈≥k ◦≤t iff a≤t a⊕b iff 〈a,b〉∈≤t ◦≥k iff
a∨b≥k b iff 〈b,a〉∈≤k ◦≥t iff a⊗b≤t b iff 〈b,a〉∈≥t ◦≤k .

4. a≥k a∨b iff 〈a,b〉∈≥k ◦≥t iff a≥t a⊕b iff 〈a,b〉∈≥t ◦≥k iff
a∧b≥k b iff 〈b,a〉∈≤k ◦≤t iff a⊗b≥t b iff 〈b,a〉∈≤t ◦≤k .
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PROOF. By the Duality Principle it is enough to prove the first of these four statements. And
indeed it is enough to prove the equivalences stated in the first line of this first statement
(because this second line corresponds to the first line of the fourth statement just permuting
a and b). Let us denote by (i), (ii), (iii) and (iv) each one of the claims involved in this first
line from the first statement.
(i) ⇒ (ii): If a≤k a∧b, then it is obvious that a≤k a∧b≤t b. Therefore, 〈a,b〉∈≤k ◦≤t .
(ii) ⇒ (iii): Let us assume that there is some c such that a≤k c≤t b. Then, by the inter-

lacing conditions we have a=a⊗c≤t a⊗b.
(iii) ⇒ (iv): If a≤t a⊗b, then a≤t a⊗b≤k b. Thus, 〈a,b〉∈≤t ◦≤k .
(iv) ⇒ (i): If a≤t c≤k b for some c, then by the interlacing conditions it holds that a=

a∧c≤k a∧b.
COROLLARY 3.5
Let B be an interlaced pre-bilattice. Then, for every ≤1,≤2∈{≤t,≥t,≤k ,≥k} it holds that
≤1 ◦≤2=≤2 ◦≤1.
PROOF. Proposition 3.4 deals with a lot of these cases. For the rest of cases this is straight-
forward (note that ≤t ◦≥t=B×B =≤k ◦≥k).
An easy consequence of this corollary is that, for every ≤1,≤2∈{≤t,≥t,≤k ,≥k}, the rela-
tion ≤1 ◦≤2 is transitive. This is so because (≤1 ◦≤2)◦(≤1 ◦≤2)=≤1 ◦(≤2 ◦≤1)◦≤2=≤1 ◦(≤1
◦≤2)◦≤2= (≤1 ◦≤1)◦(≤2 ◦≤2)=≤1 ◦≤2. Hence, ≤1 ◦≤2 is a quasi-order (i.e. reflexive and
transitive) compatible with all four lattice operations. The compatibility trivially follows
from the interlacing conditions, which say that both ≤1 and ≤2 are compatible with the four
operations. This suggests that it may be useful to study the equivalence relation associated
to these quasi-orders.

PROPOSITION 3.6
Let B be an interlaced pre-bilattice. Then, for all a,b∈B it holds that
1. 〈a,b〉,〈b,a〉∈≤t ◦≤k iff a∨b≤t a⊗b iff a∨b=a⊗b iff
〈a,b〉,〈b,a〉∈≤k ◦≤t iff a⊕b≤k a∧b iff a⊕b=a∧b iff
〈a,b〉,〈b,a〉∈≥t ◦≥k iff a∧b≥t a⊕b iff a∧b=a⊕b iff
〈a,b〉,〈b,a〉∈≥k ◦≥t iff a⊗b≥k a∨b iff a⊗b=a∨b.

2. 〈a,b〉,〈b,a〉∈≥t ◦≤k iff a∧b≥t a⊗b iff a∧b=a⊗b iff
〈a,b〉,〈b,a〉∈≤k ◦≥t iff a⊕b≤k a∨b iff a⊕b=a∨b iff
〈a,b〉,〈b,a〉∈≤t ◦≥k iff a∨b≤t a⊕b iff a∨b=a⊕b iff
〈a,b〉,〈b,a〉∈≥k ◦≤t iff a⊗b≥k a∧b iff a⊗b=a∧b.

PROOF. By the Duality Principle it is enough to prove the first statement. And using that we
know that all four claims in the first column are equivalent indeed it is sufficient, again by the
Duality Principle, to prove the part of this first statement saying that 〈a,b〉,〈b,a〉∈≤t ◦≤k
iff a∨b≤t a⊗b iff a∨b=a⊗b. And this is an easy consequence of Proposition 3.4 together
with the fact that a⊗b≤t a∨b by the interlacing conditions.
DEFINITION 3.7
The equivalence relation ∼1 is the one that relates two elements of a pre-bilattice B when-
ever any of the conditions in the first statement of Proposition 3.6 holds. Analogously, the
equivalence relation ∼2 is the one defined by the conditions in the second statement of the
same proposition.
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The following proposition contains the main results of this section: a direct decomposition
of interlaced pre-bilattices, a representation as pre-bilattice products of two lattices and a
characterization of the congruences. In the proof, we shall use the fact that all varieties of
(pre-)bilattices are congruence-distributive: this is immediate, since lattices are congruence-
distributive [11, p. 87] and this property is preserved by expansions of the algebraic language.

PROPOSITION 3.8
Let B=〈B,∧,∨,⊗,⊕〉 be an interlaced pre-bilattice. Then,
1. ∼1 and ∼2 are congruences of B.
2. B/∼1 and B/∼2 are interlaced pre-bilattices.
3. In B/∼1, the knowledge order coincides with the truth order. That is, 〈B,⊗,⊕〉/∼1=
〈B,∧,∨〉/∼1.

4. In B/∼2, the knowledge order is the dual of the truth order. That is, 〈B,⊗,⊕〉/∼2=
〈B,∨,∧〉/∼2.

5. ∼1 and ∼2 is a pair of factor congruences of B (i.e., ∼1∩∼2 is the identity relation, and
∼1 ◦∼2 is the total relation ∇).

6. B is isomorphic to the direct product B/∼1×B/∼2.
7. B is isomorphic to the product pre-bilattice (〈B,⊗,⊕〉/∼1)�(〈B,⊗,⊕〉/∼2).
8. 〈Con(B),⊆〉 is isomorphic to 〈Con(〈B,⊗,⊕〉/∼1),⊆〉×〈Con(〈B,⊗,⊕〉/∼2),⊆〉.
9. 〈Con(B),⊆〉 is isomorphic to 〈[∼1,∇]Con(B),⊆〉×〈[∼2,∇]Con(B),⊆〉, where
[∼i,∇]Con(B)={θ∈Con(B) :∼i⊆θ}.

10. Con(B)∼=Con(〈B,∧,∨〉)∼=Con(〈B,⊗,⊕〉).
PROOF. 1. This is obvious from the fact that each one of these two relations is determined
by a quasi-order compatible with the operations.
2. This is trivial.
3. It is enough to realize that a∧b∼1 a⊗b (or that a∨b∼1 a⊕b). By the interlacing

conditions we know that a∧b≤k a⊗b≤t a∧b. Hence, 〈a∧b,a⊗b〉∈≤t ◦≤k and 〈a⊗b,a∧b〉∈
≤t ◦≤k . Thus, it holds that a∧b∼1 a⊗b.
4. It suffices to check that a∧b∼2 a⊕b (or that a∨b∼2 a⊗b). By the interlacing conditions
we know that a∧b≤t a⊕b≤k a∧b. Hence, 〈a∧b,a⊕b〉∈≤t ◦≤k and 〈a⊕b,a∧b〉∈≤t ◦≤k .
Thus, it holds that a∧b∼2 a⊕b.
5. First of all, we consider the case of the identity relation. Let us assume that a∼1 b
and a∼2 b. Then, by Proposition 3.6, we know that a∨b=a⊗b and a∧b=a⊗b. Therefore,
a∨b=a∧b. Hence, a=b. Now it is time to prove that ∼1 ◦∼2 is the total relation. In order
to do this it is enough to check that the element c :=(a∧(a⊕b))⊗(b∨(a⊕b)) satisfies that
a∼1 c and b∼2 c. But using previous items in this proposition it is obvious that

c=(a∧(a⊕b))⊗(b∨(a⊕b))∼1 (a∧(a∨b))∧(b∨(a∨b))∼1 a∧(a∨b)∼1 a

and that

c=(a∧(a⊕b))⊗(b∨(a⊕b))∼2 (a∧(a∧b))∨(b∨(a∧b))∼2 (a∧b)∨b∼2 b.

6. By the previous item and [11, Theorem II.7.5].
7. This holds because B/∼1×B/∼2 is exactly (〈B,⊗,⊕〉/∼1)�(〈B,⊗,⊕〉/∼2). We point

out that (〈B,⊗,⊕〉/∼1)∼=(〈B,∧,∨〉/∼1) and that (〈B,⊗,⊕〉/∼2)∼=(〈B,∨,∧〉/∼2).
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8. As we have observed, pre-bilattices are congruence-distributive; hence they also enjoy
the Fraser–Horn–Hu property [25, Corollary 1]. This means that the lattice of congruences
of a direct product is isomorphic to the direct product of the lattices of congruences of the
factor algebras. We have then that Con(B)∼=Con(B/∼1×B/∼2)∼=Con(B/∼1)×Con(B/∼2).
To finish the proof it is enough to observe that, as a consequence of (iii) and (iv), it holds
that if i∈{1,2} then Con(B/∼i)=Con(〈B,⊗,⊕〉/∼i).
9. The beginning of this proof is the same one than for the previous item. In order to
finish it we use that, by [11, Theorem II.6.20], if i∈{1,2} then Con(B/∼i)∼=[∼i,∇].
10. By the Duality Principle it suffices to prove that Con(B)∼=Con(〈B,⊗,⊕〉). Recall that,

as observed in (viii), if i∈{1,2} then Con(B/∼i)=Con(〈B,⊗,⊕〉/∼i). Using the Fraser–
Horn–Hu property, we have Con(B)∼=Con(B/∼1×B/∼2)∼= Con(B/∼1)×Con(B/∼2)∼=
Con(〈B,⊗,⊕〉/∼1)×Con(〈B,⊗,⊕〉/∼2) ∼=Con(〈B,⊗,⊕〉).
Item (7) of the previous proposition implies Theorem 3.2, which we aimed to prove. Let
us also note that (10) could be strengthened, for the isomorphism involved is indeed the
identity, so that we have Con(B)=Con(〈B,∧,∨〉)=Con(〈B,⊗,⊕〉). An interesting conse-
quence of (10) is that any property that only depends on the lattice of congruences trans-
fers straightforwardly from interlaced pre-bilattices to lattices and viceversa (this can be
regarded as a generalization of the results of [29]). For instance, an interlaced pre-bilattice
B=〈B,∧,∨,⊗,⊕〉 is subdirectly irreducible if and only if any (hence both) of its lattice
reducts 〈B,∧,∨〉 and 〈B,⊗,⊕〉 is a subdirectly irreducible lattice; it is directly indecompos-
able as a pre-bilattice if and only if its lattice reducts are, and so on. Note also that, using
the Fraser–Horn–Hu property [25] as in Proposition 3.8 (10), we get as a consequence that
Con(L1�L2)∼=Con(L1)×Con(L2).
The following theorem provides another generalization of some results that are known
for bounded interlaced pre-bilattices. Let ε(�,�) be an equation in the language of lattices
and, if {◦,•} are connectives of the language of pre-bilattices, denote by ε(◦,•) the result of
substituting ◦ and • respectively for � and �.
THEOREM 3.9
Let B be a pre-bilattice and let ε(�,�) be an equation in the language of lattices. Then the
following statements are equivalent:

1. B is an interlaced pre-bilattice such that B |={ε(∧,∨),ε(∨,∧),ε(⊗,⊕),ε(⊕,⊗)}.
2. B is an interlaced pre-bilattice such that B |={ε(∧,∨),ε(∨,∧)}.
3. B is an interlaced pre-bilattice such that B |={ε(⊗,⊕),ε(⊕,⊗)}.
4. There are two lattices L1 and L2 such that L1 |={ε(�,�),ε(�,�)}, L2 |={ε(�,�),ε(�,�)}
and B is isomorphic to L1�L2.

PROOF. By the duality it is enough to see that all conditions except the second one are
equivalent.
1⇒3 : This is trivial.
3⇒4 : By the seventh item of Theorem 3.11.
4⇒1 : This follows from the fact that L1�L2∼=L++1 ×L−+2 .

3.2 Representation theorem for interlaced bilattices
In this subsection, we state the corresponding representation theorem for interlaced bilat-
tices, i.e. for the case where the language has been expanded with a negation operation.
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This fact has important consequences, in the first place that the two lattice factors obtained
though the representation are isomorphic. Again, we point out that this result was already
known for bounded interlaced bilattices.
First of all, let us note that the presence of negation affects the Duality Principle, for
in this case we are only allowed to replace ≤t by an order belonging to {≤t,≥t}, and ≤k
by one in {≤k ,≥k}. It is no more allowed to switch ≤t and ≤k because negation has to be
anti-monotonic with respect to ≤t and monotonic with respect to ≤k .
DEFINITION 3.10
Let L=〈L,�,�〉 be a lattice with associated order ≤. Then the product bilattice L�L=〈L×
L,∧,∨,⊗,⊕,¬〉 is defined as in Definition 3.1 for the pre-bilattice reduct and the negation
is given by

¬〈a1,a2〉=〈a2,a1〉.

Negation is permuting the two components, hence it is obvious that this product con-
struction is not a special case of direct product. It is easily checked that the algebra L�L
is always an interlaced bilattice. Now the representation theorem we want to prove is the
following:

THEOREM 3.11 (Representation)
Let B be a pre-bilattice. The following statements are equivalent.

1. B is an interlaced bilattice.
2. There is a lattice L such that B is isomorphic to L�L.
The rest of this subsection is devoted to the proof of the above theorem. We will follow
the same strategy of Section 3.1, that is, we shall consider the congruences ∼1 and ∼2 of
the pre-bilattice reduct (but note that ∼1 and ∼2 are not compatible with the negation
operator).

LEMMA 3.12
Let B be an interlaced bilattice. Then, for every a,b∈B it holds that
1. a∼1 b iff ¬a∼2¬b.
2. a∼2 b iff ¬a∼1¬b.
PROOF. This follows from Proposition 3.6 together with De Morgan laws.

PROPOSITION 3.13
Let B=〈B,∧,∨,⊗,⊕,¬〉 be an interlaced bilattice. Then:
1. 〈B,⊗,⊕〉/∼1∼= 〈B,⊗,⊕〉/∼2.
2. B is isomorphic to the product bilattice (〈B,⊗,⊕〉/∼1)�(〈B,⊗,⊕〉/∼1).
3. Con(B)∼=Con(〈B,⊗,⊕〉/∼1).
4. Con(B)∼=Con(〈B,∧,∨,¬〉)∼=Con(〈B,⊗,⊕,¬〉).
PROOF. 1. By Lemma 3.12, it is clear that the map defined by the assignment [a]∼1 �−→[¬a]∼2
is an isomorphism.
2. By Proposition 3.8, we know that the map a �−→〈[a]∼1 ,[a]∼2〉 is an isomorphism
between 〈B,∧,∨,⊗,⊕〉 and (〈B,⊗,⊕〉/∼1)�(〈B,⊗,⊕〉/∼2) (this last product is taken as
a pre-bilattice). Therefore, by the previous item we know that the map a �−→〈[a]∼1 ,[¬a]∼1〉
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is an isomorphism between 〈B,∧,∨,⊗,⊕〉 and (〈B,⊗,⊕〉/∼1)�(〈B,⊗,⊕〉/∼1). Thus, it suf-
fices to prove that this last map is also a homomorphism of the negation operator; and this
is trivial.
3. By the previous item, it is enough to prove that Con(L�L)∼=Con(L). Let L be the

lattice 〈L,�,�〉. We know from the pre-bilattice case (see a paragraph below Proposi-
tion 3.8) that Con(〈L,�,�〉�〈L,�,�〉)∼=Con(〈L,�,�〉)×Con(〈L,�,�〉) under the assignment
θ �−→〈π1(θ),π2(θ)〉. Here, πi refers to ith-projection. If θ∈Con(〈L,�,�〉�〈L,�,�〉) is also a
congruence with respect to the negation operator then π1(θ)=π2(θ) because

〈a1,a2〉∈π1(θ) iff there is some b∈L such that 〈a1,b〉θ〈a2,b〉 iff
there is some b∈L such that 〈b,a1〉θ〈b,a2〉 iff 〈a1,a2〉∈π2(θ).

Therefore, the map θ �−→π1[θ] is an isomorphism between Con(〈L,�,�〉�〈L,�,�〉) and
Con(〈L,�,�〉).
4. This is an easy consequence of Proposition 3.8 (10).

The second item of the above proposition implies Theorem 3.11. Note also that (4) could
be strengthened, in the sense that we have

Con(B)=Con(〈B,∧,∨,¬〉)=Con(〈B,⊗,⊕,¬〉)=Con(〈B,∧,¬〉).
REMARK 3.14
In the case of interlaced bilattices, it would be possible to give an alternative and straightfor-
ward proof of the representation theorem that still does not rely on the boundedness assump-
tion. The role of negation in this simple proof is essential. The idea is to define a regular
element as one that is a fixed point of negation, and to take the set Reg(B)={a∈B :a=¬a}
of regular elements. It is easy to see that this set is closed under ⊗,⊕, hence is the universe
of a sublattice of the k-lattice of B. Now, for every a∈B we define

reg(a) :=(a∨(a⊗¬a))⊕¬(a∨(a⊗¬a)).

It is easy to check that for all a,b∈B,
• a∈Reg(B) iff a=reg(a) iff a=reg(b) for some b∈B,
• a∼1 reg(a),
• 〈a,b〉∈≤t ◦≤k iff 〈reg(a),reg(b)〉∈≤t ◦≤k iff reg(a)≤k reg(b),
• a∼1 b iff reg(a)=reg(b),
• reg(a⊗b)=reg(reg(a)⊗reg(b))=reg(a)⊗reg(b),
• reg(a⊕b)=reg(reg(a)⊕reg(b))=reg(a)⊕reg(b).
To prove the second of these properties, it is convenient to use the fact that

reg(a)∼1 a∨(a⊗¬a)∨¬(a∨(a⊗¬a))=a∨(a⊗¬a)∨(¬a∧(a⊗¬a))=
a∨(a⊗¬a)∼1 a⊕(a⊗¬a)=a.

And now from these facts it follows that the map reg: 〈B,⊗,⊕〉−→〈Reg(B),⊗,⊕〉 is an
epimorphism with kernel ∼1. So 〈B,⊗,⊕〉/∼1 is isomorphic to 〈Reg(B),⊗,⊕〉. This suggests
(cf. Proposition 3.13) that, as a different strategy to prove the representation theorem, we
could have directly showed that B∼=〈Reg(B),⊗,⊕〉�〈Reg(B),⊗,⊕〉
To close this subsection, we state an analogue of Theorem 3.9 for bilattices.
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THEOREM 3.15
Let B be a bilattice and let ε(�,�) be an equation in the language of lattices. The following
statements are equivalent.

1. B is an interlaced pre-bilattice such that B |={ε(∧,∨),ε(∨,∧),ε(⊗,⊕),ε(⊕,⊗)}.
2. B is an interlaced pre-bilattice such that B |={ε(∧,∨),ε(∨,∧)}.
3. B is an interlaced pre-bilattice such that B |={ε(⊗,⊕),ε(⊕,⊗)}.
4. There are two lattices L1 and L2 such that L1 |={ε(�,�),ε(�,�)}, L2 |={ε(�,�),ε(�,�)}
and B is isomorphic to L1�L2.

PROOF. Similar to the proof of Theorem 3.9, except that now we use Proposition 3.13.

3.3 The bifilter operator
The bifilter closure system has not been extensively studied in the literature, not even in
the bounded case.11 In this section, we fill in this gap and establish some connections with
what was done in Section 3.1.
We remind the reader that bifilters of B are non-empty sets F⊆B such that F is a lattice

filter both in ≤t and in ≤k . Since the family {∅}∪{F⊆B :F is a bifilter of B} is closed under
arbitrary intersections,12 we can associate a closure operator FF with the previous closure
system. It holds that FF(∅)=∅ and that if X �=∅ then FF(X) is13 exactly the smallest
bifilter expanding X . As usual, we write FF(a) as an abbreviation for FF({a}).
REMARK 3.16
Besides the bifilter closure operator one could consider the operators II (ideal of both
orders, also called biideal), FI (filter of the t-order and ideal of the k-order) and IF (ideal
of the t-order and filter of the k-order). But this is not necessary, because by Duality all
these closure operators can be reduced to the bifilter operator as follows:

• II on a pre-bilattice B coincides with FF over 〈B,∨,∧,⊕,⊗〉
• FI on a pre-bilattice B coincides with FF over 〈B,∧,∨,⊕,⊗〉
• IF on a pre-bilattice B coincides with FF over 〈B,∨,∧,⊗,⊕〉.
LEMMA 3.17
Let B be an interlaced (pre-)bilattice and let X be a subset of B. Then:

FF(X)={a∈B :∃ a1,...,an ∈X s.t. 〈a1∧ ...∧an,a〉∈≤t ◦≤k for some n>0}
={a∈B :∃ a1,...,an ∈X s.t. 〈a1⊗ ...⊗an,a〉∈≤t ◦≤k for some n>0}.

PROOF. If X is empty it is trivial, so suppose it is not and let

F={a∈B :∃ a1,...,an ∈X s.t. 〈a1∧ ...∧an,a〉∈≤t ◦≤k for some n>0}.
11The only work we are aware of is [27].
12If B is bounded, then it is not necessary to include the empty set in the previous family, but in order to be as

general as possible we need to include it.
13This is a consequence of the fact that if X �=∅ then ∅ �=⋂{F⊆B :F is a bifilter of B such that X⊆F}. This

claim can be easily checked noting that if a∈X , then the set {x ∈B :a≤k a∧x}, which we will consider considered
below in greater detail, is a subset of

⋂{F⊆B :F is a bifilter of B such that X⊆F}.
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Note that, using Proposition 3.4 (1) and Corollary 3.5, it is not difficult to prove that F is
also equal to

{a∈B :∃ a1,...,an ∈X s.t. 〈a1⊗ ...⊗an,a〉∈≤t ◦≤k for some n>0}. (3.1)

In fact, if 〈a1∧ ...∧an,a〉∈≤t ◦≤k , then 〈a1∧ ...∧an,a〉∈≤k ◦≤t . By the interlacing conditions
a1⊗ ...⊗an≤k a1∧ ...∧an , so 〈a1⊗ ...⊗an,a〉∈≤k ◦≤t , which is equivalent to 〈a1⊗ ...⊗an,a〉∈
≤t ◦≤k . By symmetry, we have that 〈a1⊗ ...⊗an,a〉∈≤t ◦≤k implies 〈a1∧ ...∧an,a〉∈≤t ◦≤k ,
so the two conditions are equivalent. Now, to see that F⊆FF(X), assume a∈F . This
means that there are a1,...,an ∈X and b∈B such that a1∧ ...∧an≤t b≤k a. Since FF(X)
is closed under ∧, we have a1∧ ...∧an ∈FF(X), and since it is upward closed w.r.t. both
lattice orderings, we have b,a∈FF(X) as well. Clearly X⊆F . Hence, in order to prove that
FF(X)⊆F , it is sufficient to check that F is a bifilter. That F is closed under ∧ follows
immediately from the interlacing conditions; to show that it is closed under ⊗ we can use
what we have proved in (3.1) above. Finally, that F is upward closed w.r.t. both orders is
also an immediate consequence of Corollary 3.5.

Thus, by the first item of Proposition 3.4 it is straightforward to prove that for every set
X∪{a,b}⊆B,
• FF(a)={x ∈B :a≤k a∧x}={x ∈B :a≤t a⊗x}={x ∈B :a∨x≤k x}={x ∈B :a⊕x≤t x},
• a∼1 b iff FF(a)=FF(b),
• FF(a∨b)=FF(a)∩FF(b)=FF(a⊕b),
• FF(a∧b)=FF(a)∨FF(b)=FF(a⊗b),
• FF(X)={x ∈B :a1∧ ...∧an≤k a1∧ ...∧an∧x for some a1,...,an ∈X }=
{x ∈B :a1⊗ ...⊗an≤t a1⊗ ...⊗an⊗x for some a1,...,an ∈X }=
{x ∈B :(a1∧ ...∧an)∨x≤k x for some a1,...,an ∈X }=
{x ∈B :(a1⊗ ...⊗an)⊕x≤t x for some a1,...,an ∈X }.

In particular, we have seen that the relation ∼1 defined in Section 3.1 is the one induced by
the principal bifilters. Using the other three items of Proposition 3.4, we may obtain similar
characterizations of IF , FI and II. Observe that for every a,b∈B,

a∼1 b iff FF(a)=FF(b) iff II(a)=II(b),

a∼2 b iff FI(a)=FI(b) iff IF(a)=IF(b).

It is also worth pointing out that if B is a bilattice (so there is a negation operation),
then FF(a)={x ∈B :reg(a)≤k reg(x)}. Moreover,14 we have IF(a)={x ∈B :¬x ∈FF(¬a)},
FI(a)={x ∈B :¬a∈FF(¬x)} and II(a)={x ∈B :a∈FF(x)}.
We end the section by studying the relationship between the bifilters of L1�L2 and the
lattice filters of L1 and L2.

PROPOSITION 3.18
Let L1�L2 be an interlaced (pre-)bilattice, where L1 and L2 are lattices. If F is a non-empty
subset of L1×L2, then
1. F is a bifilter of L1�L2 if and only if F=F×L2 for some lattice filter F of L1.
14Note that in the characterization of II(a) negation does not play any role (i.e. it also holds in pre-bilattices);

it is written here for the sake of completeness.
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2. F is a prime bifilter of L1�L2 if and only if F=F×L2 for some prime filter F of
L1.

PROOF. 1. The leftwards implication is trivial. For the other direction, let us assume that
F is a bifilter of L1�L2. Since π1[F ] is obviously a lattice filter, it suffices to prove that
F=π1[F ]×L2. The only non-trivial inclusion to justify is that π1[F ]×L2⊆F . Hence, let us
consider a pair 〈a,b〉∈π1[F ]×L2. Since a∈π1[F ] we know that there is some c∈L2 such that
〈a,c〉∈F . Now, using that

〈a,c〉≤t 〈a,b�2c〉≤k 〈a,b〉
together with the closure properties of a bifilter we get that 〈a,b〉∈F .
2. Again the leftwards direction is trivial, and hence we consider a prime bifilter F of
L1�L2 in order to prove the converse direction. By the previous item in this result we know
that F=π1[F ]×L2. Thus, it suffices to prove that π1[F ] is a prime lattice. Let us consider
a pair of elements a,b∈L1 such that a�1b∈π1[F ]. Then for all c∈L2, it holds that 〈a,c〉∨
〈b,c〉=〈a�1b,c〉∈π1[F ]×L2=F . Using that L2 is non-empty we get that 〈a,c〉∨〈b,c〉∈F
for some c∈L2. Since F is prime, this implies that either 〈a,c〉∈F or 〈b,c〉∈F . Therefore,
we have that either a∈π1[F ] or b∈π1[F ].
An interesting consequence of the previous result is that the lattice of bifilters of an
interlaced pre-bilattice L1�L2 is isomorphic to the lattice of filters of the first factor lattice
L1 (note that the second factor L2 does not play any role). So, for instance, if L1 is distributive
(hence the lattice of its filters is distributive), then the lattice of bifilters of L1�L2 is also
distributive. This result applies, in particular, to the class of distributive (pre-)bilattces that
we study in the next section.

3.4 The variety of distributive bilattices
It is known that the variety of bounded distributive bilattices is generated by FOUR. This
was proved using the representation theorem for bounded bilattices together with the fact
that the two-element lattice 2 generates the variety of bounded distributive lattices.
Having extended the representation theorem to the unbounded case, we can now easily
obtain the corresponding result for unbounded bilattices.

THEOREM 3.19
• The variety DPreBiLat has two subdirectly irreducible algebras, i.e. 2++ and 2−+, the
two-element pre-bilattices whose direct product is the pre-bilattice reduct of FOUR.
• The variety DPreBiLat is generated by its two-element members.
• The variety DBiLat has only one subdirectly irreducible algebra, i.e. FOUR.
• The variety DBiLat is generated by FOUR.

The previous results follow easily from Theorem 3.15, since distributive bilattices are, up
to isomorphism, the product bilattices L�L where L is a distributive lattice. Recall also
that Con(L�L)∼=Con(L). Hence, using the fact that the two-element lattice is the only sub-
directly irreducible distributive lattice, we immediately obtain the following consequences.

COROLLARY 3.20
FOUR is the only subdirectly irreducible distributive bilattice.
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COROLLARY 3.21
The variety DBiLat is generated by FOUR.
In the remaining part of the section, we shall prove some results on distributive pre-
bilattices that can be regarded as analogues of well-known properties of distributive lattices.

PROPOSITION 3.22
Let B be a distributive (pre-)bilattice. Then, for every set X∪{a,b}⊆B, it holds that

FF(X ,a∨b)=FF(X ,a)∩FF(X ,b)=FF(X ,a⊕b).

PROOF. By duality it is enough to prove that FF(X ,a∨b)=FF(X ,a)∩FF(X ,b). The
inclusion FF(X ,a∨b)⊆FF(X ,a)∩FF(X ,b) is trivial, and next we prove the other inclu-
sion. To this purpose let us assume that c∈A is such that c∈FF(X ,a) and c∈FF(X ,b).
Hence, there are some a1,...,an ∈X such that c∈FF(a1∧ ...∧an∧a) and c∈FF(a1∧ ...∧
an∧b). Thus, 〈a1∧ ...∧an∧a,c〉∈≤t ◦≤k and 〈a1∧ ...∧an∧b,c〉∈≤t ◦≤k . Using that ≤t ◦≤k
is a quasi order compatible with the operations it follows that 〈a1∧ ...∧an∧(a∨b),c〉=〈(a1∧
...∧an∧a)∨(a1∧ ...∧an∧b),c∨c〉∈≤t ◦≤k . Therefore, c∈FF(a1∧ ...∧an∧(a∨b)); and so
c∈FF(X ,a∨b).
Using Proposition 3.18, we may prove a Prime Bifilter Theorem for distributive

(pre-)bilattices:

PROPOSITION 3.23
Let B=〈B,∧,∨,⊗,⊕〉 be a distributive pre-bilattice. Let F be a non-empty proper bifilter
and I a bi-ideal of B such that F∩I =∅. Then there exists a prime bifilter P of B such that
F⊆P and P∩I =∅.
PROOF. By the previous results, we may assume that B∼=L1�L2 for some distributive lattices
〈L1,�1,�2〉 and 〈L2,�2,�2〉. Moreover, we know that F=F1×L2 and I =I1×L2, where F1⊆L1
is a lattice filter and I1⊆L1 is a lattice ideal. Since L1 is distributive, by the Prime Filter
Theorem we know that there is a prime filter P1⊆L1 such that F1⊆P1 and P1∩I1=∅. We
claim that P=P1×L2 is the desired prime bifilter. Clearly F⊆P, and by the previous results
we know that P is a prime bifilter. Moreover, if there were 〈a,b〉∈P∩I , then we would have
a∈P1∩I1, against the hypothesis. Hence P∩I =∅ and we are done.
Using Proposition 3.23, it is easy to prove the following bifilter extension property:

PROPOSITION 3.24
Let B=〈B,∧,∨,⊗,⊕〉 be a distributive pre-bilattice. Let F be a non-empty proper bifilter.
Then there is a prime bifilter P ∈B such that F⊆P�B.
PROOF. Assume F ∈B is a proper bifilter, i.e there is a∈B s.t. a /∈F . Let I =II(a). Note that
F∩I =∅. Indeed, if there were some b∈F∩I , then by the former condition we would have
FF(b)⊆F , and by the latter we would have a⊕b≤t a. Since b≤k a⊕b≤t a, this implies that
a∈FF(b)⊆F , against the assumption. Hence F∩I =∅. Now we can apply Proposition 3.23
and the result easily follows.

It is known that for lattices the Prime Filter Theorem is equivalent to distributivity.
Hence, using Proposition 3.23, it is possible to prove that an interlaced pre-bilattice L1�L2
has the prime bifilter property if and only if L1 is a distributive lattice. In fact, recalling
Proposition 3.18, it is easy to see that if L1�L2 has the prime bifilter property, then L1
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has the prime filter property, hence is distributive; the converse is also easy. However, it is
not true that if a pre-bilattice has the prime bifilter property then it is distributive: for a
counterexample we just need to consider any pre-bilattice L1�L2 where L1 is a distribuitve
lattice while L2 is not distributive. Note also that it is not true that given a pre-bilattice
B and a,b∈B, if a �=b then there is a bifilter F such that a∈F and b /∈F . For instance, in
a bounded pre-bilattice we have that �∈F iff t∈F for every bifilter F . This is so because
t≤k� and �≤t t, so t∈F implies �∈F and conversely. However, it is possible to prove the
following:

PROPOSITION 3.25
Let B=〈B,∧,∨,⊗,⊕〉 be a distributive pre-bilattice and a,b∈B s.t. a �=b. Then either there
is a prime bifilter F⊂B such that a∈F and b /∈F or there is a prime t-ideal and k-filter
I ⊂B such that a∈I and b /∈I .
PROOF. From the preceding results, we know that if FF(a)=FF(b) and II(a)=II(b),
then a=b. By contraposition, we have that a �=b implies that either FF(a) �=FF(b) or
II(a) �=II(b). Assume the first. By the Prime Bifilter Theorem, we know that FF(a) and
FF(b) are intersections of a family of prime bifilters, so there must be some prime bifilter
G in the family that is not in the other. So we have, for instance, a∈G but b /∈G. Assuming
the second, by the same reasoning we may conclude that there is a prime t-ideal and k-filter
H such that a∈H but b /∈H .
Using the previous result, it is easy to obtain a representation theorem for distribu-
tive bilattices analogous to the well-known one for distributive lattices. Let us denote by
PrFF(B) the family of prime bifilters of a (pre-)bilattice B and by PrIF(B) the family of
prime t-ideal and k-filters of B. Then we have the following:

COROLLARY 3.26
Every distributive (pre-)bilattice B is isomorphic to a sub(pre-)bilattice of the following
(pre-)bilattice of sets:

〈P(PrFF(B)),∩,∪〉�〈P(PrIF(B)),∩,∪〉

through the map σ defined, for all a∈B, as σ(a)=〈σ+(a),σ−(a)〉, where

σ+(a)={F⊆B :F is a prime bifilter and a∈F};
σ−(a)={I ⊆B :I is a prime t-ideal and k-filter and a∈I }.

If B has a negation, then the map σ− may also be defined as

σ−(a)={F⊆B :F is a prime bifilter and ¬a∈F}.

4 AAL Study of LB
In this section, we study the logic of logical bilattices from the point of view of AAL. We will
characterize the classes AlgLB and Alg∗LB and compare them with the class of algebraic
reducts of logical bilattices, which we denote by LoBiLat. Let us begin by classifying our
logic according to the criteria of AAL.
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PROPOSITION 4.1
The logic �LB is non-protoalgebraic and non-self-extensional.

PROOF. Consider the bilattice NINE (Figure 1). The only proper and non-empty LB–filters
on NINE are F1={e,�,t}⊆{b,c,d,e,�,t}=F2. It is easy to check that 〈t,e〉∈
〈NINE,F1〉
but 〈t,e〉 /∈
〈NINE,F2〉. That is, the Leibniz operator is not monotone on LB–filters. As
shown in [9], this implies that the logic �LB is not protoalgebraic. To be self-extensional
means that the interderivability relation =||=LB is a congruence of the formula algebra Fm.
Now for any p,q∈Fm, we have p⊕q=||=LB p∨q, but we can easily check that do not have
¬(p⊕q)=||=LB¬(p∨q). For instance in FOUR we have ¬(t⊕�)=�∈{t,�} but ¬(t∨�)=
f /∈{t,�}.

4.1 The algebraic counterpart of LB
The fact that LB is not self-extensional constitutes one of the main difficulties for an AAL
approach to LB. As we have seen, this is due to the negation operator, and it is possible to
see that this exception to self-extensionality is essentially the only one. We need the following
lemmas.

LEMMA 4.2
Let ϕ,ψ∈Fm be two formulas. The following statements are equivalent:
1. FOUR�ϕ∧(ϕ⊗ψ)≈ϕ,
2. ϕ�H ψ.
PROOF. 1⇒2. Let h :Fm→FOUR be a homomorphism. If h(ϕ)= t, then t⊗h(ψ)= t, i.e.
h(ψ)≥k t, therefore h(ψ)∈{�,t}. If h(ϕ)=�, then �∧h(ψ)=�, i.e. h(ψ)≥t�, hence h(ψ)∈
{�,t}.
2⇒1. Let h :Fm→FOUR be a homomorphism and assume that ϕ�H ψ.
If h(ϕ)= t, then h(ψ)∈{�,t}. So we must have h(ϕ)∧(h(ϕ)⊗h(ψ))= t⊗h(ψ)= t, i.e.

h(ψ)≥k t and this is obvious.
If h(ϕ)=�, then h(ψ)∈{�,t}. So we must have h(ϕ)∧(h(ϕ)⊗h(ψ))=�∧h(ψ)=�, i.e.

h(ψ)≥t� which is again obvious.
If h(ϕ)=⊥, then h(ϕ)∧(h(ϕ)⊗h(ψ))=⊥∧⊥=⊥=h(ϕ). Finally, the case where h(ϕ)= f

is immediate.

As an immediate consequence of the preceding result, we have the following:

LEMMA 4.3
Let ϕ,ψ∈Fm be two formulas. The following statements are equivalent:
1. FOUR�ϕ≈ψ,
2. ϕ��H ψ and ¬ϕ��H ¬ψ.
PROOF. The only non-trivial implication is 2⇒1. By Lemma 4.2, we have that in FOUR
the following equations hold:

(1) ϕ∧(ϕ⊗ψ)≈ϕ,
(2) ψ∧(ϕ⊗ψ)≈ψ,
(3) ¬ψ∧(¬ϕ⊗¬ψ)≈¬ψ,
(4) ¬ϕ∧(¬ϕ⊗¬ψ)≈¬ϕ.
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Negating both sides of (3) and using De Morgan laws, we obtain ¬¬ψ≈ψ≈¬(¬ψ∧(¬ϕ⊗
¬ψ))≈¬¬ψ∨¬(¬ϕ⊗¬ψ)≈ψ∨(¬¬ϕ⊗¬¬ψ)≈ψ∨(ϕ⊗ψ). From this and (2) it follows ψ≈
ϕ⊗ψ. A similar reasoning shows that (1) and (4) imply ϕ≈ϕ⊗ψ. Hence ϕ≈ψ.

The preceding result enables us to characterize the Tarski congruence associated with LB
as the one defined by the equations valid in FOUR:

THEOREM 4.4
The Tarski congruence associated with LB is 
̃(LB)={〈ϕ,ψ〉 :FOUR�ϕ≈ψ}.

PROOF. Obviously, the relation {〈ϕ,ψ〉 :FOUR�ϕ≈ψ} is a congruence, and by Lemma 4.3
is is also clear that it is the maximal congruence below the Frege relation.

Recalling [22, Propositions 1.23 and 2.26], we can conclude that both Alg∗LB and AlgLB
generate the same variety as FOUR (i.e. the variety DBiLat of distributive bilattices). More-
over, we have the following:

THEOREM 4.5
AlgLB is the variety generated by FOUR, i.e. AlgLB=DBiLat.

PROOF. Clearly FOUR∈Alg∗LB⊆AlgLB. By [22, Theorem 2.23] we also have
FOUR∈AlgLB=Ps(Alg∗LB)⊆V (FOUR). Recall that V (FOUR)=DBiLat is congruence-
distributive. Hence we may apply Jónsson’s Lemma [11, Corollary IV.6.10] to conclude that
the subdirectly irreducible members of V (FOUR) belong to HS(FOUR), and clearly the
only algebras in HS(FOUR) are the trivial one and FOUR itself. Then we may conclude
that V (FOUR)=Ps(FOUR)⊆Ps(Alg∗LB). Hence Ps(Alg∗LB)=AlgLB=V (FOUR).

As an immediate corollary, we have that LoBiLat�AlgLB. This is true because
〈DEFAULT ,{�,t}〉 is a logical bilattice, but DEFAULT /∈AlgLB since this bilattice is not
distributive. We can also verify that NINE ∈AlgLB since it is distributive. Taking into
account the previous results, this last claim follows from the fact that NINE∼=3�3, where
3 denotes the three-element lattice, which is a distributive lattice.
In order to describe the class of generalized models of LB (i.e. generalized matrices that
are models of LB; see [37]), we shall use the following characterization of LB-filters:

PROPOSITION 4.6
Let B be a distributive bilattice and F⊆B. Then F is an LB-filter if and only if F is a
bifilter of B or F=∅.

PROOF. For F empty the proof is trivial, so assume it is not. By rules (R3), (R4), (R3')
and (R4') of our Hilbert calculus �H , it is obvious that any LB-filter on B is a bifilter. It is
also easy to see that, in a distributive bilattice, any bifilter is closed w.r.t. all rules of our
Hilbert calculus. To see that it is closed under (R18) and (R19), recall that any interlaced
(hence, any distributive) bilattice satisfies that a∨b≤k a⊕b and a⊕b≤t a∨b for all a,b∈B.
Therefore, since any bifilter F is upward closed w.r.t. both lattice orders, we have that
a∨b∈F iff a⊕b∈F .
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Combining the result of the previous proposition with that of Theorem 4.5, we immediately
obtain the following:

COROLLARY 4.7
If a generalized matrix 〈A,C〉 is a reduced generalized model of LB, then A is a distributive
bilattice and any non-empty F ∈C is a bifilter.
One may wonder if the result of Corollary 4.7 could be strengthened, proving that if a
generalized matrix 〈A,C〉 is a reduced generalized model of LB, then A is a distributive
bilattice and C is the family of all bifilters of A (possibly including the empty set). This is
not the case, as we shall see later (Example 4.14).
Having individuated a class which, according to the general theory of [22], may be regarded

as the algebraic counterpart of the logic LB, we may wonder if this class could also be the
algebraic counterpart of some other logic. Thanks to the general results of [10], in some
cases one may be able to prove that a certain class of algebras cannot be the equivalent
algebraic semantics of any algebraizable logic (such a result has been obtained, for instance,
for the varieties of distributive bilattices and of De Morgan lattices: see [20, 24]). This,
however, is not the case with distributive bilattices, for it is possible to define a logic which
is algebraizable w.r.t. the class DBiLat. Consider the following:

EXAMPLE 4.8
Let Reg=〈Fm,�Reg〉 be the logic defined, for all �∪{ϕ}⊆Fm, as follows: ��Reg ϕ iff
τ(�)�DBiLat τ(ϕ), where τ is a translation from formulas into equations defined as τ(ϕ)={ϕ≈
¬ϕ} for all ϕ∈Fm. By definition, the least Reg-filter on any distributive bilattice coincides
with the set of regular elements (whence the name chosen for the logic). It also follows from
the definition that Reg satisfies one of the two conditions for being algebraizable w.r.t. the
variety DBiLat, hence it will be sufficient to show that it satisfies the other one as well, namely
the existence of a translation ρ from equations into formulas s.t. ϕ≈ψ=||=DBiLat τ(ρ(ϕ≈ψ)).
Defining ρ(ϕ≈ψ)={¬ϕ⊗ψ,(ϕ⊕¬ϕ)∧(ψ⊕¬ψ)}, the condition is satisfied. In fact, we have
to prove that

ϕ≈ψ=||=DBiLat {¬ϕ⊗ψ≈¬(¬ϕ⊗ψ),(ϕ⊕¬ϕ)∧(ψ⊕¬ψ)≈¬((ϕ⊕¬ϕ)∧(ψ⊕¬ψ))}.
One direction is immediate; for the other, note that ¬ϕ⊗ψ≈¬(¬ϕ⊗ψ) is equivalent to
¬ϕ⊗ψ≈ϕ⊗¬ψ and (ϕ⊕¬ϕ)∧(ψ⊕¬ψ)≈¬((ϕ⊕¬ϕ)∧(ψ⊕¬ψ)) is equivalent to ϕ⊕¬ϕ≈
ψ⊕¬ψ. Now let B∈DBiLat and a,b∈B such that ¬a⊗b=a⊗¬b and a⊕¬a≈b⊕¬b. Using
the absorption and the distributive laws, we obtain a=a⊗(a⊕¬a)=a⊗(b⊕¬b)=(a⊗b)⊕
(a⊗¬b)=(a⊗b)⊕(¬a⊗b)=b⊗(a⊕¬a)=b⊗(b⊕¬b)=b.

4.2 Reduced models of LB
In order to characterize the class of matrix models of LB, we will now turn to the study of
the Leibniz congruence of LB.
PROPOSITION 4.9
Let 〈A,F〉 be a model the logic LB. Then, for all a,b∈A, the following are equivalent:
1. 〈a,b〉∈�A(F),
2. {c∈A :a∨c∈F}={c∈A :b∨c∈F} and {c∈A :¬a∨c∈F}={c∈A :¬b∨c∈F}.
3. {c∈A :a⊕c∈F}={c∈A :b⊕c∈F} and {c∈A :¬a⊕c∈F}={c∈A :¬b⊕c∈F}.
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PROOF. 1⇒2. It is easy to see that any congruence θ compatible with F must satisfy 2. For
instance, if 〈a,b〉∈θ, then, for any c∈A, we have 〈a∨c,b∨c〉∈θ as well. Hence we have that
a∨c∈F if and only if b∨c∈F . A similar argument shows also that 1 implies 3.
2⇒1. Let θ be the relation defined by the conditions of 2, that is, for all a,b∈A, we

set 〈a,b〉∈θ if and only if {c∈A :a∨c∈F}={c∈A :b∨c∈F} and {c∈A :¬a∨c∈F}={c∈A :
¬b∨c∈F}. Clearly, to prove that θ⊆�A(F), it is sufficient to check that θ is a congruence
compatible with F . Taking into account the fact that F is an LB-filter, it is not difficult
to see that θ is a congruence. We need to prove, for instance, that 〈a1,b1〉,〈a2,b2〉∈θ implies
〈a1∧a2,b1∧b2〉∈θ. For this, assume (a1∧a2)∨c∈F for some c∈A. This implies

c∨(a1∧a2) ∈F by (R5)
(c∨a1)∧(c∨a2) ∈F by (R8)
(c∨a1),(c∨a2) ∈F by (R1) and (R2)
(a1∨c),(a2∨c) ∈F by (R5)
(b1∨c),(b2∨c) ∈F by definition of θ
(c∨b1),(c∨b2) ∈F by (R5)
(c∨b1)∧(c∨b2) ∈F by (R3)

c∨(b1∧b2) ∈F by (R9)
(b1∧b2)∨c ∈F by (R5).

Hence the first condition of 2 is satisfied. A similar argument allows to prove the second one
as well, so that we may conclude that 〈a1∧a2,b1∧b2〉∈θ. To see that θ is compatible with
F , assume 〈a,b〉∈θ and a∈F . We have:

a∨b ∈F by (R4)
b∨b ∈F by definition of θ
b ∈F by (R6).

2⇔3. Almost immediate, since by (R18) and (R19) we have that a∨b∈F iff a⊕b∈F for
any a,b∈A and any LB-filter F .

As a consequence of Proposition 4.9, we obtain the following characterization of the
reduced matrix models of LB:
THEOREM 4.10
Let A be a non-trivial algebra. The following conditions are equivalent:

1. 〈A,F〉 is a reduced matrix for LB,
2. A∈DBiLat and F is a bifilter s.t. for all a,b∈A, if a<t b, then there is c∈A s.t. either
a∨c /∈F and b∨c∈F , or ¬a∨c∈F and ¬b∨c /∈F ,

3. A∈DBiLat and F is a bifilter s.t. for all a,b∈A, if a<k b, then there is c∈A s.t. either
a∨c /∈F and b∨c∈F , or ¬a∨c /∈F and ¬b∨c∈F .

PROOF. 1⇒2. Assume 〈A,F〉 is a reduced matrix for LB. That A∈DBiLat follows from The-
orem 4.5, while Proposition 4.6 implies that F is a bifilter (the assumption that A is not
trivial guarantees that F �=∅). Notice that a<t b implies that b∈FF(a) and ¬a∈FF(¬b);
obviously it also implies that 〈a,b〉 /∈�A(F). By Proposition 4.9, this means that either
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{c∈A :a∨c∈F} �={c∈A :b∨c∈F} or {c∈A :¬a∨c∈F} �={c∈A :¬b∨c∈F}. If the first is
the case, then, for some c∈A, either a∨c /∈F and b∨c∈F , or a∨c∈F and b∨c /∈F .
The latter hypothesis is impossible, for b∈FF(a) implies FF(b∨c)=FF(b)∩FF(c)⊆
FF(a)∩FF(c)=FF(a∨c). So if a∨c∈F , then b∨c∈F for any bifilter F . Hence the former
hypothesis must be true. A similar argument can be applied to the case of {c∈A :¬a∨c∈
F} �={c∈A :¬b∨c∈F}. Recalling that a<k b implies b∈FF(a) and ¬b∈FF(¬a), it is easy
to apply the same reasoning in order to show also that 1⇒3.
2⇒1. Assume that A∈DBiLat and F is a bifilter satisfying (ii). Assume also a �=b. Then

a∧b<t a∨b, hence we may apply the assumption and Proposition 4.9 to conclude that
〈a∧b,a∨b〉 /∈�A(F). Since we are in a lattice, this implies 〈a,b〉 /∈�A(F). Hence �A(F)=IdA.
A similar reasoning shows that 3⇒1.
Notice that, using the characterization given by item 3 instead of 2 of Proposition 4.9, we
could equivalently formulate conditions 2 and 3 of Theorem 4.10 using ⊕ instead of ∨, thus
obtaining the following:

COROLLARY 4.11
Let A be a non-trivial algebra. The following conditions are equivalent:

1. 〈A,F〉 is a reduced matrix for LB,
2. A∈DBiLat and F is a bifilter s.t. for all a,b∈A, if a<t b, then there is c∈A s.t. either
a⊕c /∈F and b⊕c∈F , or ¬a⊕c∈F and ¬b⊕c /∈F ,

3. A∈DBiLat and F is a bifilter s.t. for all a,b∈A, if a<k b, then there is c∈A s.t. either
a⊕c /∈F and b⊕c∈F , or ¬a⊕c /∈F and ¬b⊕c∈F .
We know that all algebras in Alg∗LB are distributive bilattices, hence isomorphic to a
product bilattice of the form L�L. The following lemma enables us to determine which
requirements L must satisfy in order to have L�L∈Alg∗LB.

LEMMA 4.12
Let L�L=〈L×L,∧,∨,⊗,⊕,¬〉 be an interlaced bilattice, where L=〈L,�,�〉 is a lattice. Let
F⊆L be a lattice filter of L and θ∈Con(L�L). Then θ is compatible with F×L if and only
if π(θ) is compatible with F , where

π(θ)={〈a,b〉∈L×L :∃c∈L s.t. 〈〈a,c〉,〈b,c〉〉∈θ}.

As a consequence, we have that �L�L(F×L)=IdL×L if and only if �L(F)=IdL.
PROOF. Note first that, by Proposition 3.18, we know that F×L is a bifilter of L�L. Now,
for the first claim, suppose θ∈Con(L�L) is compatible with F×L, a∈F and 〈a,b〉∈π(θ).
By the definition of π(θ), we have that there is c∈L such that 〈〈a,c〉,〈b,c〉〉∈θ, so by the
compatibility of θ we obtain 〈b,c〉∈F×L. Hence b∈F .
Conversely, suppose π(θ) is compatible with F⊆L, 〈a1,a2〉∈F×L and 〈〈a1,a2〉, 〈b1,b2〉〉∈θ.
Note that 〈〈a1,a2�b2〉,〈b1,a2�b2〉〉∈θ, because θ is a congruence and

〈a1,a2〉⊗〈a1�b1,a2�b2〉=〈a1�(a1�b1),a2�(a2�b2)〉=〈a1,a2�b2〉.
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Similarly, we obtain 〈b1,b2〉⊗〈a1�b1,a2�b2〉=〈b1,a2�b2〉. By definition, this means that
〈a1,b1〉∈π(θ). So, by the compatibility of π(θ), we obtain b1∈F , i.e. 〈b1,b2〉∈F×L.
As to the second claim, just note that by Proposition 3.13 we have θ=IdL×L if and only
if π(θ)=IdL.

Now we can easily obtain the following characterization:

THEOREM 4.13
Let A be a non-trivial algebra. Then a matrix 〈A,F〉 is a reduced model of LB if and only
if A∼=L�L for some lattice L such that the following conditions are satisfied:

1. L=〈L,�,�〉 is a distributive lattice with top element 1 satisfying the property that, for
all a,b∈L such that a<b, there is c∈L such that a�c �=1 and b�c=1,

2. F∼={1}×L.

PROOF. We identify A with its isomorphic image L�L, where L is a distributive lattice. By
assumption L�L is non-trivial, hence F �=∅ . Moreover, F⊆L×L is an LB–filter iff F is
a bifilter of L�L, so F=F×L for some lattice filter F of L. By Lemma 4.12, the matrix
〈L�L,F×L〉 is reduced if and only if the matrix 〈L,F〉 is reduced. As shown in [21], this
last condition is equivalent to our first item plus F={1}.

Theorem 4.13 tells us that any B∈Alg∗LB must have a top element w.r.t. the knowledge
ordering, i.e. �, corresponding to 〈1,1〉∈L×L, where 1 is the top element of the lattice
L such that B∼=L�L. This also implies that B has a minimal non-empty bifilter, namely
FF(�)={a∈B :a≥t�}, corresponding to {1}×L. Another interesting consequence of the
theorem is that, as we have anticipated, the result of Corollary 4.7 concerning the generalized
models of LB cannot be strengthened. That is, it is not true that if a generalized matrix
〈A,C〉 is a reduced generalized model of LB, then A is a distributive bilattice and C is the
family of all bifilters of A. Consider the following:

EXAMPLE 4.14
Let L be any lattice that satisfies property 1 of Theorem 4.13 (for instance the the four-
element non-linear distributive lattice), and let us denote its top element by 1. Then we know
that the matrix 〈L,{1}〉 is reduced. By Lemma 4.12, this implies that the matrix 〈L�L,{1}×
L〉 is a reduced model of LB. Hence, any generalized matrix 〈L�L,C〉 such that {1}×L∈C
will be reduced as well. So, if we take for example C={{1}×L,L×L}, then 〈L�L,C〉 is a
reduced generalized model of LB, and clearly there may be bifilters of L�L that are not
in C.

The class of lattices satisfying property 1 of Theorem 4.13 seems to have some interest
in itself and to deserve further study. Indeed, the literature has already considered algebras
satisfying a property in some sense dual to ours, i.e. lattices having a minimum element 0 and
satisfying that, for all a,b such that a>b, there is c such that a�c �=0 and b�c=0. This
property has been called disjunction property, and the corresponding lattices disjunctive
lattices [12, 36]. In the same spirit, we will here adopt the name dual disjunctive for the
lattices that satisfy property 1 of Theorem 4.13.
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As noted in [21], all Boolean lattices are dual-disjunctive lattices in our sense. In fact, this
result can be sharpened:

PROPOSITION 4.15
Let L=〈L,�,�〉 be a Boolean lattice whose minimum and maximum element are 0 and 1,
and let F⊆L be a filter of L. Then the sublattice of L with universe F is a dual-disjunctive
lattice.

PROOF. Let a,b∈F be such that a>b and let a ′ be the complement of a. Clearly a ′ �b∈F ,
and note that a ′ �b<1, because otherwise we would have a�(a ′ �b)=a>b=a�b=(a�a ′)�
(a�b)=a�(a ′ �b). Moreover, a�a ′ �b=1, but b�a ′ �b=a ′ �b<1, and this completes the
proof.

One may wonder if the converse of Proposition 4.15 is also true, i.e. if any dual disjunctive
lattice can be proved to be isomorphic to a filter of some Boolean lattice. This is not the
case, a counterexample15 being the following:

EXAMPLE 4.16
Let F be a non-principal filter (so, without bottom element) of a Boolean lattice L=〈L,�,�〉
whose maximum element is 1. Define the structure F∗=〈F∪{0},�,�,1〉, with universe F
augmented with a new element 0 /∈L, and whose lattice order is the one inherited from L,
except that we have 0<a for all a∈F . Clearly F∗ is a bounded distributive lattice, so if it
were the filter of some Boolean lattice, it would itself be a Boolean lattice. But it is not, since
for all a,b∈F we have a�b∈F , i.e. a�b>0. Therefore, no element in F has a complement.
On the other hand, it is easy to see that F∗ is dual disjunctive. Clearly, if 0<a<b the
condition is satisfied because a,b∈F . If a=0, then let c∈F such that 0=a<c<b (such an
element must exist, because F had no bottom element). If we denote by b′ the complement
of b in L, then we have b′ �c∈F and b�b′ �c=1, but 0�b′ �c=b′ �c<1. So F∗ is a dual
disjunctive lattice.

The results just stated allow us to gain some additional information on the class Alg∗LB.
First of all, we may check that Alg∗LB is closed under direct products but not under sub-
algebras (so it is not a quasivariety). The first claim follows from the fact that Alg∗LB is
definable by a first-order universal formula. So P(FOUR)⊆Alg∗LB, and by cardinality rea-
sons we may see that this inclusion is strict, because there are countable algebras in Alg∗LB:
one just needs to consider any bilattice B∼=L�L where L is a countable Boolean lattice. The
second claim can be proved by considering the nine-element distributive bilattice NINE . It
is easy to see that NINE is isomomorphic to a subalgebra of FOUR×FOUR, but on the
other hand, as we have observed, NINE∼=3�3. Since the three-element lattice 3 is not a
dual disjunctive lattice, we may conclude that NINE /∈Alg∗LB. This in turn implies that
Alg∗LB�AlgLB. Let us note again that it is significant that in the case of LB these two
classes do not coincide, as well as the fact that AlgLB, the class of distributive bilattices,
is the one that seems to be associated with this logic in a more natural way. This obser-
vation seems to be somehow confirmed by the algebraizability result contained in the next
subsection.

15It is worth pointing out that there is no finite counterexample. Indeed, it is straightforward to prove that
all finite dual disjunctive lattices L are indeed Boolean ones; the Boolean complement is given by the map a �−→
min{x ∈L :a�x=1}.
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4.3 Algebraizability of the Gentzen calculus GLB
As anticipated, since our logic is not protoalgebraic, hence not algebraizable, there is a
particular interest in studying the algebraic properties of sequent calculi associated with
LB. We end our study on this issue, stating the algebraizability of the Gentzen calculus GLB
introduced in Section 1.
THEOREM 4.17
The Gentzen calculus GLB is algebraizable w.r.t. the variety DBiLat of distributive bilattices,
with the following translations:

τ(���)=
{∧

�∧(
∧
�⊗

∨
�)≈

∧
�
}
,

ρ(ϕ≈ψ)={ϕ�ψ,¬ϕ�¬ψ,ψ�ϕ,¬ψ�¬ϕ}.
PROOF. Using the characterization of [33, Lemma 2.5], it is not difficult (although quite long,
so we leave it to the reader) to prove that the following conditions are satisfied:
1. ���∼||∼GLB ρτ(���), i.e.

���∼||∼GLB

{∧
�∧

(∧
�⊗

∨
�

)
�

∧
�,¬

(∧
�∧

(∧
�⊗

∨
�

))
�¬

∧
�,

∧
��

∧
�∧

(∧
�⊗

∨
�

)
,¬

∧
��¬

(∧
�∧

(∧
�⊗

∨
�

))}
.

2. ϕ≈ψ=||=DBiLat τρ(ϕ≈ψ), i.e.
ϕ≈ψ=||=DBiLat {ϕ∧(ϕ⊗ψ)≈ϕ,¬ϕ∧(¬ϕ⊗¬ψ)≈¬ϕ,

ψ∧(ϕ⊗ψ)≈ψ,¬ψ∧(¬ϕ⊗¬ψ)≈¬ψ}.
3. For any distributive bilattice B∈DBiLat, the set R={〈X ,Y 〉 :∧X≤t∧X⊗∨

Y } is
closed under the rules of our Gentzen calculus, where X ,Y ⊆B are finite and non-empty.
4. For all T ∈ThGLB, it holds that θT ∈ConDBiLat(Fm), where θT ={〈ϕ,ψ〉∈Fm×Fm :

ρ(〈ϕ,ψ〉)⊆T }.
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[37] R. Wójcicki. Matrix approach in the methodology of sentential calculi. Studia Logica,

32, 7–37, 1973.

Received 25 January 2010

 at U
N

IV
E

R
S

IT
A

T
 D

E
 B

A
R

C
E

LO
N

A
. B

iblioteca on M
arch 18, 2011

jigpal.oxfordjournals.org
D

ow
nloaded from

 

http://jigpal.oxfordjournals.org/

	Introduction and Preliminares
	Hilbert-style Presentation
	Algebraic Study of (Pre-)bilattices
	Representation theorem for interlaced pre-bilattices
	Representation theorem for interlaced bilattices
	The bifilter operator 
	The variety of distributive bilattices

	AAL Study of LB
	The algebraic counterpart of LB
	Reduced models of LB
	Algebraizability of the Gentzen calculus GLB


