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Abstract: Many recent AI systems take inspiration from biological episodic memory. Here, 
we ask how these ‘episodic-inspired’ AI systems might inform our understanding of 
biological episodic memory. We discuss work showing that these systems implement some 
key features of episodic memory whilst differing in important respects, and appear to 
enjoy behavioural advantages in the domains of strategic decision-making, fast learning, 
navigation, exploration and acting over temporal distance. We propose that these systems 
could be used to evaluate competing theories of episodic memory’s operations and 
function. However, further work is needed to validate them as models of episodic memory 
and isolate the contributions of their memory systems to their behaviour. More 
immediately, we propose that these systems have a role to play in directing episodic 
memory research by highlighting novel or neglected hypotheses as pursuit-worthy. In this 
vein, we propose that the evidence reviewed here highlights two pursuit-worthy 
hypotheses about episodic memory’s function: that it plays a role in planning that is 
independent of future-oriented simulation, and that it is adaptive in virtue of its 
contributions to fast learning in novel, sparse-reward environments.  
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1. Introduction 
Forty years on from the publication of Elements of Episodic Memory (Tulving, 1983), 
researchers are still working to understand the nature of episodic memory, its role in 
cognition, its evolutionary origins, and its distribution in the animal kingdom. Recently, 
episodic memory has also begun to play a role in the development of AI systems: many 
new AI systems include processes inspired by episodic memory. It has been proposed that 
such AI systems might shed light on the nature of episodic memory itself (Hassabis et al., 
2017). Here, we review ‘episodic-inspired’ work in AI with a view to evaluating whether, 
and in what ways, it could inform our understanding of episodic memory in biological 
systems. In focussing on episodic-inspired AI, our aim is to highlight how this emerging 
body of work in AI might add to the existing toolkit in episodic memory research, rather 
than to suggest that AI systems are in a privileged position relative to other computational 
models.1  
 
In Sect 2., we explore similarities between biological and artificial memory systems, 
focussing on the presence of constructive memory processes and the use of hippocampus-
inspired replay buffers in AI systems. We show that the term ‘episodic memory’ is used 
more liberally in AI than in other cognitive scientific domains, to characterise systems 
implementing some features of episodic memory whilst differing in significant respects. 
We propose that ‘event memory’ might be a more perspicuous label for the memory 
implemented in these systems. In Sect. 3, we consider the effects of event memory on 
behaviour, showing that event memory appears to contribute to strategic decision-
making, fast learning, navigation, exploration and acting over temporal distance in AI 
systems. However, we suggest that further research is needed to isolate the precise 
contribution of event memory to these achievements. In Sect. 4, we consider how the 
implementation of event memory in AI might contribute to episodic memory research. We 
suggest that, given more rigorous testing to establish their validity as models, AI systems 
with event memory could be used to test hypotheses about the operations and functions of 
episodic memory. More immediately, studying event memory in AI may suggest new 
directions for episodic memory research by highlighting novel or neglected hypotheses as 
pursuit-worthy. In this vein, we suggest that the evidence reviewed here points toward at 
least two pursuit-worthy hypotheses about episodic memory’s function: that episodic 
memory plays a role in planning that is unmediated by future-oriented simulation, and 
that episodic memory is adaptive in virtue of its contributions to fast learning in novel, 
sparse-reward environments.  

2. Biological and artificial memory 
In this section, we explore similarities and differences between biological episodic 
memory and episodic-inspired architectures in AI, considered at the algorithmic level 
(Marr, 1982). This level, which concerns the causal contributions of component processes 
to a system’s performance on a task, is an appropriate level of analysis for two reasons. 
First, much existing research in cognitive science has focussed on characterising memory 
processes at the algorithmic level, leaving us well placed to evaluate similarities here. 
Second, similarities and differences at the algorithmic level are more informative in this 

 
1 See Norman et al. (2012) for a review of other computational approaches. 
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context than those found at Marr’s other levels of analysis. Similarities at the 
computational level are somewhat trivial, as we often intentionally design algorithms to 
solve the same computational problems as humans. Conversely, we are unlikely to find 
meaningful similarities at the implementational level, as little emphasis has been put on 
mimicking biological systems at the level of individual neurons (but see (Camp et al., 
2020)). Two themes will structure our discussion in this section: the presence of 
constructive memory processes in AI systems, and the use of hippocampus-inspired replay 
buffers to consolidate information. 
 
2.1 Constructive episodic memory 
The idea that human episodic memory is constructive originates in the 1930s (Bartlett, 
1932), and has become increasingly prominent in both cognitive science (Schacter & 
Addis, 2007, 2020) and philosophy (Aronowitz, 2019; De Brigard, 2014; Michaelian, 
2016). On this view, the memory system encodes information selectively, information can 
be altered as it is ‘stored’, it can be flexibly recombined with other information and altered 
upon recall, and new information may be generated. This contrasts with a classical 
‘preservative’ view of memory in which a memory system is optimised to preserve 
information and memory is encoded and preserved as faithfully as possible, with the goal 
to minimise corruption.  
 
Early architectures took a more preservative approach to memory. For example, the SOAR 
architecture (Nuxoll & Laird, 2012) comprises multiple memory systems, including 
modules for procedural memory, working memory and an ‘episodic memory’. The agent 
can take virtual actions in the world specified as if-then rules in its procedural memory. 
Its working memory comprises its current state – including what it is currently ‘sensing’ 
(e.g., nearby objects) and potential actions (e.g., go north). Its ‘episodic memory’ stores 
past states copied from working memory, retrievable by cueing the memory store with a 
partial content. Here, there is no selective process operating on content to prioritise the 
encoding of certain content, there is no process to recombine content from different 
episodes, and there is no consolidation process which could potentially alter content. In 
short, it shares few constructive algorithmic features with human episodic memory.  
 
But perhaps surprisingly, other systems contain processes resembling constructive 
memory (Bhat et al., 2014; Blundell et al., 2016; Hung et al., 2019). Designing a system in 
this way reduces memory storage, making it more economical. This method was exploited 
when designing the humanoid robotic system iCub (Mohan et al., 2014; Vernon et al., 
2007), which can flexibly recombine information and produce novel solutions to 
problems, similarly to humans. In one experiment (Mohan et al., 2014), the robot was 
tasked with stacking the tallest tower using building blocks of various shapes, each of 
which had been encountered with only one other shape before. To solve the task 
optimally, the robot had to combine information from different past episodes into a novel 
representation of the solution in its ‘episodic construction system’, and the solution was 
forwarded to the action system. Interestingly, this resembles experimental paradigms 
elsewhere in cognitive science, in which human participants must imagine a novel 
scenario using content from disparate past remembered events, for example by taking the 
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place in one episode and combining it with a person from a different episode (Addis et al., 
2009). Several researchers propose that this ability plays an important role in our capacity 
for future-planning via the simulation of imagined future scenarios (Buckner & Carroll, 
2007; Schacter et al., 2012; Schacter & Addis, 2007; Suddendorf & Corballis, 2007; 
Tulving, 2005). 
 
The use of convolutional neural networks to fill in missing information in memory may 
also be considered a constructive retrieval process (Fayyaz et al., 2022; Rothfuss et al., 
2018). For example, the VQ-VEA network uses a Pixel Convolutional Neural Network 
(PixelCNN) which fills in missing pixels in photographs (Fayyaz et al., 2022). When a 
picture is fed to the network, the encoder compresses the image into an array of high-
dimensional vectors, and an index of these vectors is created. Upon recall, the missing 
information in the compressed representation is filled in by PixelCNN. This not only 
trades on reconstructive processes in recall, but also on Hippocampal Indexing Theory 
(Teyler & DiScenna, 1986; Teyler & Rudy, 2007). This algorithm has been tested on an 
episodic memory paradigm and compared to results from human participants. In the 
human case, participants virtually experienced an apartment with congruent or 
incongruent objects in rooms – for instance, a toaster in a kitchen (congruent) or in a 
bathroom (incongruent). Correctly recalling an incongruent detail indicates that episodic 
memory is used. A parallel experiment was used to evaluate the algorithm, in which it was 
presented with digits on congruent or incongruent backgrounds, having been trained only 
on congruent cases. Results showed that when the attention level of the algorithm was 
high, it correctly recalled incongruent details, which could indicate the presence of 
something like an episodic memory capacity.  
 
However, there are also differences between biological episodic memory and PixelCNN’s 
memory architecture. PixelCNN is a probabilistic autoregressive generative model, 
meaning that the way it fills in missing information is by continuing a sequence of 
numbers, filling these in from left to right. Humans, by contrast, are likely to use a 
Bayesian process in reconstructive recall (Blomkvist, 2022; De Brigard, 2014; Hemmer & 
Steyvers, 2009). It is possible that these differences in algorithm could have functional 
consequences for how the system operates as a whole and what behaviour is ultimately 
produced. This is an empirical question which remains to be investigated. But to 
foreshadow issues regarding modelling discussed in sect. 4, it suffices to say here that a 
model need not replicate all aspects of the modelled system, such as the exact 
mathematical algorithm executed, in order for it to be useful in generating hypotheses 
about that system. For now, we conclude that, although there is a high-level similarity 
between humans and PixelCNN in that both employ reconstructive processes, the exact 
ways in which reconstruction is achieved are different. 
 
2.2 Hippocampus-inspired replay buffers for consolidation 
AI researchers have also taken inspiration from the role of the hippocampus in 
consolidation. Consolidation is thought to be underpinned by hippocampal replay, the 
reactivation of neural patterns during which spiking activity induces long-term changes in 
synapses during sleep or rest (Hayes et al., 2021). This process may determine which 
content is transferred into long-term memory, subsequently becoming dependent on the 
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medial prefrontal cortex rather than the hippocampus for retrieval (Kitamura et al., 2017). 
Inspired by hippocampal replay, experience replay algorithms are trained on subsets of 
replayed ‘experienced episodes’ to encourage consolidation and subsequent learning. 
 
Experience replay was prominently used in the DQN algorithm (Mnih et al., 2015), a 
reinforcement learning network exploiting uniform experience replay, which samples past 
episodes for replay uniformly at random from a memory buffer. Employing this algorithm 
when updating a network resulted in a new state of the art result on Atari 2600 games, 
commonly used as a benchmark for evaluating AI systems. Multiple algorithms have now 
been developed using alternative sampling methods to achieve superior performance (see 
Table 1 for an overview). For example, hindsight experience replay replays episodes with 
goals other than the one originally pursued by the agent (Andrychowicz et al., 2017), 
imaginary hindsight experience replay generates new data which is incorporated into 
replay (Mccarthy et al., 2023), and prioritized experience replay replays more informative 
transitions more frequently (Schaul et al., 2015). 
 
But the degree to which these algorithms resemble hippocampal replay is questionable. 
There is biological precedent for the replay mechanism in general, lending biological 
plausibility to these algorithms (Hayes et al., 2021). Some of these algorithms also take 
note of the suggestion that the episodes which get replayed and consolidated in human 
memory are ones with high affective valence (Baran et al., 2012; Bowen et al., 2017; Hayes 
et al., 2021; Payne et al., 2008; Sakaki et al., 2013). For example, prioritized replay 
preferentially sample episodes that are more ‘surprising’, yielding much higher or lower 
than expected reward (Schaul et al., 2015). But human affect is much richer than pleasant 
and unpleasant surprise, incorporating states such as joy, sadness, and anger. So, whilst 
replay mechanisms in AI are influenced by both hippocampal replay and affect, the factors 
influencing replay in humans are likely to be more complicated. This is unsurprising, not 
only because of the many differences between AI systems and humans, but also because 
most AI researchers are not primarily attempting to emulate human cognition, but to 
solve specific computational problems, such as catastrophic forgetting or learning from 
sparse rewards. Again though, as discussed further in Sect. 4, some differences between 
models and modelled systems is tolerable. That is, models need not replicate the exact 
structure of modelled systems to be useful for hypothesis generation. 
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Type of 
experience 
replay algorithm   Replay algorithm  Description  

Prioritized 
experience 
replay (PER)  

Uniform experience replay 
(Mnih et al., 2015)  

Samples past episodes for replay uniformly at random 
from a memory buffer.  

Prioritized experience replay 
(Schaul et al., 2015)  

Replays episodes with higher expected learning 
progress.  

Episodic backward update  (Lee 
et al., 2018) 

Samples transitions episode by episode, and updates 
values recursively in a backward manner.  

Prioritized experience replay 
with successor representations 
(Y. Yuan & Mattar, 2021)   

Augments PER with a "need term" inspired by replay 
patterns in biological organisms.  

Double prioritized state recycled 
experience replay (Bu & Chang, 
2020)   

Prioritizes certain experiences in training and storing, 
uses state recycling to reuse and update experiences 
based on old ones.   

Hindsight experience replay 
(Andrychowicz et al., 2017)  

Replays episodes with goals other than the one 
originally pursued by the agent. 

Prioritized oversampled 
experience replay (Sovrano, 
2019)  

Replays the most important and useful experiences for 
an agent.  

Spatial structure 
and Frequency-weighted 
Memory Access (Zeng et al., 
2023)  

Sequential replay algorithm which reproduces various 
replay statistics observed in the rodent hippocampus. 

Hindsight 
experience 
replay (HER)  

Augmented curiosity-driven 
experience replay (Li et al., 
2020)   

Augments HER by adding a curiosity reward, and a 
dynamic initial state selection mechanism.  

Dynamic hindsight experience 
replay (Fang et al., 2019)   

Assembles successful experiences from two relevant 
failures.  

Imaginary hindsight experience 
replay (Mccarthy et al., 2023)   Generates new data which is incorporated into replay. 

Cluster-based sampling in HER 
(Kim & Har, 2022)   

Groups episodes with different achieved goals by using a 
cluster model and samples experiences to create the 
training batch.  

Hindsight relabelling experience 
replay (Packer et al., 2021)  

Relabels experiences during meta-training to enable 
learning from sparse rewards.  

Reverse 
experience 
replay (RER)  

Reverse experience replay 
(Rotinov, 2019)  Replays data in the buffer in reverse temporal order.  
Introspective experience replay 
(Kumar & Nagaraj, 2022)   

Selectively samples batches of data prior to surprising 
events. 

 
 
Table 1. Experience replay algorithms broadly building on biological principles of episodic 
memory. 
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2.3 Episodic memory in comparative cognitive science 
There are both similarities and differences at the algorithmic level between human 
episodic memory and episodic memory inspired algorithms. What we find depends on 
how closely we look. For example, some artificial agents now have constructive 
algorithms, but their constructive processes are likely to differ from those used by humans 
to accomplish similar tasks. Similarly, biologically-inspired replay algorithms are 
widespread in reinforcement learning agents, but the way in which episodes are sampled 
for replay likely differ from the sampling methods employed in the brain. 
 
Despite these differences, the term ‘episodic memory’ is used permissively in AI research 
to describe systems which take inspiration from human episodic memory. This 
terminological practice diverges from those adopted elsewhere in comparative cognitive 
science. In comparative cognition, for instance, many researchers prefer the label 
‘episodic-like memory’ for the memory capacities of nonhuman animals (Clayton & 
Dickinson, 1998; Davies et al., 2022), reflecting uncertainty about whether animals’ 
experience the characteristic feeling of ‘reliving’ past events (see Boyle, 2020b for 
discussion). Other researchers adopt the label ‘event memory’ (Boyle, 2020a; Keven, 2016; 
Mahr & Csibra, 2018; Rubin & Umanath, 2015). This more inclusive term refers to explicit 
memories which integrate multiple spatiotemporal or perceptual details about past events, 
whilst perhaps lacking other features often associated with episodic memory, such as a 
narrative component, an understanding of the ‘pastness’ of the event, or an awareness of 
oneself as the author of the memory (sometimes referred to as ‘autonoetic awareness’ 
(Tulving, 1983)).  
 
These divergent terminological practices risk giving the misleading impression that we 
can more confidently ascribe an episodic memory capacity to artificial agents than to 
nonhuman animals. This not only presents obstacles to interdisciplinary communication 
and research, but also signals that the memory capacities of artificial systems are more 
‘human-like’ than we have reason to believe – a troubling result, given the role episodic 
memory plays in ethical frameworks and practices. In reality, whilst we can be confident 
that some episodic memory-inspired algorithms form explicit, integrated memories of 
past events, we can also be confident that they differ from biological episodic memory in 
important respects. The term ‘event memory’ would likely be used to characterise 
memories in nonhuman animals fitting this description, so – in line with recent 
recommendations to exercise caution when applying ‘rich psychological terms’ to AI 
systems (Shevlin & Halina, 2019) – we propose that it would be appropriate to apply the 
same term to such AI systems. Accordingly, in what follows we use the label ‘event 
memory’ to refer to memory systems in artificial agents which implement some aspects of 
episodic memory.  
 
By proposing a new term here, we do not mean to imply that there are no similarities 
between event memory and human episodic memory. Just as researchers postulate 
similarities between episodic-like memory in non-human animals and human episodic 
memory (for instance, there is broad agreement that these record details pertaining to 
what-where-when), we hold that there are significant broad similarities between event 
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memory and human episodic memory. Nevertheless, a shift in terminology is appropriate 
to parallel the more restricted use of ‘episodic memory’ elsewhere in cognitive science. 
  

3. Event memory and behaviour in AI systems 
How does event memory expand the behavioural repertoire of AI systems? One 
commonplace answer is that event memory can be used to overcome ‘catastrophic 
forgetting’ – a phenomenon wherein learning a new task leads the agent to forget a 
previously learned task (Hassabis et al., 2017). The use of event memory for this purpose 
is inspired by the Complementary Learning Systems theory (McClelland et al., 1995), 
which proposes that hippocampal replay is responsible for the gradual consolidation of 
rapidly learned information into neocortical long-term memory. Whilst replay methods 
are emerging as a promising solution to catastrophic forgetting, the ‘event’ element of 
event memory does not seem critical here: replay can be used in this way when the items 
being replayed are isolated datapoints (such as images in an image classification 
algorithm), rather than integrated, multimodal representations of past events. More 
complex event memories seem most likely to shed light on the roles episodic memory 
might play in biological systems (see Sect. 4).  
 
Accordingly, we focus here on agents interacting with two- and three-dimensional real or 
simulated environments, learning directly from high-dimensional perceptual input and 
storing more complex event memories. Within this broad cluster, event memory has been 
implemented in a variety of ways, embedded in a range of architectures, and tailored to 
different types of tasks. This makes it difficult to offer a general answer to how event 
memory expands these agents’ capabilities. However, several themes emerge from the 
literature, many of which mirror functions that have been proposed for episodic memory 
in biological systems.  
 
3.1 Discovering optimal strategies  
One function that has been proposed for episodic memory in biological systems is that it 
enables agents to extract information from past experiences repeatedly and 
retrospectively, producing insights which might otherwise be elusive (Boyle, 2019; Brown, 
2023).  AI systems with event memory are similarly able to learn from events repeatedly 
and retrospectively. In some cases, AI systems using event memory in this way have been 
able to discover novel strategies for solving problems. For example, when augmented with 
event memory, SOAR (see Sect. 2.1) learned novel strategies in TankSoar– a complex two-
dimensional environment in which the agent controls a tank with multiple sensors and 
must navigate around obstacles, collect objects and destroy enemies. The agent exhibited 
novel behaviours, including dodging missile attacks and moving out of sight of enemies, 
which were not robustly displayed by a comparison agent lacking event memory. 
Similarly, DQN learned a novel strategy in Atari Breakout, a game in which players 
eliminate rows of bricks using a ball manipulated with a movable paddle at the bottom of 
the screen. DQN spontaneously adopted an optimal ‘tunnelling’ strategy - knocking out a 
tunnel of bricks, enabling the ball to rapidly break several bricks by bouncing from the top 
of the screen without returning to the player (Kumaran & Hassabis, 2015).  
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3.2 Learning rates 
Episodic memory is encoded rapidly in biological systems, allowing for one-shot learning. 
Similarly, event memory algorithms have displayed impressive learning speeds in complex 
environments. In particular, ‘episodic control’ algorithms (Lengyel & Dayan, 2008) use 
past experiences to guide online decision making, rather than simply replaying 
experiences for training purposes. In these algorithms, an event memory store encodes 
information about past actions. Agents query the store and emulate the most rewarding 
action previously taken in states similar to the one currently faced. In principle, such 
agents can exhibit ‘one-shot learning’ (Fei-Fei et al., 2006), since they need only take a 
rewarding action once in a given state to repeat that action when encountering a similar 
state again. However, exploiting early successes rather than exploring alternative actions 
may cause agents to get stuck in local optima, meaning that slower-learning algorithms 
may ultimately discover more effective policies.  
 
For example, when tested on fifty-seven Atari games, the Neural Episodic Control 
algorithm (NEC) learned quickly, initially outperforming all comparison algorithms. It 
was eventually overtaken by prioritised experience replay (Pritzel et al., 2017). A similar 
pattern was observed when the Model-Free Episodic Control algorithm was compared 
with alternatives on a sample of five Atari games (Blundell et al., 2016). MFEC also 
learned quickly on a more complex task requiring it to locate a reward in the three-
dimensional Labyrinth environment. Because rewards are very sparse in this 
environment, no comparison algorithm learned a policy with a positive expected reward 
on this task. By contrast, MFEC was able to learn from the very few instances in which a 
reward was obtained, a behaviour its developers describe as ‘akin to one-shot learning’ 
(Blundell et al., 2016, p. 7). These results have been taken to support the view that 
‘episodic control could be used in the brain, especially in the early stages of learning in a 
new environment’, operating as one of several systems which the brain switches between 
according to context (Blundell et al., 2016, p. 8).  
 
3.3 Exploration  
Whilst exploiting event memory can lead agents to become stuck in local optima, event 
memory has also been combined with other techniques to improve exploratory behaviour 
in artificial agents. In one case, event memory was augmented with ‘subjective timescale 
models’ (STM), a constructive memory mechanism in which the rate of memory 
accumulation is adaptively adjusted as a function of prediction error (Zakharov et al., 
2020). This model skips frames when recording memory sequences, writing experiences 
to memory only when a threshold of prediction error is exceeded. The result is that salient 
or surprising events are ‘squeezed together’ in memory, and less interesting periods of 
time are ‘compressed’. This agent exhibits more pronounced exploratory behaviour than 
comparable agents without STM, because its temporally distorted memories cause it to 
predict that it will encounter rewards more often, incentivising exploration. The agent 
outperforms agents with more ‘accurate’ memories in sparsely rewarded three-
dimensional foraging tasks, indicating a possible advantage to this type of memory error – 
in keeping with discussions of the adaptive benefits of constructive mechanisms in 
biological systems (Schacter et al., 2011). Other models combining experience replay with 
‘intrinsic rewards’, a method which incentivises exploration by rewarding experiences 
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with high prediction error, have also produced improved exploratory behaviour and 
greater sample efficiency in robotics tasks (Mccarthy et al., 2023) and Atari (Sovrano, 
2019).  
 
3.4 Navigation 
As noted above (Sect 2.2), event memory often takes inspiration from theories of 
hippocampal function. The hippocampus is thought to be critical to spatial memory and 
navigation; indeed, some propose this to be the primary function of the hippocampus 
(O’Keefe & Nadel, 1978; Schiller et al., 2015). With that in mind, it is perhaps no surprise 
that event memory algorithms have performed well on navigation tasks.   
 
For example, SOAR (see Sect. 2.1) can use event memory to construct cognitive maps, 
enabling it to represent and plan routes through parts of the environment it is not 
currently sensing (Nuxoll & Laird, 2012). Similarly, both Hierarchical Chunk Attention 
Memory (HCAM) (Lampinen et al., 2021) and the Episodic Planning Network (EPN) 
(Ritter et al., 2021) perform significantly better than strong baselines in the One-Shot 
Street Learn task. In this task, agents navigate through a three-dimensional Google 
StreetView environment to reach as many goals as possible in a novel neighbourhood in a 
short space of time. Strong performance requires agents to learn the environment quickly 
at an early stage in order to plan the most efficient route. On a similar task in which 
agents must navigate to a cued goal from random starting points as many times as 
possible in a short space of time, a ‘learning to reinforcement learn’ agent (L2RL) (based 
on Wang et al., 2016) augmented with event memory significantly outperformed the 
maximum reward achievable without event memory, navigating near optimally following 
the first exposure to a goal location (Ritter et al., 2018). Event memory has also been used 
to facilitate robot navigation in real world environments, enabling robots to construct 
cognitive maps of novel environments used to plan future trajectories (Chin et al., 2019; 
Liu et al., 2017; J. Yuan et al., 2022). 
 
3.5 Acting over temporal distance 
Some systems with event memory can solve problems involving ‘long-term temporal 
credit assignment’ – effectively, those requiring action over extended periods of time. This 
includes scenarios in which optimal behaviour depends on earlier actions or observations, 
as well as complex hierarchical tasks in which attaining a goal requires performing a 
sequence of unrewarded or minimally rewarded actions.  
 
For example, the Temporal Value Transport algorithm (TVT) (Hung et al., 2019) encodes 
compressed memories of events, retrieves them to guide action selection, and 
retrospectively re-values earlier actions based on later return. In one task requiring long-
term temporal credit assignment, TVT is required to fetch a key, complete a distractor 
task involving the collection of small rewards, use the key to open a door to see a coloured 
square, complete a second distractor task, and then press a button matching the colour 
behind the door. TVT reliably solves this and similar tasks, outperforming a baseline agent 
with a similar memory architecture which lacked the retrospective revaluation 
mechanism. Agents with event memory have also successfully completed complex 
hierarchical tasks. For example, Dreamer v3, a model-based reinforcement learning agent 
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with an event memory buffer, is the first agent to mine a diamond in Minecraft without 
human data or curricula (Hafner et al., 2023). This is a significant milestone because 
mining a diamond requires completing a sequence of twelve sparsely rewarded interim 
steps. Similarly, NEC (see Sect 3.2) learns to forego small rewards in favour of multi-step 
processes leading to greater reward in Atari. 
 
Interestingly, these temporally extended and hierarchical tasks resemble the ‘spoon test’ 
proposed by Tulving (2005) to investigate episodic memory and mental time travel in 
animals and children. In a spoon test, a subject must anticipate their need for a tool in a 
location to be visited in future, pick up the appropriate tool when the opportunity arises, 
and take the tool to the relevant location. This is a temporally extended hierarchical task 
in which success requires an unrewarded early action, and has been used to investigate 
the episodic memory capacities of several great ape species (see Scarf et al., 2014 for 
review) – reflecting the idea that a function of episodic memory in biological agents is to 
support this kind of temporally extended action.  
 
3.6 Event memory’s contributions to behaviour 
AI systems with event memory have exhibited strong performance in a range of areas, 
including discovering optimal strategies, learning quickly, exploring, navigating, and 
acting at a temporal distance (see Table 2 for an overview). These are all areas in which 
episodic memory and its component processes are thought to play a role in biological 
systems.2  
 
Whilst it is tempting to attribute these achievements to the use of event memory, caution 
is required in interpreting these results. It is often difficult to isolate the contribution of 
event memory to an agents’ behaviour because algorithms are frequently evaluated in 
terms of a comparison with other prominent algorithms on a certain test or benchmark. 
Such comparisons are difficult to interpret because the algorithms being compared may 
differ in ways other than the presence or absence of event memory. Clearer evidence 
about the influence of event memory on an agent’s behaviour can be obtained through 
ablation experiments, in which the intact algorithm’s performance is compared with the 
performance of the same algorithm lacking the event memory component. Whilst ablation 
methods are not uncommon (e.g. Ritter et al., 2021; Zakharov et al., 2020), they are used 
less frequently than comparisons with other algorithms. More widespread use of ablation 
methods targeting event memory would facilitate interdisciplinary insights.   
 
Even in those cases where event memory is demonstrably critical to an agent’s strong 
performance on a task, it may not be the only critical factor. First, the way that event 
memory is embedded into the overall architecture is important: different algorithms 
exploit event memory in different ways and have different capabilities as a result. For 
instance, ‘episodic control’ architectures, which consult buffers of stored past events to 

 
2 The absence of future-oriented simulation from this list may appear striking in this context, given the role 
episodic memory is thought to play in this process in humans (see Sect. 2.1). No conclusions should be 
drawn from this omission, however, as it merely reflects a lack of evidence about the relationship between 
event memory and future-oriented simulation in AI systems. This would be a fruitful avenue for future 
research. 
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inform online decision making, exhibit much faster learning than architectures like DQN, 
in which memory buffers are used only to train policy networks. Second, event memory 
may facilitate some capabilities only in the presence of other factors. For example, a key 
reason NEC can discover policies in Atari which elude DQN is the way the algorithms 
represent rewards: DQN clips reward values to between 1 and -1, whereas NEC tracks the 
true reward. Similarly, whilst event memory makes a key contribution to the success of 
EPN in navigation, its employment of a self-attention module is crucial. And TVT’s 
performance in tasks involving long-term temporal credit assignment requires event 
memory, but also critically depends on a mechanism enabling the retrospective 
revaluation of past events in light of later reward.  
 
A lesson here is that extracting insights about biological episodic memory from 
implementations of event memory in AI requires attending not only to the similarities and 
differences between the relevant memory systems (Sect. 2), but also to those between the 
cognitive systems in which they’re embedded. To facilitate such comparisons, more 
systematic behavioural comparisons between artificial and biological systems would be 
fruitful. Methodological frameworks from comparative cognition would be highly 
applicable here. For instance, ‘signature testing’ frameworks (Taylor et al., 2022) could be 
used to evaluate similarities between artificial and biological systems by investigating 
fine-grained behavioural patterns, biases and limitations.   
 

Function Brief Explanation Example 

Discovering optimal strategies Finding solutions to problems 
not uncovered by comparable 
agents 

DQN uncovering the ‘tunnelling’ 
strategy in Atari Breakout 

Fast learning Learning more quickly than 
comparable agents, even 
approaching one-shot learning 

MFEC uncovering a rewarding 
strategy in the Labyrinth 
environment. 

Exploration Spending time exploring the 
environment or option space, 
rather than exploiting the 
current policy 

STM exploring more than 
comparable agents in a 3D 
foraging task, leading it to obtain 
more rewards.  

Navigation Navigating or planning routes 
more effectively, particularly in 
novel environments.  

HCAM and EPN outperforming 
baselines in One-Shot Street 
Learn, in which agents must 
reach goals in a short time in a 
novel environment.  

Acting over temporal distance Selecting optimal behaviour 
given earlier actions or 
observations, or performing 
hierarchical tasks involving 
sequences of unrewarding 
actions 

Dreamer v3 mining a diamond in 
Minecraft. 

Table 2. Overview of areas in which AI systems with event memory have exhibited strong 
performance. 
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4. Learning about episodic memory from AI systems 
Despite differences between the two, there are several ways in which event memory in AI 
systems might shed light on biological episodic memory.  
 
First, event memory algorithms could be designed to more closely capture our best 
theories about the operations of biological episodic memory, enabling these theories to be 
tested. A particular benefit is that experimental methods which raise ethical challenges 
when performed on animals, such as lesion studies, would be unproblematic when 
performed on AI systems. Such studies could be informative about the contributions of 
particular processes to the behaviour of the episodic memory system and the agent. These 
methods could also assist in uncovering the causal role function of episodic memory 
processes in humans (De Brigard, 2014) – that is, determining how episodic memory 
processes interact with other cognitive processes, what kind of inputs and outputs they 
take, and what behavioural patterns they produce. Currently, we rely largely on clinical 
populations to test hypotheses about the causal role function of episodic memory 
processes (Balota et al., 1999; Budson et al., 2003; Ciaramelli et al., 2006; Melo et al., 
1999), meaning that the hypotheses we can test are constrained by the particular lesions 
of individuals, which are rarely clear-cut. Studying event memory implemented in 
artificial systems would grant more flexibility, as we could cleanly lesion models to target 
hypotheses about episodic memory’s function without any ethical concern. 
 
However, to enable this development more cross-disciplinary collaboration would be 
necessary. Algorithms are often designed with a focus on solving problems which will 
advance the AI industry, rather than on developing models of biological cognitive systems. 
Similarly, benchmarks are typically established with reference to other AI systems’ 
performance on the same tasks, rather than the performance of humans or other animals. 
Currently, only a minority of studies include any cross-system comparison (Fayyaz et al., 
2022; Gershman & Daw, 2017). This makes it difficult to determine whether event 
memory architectures are suitably biologically grounded. What is critical is whether the 
degree and type of similarity between these systems and biological episodic memory is 
suitable, given the inferences we are interested in drawing (Stinson, 2020). At present, we 
are poorly positioned to answer such questions. To establish the utility of AI systems with 
event memory as models of biological episodic memory, a practice of rigorously testing 
algorithms on a wide range of standard memory tasks is required.  
 
These considerations are particularly acute when we consider the potential for these 
systems to provide ‘how-actually’ explanations of biological episodic memory (see Box 1) – 
that is, to support theories about the structure, operations or function of episodic 
memory. For artificial event memory to play this evidential role, we would need high 
confidence that it resembled biological episodic memory in relevant respects. What counts 
as a relevant respect depends on what we are trying to model. For example, if we are 
interested in modelling the workings of pyramidal cells within the hippocampus in 
memory consolidation, it would be relevant that our model captures the organization and 
activities of these cells. But it is not clear that this would be a necessary feature to model if 
we were interested in modelling how episodic memories are semanticized over time. 
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Knowing which details are relevant to capture is a complex question which starts from the 
aim of the model.  
 
Even when we are not confident in their resemblance to biological episodic memory, 
artificial event memory can play a productive role in our theorising by providing ‘how-
possibly’ explanations. Whereas how-actually explanations aim to explain how a system 
actually operates, how-possibly explanations are more loosely constrained conjectures 
about ways a system might operate or contribute to a larger system. When systems with 
event memory are used to construct how-possibly explanations, the immediate intention 
is not to provide evidence about the way episodic memory actually works. Rather, the aim 
is to provide ‘proof of concept’ for ideas about the operations or functions of episodic 
memory, and highlight some hypotheses as ‘pursuit-worthy’ (Nyrup, 2020). How-possibly 
explanations can be a useful heuristic tool, particularly in the face of uncertainty, as 
generating several how-possibly explanations enables us to explore the hypothesis space. 
We may then test the more promising of these how-possibly explanations against each 
other to get closer to a how-actually explanation (Craver, 2006). Of course, not all how-
possibly explanations are equally promising: in cases where we know that an event 
memory system differs from episodic memory in relevant respects, the how-possibly 
explanations it generates will be implausible. But in many cases, it may be an open 
empirical question whether the event memory system sufficiently resembles episodic 
memory, or whether any differences we’ve identified matter. In these cases, the event 
memory system does not provide how-actually explanations, but we can productively treat 
the how-possibly explanations it generates as candidates for further investigation.  
 
Some researchers are already beginning to use event memory in AI systems to generate 
how-possibly explanations about the functions of episodic memory. Zeng et al. (2023) 
compare three AI systems to investigate episodic memory’s role in spatial learning, 
comparing an episodic control algorithm, a replay algorithm and an ‘online learning’ 
algorithm with no event memory. These are used to model, respectively, the retrieval of 
episodic memory to guide online behaviour, episodic memory replay supporting offline 
learning, and a hippocampal lesion in which episodic memory is abolished. When tested in 
a series of spatial navigation tasks, both event memory algorithms outperformed the 
online learning algorithm, whose performance was highly variable. The episodic control 
algorithm learned more quickly than the replay algorithm, but attained lower asymptotic 
performance. The researchers suggest that episodic memory may play two complementary 
roles in spatial learning, which are difficult to distinguish in biological systems due to 
their shared neural basis. Additionally, the researchers compared different sampling 
methods for experience replay, and found that a biologically-inspired sequential replay 
method outperformed random sampling when the number of replays is limited. On this 
basis, they hypothesise that the sequential nature of hippocampal replay may be explained 
by the brain’s limited computational resources constraining replay. Importantly, the 
researchers do not claim that the brain implements the very same processes as any of 
these algorithms and caution that their results are not sufficient to establish strong (how-
actually) claims about biological episodic memory, but point toward ‘potential 
explanations’ – how-possibly explanations – about aspects of episodic memory.  
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Box 1: how-actually vs how-possibly 
 
How-actually explanations: Explanations describing how episodic memory actually operates or functions. 
Based on systems which are known to resemble episodic memory in relevant respects. 
 
How-possibly explanations: Loosely constrained conjectures about how episodic memory might operate or 
function. Based on systems whose resemblance to episodic memory is uncertain. Used to explore the 
hypothesis space and identify promising hypotheses to test. 
 

 
A similar approach might be used to investigate other ideas about episodic memory’s 
causal role function. As noted above (Sect 2.1), a prominent view is that episodic 
memory’s primary function is to support mental time travel into the future, which in turn 
facilitates future planning. A key piece of evidence for this view is that neural activation 
when these capacities are exercised partially overlap, and the capacities are impaired by 
similar patterns of brain damage. But this same evidence makes it difficult to precisely 
determine the relationship between the capacities: for instance, is episodic memory’s role 
in planning entirely mediated by future-oriented simulation, or could it support planning 
on its own? The TVT algorithm (sect. 3.5) is relevant here: it learns to engage in planning-
like behaviour, fetching a key that will be needed later in a task resembling the ‘spoon 
test’. TVT’s event memory is critical to its success, but as a model-free algorithm 
performing no forward rollouts it is unlikely that it engages in something like future-
oriented simulation. This does not show that future-oriented simulation plays no role in 
planning in biological organisms, but it does suggest that a system like episodic memory 
could support planning even in the absence of future-oriented simulation. This possibility 
is one we should consider when constructing and testing theories about episodic 
memory’s function. 
 
Similarly, in the parallel debate about episodic memory’s evolution, it has been proposed 
that episodic memory is an evolutionary by-product with no adaptive function of its own 
(Schulz & Robins, 2023). But the many benefits apparently conferred on AI systems by 
event memory provide how-possibly explanations of how a system like episodic memory 
could be adaptive. For instance, as noted above, the MFEC algorithm displayed very fast 
learning in a complex environment with few repeated states and sparse rewards, leading 
the researchers to propose that using event memories for online decision making confers 
advantages at the early stages of learning in novel environments. Whilst this cannot 
straightforwardly be treated as evidence about the function of episodic memory in 
biological organisms, it does show that a system like episodic memory could confer 
learning advantages which would be adaptive under certain conditions – a possibility that 
should be fully considered in developing an account of episodic memory’s evolution. More 
generally, we suggest that each of the advantages apparently conferred on AI systems by 
event memory discussed in Sect. 3 suggests a corresponding hypothesis about episodic 
memory’s evolutionary and cognitive role functions worthy of further pursuit.  
 

5. Conclusion 
AI systems with event memory, inspired by human episodic memory, appear to enjoy 
behavioural advantages in several domains. Such systems could serve as an important tool 
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for evaluating competing hypotheses about episodic memory’s operations and functions in 
biological systems, enabling us to test these hypotheses in an ethical way. There are two 
obstacles to this at present. First, event memory systems in AI implement only some 
aspects of episodic memory, departing from it in crucial respects. Second, existing 
research does not typically use methods capable of isolating the contribution of event 
memory and its component processes to the enclosing system’s behaviour. Further 
research, ideally involving cross-disciplinary collaborations, would be needed to establish 
these systems as models of episodic memory and draw robust conclusions. Nevertheless, 
we suggest that even at this early stage, event memory in AI systems stands to play an 
important role in the development of theories about episodic memory’s causal role 
function by highlighting the pursuit-worthiness of novel or neglected hypotheses. As a 
preliminary step in this direction, we propose that the evidence reviewed here motivates 
giving greater consideration to the possibility that episodic memory has evolutionary and 
causal role functions in the domains of learning, decision-making, exploration, navigation 
and temporally extended action, in addition to – and perhaps independently of – its role in 
future-oriented simulation.   
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