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Abstract: Episodic memory is memory for past events. It’s characteristically associated 
with an experience of ‘mentally replaying’ one’s experiences in the mind’s eye. This 
biological phenomenon has inspired the development of several ‘experience replay’ 
algorithms in AI. In this chapter, I ask whether experience replay algorithms might 
shed light on a puzzle about episodic memory’s function: what does episodic memory 
contribute to the cognitive systems in which it is found? I argue that experience replay 
algorithms can serve as idealized models of episodic memory for the purposes of 
addressing this question. Taking the DQN algorithm as a case study, I suggest that 
these algorithms provide some support for mnemonic accounts, on which episodic 
memory’s function lies in the storage, encoding and retrieval of information. By 
extending and adapting experience replay algorithms, we might gain further insight 
into episodic memory’s operations and contributions to cognition.  
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1. Introduction 
 
Think back to when you woke up this morning. Maybe you snoozed your alarm several 
times, or perhaps you jumped out of bed straight away, ready to face the day. Maybe 
you had a leisurely breakfast and chatted to your family, or maybe you had to tumble 
out of the house in a hurry with nothing but a coffee to go. Whatever happened, as 
you think back to this morning you may have the feeling that you’re ‘replaying’ your 
experiences in your mind’s eye. You might mentally smell the coffee, see it foam or 
hear the hiss as it comes out of the machine. This phenomenon–experience replay–is 
characteristically associated with episodic memory: memory for personally 
experienced past events.  

Episodic memory presents several puzzles for philosophers and scientists of 
memory. Among them is the question of its function: what does episodic memory 
contribute to the cognitive system (Cummins, 1975)? To put it another way, what is it 
that we’re able to do because we can remember and ‘replay’ past events? What 
makes this puzzle challenging to resolve is the difficulty of evaluating competing 
theories of episodic memory’s function. To do so, we’d ideally need an agent which 
had episodic memory, whose episodic memory capacity we could ‘switch off’ whilst 
leaving its other cognitive functions intact, so that we could isolate the unique 
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contributions episodic memory makes. For reasons I’ll outline, it is not easy to find an 
agent like this in the biological realm. But recent developments in AI suggest an 
intriguing possibility: perhaps we could make one.  

In recent years, a number of algorithms have been developed which exploit an 
‘experience replay’ mechanism. These algorithms record details of their ‘experiences’ 
and replay these experiences after the fact. The replay mechanism is often separable 
from the rest of the cognitive architecture, making it possible to directly assess its 
contributions to the system’s capabilities. In this chapter, my question is whether, by 
investigating the effects of experience replay on artificial agents, we stand to learn 
about episodic memory’s function in biological systems. For this to be a promising 
research strategy, there would need to be more than a superficial resemblance 
between biological and artificial experience replay. The two would need to be 
meaningfully similar, such that one could hope to draw justified (if defeasible) 
inductive inferences about biological episodic memory from artificial experience 
replay. Whilst there are significant differences between these phenomena, my 
argument here will be that the two are sufficiently similar in relevant ways to ground 
such inferences–so, by investigating these algorithms we stand to gain defeasible 
evidence about the function of episodic memory.  

I begin in §2 by describing DeepMind’s DQN algorithm (Mnih et al., 2015), the 
experience replay algorithm I take as my case study in this chapter.1 In §3, I argue 
that in order to inform our accounts of episodic memory’s function, DQN would need 
to resemble episodic memory at the algorithmic level. I show that there are significant 
similarities between the two at the algorithmic level: both exploit detailed, iconic 
representations integrating multidimensional information about specific past events. 
In §4, I apply this result to the debate about episodic memory’s function. After briefly 
summarising the debate between simulationist and mnemonic accounts of episodic 
memory’s function, I argue that DQN provides some support to the mnemonic view. 
I also acknowledge several differences between DQN and episodic memory. I argue 
that for some purposes, these differences will not matter: DQN can fruitfully serve as 
an idealized model of episodic memory whilst differing from it in various ways. In 
other contexts, however, these differences will matter. This reveals ways in which we 
might look to extend or adapt experience replay algorithms to resemble episodic 
memory more closely. Doing so would facilitate the evaluation of more granular 
theories about episodic memory’s operations and contributions to cognition. §5 
concludes.   

2. The DQN Algorithm 
 

 
1 Given the differences between DQN and other implementations of experience replay, the 
conclusions I draw here can’t be generalized to other architectures without argument. I discuss some 
other experience replay algorithms briefly in §4.  
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The Arcade Learning Environment is a platform which uses Atari 2600 games, like 
Breakout, Pong and Space Invaders, to evaluate AI systems (Bellemare et al., 2013). 
In 2015, DeepMind reported that their DQN algorithm had achieved a new state of 
the art in the Arcade Learning Environment, achieving better scores than the previous 
best performing algorithm in 43 of 49 games tested (Mnih et al., 2015). DQN’s 
performance was comparable to that of a professional human games tester, achieving 
at least 75% of the human’s score on more than half of the games sampled. Key to 
DQN’s success was a ‘biologically inspired’ experience replay mechanism. Unlike 
previous systems, which learned from each ‘experience’ and moved on, this algorithm 
recorded its experiences and replayed them after the fact.  

DQN is a reinforcement learning algorithm. Reinforcement learning is a machine 
learning paradigm in which an agent learns by taking actions in its environment. 
Reinforcement learning problems are commonly modelled as Markov decision 
processes. In a Markov decision process, an agent interacts with its environment at 
several discrete time stems, t = 1, 2, …, n. At each time-step, the agent observes the 
state of the environment (St), selects an action (At), receives a reward (Rt) and observes 
the resulting state of the environment at the next time-step (St+1) (Sutton & Barto, 
2018). In the Arcade Learning Environment, the reward is the change–positive or 
negative–in game score. Over time, the idea is that the agent will learn a policy which 
maximizes its future rewards. Roughly speaking, a policy is a state-action mapping; 
something that determines how the agent will act in any given state. The agent may 
initially act randomly, but by observing the effects and rewards produced by its 
actions, it develops more sophisticated policies, enabling it to respond effectively to 
the environment (Figure 1). 

 
Figure 1: Agent-environment interactions in a Markov decision process. 
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DQN implements a form of reinforcement learning known as Q-learning. Q-
learning involves learning the expected reward (the ‘Q-value’) of the actions in each 
scenario. In ‘vanilla’ Q-learning (i.e., the most basic form), Q-values are represented 

in a lookup table mapping state/action pairs to Q-values ( 

Figure 2). When the agent acts, the Q-table is updated to reflect new 
information about the relevant state/action pairs. DQN is a variation on Q-learning in 
which the Q-table is replaced by a neural network mapping input states (i.e., observed 
states of the environment) to action/Q-value pairs.  

 

Figure 2: Q table 

At each time-step, the agent selects an action using an ‘e-greedy’ policy: it 
selects a random action with probability e, and selects the action predicted to have 
the highest value with probability 1-e. The value of e is adjusted during training such 
that the agent begins by randomly exploring the available actions, later shifting 
towards exploiting what it has learned. Whenever the agent takes an action, the 
divergence between the expected and actual reward is used as an error signal to train 
the Q-learning network.  

The important thing about DQN for our purposes is its use of experience replay. 
In experience replay, the agent’s experience at each time-step is recorded. An 
experience consists of a 4-tuple representation (St, At, Rt, St+1), where:  

• St = the state of the environment at t 
• At = the action taken at t 
• Rt = the reward obtained at t 
• St+1 = the state of the environment at t+1. 

These 4-tuple experiences are pooled in a store called the ‘episodic buffer’. The 
oldest experiences are deleted when the episodic buffer’s finite capacity is reached.  
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Importantly for our purposes, the state representations (St)  are more complex 
than this brief sketch suggests. ‘St’ in fact represents a sequence of observations (Xt) 
and actions (At) over the m time-steps leading up to and including t. The number of 
time-steps per sequence (m) is variable; in DeepMind’s original implementation, m=4. 
St is then shorthand for the sequence: Xt-3, At-3, Xt-2, At-2, Xt-1, At-1, Xt. Each X is an 
observation of the screen of the Atari emulator, represented as pixel vector. 
Simplifying, this is generated by taking a screenshot from the Atari system, applying 
some minimal pre-processing to remove artifacts, standardizing the size of the 
screenshot and converting it to greyscale. Each pixel in the resulting 84x84 pixel 
greyscale image can now be represented as a single number, the luminance value 
corresponding to its particular shade of grey. These luminance values are used to 
convert the image into a two-dimensional numerical array. The two dimensions of the 
array correspond to image height and width; each number in the array picks out the 
pixel in the corresponding image location and represents its luminance. The 
sequence, St, is then a temporally ordered sequence of pixel vectors interspersed 
with the actions taken at the corresponding time-step.  

The Q-learning network learns ‘off-policy’, by training itself on minibatches of 
experiences selected at random from the episodic buffer, rather than directly on the 
agent’s most recent experience. One advantage of using past experiences for 
learning in this way is that each experience can be used for learning several times. 
Another is that it eliminates the correlations which would otherwise hold between 
consecutive training samples, which are both inefficient for learning and increase the 
chances of the system getting stuck in local minima–that is, becoming committed to 
suboptimal strategies. Consistently with experience replay conferring these learning 
advantages, disabling replay significantly worsens the network’s performance, 
sometimes by an order of magnitude (Mnih et al., 2015, table 3).  



To appear in Aronowitz, S. & Nadel, L. (Eds.). (Forthcoming). Space, Time, and Memory. Oxford 
University Press.  

 

 
Figure 3: Simplified sketch of the DQN algorithm 

3. Representations in Episodic Memory and DQN 
 
As noted in §1, DQN’s reliance on experience replay is suggestive because of the 
characteristic association between experience replay and episodic memory in 
humans. But to determine whether this is any more than suggestive, we’d need to 
know whether this is a meaningful similarity between episodic memory and DQN.  

In general, cognitive systems can be described and explained at various ‘levels. 
David Marr’s (1982) prominent account distinguishes the computational, algorithmic 
and implementation levels. The computational level is the level at which we describe 
what the system is doing and why; the algorithmic level describes what 
representations are used and what algorithms are used to process them; the 
implementation level describes the physical structures realising this processing. There 
is some independence between these levels, meaning that two systems might 
resemble one another at one level whilst being very different at another.  

In the current context, we are ultimately interested in understanding the 
cognitive role function of episodic memory: what it does, and how, by doing that, it 
contributes to the capacities of the cognitive systems of which it’s a part (Cummins, 
1975). What makes this puzzling is that, on an intuitive picture of what episodic 
memory does, it’s not obvious that it has a distinctive contribution to make. Its central 
job is to carry detailed information about specific past events. But we have a general-
purpose memory system in the form of semantic memory–a decontextualized 
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memory store carrying information about words, conceptual relations or facts. So, we 
might wonder, what is the point of having another memory system dedicated to the 
storage, encoding and retrieval of detailed information about specific past events 
when, after all, much of this information is surely redundant, and the specific events 
will never come around again?2 Put in these terms we can see that our question is 
pitched at the algorithmic level: what is the point of having a memory system that 
uses these kinds of representations in this way? For DQN to aid us in answering this 
question, we would therefore need to establish that it resembled episodic memory 
at the algorithmic level.3 The task of this section is to establish that there are reasons 
for thinking this is true, by showing that DQN and episodic memory exploit similar 
kinds of representations.  

The first step is to give an account of the representations exploited by biological 
episodic memory. When Endel Tulving introduced the distinction between episodic 
and semantic memory (Tulving, 1972), he distinguished the two in terms of their 
content. Episodic memory was a matter of remembering what happened, where and 
when. However, Tulving and many others came to see this characterization of 
episodic memory as inadequate, for two reasons. First, there are examples of episodic 
memories in which one or more of the ‘what-where-when’ components is missing. 
Second, it is not uncommon to semantically remember the ’what-where-when’ of 
events, including events which one could not episodically remember, such as the 
Battle of Hastings. These seem significant problems: ideally, an account of episodic 
memory ought at least to capture what in general distinguishes it from its most salient 
contrast class (Boyle, 2020b). 

In response to this, Tulving and others came to place greater weight on the 
characteristic phenomenology of episodic recollection: the experience described in 
terms of ‘replaying’ past events (Tulving, 2005).4 To place too much weight on 
experience in characterising episodic memory feels problematic, however. Most 
significantly for our purposes, this provides little guidance when it comes to 
evaluating the significance of algorithms like DQN. Since, plausibly, no current AI 
systems are conscious, no current architecture will exhibit the relevant 
phenomenology, suggesting that no current experience replay architecture 
implements episodic memory. To be clear, that may well be the right result. But this 
does not settle the question of whether architectures like DQN can inform our 
understanding of biological episodic memory, since they might nevertheless be 
similar in significant respects. Nevertheless, as I’ve argued elsewhere (Boyle, 2020b), 

 
2 See Brown (2023, sec. 3) for a compelling discussion of this puzzle.  
3 This means that we need not be troubled in this context by the obvious fact that DQN and biological 
episodic memory processes differ at the level of implementation: DQN is implemented in ordinary 
computer hardware, and episodic memory in brain structures and processes.  
4 Following Tulving (2005), this experience is sometimes described in terms of ‘autonoetic 
consciousness’ and ‘chronesthesia’. I find this terminology unhelpful for reasons I’ve outlined 
elsewhere (Boyle, 2020a), and will avoid it here.   
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characterising episodic memory in terms of experience replay can be fruitful, since 
careful reflection on what is involved in ‘replaying’ past events allows us to 
characterize the representations involved in episodic memory in more granular terms 
than ‘what-where-when’. This reveals an account of episodic memory which both 
distinguishes it from semantic memory and facilitates comparisons with experience 
replay algorithms: we can determine whether experience replay algorithms involve 
representations which carry similar information and are structured in similar ways.   

To say that episodic memory characteristically involves experience replay 
involves taking on some substantial commitments about the content episodic 
memory carries. First, it suggests that episodic memory carries detailed spatial 
information about an event. This is not merely to say that it carries information about 
where the event occurred. In fact, one might episodically remember an event without 
being able to pinpoint its location. But episodically remembering an event typically 
involves remembering what we might call the event’s ‘internal’ spatial features, that 
is, the spatial context in which the event occurred. For instance, if you remember 
having breakfast this morning, you might remember the room you ate in, how the 
furniture was arranged in that room, where your cereal bowl was relative to the table, 
where the cereal was relative to the bowl, and so on. That episodic memory captures 
this kind of contextual spatial information about an event is central to accounts 
characterising episodic memory in terms of ‘scene construction’ (Boyle, 2020a; 
Clayton & Russell, 2009; Rubin & Umanath, 2015).   

In addition, to the extent that episodic memory prototypically involves replaying 
events, it must carry similar information about the event’s temporal features. Once 
again, this is not a matter of remembering when the event occurred. In fact, episodic 
memory need not involve representing events as past at all (Boyle, 2020a). But 
episodically remembering an event, such that one could in principle mentally replay 
or re-experience it, must involve remembering its ‘internal’ temporal features, that is, 
the order in which its component parts occurred (Boyle, 2020b). So, again, if you 
remember having breakfast this morning, you might remember that your cereal bowl 
was full at the beginning and became progressively emptier, that the cereal was crispy 
at the beginning but became progressively soggier, and so on.  

Spatial and temporal information are of course not the only kinds of information 
episodic memory characteristically carries about an event. Given that episodic 
memories are of events you personally witnessed or were involved in, we might add 
that episodic memory can carry self-referential information, such as information about 
how you were involved, what you were thinking, feeling or perceiving (Boyle, 2020b).  

So, we now have a somewhat fuller characterization of the sort of content 
episodic memory prototypically carries, namely, detailed, multidimensional 
information about an event, including the spatial and temporal organization of the 
event, and the remembering subject’s involvement in, perception of and thoughts 
and feelings about the event at the time of its occurrence. This is by no means a novel 
view of episodic memory’s content: a number of recent accounts emphasize the fact 
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that episodic memory carries event information across a number of quality 
dimensions (Brown, 2023; Gershman & Daw, 2017). This picture of episodic memory’s 
content is also reflected in the methodologies used to investigate episodic memory 
in cognitive science. For instance, the Autobiographical Interview Questionnaire 
distinguishes the episodic and semantic aspects of an autobiographical memory by 
coding reported details as either ‘internal’ (episodic) or ‘external’ (semantic), where 
‘internal details’ are comments on the event’s spatiotemporal structure, and the 
subject’s thoughts, emotions or perceptions during the event (Levine et al., 2002). 
Several methods for detecting episodic memory in animals also rest on the idea that 
episodic memory carries detailed multidimensional event information. For instance, 
the ‘what-where-which’ protocol investigates whether an animal can discriminate 
between similar events which occurred in distinct spatial contexts (Eacott et al., 2005), 
whilst ‘source monitoring’ studies investigate whether an animal remembers 
contextual detail about an event besides what happened, where and when (Crystal 
et al., 2013).  

Whilst ‘replaying’ an event involves recalling detailed multidimensional event 
information, the various details are not recalled separately from one another. Rather, 
these various details are presented to us as a package: they seem to be integrated 
into a single, structured representation of the event as a whole (Boyle, 2021; Rubin & 
Umanath, 2015).  Once again, this idea is reflected in methods used to detect 
episodic memory.  The ‘integration’ criterion for detecting episodic memory in 
animals investigates whether the various datapoints an animal remembers about an 
event are integrated into a single, unified representation (Clayton et al., 2001). One 
operationalization of this is that memory is integrated when retrieval of one piece of 
information encoded in the memory predicts retrieval of the rest (Clayton et al., 2003). 
Another is that a memory is integrated if it is resistant to interference from memories 
for events composed out of similar informational components–that is, if the subject 
can remember and distinguish similar but distinct events (Crystal & Smith, 2014). 
Underlying the idea that episodic memories should be integrated is the idea that 
episodic memories combine diverse datapoints into a single representational unit. 

It is tempting to cash this out as a claim about episodic memory’s format: 
perhaps episodic memory has a (partly) iconic format. Iconic formats are characterized 
by structural isomorphism. That is to say, the structure of the representation mirrors 
or ‘maps on to’ the structure of the thing being represented, and that mapping is 
semantically significant (Lee et al., 2022; Shea, 2014). Iconic representations are 
typically informationally rich, integrating detailed, often multidimensional 
information, into a single representational unit. So, we might think a plausible 
hypothesis about experience replay is that it involves representations with an iconic 
format, and this explains why they integrate rich multidimensional information about 
events in a way that is resistant to interference from similar memories. One thing that 
renders this intuitively plausible is the way experience replay seems to represent the 
temporal properties of remembered events.  Replayed experiences seem to ‘unfold’ 
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over time in the mind’s eye, in a way that mirrors the represented unfolding of the 
event (Boyle, 2020b). Here, the temporal features of the representation appear to 
map onto the temporal features of the represented event.  

For these kinds of reasons, Nikola Andonovski (2022) argues that episodic 
memories are ‘structure-preserving models’ of past events. On this view, episodic 
memories and other forms of episodic representation are abstract mental models 
which mirror the spatiotemporal structure of represented events, and perhaps their 
structure across other quality dimensions. This mirroring is unlikely to be a strict 
isomorphism; it may be approximate or simplified. Importantly, this structure-
preserving format is unlikely to exhaust the representational features of episodic 
memory: given the pervasive interactions between episodic and semantic memory 
(Aronowitz, 2022; Boyle, 2021), instances of episodic remembering will almost always 
involve conceptual or semantic elements in addition to the structure-preserving 
model at their core.  

On the view of episodic memory we’ve arrived at, then, it involves retrieving 
representations which carry detailed multidimensional information about a 
remembered event. Minimally, this includes its spatial and temporal organization, 
perhaps along with information about the event’s other qualities, the subject’s 
background knowledge, and the subject’s involvement in, perception of and thoughts 
and feelings about the event. These details seem to be retrieved as a package, 
indicating that the representations involved unite these details into an integrated 
representational whole. This suggests the representations involved may be at least 
partly iconic, perhaps taking the form of structure-preserving models in which there 
are semantically significant approximate isomorphisms between structural properties 
of the representation and those of the represented event.  

We are now in a position to see that experience replay in DQN involves 
representing past events in a way that is meaningfully similar to biological episodic 
memory. Like biological episodic memories, the representations used by DQN’s 
‘experience replay’ mechanism carry multidimensional information about events and 
do so in a manner that is at least partly iconic.  

First, multidimensionality. Each state representation is an ordered sequence of 
observations and actions leading up to the time step at which it is recorded. The 
observations represent the two-dimensional spatial properties of events. When 
stacked in ordered sequences, they additionally represent an event’s internal 
temporal properties: the way that its spatial properties changed over time. By 
interspersing action representations between the observations in the sequence, state 
representations also represent the agent’s involvement in the event, and how the 
environment changed in response to the agent’s actions. Experience representations 
(the 4-tuples described in §2) combine state representations and action 
representations with reward representations, meaning that in total they carry 
information about the event’s spatial and temporal properties, the agent’s actions 
and how they affected the unfolding of the event, and how rewarding the event was 
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for the agent. This seems like a reasonable approximation to the multidimensional 
information episodic memories prototypically carry: information about a remembered 
event’s spatial and temporal properties, about the subject’s involvement in the event, 
and about their thoughts, feelings or perceptions of the event.  

Second, iconicity. State representations combine observations with action 
representations in an ordered sequence. As such, they are iconic in two ways. First, 
observations are iconic representations, in the sense that they are structured, their 
structural properties map onto the structural properties of their representata, and this 
mapping is semantically significant. Specifically, as noted in §2, each observation is 
formatted as a two-dimensional array of numbers, where the two dimensions 
represent the represented Atari screenshot’s height and width, and each position in 
the numerical array corresponds to the pixel in the corresponding location in the 
screenshot. Second, combining these observations in sequence, together with action 
representations, produces another structured representation. In this representation, 
there is a correspondence between sequence position and time, such that items 
appearing earlier in the sequence are represented as having occurred at earlier points 
in time. The semantic significance of the structure of these representations means 
that they are unlikely to be retrievable piecemeal. Without the semantic information 
provided by the structured representation as a whole, a fragment of the 
representation would most likely be uninterpretable.  

This is not to say that state representations are wholly iconic: in particular, 
luminance values and actions are represented in symbolic form. But this does not 
vitiate the claim that these representations are iconic in the ways I’ve outlined, since 
representations may combine both iconic and symbolic elements (Lee et al., 2022). 
We might construe a pixel vector as a hybrid map-like format: the numerical symbols 
stand for luminance values, whilst their location in the array stands for the locations 
of those values in the image. The use of symbols for luminance values does not 
negate the fact that there is a semantically significant structural correspondence 
between the array and the image. More importantly for our purposes, it is unlikely 
that episodic memories are wholly iconic: they are likely to involve some conceptual 
or semantic elements. Since our interest in this section is in the similarity between the 
representations involved in DQN’s experience replay and those involved in episodic 
memory, a partially iconic representation of events with some symbolic components 
seems to fit the bill.  

4. Episodic Memory’s Function 
 
In this section, I expand on the idea that by using DQN as a model of episodic 
memory, we might advance our understanding of episodic memory’s function.  

I noted in §1 that the function of episodic memory presents a puzzle for 
philosophers and scientists of memory. We might express the puzzle in terms of a 
twofold redundancy. First, given that we have other memory faculties including 
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semantic memory, which stores general purpose information about the world, it 
seems redundant to have a faculty recording information about specific events. 
Second, much of the information stored in episodic memory appears redundant, as 
it relates to highly specific events which will never be repeated and is unlikely to be 
directly useful in any other context. This redundancy, together with evidence that 
episodic memory is subject to systematic patterns of error and neurally overlaps with 
our faculty for imagining future and hypothetical scenarios, has led simulationism to 
become the dominant view of episodic memory’s function (De Brigard, 2014; 
Schwartz, 2020). Simulationism is the view that episodic memory’s function is primarily 
to support the imaginative construction of future and hypothetical scenarios. 

Against this, several philosophers have recently mounted defences of the 
mnemonic view of episodic memory’s function, on which its role is to store, encode 
and retrieve information. For example, I’ve argued that episodic memory facilitates 
retrospective learning, that is, extracting novel information from an event after the 
event has passed (Boyle, 2019). Simon Brown (2023) offers a related account, arguing 
that episodic memory supports unrestricted learning. The idea is that by capturing 
multidimensional information about events, episodic memory enables us to 
continuously revise and expand our models of the world. Elsewhere, I’ve also argued 
(Boyle, 2021) that episodic memory plays a significant role in the storage, encoding 
and retrieval of semantic memory: it is both critically involved in the ordinary process 
of laying down semantic memories and provides internally generated cues for their 
retrieval. In a similar vein, Sara Aronowitz (2022) argues that we cannot understand 
the function of episodic memory in isolation. The process of semanticization, in which 
information from episodic memory becomes gradually more abstract and is encoded 
in semantic memory, suggests that episodic memory can be understood only in the 
context of a broader memory system.   

Evaluating these theories is challenging. A natural way to approach the question 
would be to compare the behavioural repertoires of agents which have episodic 
memory with those of agents which lack it. We might do this by comparing humans 
with and without episodic memory deficits. This can be informative but faces some 
limitations: it can be difficult to know which behavioural differences are attributable 
to episodic memory. This is both because brain damage is rarely limited to only the 
brain areas involved in episodic memory, and because the brain areas supporting 
episodic memory may also support other cognitive functions: brain areas can 
multitask. Alternatively, we might try to compare the behaviours of animals with and 
without episodic memory. But the distribution of episodic memory in the animal 
kingdom is another significant puzzle: there is insufficient agreement about this for us 
to be sure which animals have or lack it.5 

Given the resemblance between DQN and episodic memory at the algorithmic 
level, I propose that DQN and similar algorithms provide a testing ground for 

 
5 For a discussion of this issue, see Boyle (2022). 
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competing theories of episodic memory’s function. In artificial agents, it is possible 
to ablate experience replay and to know that there has been no other intervention on 
the agent’s cognitive architecture. Any differences in the agent’s behavioural 
repertoire that result from this intervention can be traced directly to the agent’s 
having or lacking the capacity to replay past events. It is also possible to tweak the 
inner workings of the experience replay algorithm and observe the effects of these 
changes. Insofar as artificial experience replay resembles biological experience replay 
at the algorithmic level–i.e., both provide integrated, partially iconic, 
multidimensional representations of events–this kind of investigation would provide 
defeasible evidence about the cognitive role function of episodic memory and might 
differentiate between accounts which are otherwise difficult to empirically evaluate.  

Of course, DQN has not been used to directly test rival theories of episodic 
memory’s function, so we should exercise caution in interpreting the results obtained 
with DQN in this way. Such caution notwithstanding, those results do suggest some 
support for mnemonic views, particularly those that emphasize episodic memory’s 
role in semantic learning. In DQN, memories of specific events are used to train a 
network that learns more abstract, relational knowledge structures about the 
relationships between states of the environment and action/Q-value pairs. By using 
event memories in this way, DQN was able to learn much faster than rivals which do 
not make use of event memories in this way. It also attained a new state of the art in 
the Arcade Learning Environment, a set of complex problems involving high-
dimensional sensory input. Disabling the experience replay component of the 
algorithm significantly impaired its performance. If we view the relationship between 
experience replay and the Q-learning network as analogous to the relationship 
between episodic and semantic memory, this provides some support to the 
theoretical claim that episodic memory supports the rapid acquisition of semantic 
memory. At the very least, it vindicates the idea that episodic memory could carry out 
a distinctive mnemonic function, even in the presence of a more general, abstract 
memory system. And given the similarities between DQN and episodic memory, I 
suggest, this provides some defeasible evidence that episodic memory carries out a 
similar function in us.  

One might worry that the preceding argument overstates the similarity between 
DQN’s experience replay and our episodic memory capacity. One reason for thinking 
this is that DQN records details accurately and the contents of its stored ‘experiences’ 
are not subject to change. By contrast, biological episodic memories are constructive 
and friable. We do not ‘record’ events accurately in entirely faithful detail. Our 
episodic memories are reconstructed at the time of retrieval, often drawing on 
general knowledge from semantic memory as well as details from the original event. 
As such, they are subject to change whenever they are retrieved, leading to 
systematic patterns of error  (see De Brigard, 2014 for discussion). A second, 
converse, issue is that biological episodic memories may include many details DQN’s 
memories do not. Most of us remember perceptual and sensory information that goes 
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beyond the visual: we might remember sounds, smells, sensations and so on. 
Moreover, there are types of non-sensory content we recall as well, such as 
information about the emotions we felt or what we were thinking at the time of the 
event. In summary: DQN’s representations include a type and level of detail not 
typical of episodic memories, whilst also excluding some kinds of information 
characteristic of episodic memories.  

However, using DQN to learn about episodic memory’s function does not 
require that the two be exactly similar. Our interest is in using DQN as a model of 
episodic memory, such that we can draw justified inductive inferences about episodic 
memory by observing and manipulating DQN. Models can be useful in this way even 
if they are simplified or idealized, that is, even if they omit certain features of the 
modelling target, or include some features not found in the modelling target. As 
Catherine Stinson (2020) argues, what matters is whether both the model and the 
target belong to a common kind which licenses inferences from one to the other. In 
brief, what I have been arguing in this section is that DQN and episodic memory are 
members of a common kind: a kind of memory system characterized by the storage, 
encoding and retrieval of partially iconic representations storing detailed 
multidimensional information about past events. Moreover, our focal question about 
the function of episodic memory can reasonably be construed as a question about 
this kind of memory system: what is the use of a memory system which processes 
detailed, multidimensional representations of past events? So, despite the ways in 
which its representations differ from those involved in episodic memory, DQN seems 
like a promising model. Of course, it would take empirical work to establish the utility 
of this model; what I have been arguing is that there are good theoretical grounds 
for thinking that this empirical work would be fruitful.   

Of course, there may be contexts in which these representational differences 
between DQN and episodic memory really matter. We might be interested in asking 
a somewhat narrower question about episodic memory’s function, such as whether 
the reconstructive, error-prone processes that characterize our episodic memory 
confer epistemic or other advantages (Michaelian, 2013; Puddifoot & Bortolotti, 
2018). In this context, a useful model would need to belong to a narrower kind: a 
constructive memory system processing similar representations of past events. DQN 
does not fall into this category. But this does not show that it would not be useful 
here, since the DQN algorithm could be adapted to incorporate constructive 
processes.6 So, rather than vitiating the use of DQN as a model of episodic memory, 
the concern suggests how refinements to the algorithm might expand the range of 
theoretical questions with respect to which it is a fruitful model of episodic memory.  

A related concern is that, notwithstanding the representational similarity 
between episodic memory and DQN, there remain significant differences at the 

 
6 For an example of a (non-DQN) episodic memory algorithm incorporating constructive processes, 
see Zakharov et al. (2020) 
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algorithmic level relating to how these representations are processed. For example, 
in DQN, representations of past episodes are randomly sampled and used to train 
the Q-learning network. As I’ve indicated, semanticization in humans is a candidate 
analogue for this process: episodic memories are gradually consolidated and 
abstracted into semantic memory. However, it is unlikely that our episodic memories 
are sampled randomly for this purpose: salience, recency and other factors are likely 
to have a significant impact on which memories are prioritized for semanticization. A 
related point can be made about forgetting. In DQN, the oldest stored experiences 
are erased when the episodic buffer reaches capacity. This does not mirror patterns 
of human forgetting: we forget many things besides our oldest memories and retain 
some memories for a very long time.  

Again, there may be contexts in which these algorithmic level differences may 
not matter. If we’re interested in understanding how a store of detailed, 
multidimensional event-specific memories can be used to support the acquisition of 
more abstract, general knowledge, DQN seems a suitable idealized model of this 
process. And as before, whilst there are contexts in which these differences do matter, 
the algorithm might be extended to resemble episodic memory more closely in 
relevant respects, so as to expand our understanding of episodic memory.  

For example, Schaul et al. (2016) develop a DQN-based algorithm by adding 
prioritized experience replay. In this version of the algorithm, memories are not 
sampled randomly from the episodic buffer. Instead, memories with the highest 
temporal difference (TD) error are prioritized–that is, experiences which are more 
‘surprising’ because the reward obtained differs significantly from the reward the 
system would predict. Alternative prioritization criteria could be used; the choice of 
TD error here is partly motivated by evidence that experiences with TD error are 
prioritized for replay in the hippocampus. This variant on DQN exhibited faster 
learning and a new state of the art in the Atari environment.  

We might take this to provide defeasible evidence about the function of 
forgetting: at first blush, Schaul et al.’s results appear to support the view that 
forgetting is not a design flaw, but a critical design feature on a well-functioning 
memory system (Fawcett & Hulbert, 2020; Michaelian, 2011). Forgetting in biological 
systems can take two forms: information either becomes inaccessible or unavailable. 
Inaccessibility is a matter of information still being encoded in memory but being 
more difficult to retrieve; unavailability is a matter of the information having been 
entirely lost. We can see that deprioritization for replay in Schaul et al.’s algorithm 
provides an approximate analogue for inaccessibility: when information is 
deprioritized, it’s less likely to be retrieved. As such, the algorithm suggests an 
adaptive role for at least one kind of forgetting: making events with low TD error less 
accessible leads to quicker learning and improved policies. Investigating the effects 
of different prioritization criteria might provide further insights into the function of 
both memory and forgetting. 
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As Shaul et al. note, one way to extend their work would be to apply 
prioritization criteria to erasure, for example, by erasing the memories with the lowest 
TD error, rather than the oldest memories, when it reaches capacity. Extending the 
algorithm in this way might shed light on the other form of forgetting: unavailability. 
In this vein, Ruishan Liu and James Zou (2019) investigate the relationship between 
the size of the memory buffer and learning rates, finding that learning rates slow when 
the buffer is either too large or too small. They develop an algorithm in which the size 
of the memory buffer adaptive changes. If the TD error of the oldest memories is 
increasing, suggesting that these memories are becoming more informative, the 
buffer size increases and these memories are retained for longer. On the other hand, 
if the TD error of the oldest memories is decreasing, suggesting that they are 
becoming less informative, the buffer size decreases and these less informative older 
memories are more likely to be erased. Again, this suggests an adaptive role for 
prioritized patterns of forgetting in learning.  

Similarly, we might note that whilst DQN only uses recorded experiences to train 
its Q network, our episodic memories are clearly put to other uses: most obviously, 
we frequently retrieve salient episodic memories to inform online decision making. 
This marks another significant difference in how episodic memories are processed in 
DQN and episodic memory. Once again, this simply shows that DQN is not a useful 
model in all contexts, as well as highlighting a way in which we might wish to develop 
experience replay algorithms to suit particular theoretical goals in cognitive science. 
If our interest is in investigating episodic memory’s role in decision making, we would 
be better off looking at an algorithm in which recorded experiences are used in a 
similar way. For example, Blundell et al. (2016) develop an alternative experience 
replay algorithm they call the ‘Episodic Controller’. In this architecture, past 
experiences are stored in a buffer which the agent can query to inform its decision 
making. When faced with a decision, the agent uses this body of stored knowledge 
to determine which actions have previously been associated with the highest reward 
in situations similar to the one it currently faces. The Episodic Controller learns quickly, 
especially in the early stages of confronting a novel problem, and particularly in sparse 
reward environments. In these scenarios, it exhibits behaviour ‘akin to one-shot 
learning’ (Blundell et al., 2016, p. 7). This architecture could be a fruitful model of 
episodic memory for the purposes of developing and evaluating accounts of episodic 
memory’s role in decision making. At first blush, the view suggested seems to be that 
having access to information about individual, salient episodes facilitates fast learning 
in novel environments when reward is scarce.  

5. Conclusion 
 
Episodic memory presents many puzzles for memory theorists. Among them is the 
question of its cognitive role function: what does episodic memory contribute to the 
cognitive systems of which it’s a part? I’ve argued that this question properly cast at 
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the algorithmic level: what is the purpose of a memory system that exploits detailed, 
multidimensional, partially iconic representations of specific past events? It is difficult 
to gain empirical traction on this question by looking at biological systems. But, I’ve 
argued, DQN provides empirical leverage on the question in virtue of its similarity to 
episodic memory at the algorithmic level. In particular, against increasingly popular 
simulationist views, the results obtained with DQN suggest that episodic memory 
plays a distinctive mnemonic role in the process of semantic learning, as several 
theorists have recently argued. Of course, there are significant differences between 
DQN and episodic memory in biological systems. But these do not undermine the 
utility of DQN in this context. Rather, they suggest ways in which we might adapt 
DQN or similar algorithms in future work, in order to evaluate theories about episodic 
memory’s operations and its distinctive contributions to cognition.  
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