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We introduce a simple model describing an agent traveling within a medium containing resources randomly
distributed in space. The agent, initially located at some origin, performs a single step toward a target of his
choice that minimizes an economy function. We use an economy function that depends on the weight of the
target and its distance from the origin. The cost and length statistics of the displacements are analyzed. We find
a critical point for a particular resource weight distribution, such that the average cost vanishes (or becomes very
small in practice). This problem can describe an economical agent looking for a firm with the best price or
largest product choice, a tourist in search of an interesting and nearby city to visit, or an animal foraging in a

complex landscape. © 2005 Wiley Periodicals, Inc. Complexity 10: 52-55, 2005

Key Words: deterministic walks, phase transitions, agent models, foraging

1. INTRODUCTION

Ithough the theory of random walks [1], including ran-

dom walks in disordered media [2], stands on firm

foundations, the field of deterministic walks is much
less understood [3]. Deterministic walk problems have
many applications in physics as well as in some fields out-
side physics such as sociology, in animal behavior [4], and
in economics, where, for example, the assumption that cus-
tomers choose where to buy according to a convenience
criterion [5] determines the location sites of stores in order
to maximize their markets. The well-known Traveling Sales-
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man Problem is a good illustration of the mathematical
challenges brought by such problems. Even simpler models,
involving walkers visiting fixed location points according to
some local deterministic displacement rules (see, e.g., the
“tourist problem” [6, 7]) become very difficult to analyze
formally as soon as spatial disorder is present.

Here we introduce a simple problem that can be solved
exactly and that provides interesting insights regarding the
outcome of complex spatial distributions of resources on
the trajectories of an agent. Consider a random distribution
of localized, heterogeneous targets (representing resources,
for instance) and consider an agent, located at some point,
who wants to reach a target sufficiently large and not too far
away. The question asked is: What is the most convenient
target to choose? This problem can have many implications.
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For instance, the complex spatial distribution of cities and
the wide variations in their size have shaped transportation
networks and the movements of travelers in order to lower
costs [8]. At an other scale, fruit-eating or herbivorous ani-
mals foraging in their environment are faced with similar
situations [9]: maximizing food intake at least effort. Such
problem is not simple: most ecological systems (for in-
stance, tropical forests) contain resources heterogeneous in
size and distributed spatially in a disordered way [10]. Sim-
ilarly, a tourist visiting cities of varying interest would have
to take similar decisions [6, 7]. Complex movement patterns
can appear as a consequence of these distributions, but
little is known about their properties.

We are interested in characterizing the statistics of dis-
placements that arise from a minimal cost decision on such
“landscapes” of randomly distributed resources, as well as
the distribution of the cost that results from this decision.
The problem studied in this article is a single step process
and there resides its simplicity. However, the model exhibits
nontrivial features that could persist in more complicated
situations. In particular, we show that for realistic choices of
the economy function upon which the decision is taken, if
the weight (or size, or importance, etc.) of any resource is
random and follows an inverse power-law probability dis-
tribution function, then the system can fall in a “critical”
state. At this particular point, the statistics of the displace-
ments have very large fluctuations and the mean cost of a
displacement vanishes.

In the following section, we briefly present the model
and a derivation of its solution. We then discuss the main
results in Section 3.

2. THE MODEL

In general terms, we consider an agent at the origin of an
infinite d-dimensional system (d = 2 for practical purposes) in
which targets are placed randomly with uniform number den-
sity p. Each target is point-like for simplicity, and offers a
weight k. The weights k are independent identically distrib-
uted random variables with probability distribution ¢(k). We
assume that the agent has complete knowledge of the loca-
tions of each target as well as the values of k offered by them.
Further, we assume that the agent decides which target to visit
according to a criterion based on the optimization (minimiz-
ing) of an economy function (cost) E(/, k; ). In general,
E(l, k) is a decreasing function of the value k; offered by the ith
target and a growing function of the distance /; to that target.
(see Figure 1). For instance, E(l;, k) = [; /k;.

Under these conditions, we are interested in finding the
probability that the agent performs a sojourn of length / to
the optimal target. We denote this probability distribution
as P(l), and we denote by g(C) the distribution of the cost of
the optimal sojourn.

We begin by presenting the general formalism for calcu-
lating these quantities. We denote by C the minimum of E(/,
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Schematic representation of the model. An agent (A, B...) initially
standing at some arbitrary location in a random and heterogeneous
environment moves toward the nearest/biggest target.

k;) over the system, corresponding to a sojourn of length [*
toward a target of weight k* Inverting C = E(I*, k*), we can
write k* = F(I* C); similarly we can invert to obtain [* = G(C,
k*. This implies that for all other targets, k; < F(l,, C). Given
the assumptions of independence, the probability for this to
be the case can be calculated by noting that every region dV/
around position r in the system must be either empty or
occupied by a target with a value satisfying the above in-
equality. That is

Q(C) =[] [(1 = paV) + Prob(k < Hr, C))pdV]

= exp{ —Qd)p fﬁ [1 — Prob(k

0

< FKr, O)Ir'* 'dr}, (1)

where Q(d) is the d-dimensional solid angle and Prob(k <
F(r, Q) = JE© O (k) dk. Thus, Q(C) is the probability that all
values of E(], k) in the system are larger than C. The distri-
bution g(C) of the minimum cost is g(C) = —dQ/dC.

Next we require the probability to find the optimum
target at a distance /* = L Now, among all the targets with
fixed value k, the one that represents the lowest cost is, of
course, the nearest. Thus we first obtain the distribution of
distances to the nearest target with value k, which we de-
note by p.()). Since the density of targets with value k is
merely p$(k), the required probability is

d
P(l) = = exp{=pd(l)ad) I}

= pp(HU )l exp{—pd()QUDIY.  (2)
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From this expression, the distribution of the distance to the
optimal target can be calculated directly as

J m()\)d)\]
GUE(LK),m)

= pQ(d)dl*" >, $(k)

k=1

P(l) = E P 1

m#k

X eXp[—pQ(GD > dmIG(E( k), Wl)]"‘]. (3)

m=0

We are now in position to analyze the statistical properties
for specific cases. In what follows we specialize the above
expressions to the case in which ¢(k) is an inverse power-
law distribution: the medium is composed of many small
targets and fewer large ones broadly distributed. This is a
realistic description of tree-size distributions in forests [10],
for instance. To simplify, let us consider ¢(k) concentrated
on the positive integers (k = 1, 2...):

k= &
o (k) =§(—a)2 8(k—n) (4)

with « a resource exponent larger than 1. The normalization
constant is the Riemann zeta function, {(e) = 2{_, i . This
choice allows us to evaluate the effect on the resulting
distributions of the convergence or divergence of the mo-
ments of ¢(k). More importantly, we will restrict the econ-
omy function to the simple case E(], k) = I/k” with y > 0.
Then, if the optimal sojourn has E(/, k) = C, we have k = F(],
O =[/AY and I = G(C, k) = Ck".

The first expression we need to evaluate is the integral
appearing in Q(C), namely:

fw [1 — Prob(k<[r/C]") ] 'dr=yC? fx [1 — Prob(k

0

< M)A Ldn

_ C'¢(a = yd)
“d (o W
which, substituted into Eq. (1) yields
Q —d
Q(C) = exp{f % Cd}. (6)

We will return to a more thorough discussion of this form
later. We now turn to the evaluation of P(l) for this case.

First we consider the awkward sum appearing in the expo-
nential in Eq. (3):

. Lo
S GG K, m)? = 2o B m
— d ld
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Thus, the distribution of step lengths is given by

B3

> k*aexp{ pOU(d) ————

k=1

Q(d)di!

a—dy F
P = p o I v) }

fa) K™
®)

To get a better understanding of the behavior of this func-
tion, we focus on its large [ behavior. In this limit we can
convert the sum into an integral, which yields

P( l) — l*[(a*l)/y*dJrl]

pdQ(d)
()

{la — dv) s

x’“exp{ pQUd) ——~—
0

The above continuous expression holds if the Riemann zeta
functions are finite, i.e., if « > yd + 1.

3. DISCUSSION
Expression (6) shows that the distribution of the cost of the
optimal move is always narrow (C does not fluctuate much
if the agent starts from different origins), whereas the step
length distribution (9) can decay slowly with [ Therefore, a
same typical cost can be associated with markedly different
travel lengths. An interesting phenomenon occurs when the
resource exponent « reaches (from above) the critical value
a.=dy+ 1. (10)
The function {(« — dy) in Eq. (6) diverges at that value. The
cost distribution function for a < «, is therefore simply the
delta-function, g(C) = 8(C) [recall that Q(C) = [¢ dx g(x)]. This
situation is paradoxical at first sight: as Cis a positive quantity
by definition, how can the result be C = 0! The explanation can
be formulated as follows. At low values of « (<«,), the density
of large targets is relatively high and they strongly dominate
the statistics. For instance, if one chooses y = 1 and d = 2, then
a, = 3 and the average (k*) = « below that transition value. Let
us consider a finite system, with number density p and N
targets. The largest target has a typical weight k,,,, ~ NY/179,
that increases with N. If a < «, the result tells that the typical
cost C = I/k” goes to zero at large N (keeping p constant),
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meaning that, in average k" increases with N faster than [
Thus, for low «a values, the sojourn of minimal cost can tra-
verse a macroscopic fraction of the system, as ever bigger
targets can be found at increasing distances. The situation is
somehow similar to a condensation phenomenon in physics:
here, the cost “condensates” toward the value zero. On the
other hand, if « > «, large targets are sufficiently scarce so
that the typical cost remains finite and independent of the
system size for large systems.

The average cost (C) of a step is easily deduced from (6).
For « close to «, (¢ > «), one obtains

(O~ (a—a)'" (11)
Considering (C) as the order parameter of the transition («
being the control parameter), one concludes that the tran-
sition is of second order, with an order parameter exponent
equal to 1/d.

We then analyze the length distribution P()) in the case
a > a. . In this range P(]) is given by expression (9) and
decays algebraically with £

P(l) ~ I~ (12)
As a—a, , one obtains u—17": at the critical resource distribu-
tion, the length of the steps suffers large fluctuations [right at
a, normalization of P in any finite system is ensured by the
existence of a k,,,, and the associated exponential cutoff; see
Eq. (8)]. Away from criticality, P()) decays faster than 1/ at
large 1, but its second moment (I ? ) still remains infinite in the
interval o, < a < oy , where a; = (d + 2)y + 1. In that interval,
the distribution of /is thus asymptotically equivalent to a Lévy
distribution. For values of the resource exponent larger than «;,
, the steps have a finite mean and finite fluctuations around it.
In other words, the k’s of the targets are seen as essentially
homogeneous by the agent.

We have not analyzed in detail P()) for @ < «. . However,
one can show from Eq. (8) that below criticality, the sojourn
length distribution is characterized by a length ¢, that is of
the order of the linear size of the system, (N/p)*/%. Numer-
ical simulations of the model (not shown) confirm this
property. The existence of this length scale, although large,
makes the fluctuation ratio (/)/{})* finite and independent
of N, unlike the case o, < a < a;.

Figure 2 summarizes the main results in a “phase dia-
gram” as the resource distribution exponent « is varied.

4. CONCLUSION

We have introduced a simple model where an agent, located in
a medium containing a complex spatial distribution of re-
sources, chooses a target than minimizes an economy func-
tion and travels to it. Namely, the agent has to choose a target
large enough and located not too far away. The model exhibits
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Mean cost of a displacement as a function of the resource exponent
«. The corresponding statistics of the length / are also indicated.

a nontrivial behavior: for a particular size distribution of re-
sources, the lengths of the displacements have very large fluc-
tuations and the typical cost of a move vanishes (if the system
is infinite). This property is analogous to a critical phenome-
non occurring at a phase transition. The critical resource dis-
tribution is an inverse power-law with a well-defined expo-
nent: the number density of large targets must be high enough,
but not too high. Too many large targets kill fluctuations as
well as the scaling behavior of the step length distribution. Too
few large targets have the same effects. This problem could
have interesting applications in the study of animal foraging.
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