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Abstract

Scientists are often asked to advise political institutions on pressing risk-
related questions, like climate change or the authorization of medical drugs.
Given that deliberation will often not eliminate all disagreements between sci-
entists, how should their risk assessments be aggregated? I argue that this
problem is distinct from two familiar and well-studied problems in the litera-
ture: judgment aggregation and probability aggregation. I introduce a novel
decision-theoretic model where risk assessments are compared with accept-
ability thresholds. Majority voting is then defended by means of robustness
considerations.
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1 Introduction

Scientists are often asked by political institutions to give expert advice on press-
ing questions. For instance, agencies that regulate medicines regularly resort to
expert panels, and national scientific academies give advice to the government or to
the assemblies. Even after discussing, scientific experts do not always agree on the
answer, and when they do, they may disagree on the justification for this answer.
How should decisions that involve risk assessments be taken and justified within sci-
entific expert panels? This is the central question studied in this paper. As a matter
of fact, many expert panels take decisions using the majority voting rule. This is
for instance the case in advisory committees in the European and in the American
agencies that grant medicines authorization, respectively the EMA and the FDA.!
But is it the best decision rule? Is majority voting on the final decision the best
way to aggregate different experts’ opinions, and to track their reasons? This paper
is restricted to cases in which the expert panel is asked to take a decision on only
one binary question, for instance to answer the question “Is the risk-benefit ratio
of some medicine worth it to be authorized for commercial use?”. This simple case
is already interesting as it corresponds to many real-life cases: some expert panels
are constituted on the sole purpose of answering one specific question, or are asked
to answer several but logically unrelated questions — e.g. decisions about different
medicines.

To study this problem, I introduce a novel decision-theoretic model. The true/false
decision is supposed to be taken by comparing a risk assessment a (typically, a prob-
ability) to a risk acceptability threshold ¢, e.g. “true” if and only if a < ¢. For sim-
plicity, a and ¢ are supposed to be in [0, 1], but any quantity might go.? It is assumed
that the n experts agree on the threshold value, but differ in their individual risk as-
sessments a (k= 1,...,n) — or conversely, that they agree on the assessment, but
disagree on the threshold value. Typically, the question asked to the expert panel is
in the form “Is X’s risk below t?”. The problem studied in this paper is to determine
how the individual a;’s should be aggregated in comparison with ¢, so as to give the
group’s answer to this question (I shall speak equivalently of the group’s decision,
or of the group’s belief on whether the risk is below ). Compared to probability ag-
gregation theory which studies the aggregation of probabilistic opinions, the novelty
of this model lies (i) in the introduction of a threshold comparison which projects
probabilities into a binary space, and (ii) in the fact that the group has to take a

LCf. Hauray and Urfalino (2007), Urfalino and Costa (2015).
2Real quantities can be mapped to the interval [0,1], for instance with the function
x—=1-1/(1+2x)).



stand on one binary question only, and not on a more complex agenda. Compared
to judgment aggregation theory which studies the aggregation of an interconnected
set of beliefs, the novelty is that individuals do not just have true/false beliefs but
probabilistic ones, even if the group is asked to express a true/false belief in the end.
The present problem can be considered as a first bridge between these two existing
frameworks. The best decision rule for our binary question is likely to depend on the
details of characteristics of the question, of the experts, of the available knowledge,
and on other details. My methodological approach is not to conduct a detailed study
of particular cases, but to look at features which most (interesting) cases share, so
as to find general properties of the best decision rule — what is meant by “best”
shall be discussed too.

The main claims of this paper are the following. I argue that the framework
of probability aggregation cannot help us solve the present problem (Section 2),
because the aggregation problems it considers are too general. For the aggregation
of scientific risk assessment on a specific question, a theory of its own is needed,
and I try to sketch one here. I then argue that robustness considerations clearly
legitimate majority voting on the final decision (Section 3). But when justifications
for the decisions are sought, majority voting can lead to inconsistencies and the
expert panel should aggregate on the reasons separately, before deriving logically its
decision (Section 4). Overall, the case for the majority rule is thus a mixed one.

2 Probability Aggregation and Beyond

A standard requirement for a scientific expert panel is that it provides justi-
fications for its decision. In the present model, the decision has to be consistent
with the comparison between the risk assessment and the threshold, so a minimal
justification is that the panel has a belief on the risk assessment (as all experts have
a belief on the risk assessment, it would be weird that the panel claims to refuse the
authorization while not being able to say that it believes that the risk assessment
is above the threshold). So, our problem includes as a first step the aggregation of
the individual risk assessments {a }1<k<, into a single group assessment a — deeper
justifications for the group’s decision are contemplated in Section 4. The group’s
decision is supposed to be consistent with this assessment, so pragmatically the eas-
iest way to do so may be for the group to first aggregate the individual assessments,
and then compare the result to the threshold.

Majority voting on the decision itself is a standard way for expert groups to
take decisions, but it does not proceed in that way. Can it be objected that, within
our model, it lacks the requirement that the group should be attributed a belief



on the risk assessment? No, for the following reason. The result of the majority
vote is “true” if and only if a majority of agents vote “true”, i.e. if and only if a
majority of agents have a numerical assessment below the threshold, i.e. if and only
if the median of the agents’ assessments is below the threshold. In other words, the
majority voting rule on the decision is equivalent to considering that the group’s
assessment is the median of the individual assessments. Hence, majority voting is in
the race. What are the other challengers? A standard way to aggregate probabilities
is to make averages. The linear average is defined as ), ax, and it can be generalized
with weights wy > 0 and ), wy = 1, as Y, wyay, to take into account unequal
degrees of expertise on the question.?> Other averages are the geometric average or
the harmonic average. Our problem is to determine which probability aggregation
rule, followed by the threshold, is the best one in our problem. It is easy to see that
these various probability aggregation rules can give different binary decisions for the
group.

Pooling probability functions has been studied for several years in the theory
of probability aggregation (for surveys, cf. Dietrich and List forth., Martini and
Sprenger forth., section 3). Can its results be used to select the best aggregation
rule in our problem? I shall argue that unfortunately no. The framework of proba-
bility aggregation adopts an axiomatic method: it starts by stating several axioms
which appear as desirable properties for the pooling function and then studies which
function or aggregation rule, if any, satisfies them. The axioms considered in Dietrich
and List’s survey can be expressed in our case as:

e Independence: the group’s probability a only depends on the individual
probabilities ay.

e Unanimity preservation: if all agents’ probabilities a; are the same, then
the group’s probability a is this one too.

e Three Bayesian axioms: if some information is learned by all individuals,
then the group’s decision changes by conditionalization on that event.

3Tt is akin to the iterated Lehrer-Wagner model which, starting from respect weights agent have
to one another, provides a single probability for the group. However, the iterated Lehrer-Wagner
model, and even more its normative interpretation, have been subjected to many criticisms (for a
survey, cf. e.g. Martini and Sprenger forth. section 4). As a descriptive model, it is not useful for
the present discussion.

4Consider for instance the median and the linear average, with three experts with
a1 = az = 0.04, a3 = 0.10, and t = 0.05. A majority voting on the decision gives a “true” as
two experts on three assess the risk to be below the threshold. The linear average (with equal
weights) is 0.06, which is higher than ¢, so this gives a “false”.



The Independence axiom is automatically satisfied here, because our problem con-
tains only one true/false answer, and there is no other probability on which a could
depend. The three Bayesian axioms make sense in cases where the expert panel
learns new information. In our problem, however, an extensive discussion has al-
ready taken place so no agent learns new information anymore, and the expert panel
is not making any new inquiry. So the Bayesian axioms are not relevant in our case,
and only the Unanimity preservation axiom expresses a desirable property for the
aggregation rule.

An essential point to note is that a very large number of aggregation rules sat-
isfy this axiom: the median, linear averaging, geometric averaging, and so on —
actually, any convex function of the a;. This illustrates the fact that a classical
uniqueness result from the probability aggregation literature does not hold any-
more: the well-known theorem by McConway 1981 and Wagner 1982, which states
that linear averaging functions are the only independent and unanimity-preserving
functions. The reason is that the theorem requires a set of at least three events,
whereas our problem only considers two — e.g. the product is risky, with probabil-
ity ag, and the product is not risk, with probability 1 — a,. Considering a simpler
agenda has widened the set of suitable aggregation rules, and no theoretical result
from the literature can be used to pick the best one. More generally, the uniqueness
and impossibility results from the theory of probability aggregation are useless for
our problem. So, how scientific expert panels should aggregate risk assessments is
not a simple problem that can be solved straightforwardly with the existing liter-
ature, which has focused on general problems with complex agendas, and has thus
neglected more specific yet important questions. In the next section, I discuss other
desiderata or axioms that we would like to impose on the aggregation rule.

3 Robustness Matters

Scientific risk assessment is supposed to meet some standards of reliability and
objectivity, and the aggregation of these assessments should follow alike standards.
In this spirit, I now introduce several new requirements for our aggregation rule.
The aggregation rule should be sensitive to the right features of our problem, and
not to the parasitic ones. It should favor objective features at the detriment of
idiosyncrasies or unwanted values (for an analysis of the concept of objectivity, cf.
Douglas 2004 — I refer to some of her distinctions below). In other words, the
aggregation rule should be robust to some changes that we regard as irrelevant.
In this section, I defend three dimensions of robustness that should be taken into
account: the risk metrics, the level of detail, and the presence of strategical agents.



Several probability aggregation rules can be considered: linear averaging, geo-
metric averaging, harmonic averaging, among others. As the forthcoming robustness
discussion is similar for all the various averagings, I shall simplify it and consider
only linear averaging, which shall be contrasted with the median. R, denotes the
aggregation rule that compares the threshold with the linear average (which thus
stands for other averages), and R,, the aggregation rule that compares the thresh-
old with the median of the individual assessments (which is equivalent to a majority
vote on the decision itself).

3.1 Metrics

The formal model T have introduced relies on a quantitative scale — a and ¢
are given numerical values in [0,1]. How is this scale defined in real cases? My
talking about probabilities has been only a matter of simplicity given the reduction
of the problem to the [0, 1] interval, and typical cases do not bear on well-defined
probabilities or explicit scales. For instance, a standard question posed at an FDA
advisory committee is “Does the overall risk versus benefit profile for X support
marketing in the US ?7°. This question supposes that experts identify the risk versus
benefit profile, and determine the value of the threshold under which a marketing is
warranted. This can be done in a number of ways, and these are essentially value-
laden questions® — what is acceptable or not has to do with extra-scientific values,
and may also reflect the fact that an expert is risk-averse or risk-seeking. Overall, it
makes sense to suppose that both the metrics scale and the threshold depend on the
experts. Conversely, as the aggregation procedure is supposed to take place when
the experts have extensively discussed, one can make the simplifying assumption
that the same facts are known to all, and thus that the risk assessment is the same
for all. In that way, our model actually applies in the setting in which a is common
to all experts, but each has her own threshold ¢,. The fact that the quantitative
risk scale is not uniquely defined can be approached from a mathematical viewpoint:
any scale can be reparametrized by applying any continuous bijection from [0, 1] to
[0, 1], such as z — z2.

These points make a hard time for the rule R, (and other non linear averagings).
First, from a practical viewpoint, the dependence of the risk scale metrics on the
expert prevents the use of rules which take as inputs the numerical values of the risk
assessments or of the threshold. For instance, is it even possible for a chairman to ask
her colleagues “Please tell me your overall risk versus benefit acceptability threshold”

5Cf. Urfalino and Costa (2015, p.183).
50n the role of values in science more generally, and a critic of the value-free ideal, cf. Douglas
20009.



(or assessment), given that each expert may have her own scale? The rule R,,, as it
is equivalent to majority voting, needs not rely on input individual numerical values,
and is thus safe from this criticism. Second, even if these practical difficulties could
be overcome, some theoretical difficulties remain. Suppose a common scale has been
adopted so that all experts can express their ¢,. An aggregation rule that depends
on the metrics of that common scale can give different outcomes according to the
scale employed, as shown in Table 1. This dependence is a problem: which common
scale should be chosen? (This is another aggregation problem!) Note that a variant
of this problem exists even with a well-defined probability scale. For instance, let A
be the event that a certain risk (e.g. carcinogenic substances in food) is responsible
for more than 10 cases of cancer in 100,000 people during 1 year. The experts
estimate the probability of A, p(A). Consider now A’ the event that the risk is
responsible for more than 10 cases of cancer in 100,000 people during 10 years.
Call p(A’) its probability. If the cancer cases are independent along the years, then
p(A’) =1—(1—p(A))¥*. Because the relation between p(A) and p(A’) is not linear,
taking the linear average of the experts assessments on A, and transforming it into
an assessment on A, or taking the linear average of the experts assessments on A’,
does not give the same result. Which event A or A’ is the more “natural” is not
clear, and so much more for the right risk group assessment.

This gives good reasons to consider the following requirement: the aggregation
rule should be insensitive to the metrics used to describe the problem, i.e. the
assessment and the threshold. What should matter is just the relative position of
the a and tj, not their distance which can be due to some idiosyncratic value-laden
judgments. This is requiring that the aggregation rule is more objective, under the
sense of value-neutral objectivity as characterized by Douglas (2004, p. 460), which
does not mean “free from all value influence” (as judging whether a risk benefit
ratio is lower enough is bound to involve a value judgment), but takes a position
“that is balanced or neutral with respect to a spectrum of values” (here, the balance
is reached by taking into account only relative positions). The metrics robustness
excludes the rule R, which employs a linear average — Table 1 has shown a counter-

‘ t ty ts a ‘ Averaget R, ‘ R
x scale | .01 .01 1 .05 .04 False | False
22 scale | 0.0001 0.0001 .01 0.0025 | 0.0034 True | False

Table 1: Example in which the rule R, gives different answers depending on the scale.
The three experts have different thresholds ¢, and a common risk assessment a.



example — but not R, which relies on the median.”

3.2 Level of detail

Another argument for an aggregation rule that does not rely on a specific metrics
comes from considerations of the level of detail in which the problem is described. So
far, a continuous scale has been assumed, with numerical assessments in [0, 1]. Nu-
merical discrete scales could also be used or even qualitative assessments only — it
corresponds to decisions under uncertainty and not under risk. Consider for instance
the case of the well-known IPCC Assessment Reports, that formulate a synthesis of
existing scientific knowledge on climate change issues. The reports use a standard-
ized vocabulary to express uncertainties, with several scales: some are qualitative
(e.g. low/medium/high), others are quantitative (and use probabilities).® The his-
torical trend has been to use more quantitative scales and less qualitative scales,
but the latter have the advantage of being easily understandable by non-technical
audiences, and thus should continue to be used in the future. Some qualitative
and quantitative scales are in an explicit correspondence, as illustrated on Table 2.
Writing an IPCC report involves synthesizing large amounts of scientific literature,
so co-authors of a chapter may have different beliefs on the uncertainties associated
with a finding. Whether they express their beliefs on a qualitative or on a quan-
titative scale, the way their beliefs are aggregated should be smooth and not vary
abruptly (some very precise yet qualitative scales are conceivable), all the more than
some explicit correspondence exist (Table 2). This is also a question of historically

"The comparability of scales is also discussed in Risse’s (2004) political philosophy work, who
also takes it as an argument for majority voting.
8Cf. e.g. the last report of the Working Group I, Stocker et al (2013, p. 138-142).

Term Likelihood of the Outcome
Virtually certain 99-100 % probability
Very likely 90-100% probability
Likely 66-100% probability
About as likely as not | 33-66% probability
Unlikely 0-33% probability

Very unlikely 0-10% probability
Exceptionally unlikely | 0-1% probability

Table 2: Likelihood terms associated with outcomes used in the Fifth Assessment
Report of the IPCC (Stocker et al 2013, p. 142).



consistency when switching from qualitative to quantitative scales.” Thus, a sound
requirement is that the aggregation rule extends to formulations with discrete and
qualitative scales. As the average of non-numerical and qualitative values is not
defined, R, does not satisfy this requirement. The median is defined on any kind of
scale, and R,, satisfies the requirement. So only R,, is robust for the level of detail.

3.3 Bias and strategical votes

Not all experts are moved by epistemic goals only, and conflicts of interests
can arise. For instance, numerous controversies have surrounded the FDA advisory
committees along the years (Urfalino and Costa 2015, p. 168-169.) If a better
selection of experts may be the solution, the decision rule used in the expert panel
can also reduce the impact of bias agents.!® With R,, an expert can strategically
express a much lower risk of a medicine to influence the group’s average — with
a threshold at 10 %, she might express 0.1% instead of just 9%. The aggregation
rule should be insensitive to such a strategical vote manipulation, and this is all
the more important as the biased agent may have already influenced other agents
during the preceding discussion. R, is clearly robust in this sense, as an agent has
the same influence whether her probability is just below the threshold or close to 0.
This is not so for R,. This robustness requirement also makes the aggregation rule
more objective, in the sense of detached objectivity (Douglas 2004, p. 459): one’s
personal values (allegiance to a firm) should not prevail on evidence (e.g. that the
probability is 9%, as above).

Overall, the three robustness requirements considered here clearly favor R, over
R.. This provides a substantial justification for the traditional democratic rule in
expert panels confronted with a binary decision. This result is a real departure from
probability aggregation theory, in which linear averaging is justified on solid grounds.
Narrowing the agenda and introducing a threshold has changed the solution to the
aggregation problem.

90mne may object that in the IPCC case the co-authors aggregate beliefs without a threshold
comparison for a binary decision. Actually, thresholds are implicit: a finding which confidence is
too low may not be mentioned. Anyway, the IPCC example can be seen as a mere illustration of
the level of detail problem.

10Biased and extremist agents have been much studied in the literature of opinion dynamics (cf.
for instance in Lorenz’s 2007 survey), but not so in the literature of opinion aggregation.



4 Reasons

So far, a simplified model of scientific expert panels has been considered, one
in which the group is asked to give a binary decision. As argued, the first step in
justifying that decision consists for the panel to have a belief on the risk assessment,
which is given by the median of the individual assessments in the case of R,,. How-
ever, expert panels are often asked to provide a deeper justification. The question
then arises of how the panel should aggregate its members views on this justifica-
tion. In this section, I propose a novel but simple model for individual numerical
assessment justification, in line with my previous threshold model.

Perhaps the most typical interpretation of the risk assessment a is that of a
(subjective) probability. Suppose this probability is determined by m independent
factors (m > 2). For instance, the risk associated with a medicine comes from m
unrelated secondary effects. Then a is the probability that at least one risk factor
triggers:

a=1-]]1-a). (1)
j=1
Each expert k is supposed to have her own assessment of each factor ay ; (j = 1,...,m).

Our problem is then to aggregate the n x m matrix of probabilities ay, ;, and to com-
pare that result with the threshold.

As the m factors are independent, a sound requirement is to aggregate the
individual assessments on them separately. How should that be done? Adapting the
arguments from the previous section, one is lead to the conclusion that the panel
should take the median of the individual assessments for each factor. However,
there is a fundamental limitation to this, due to the previously mentioned theorem
by McConway and Wagner’s (cf. Section 2). Here is why. Requiring as above
that the aggregation proceeds on each factor independently is just requiring the
classical independence axiom. Another legitimate requirement is the classical axiom
of unanimity preservation: if all experts agree on the risk assessment for one factor,
then the panel should take this value as its own. As m > 2, all the conditions of
the theorem by McConway and Wagner are fulfilled!!, so its conclusion apply: the
only probability aggregation rule on the set of factors and on the overall decision is
linear averaging. This reveals that, if groups use the median to determine both the
independence factors’ values and the overall risk (according to the above results),
then it does not give a probability function and inconsistencies can arise. Table 3

HEach of the m > 2 factors can be triggered or not, so there are at least 4 events, which is
higher than the 3 required in the theorem.
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gives such an example. In other words, asking the expert panel to take stands on
the reasons for its majority decision can lead it to change its decision.

Does it mean that our robustness defense of the median should be discarded?
Not necessarily. The theorem by McConway and Wagner assumes that the experts
aggregate their views both on the independent factors and on the overall risk as-
sessment. But one can have the experts aggregate their views on the independent
factors only. The overall risk assessment is then computed according to Equation 1,
and the final decision is logically obtained from a comparison between this value
and the threshold. In that way, experts do not vote on the final decision directly.
This decision rule is a so-called premise-based rule.'? Then, the linearity result of
McConway and Wagner does not apply any more. The robustness considerations
from the previous section do apply at the level of independent factors, and they
recommend that the group takes the median of the individual assessments.

The present model of factors has assumed that there exists some common nu-
merical scale, so that taking the median of individual assessments makes sense.
However, the previous section has in part argued that such a scale may not always
exist. In these cases, the present model of independent factors cannot apply. The
theory of judgment aggregation offers a general framework for the aggregation of
non-numerical reasons or justifications, with true/false beliefs (for reviews, cf. List
2012, Martini and Sprenger forth.). Applying in detail this framework to our prob-
lem of scientific justification would require another paper. A general result from this
literature, however, is the discursive dilemma: majority voting on a set of true/false
beliefs related in a logical way (here: reasons for the decision) may generate incon-
sistent collective judgments. This echoes our own finding about the median, which
corresponds to majority voting in case of a threshold comparison. So whatever

120n this strategy more generally, see Cooke (1991), Bovens and Rabinowicz (2006), Hartmann
and Sprenger (2012). Another solution to our problem could be the conclusion-based rule, i.e.
aggregate only the views on the conclusion, but this is just like the previous section that we are
trying to surpass.

Risk aspect | a1 as a=1—(1—a;)-(1—as)
Agent #1 | 0.01 0.01 0.0199

Agent #2 0.02 0.01 0.0298

Agent #3 | 0.01 0.02 0.0298

Median 0.01 0.01 0.0199 or 0.0298 ?

Table 3: A case in which the rule of the median can lead to inconsistencies. With a
threshold at e.g. 0.025, the group’s decision could be either true or false.

11



the scale, majority voting on all parts of the question is in great difficulty, and a
premise-based solution should be adopted.

5 Conclusion

This paper has investigated the rationale for the majority rule that is often used
in scientific expert panels, when dissent persists after discussion, and has looked for
the best decision rule in this context. To this end, I have introduced a threshold
probability model for individual decisions. Three main points have been shown
in the paper: (1) the standard framework of probability aggregation is unable to
solve our problem of risk aggregation. (2) robustness considerations clearly favor
majority voting on the decision, i.e. comparing the threshold to the median of the
individual risk assessments. (The robustness axioms I have advocated, which have
been designed from considerations on scientific expert panel, could in return inspire
social choice theory). (3) when a justification of the panel’s decision is looked for,
the median rule (corresponding to majority voting) can lead to inconsistencies. The
promising route is to have the group aggregate on the reasons level, not on the final
decision one. This should encourage scientific expert panels to divide questions from
a logical viewpoints, and to take decisions on sub-problems instead of voting on the
final decision directly. Current practices in advisory committees of the FDA and of
the EMA could evolve in this respect. However, these claims have only been shown
in quite simple and idealized models of decision-making. Future work is needed
to investigate other models. These preliminary results have nonetheless cast some
serious doubts on the majority voting rule only applied on the final decision.

Note finally the generality of the proposed model, which goes well beyond sci-
entific expertise: the a and ¢ variables can be interpreted as degrees of beliefs or as
utility measures, within an epistemology or an economy framework.
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