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Abstract

Decision making typically requires judgments about causal relations: we need

to know both the causal e¤ects of our actions and the causal relevance of vari-

ous environmental factors. Judgments about the nature and strength of causal

relations often di¤er, even among experts. How to handle such diversity is the

topic of this paper. First, we consider the possibility of aggregating causal judg-

ments via the aggregation of probabilistic ones. The broadly negative outcome

of this investigation leads us to look at aggregating causal judgments indepen-

dently of probabilistic ones. We do so by transcribing causal claims into the

formal judgment-aggregation framework and applying some recent results in this

�eld. Finally, we look at the implications for probability aggregation when it is

constrained by prior aggregation of qualitative causal judgments.

1 Introduction

Decision making typically requires judgments about causal relations. Home owners

need to know whether putting locks in their doors will make their houses more secure.

Jurors need to know whether the accused is causally responsible for damages before

they can assess whether he or she is legally responsible. Aid agencies need to know how

the di¤erent projects they can invest in will a¤ect the lives of those they are concerned

about; and so on. Opinions about the nature and strength of causal relations often

di¤er, even among experts. How to handle such diversity of opinion is the topic of

this paper. We investigate the possibility of coherently aggregating di¤erent causal

judgments into a single one that may be applied to the decision problem at hand.

The basic set-up of this aggregation problem is the following. Individuals make

judgments about both the nature of the causal relations between the variables in

�Previous versions of this paper were presented at a Choice Group seminar at the LSE, 10/2006,

the 2006 conference of the Philosophy of Science Association, Vancouver, 11/2006, and the 2nd

Philosophy of Biology at Dolphin Beach workshop, Kioloa, NSW, 8/2007. We thank the seminar and

conference participants as well as two anonymous referees for very helpful comments and suggestions.
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some set V = fV;W; :::g and the probabilities of these variables taking certain val-
ues, unconditionally or conditionally on the values of other variables. The task is to

construct a single aggregate judgment on the causal relations between the variables

and the relevant probabilities in a way that preserves, as much as possible, the in-

formation contained in the individuals�judgments. For present purposes, we assume

that individuals�judgments are coherent. More generally, one might allow (localized)

incoherence in some of the individuals�judgments, or allow that individuals do not

make judgments about all causal relations or all probabilities in question. Their judg-

ments could be restricted to just certain variables relevant to the decision problem

at hand, or further still, to just some subset of them or just one type of judgment:

causal or probabilistic.

The causal judgments of individuals could be represented in a number of di¤er-

ent ways, but here we adopt the framework familiar from the work of Pearl [2000],

Spirtes, Glymour, and Scheines [2000] (see also [1990]), and others, in which they are

represented by Bayesian networks: directed acyclic graphs (DAGs) with associated

conditional probabilities. We do not intend thereby to take a position on the nature

of causal judgments, nor on the question of whether they can ultimately be analysed

probabilistically.1 Anyone who holds the view that causal judgments are just features

of probability judgments �for instance, that to judge that X causes Y is to hold cer-

tain conditional probability judgments, such as that the conditional probability of Y

given X exceeds its unconditional probability �is free to regard the Bayesian network

representations as adding no information to the underlying probability judgments. In

principle, we could also study the aggregation of causal judgments in another frame-

work, for instance by representing causal judgments as counterfactual beliefs of the

right kind.

A DAG represents an individual�s qualitative judgment of causal relevance and

irrelevance between variables. Her quantitative judgment of causal dependence is

re�ected in the associated conditional probabilities for the values of these variables,

given the values of any variables on which they are directly causally dependent. The

individual�s unconditional probabilities for the values of the given variables can then

be computed from their conditional probabilities together with the individual�s un-

conditional probabilities for the parent variables. Consider the following example,

which we will use at various points in the discussion.

Example: Predicting famine. An aid agency wishes to do some advance planning

for its famine relief operations and consults several experts in order to determine

the risk of famine in a particular region. All agree that the relevant variables are

R: rainfall, Y : crop yields, P : political con�ict, and of course F : famine. But

they disagree both on the causal relations between the four variables and on the

1A probabilistic analysis may involve variables not included in the DAGs we consider.
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Figure 1: Expert causal judgments

probabilities of the various values that these variables may take. All consider rainfall

to be the main determinant of crop yield. However, while Expert 1 thinks that poor

crop yield and disruptive political con�ict are the main causes of famine, Expert 2

thinks that the causal in�uence of political con�ict on famine is indirect, via the e¤ect

of the disruption of agricultural production on crop yields. Expert 3 considers the

relationship between political con�ict and famine to be more complicated still, with

political con�ict both causing famine directly, by disrupting food distribution, and

indirectly, through the in�uence on crop yields. These three opinions are represented

in Figure 1 by a set of DAGs.

The fact that individuals make both causal and probabilistic judgments raises the

question of whether aggregation of both kinds of judgments should be conducted all

at once or in two stages. In Section 2, we focus on what we call one-stage aggrega-

tion, in which only probability judgments are aggregated. This approach draws on

the standard literature on probabilistic opinion pooling (as reviewed, e.g., by Genest

and Zidek [1986]). It is motivated mainly by the thought that the probability judg-

ments of individuals re�ect their causal judgments in various ways and hence that the

problem of causal judgment aggregation may be solved by constraining probability

aggregation so as to preserve the causal information contained in probability judg-

ments. Our verdict on this possibility, however, is largely negative. In Sections 3 to 5,

we therefore pursue an alternative two-stage approach, aggregating �rst the qualita-

tive causal judgments represented by the DAGs (Section 3) and then the quantitative

probabilistic ones (Sections 4 and 5), on the assumption that a consensus about the

causal relations between variables has been reached. Our analysis builds on results

from the literature on binary judgment aggregation, which combines ideas from social

choice theory with ideas from logic.2

2The formal logic-based analysis of binary judgment aggregation was introduced by List and Pettit

[2002], [2004] and, in generalized form, by Dietrich [2007]. For a survey, see List and Puppe [2009].
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2 One-stage aggregation

The problem of aggregating causal judgments has not received much attention, at

least in the form presented here, but there is a vast literature on aggregrating expert

opinions, mainly in statistics, and especially on aggregating expert probabilities. (As

already mentioned, an excellent guide to that literature is the survey paper of Genest

and Zidek [1986].) In this section, we draw on this literature to examine the possibil-

ity of reasonable one-stage aggregation of several individuals�judgments. One-stage

aggregation may be the only method available in cases in which individuals make no

explicit causal judgments or their causal judgments are very incomplete. It is nat-

ural, moreover, for those holding a probabilistic view about causation to rely on this

method. But one-stage aggregation may also be motivated by the less controversial

thought that the causal judgments of individuals are re�ected in (even if they are

not reducible to) the relations between the individuals�unconditional and conditional

probabilities for the relevant events. If this is so, then even on a non-reductionistic

view about causal judgments one may hope that probability aggregation could be con-

strained in a manner which preserves the causal judgments implicit in probabilistic

ones.

Broadly, there are three classical approaches to probability aggregation: linear

pooling, geometric pooling, and supra-Bayesian approaches. The last approach is

directed at a slightly di¤erent problem to ours �namely that of how an individual

expert should modify his judgments in the light of the expressed judgments of other

experts � and so we can set it aside. The other two approaches assume that the

experts�opinions have reached an equilibrium state and that no further modi�cation

of their viewpoints will take place before the relevant decision has to be made.

Consider an opinion aggregation problem of the following form. A set of events is

given (e.g., the event �high political con�ict�or �low political con�ict and famine�),

and the task is to merge the probability judgments of individuals 1; :::; n (the �ex-

perts�) on these events into an aggregate probability judgment on the events.3 So,

we have to merge (individual) probability functions Pr1; :::;Prn into an (aggregate)

probability function Pr. Many aggregation rules are imaginable. Formally, a proba-

bility aggregation rule is a function that assigns to each n-tuple hPr1; :::;Prni (called
a pro�le) of individual probability functions an aggregate probability function Pr.

Of the various possible aggregation rules, linear pooling stands out for a variety

of formal and conceptual reasons (e.g., Aczel and Wager [1980]; McConway [1981];

Lehrer and Wagner [1981]; and Dietrich and List [2007]). In particular, the following

3Events can be identi�ed with subsets of a given set of possible worlds. In many formal results,

the set of events considered (i.e., the domain of the individual probability functions Pr1; :::;Prn and

the aggregate probability function Pr) forms an algebra : the negation (complement) of any event is

also an event, and the disjunction (union) of any two events is an event too.
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axiomatic argument can be given. Let us require the aggregation rule to satisfy two

seemingly natural conditions:

Ind (Event-wise Independence) The aggregate probability of any given event X de-

pends only on the individuals�probabilities of X (regardless of the individuals�

probabilities of other events Y ).4

ZP (Zero Preservation) The aggregate probability of any given event X is zero when-

ever all individuals give X zero probability.5

Applied to the event �famine�, for instance, Zero Preservation implies that famine

is assigned an aggregate probability of zero if all individual experts assign a probability

of zero to it. Event-wise independence implies that the aggregate probability of famine

depends only on the probabilities that the individual experts assign to that event,

not on the probabilities they assign to a certain level of crop yield, political con�ict,

etc. (This is not to deny, of course, that individuals form their judgments regarding

famine in the light of their judgments on crop yield, political con�ict etc.)

Perhaps surprisingly, the only aggregation rules satisfying these two conditions

are linear pooling functions: the aggregate probability of any event X is a (possibly

weighted) arithmetic average of the individual probabilities of X, i.e.,

Pr(X) = w1Pr1(X) + :::+ wnPrn(X),

where the weights w1; :::; wn � 0 add up to one and are the same for all events X
(Aczel and Wager [1980]; McConway [1981]).6 Examples of linear pooling functions

are equal-weight averaging (w1 = ::: = wn = 1=n) and dictatorial aggregation (some

individual i has weight wi = 1 and all others have weight 0).

The natural interpretation of these weights is in terms of judgmental competence,

so that the choice of a particular linear pooling rule is dictated by considerations

of the relative expertise of the individuals whose opinions are being sought. In this

light, the fact that linear pooling rules assign weights to the opinions of individuals

that are independent of the object of these opinions seems quite unsatisfactory, since

individuals may be more or less expert on di¤erent kinds of issues and it would seem

natural to vary the weights on their opinions to re�ect this. The aid agency would

do well to consult climatologists, agriculturalists, and political scientists to reach

a balanced view on the causes of famine, but in doing so it would be reasonable

for it to give more weight to the climatologists� probabilities for rainfall than to

4Formally, Pr(X) is a function of Pr1(X); :::;Prn(X). This function may be a di¤erent one for

di¤erent events X.
5Formally, Pr(X) = 0 if Pr1(X) = ::: = Prn(X) = 0.
6This result requires that the set of events considered forms an algebra (see footnote 3) and

contains at least three events apart from the contradiction (empty set of worlds) and the tautology

(set of all worlds). For a generalization, see Dietrich and List [2007].
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the political scientists�, but more weight to the political scientists�probabilities for

political con�ict.7

Our main concern here, however, is with the question of whether linear pooling

functions satisfactorily respect the causal knowledge of the individual experts. An in-

dividual�s causal judgments will be re�ected in certain (unconditional or conditional)

independencies in his or her probability judgments. For instance, if individual i be-

lieves that events X and Y do not causally a¤ect each other but have a common

cause Z (and have no other common causes, except for those that a¤ect X and Y

via Z), then he or she will take X and Y to be probabilistically independent given

Z,8 because any probabilistic correlation between X and Y is �screened o¤�by con-

ditionalising on Z. A minimal requirement of respecting causal judgments is that

at least unanimously held causal judgments be re�ected in the aggregate probability

function Pr. That is, Pr should display at least those (conditional) independencies

that are supported by unanimous causal judgments. For example, if all individuals

judge X and Y to be causally independent with common cause Z, then that indepen-

dence judgment should be re�ected in the aggregate probability function Pr. This

motivates the following condition on probability aggregation:

IP (Independence Preservation) For any given events X;Y; Z, if all individuals judge

X and Y to be probabilistically independent given Z, then this conditional

independence also holds under the aggregate probability function.9

Note that, by preserving all unanimous probabilistic independencies (conditional

or unconditional), we may also preserve independencies that are not grounded in

unanimous causal judgments. For instance, it may be that all individuals judge X

and Y to be independent given Z, but some do so on the grounds of judging that

X indirectly causes Y through Z, others on the grounds of judging that Y indirectly

causes X through Z, still others on the grounds of judging that X, Y , and Z are en-

tirely causally disconnected. Even in this case of causal disagreement, Independence

Preservation requires the preservation of probabilistic conditional independence. The

purely probabilistic informational basis of one-stage aggregation does not allow us to

distinguish between di¤erent motivations (causal or other) behind probabilistic inde-

pendencies. Without explicit causal information, all we can do is to use Independence

Preservation to preserve all unanimous causal judgments, at the cost of preserving

even those conditional independencies that are not causally motivated.

It turns out, however, that Independence Preservation is violated by all linear

pooling functions (unless some individual i gets maximal weight wi = 1) and thus by

7See Bradley [2000] for further discussion of this issue. On problems with the assignment of

di¤erentiated expert rights, see also Dietrich and List [2008].
8Formally, Pri(XY jZ) = Pri(XjZ) Pri(Y jZ).
9Formally, if, for all individuals i, Pri(Z) > 0 and Pri(XY jZ) = Pri(XjZ) Pri(Y jZ), then also

Pr(Z) > 0 and Pr(XY jZ) = Pr(XjZ) Pr(Y jZ).
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all non-dictatorial probability aggregation rules satisfying Event-wise Independence

and Zero Preservation. This fact, proven in Genest and Wagner [1984], can be il-

lustrated using our earlier example.10 Suppose the aid agency consults a couple of

experts in order to determine the risk of famine in a particular region and that both

experts agree that famine is caused by a combination of drought (the event of rain-

fall R below some critical threshold) and political instability (the event of political

con�ict P above some critical threshold), which undermines local solutions to poor

crop yields. Furthermore, they agree that these two factors are both causally and

probabilistically independent, at least in the short term. But they disagree on the

probability of drought and of political instability. Since neither speaks with greater

authority than the other, the aid agency calculates its probabilities for these events

by taking the linear average of the judgments of the two experts.

Let D and I, respectively, denote the occurrence of drought and political insta-

bility in the region and DI their concurrence. Let Pr1, Pr2, and Pr, respectively, be

the probability functions of Expert 1, Expert 2, and the aid agency. Since pooling

happens by averaging, the aid agency will assign the following probabilities:

Pr(D) =
Pr1(D) + Pr2(D)

2
, Pr(I) =

Pr1(I) + Pr2(I)

2
,

Pr(DI) =
Pr1(DI) + Pr2(DI)

2
=
Pr1(D) Pr1(I) + Pr2(D) Pr2(I)

2
,

where the last identity uses the experts� judgments that D and I are independent.

These independence judgments are preserved if and only if Pr(DI) = Pr(D) Pr(I),

i.e., if and only if

Pr1(D) Pr1(I) + Pr2(D) Pr2(I)

2
=
Pr1(D) + Pr2(D)

2
� Pr1(I) + Pr2(I)

2
.

By multiplying both sides of this equation by 4, developing the product on the right-

hand side, and simplifying, it follows that

Pr1(D) Pr1(I) + Pr2(D) Pr2(I) = Pr1(D) Pr2(I) + Pr2(D) Pr1(I)

, Pr1(D)(Pr1(I)� Pr2(I)) = Pr2(D)(Pr1(I)� Pr2(I))
, (Pr1(D)� Pr2(D))(Pr1(I)� Pr2(I)) = 0.

The latter can hold only if Pr1(D) = Pr2(D) or Pr1(I) = Pr2(I); i.e., if the experts

agree on the probability of drought or of political instability �which is not the case

by assumption. So equal-weight linear pooling violates Independence Preservation.

Similar violations can be constructed for non-equal weights (unless one individual i

gets maximal weight wi = 1).

10Relatedly, Spirtes, Glymour, and Scheines [2000] observe that if we mix two or more probabil-

ity distributions that each display certain conditional independence relations, the resulting mixture

may fail to display those conditional independence relations. In particular, if we take two or more

probability distributions that are each compatible with the same DAG (satisfying the causal Markov

condition), their linear mixture may not be compatible with that DAG.
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While we have focused on linear pooling as a way of aggregating probability

judgments, the di¢ culty with preserving causal insights at the aggregate level is a very

general one. Genest and Wagner [1984] have shown that Independence Preservation

is violated by many (linear or non-linear) probability aggregation rules, including

geometric averaging, the most prominent alternative to linear averaging. Thus the

di¢ culty of preserving causal knowledge is not an artifact of requiring Event-wise

Independence (a condition violated for instance by geometric averaging).

Genest and Wagner [1984] interpret this �nding as evidence that Independence

Preservation is not a reasonable condition. We would not like to go so far. In our

view, those unanimous independence judgments that are grounded in unanimous

causal judgments about the world should not be overruled. We take Genest and

Wagner�s impossibility �nding not as a reason to abandon the goal of preserving

judgments of independence, but as a reason to move to a two-stage approach that

explicitly takes qualitative causal judgments into account.

3 Two-stage aggregation: the qualitative stage

Under our proposed two-stage approach to aggregation, qualitative causal judgments

are aggregated �rst, and quantitative, probabilistic ones only subsequently. Fur-

thermore, the latter are aggregated in a way that di¤ers from standard probability

aggregation, namely in a way that is constrained by the qualitative causal judgments

formed at the �rst stage. This two-stage approach will satisfy a version of Indepen-

dence Preservation restricted to unanimously held causal independencies.

As before, let V = fV;W; :::g be a (�nite) non-empty set of variables. In our
example of the aid agency above, V contains the variables R (rainfall), Y (crop

yields), P (political con�ict), and F (famine). How can we represent qualitative

judgments on how the variables in V are causally interrelated? Let us introduce a

binary predicate symbol c to represent a causal relevance relation on V, where, for

any two variables V and W in V, we write V cW to mean that V is directly causally

relevant to W . (For brevity, we speak of �causal relevance�, but we mean �direct

causal relevance�.11) In the case of the aid agency, an expert who thinks that rainfall

is causally relevant to crop yield whereas political con�ict is not would hold that

RcY but not that PcY . A causal relevance relation c is called acyclic if, for any �nite

sequence V1; V2; : : : ; Vk of variables in V, it is not the case that

V1cV2; V2cV3; : : : ; Vk�1cVk and VkcV1:

A causal relevance relation c induces a directed graph whose vertices are the variables

in V and whose edges (arrows connecting vertices) are de�ned as follows: for any two

11 If we wanted to use our formal framework to capture indirect as well as direct causal relationships,

we would have to invoke the transitive closure of the relation c.
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variables V and W in V, there is an edge from V in the direction of W if and only

if V cW . This graph is a directed acyclic graph (DAG) if c is an acyclic relation.12

A Bayesian network is a DAG with associated conditional probabilities: each

variable in the graph is endowed with a conditional probability distribution given its

parents in the graph. In this section, however, we set this quantitative information

aside and focus on qualitative features of the DAG alone. In particular, we investigate

how a group of individuals can arrive at an aggregate judgment on what the causal

relevance relation c between the variables in V is.

Consider a group of n individuals, labelled 1, 2, ..., n, each of whom holds a par-

ticular judgment on the nature of the causal relevance relation between the variables

in V. We write ci to denote the causal relevance relation according to individual

i�s judgment. A combination of causal relevance relations across the n individuals

is called a pro�le and denoted hc1; c2; :::; cni. A causal judgment aggregation rule is

a function that assigns to each pro�le hc1; c2; :::; cni (in some domain of admissible
pro�les) a single aggregate causal relevance relation c.

To give some examples of causal judgment aggregation rules, consider the class

of threshold rules. A threshold rule, with threshold k (where 1 � k � n), assigns to
each pro�le hc1; c2; :::; cni the causal relevance relation c de�ned as follows: for any
two variables V and W in V,

V cW , at least k individuals have V ciW .

Examples of threshold rules are the majority rule (k = n+1
2 ), the union rule (k = 1)

and the intersection (or unanimity) rule (k = n).

Are these satisfactory causal judgment aggregation rules? It is easy to see that

each of these three rules has a considerable defect. The majority and union rules

fail to ensure acyclicity of the aggregate causal relevance relation, even when all

individuals hold acyclic such relations. To see this, suppose the aid agency consults

three experts, with the following individual judgments. They all agree that rainfall

is causally relevant to crop yields, but they disagree on the causal relations between

the other variables. Expert 1 thinks that crop yields are causally relevant to famine,

which is causally relevant to political con�ict. Expert 2 thinks that famine is causally

relevant to political con�ict, which is causally relevant to crop yields. Expert 3 thinks

that political con�ict is causally relevant to crop yields, which is causally relevant to

famine. In consequence, the causal relevance relation generated by the majority rule

violates acyclicity: the relation contains a cycle from crop yields to famines to political

con�ict to crop yields. It is obvious that the union rule has the same defect. The

intersection (or unanimity) rule, by contrast, ensures acyclicity of the aggregate causal

relevance relation, but may generate a sparse or even empty such relation, with few

12Note that our de�nition of acyclicity also rules out cycles of length k = 1, i.e., we cannot have

V cV for any variable V .
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variables deemed causally relevant to any others, whenever there are disagreements

between the experts.

Although threshold rules are particularly salient examples of causal judgment

aggregation rules, they are by no means the only ones. So let us adopt an axiomatic

approach and look for rules satisfying certain conditions.

UD (Universal Domain) The causal judgment aggregation rule accepts as admissible

any logically possible pro�le of acyclic causal relevance relations.

AC (Acyclicity) The aggregate causal relevance relation is always acyclic.

UB (Unbiasedness) For any two variables V and W in V, the aggregate judgment

on whether V is causally relevant to W depends only on individual judgments

on whether V is causally relevant to W (the independence requirement), and

the aggregation rule is neutral between whether or not this is the case (the

neutrality requirement).13

ND (Non-Dictatorship) There does not exist a �xed individual such that, for every

admissible pro�le of causal relevance relations, the aggregate causal relevance

relation is the one held by that individual.

Although these conditions may seem natural at �rst sight, they are mutually

inconsistent.

Theorem 1 If V contains three or more variables, there exists no causal judgment

aggregation rule satisfying UD, AC, UB, and ND.

This result follows from an impossibility theorem by Dietrich and List [2010]

concerning the aggregation of binary judgments on logically connected propositions.

Qualitative causal judgments in the sense investigated here are simply binary (�true�

/ �false�) judgments on propositions of the form �variable V is (or is not) directly

causally relevant to variable W�, where di¤erent such propositions constrain each

other via the acyclicity constraint on causal relevance. For example, the set of propo-

sitions f�V is directly causally relevant to W�, �W is directly causally relevant to

U�, and �U is directly causally relevant to V �g is logically inconsistent relative to
the acyclicity constraint. From the theory of judgment aggregation, we know that

the aggregation of binary judgments on logically connected propositions is subject to

a family of impossibility results broadly similar to Arrow�s impossibility theorem on

preference aggregation, as surveyed in List and Puppe [2009] and, more recently, List

[2012]. Our present theorem belongs to this family of results. What are the possible

escape routes from this impossibility?

13Formally, for any V and W in V and any admissible pro�les hc1; c2; :::; cni and hc�1; c�2; :::; c�ni, if
[for all i, V ciW if and only if not V c�iW ] then [V cW if and only if not V c�W ]. This formal statement

is slightly weaker than the informal one in the main text but implies it under UD and AC.
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The �rst route: relaxing universal domain. We may use a causal judgment

aggregation rule that accepts, as admissible input, not all logically possible pro�les of

acyclic causal relevance relations, but only those that meet an additional structural

condition: namely pro�les which, informally speaking, re�ect a certain amount of co-

hesion across di¤erent individuals�causal judgments. The additional structural condi-

tion on pro�les might be such that the majority rule, or perhaps some other threshold

rule, never generates an aggregate causal relevance relation violating acyclicity. In

this case, the majority rule or threshold rule in question could be employed on this

restricted domain of admissible pro�les. We consider two structural conditions of this

kind.

Temporal-order restriction. Suppose the individuals agree on the temporal order

in which the events captured by the variables in V occur. Suppose further they agree

that a variable V can be causally relevant to another variable W only if V strictly

precedes W in this temporal order. Call any pro�le of causal relevance relations that

is consistent with some such agreement temporal-order restricted. Formally, a pro�le

is temporal-order restricted if there exists some weak order of the variables in V (a

re�exive, transitive, and connected binary relation on V) such that, for every pair of

variables V andW inV, if some individual judges V to be causally relevant toW (i.e.,

some i holds V ciW ) then V strictly precedes W in that order. For any such pro�le,

the causal relevance relation generated by any threshold rule is acyclic, no matter

how low or high the threshold is. The temporal constraint on what causal relevance

judgments are deemed admissible guarantees the absence of any causal cycles at both

the individual and aggregate levels.

Unidimensional alignment. Another structural condition on pro�les that ensures

acyclical causal judgments at the aggregate level � here under the majority rule

(or any threshold rule with a higher threshold) �is unidimensional alignment (List

[2003]; for generalizations, see Dietrich and List [2010]). A pro�le of causal relevance

relations is called unidimensionally aligned if the individuals can be linearly ordered

from left to right such that, for each pair of variables V and W in V, the individuals

who hold that V is causally relevant to W (i.e., the individuals i with V ciW ) are

all to the left or all to the right of those who hold that V is not causally relevant

to W (i.e., the individuals i who do not have V ciW ).14 For any unidimensionally

aligned pro�le, the causal relevance relation generated by the majority rule is acyclic

and coincides with the causal relevance relation held by the median individual with

respect to the left-right ordering of the individuals. (Or, if the number of individuals

is even, it coincides with the intersection of the causal relevance relations held by the

two median individuals.)

14This allows that, for some pairs of variables, the individuals a¢ rming causal relevance are to the

left of those who do not, while for other pairs of variables the former are to the right of the latter.
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It is an empirical question whether a group of experts �either before or after a

period of joint deliberation �exhibits su¢ cient agreement in their causal judgments

to meet the condition of temporal-order restriction or that of unidimensional align-

ment. The kind of temporal agreement required for temporal-order restriction seems

empirically plausible at least in some situations.

The second route: relaxing acyclicity. A logically possible way to avoid the

impossibility result of Theorem 1 is to give up the requirement that the aggregate

causal relevance relation be acyclic. This, however, would constitute a major depar-

ture from the consensus on the nature of causal relations, which are widely held to

be acyclic (Pearl [2000]).

The third route: relaxing unbiasedness. We may use a causal judgment ag-

gregation rule that violates the condition of unbiasedness. There are two ways of

relaxing this condition.

A neutrality relaxation. If we relax the neutrality part of unbiasedness, there can

exist pairs of variables V and W in V such that the aggregation rule is not neutral

between whether or not V is causally relevant to W . Examples of causal judgment

aggregation rules violating neutrality are threshold rules with any threshold k di¤erent

from simple majority. It can be shown that a threshold rule is guaranteed to generate

an acyclic causal relevance relation if and only if the threshold k exceeds m�1m n, where

m is the number of variables in V.

Let us explain why this constraint on the threshold is su¢ cient to ensure acyclicity.

Suppose, for a contradiction, that a threshold rule with a threshold k above m�1
m n

generates a cyclical causal relevance relation. There must then exist an admissible

pro�le hc1; c2; :::; cni of individually acyclic causal relevance relevance such that

V1cV2; :::; Vm0�1cVm0 ; and Vm0cV1;

where c is the aggregate causal relevance relation and V1, V2, ..., Vm0 are distinct

variables in V, with 2 � m0 � m.15 Given the de�nition of our threshold rule, there
must be at least k individuals with V1ciV2; at least k individuals with V2ciV3; and so

on. Let N1, N2, ..., Nm0 be the sets of individuals i with V1ciV2; V2ciV3; ..., Vm0cV1,

respectively. Since k exceeds m�1m n, each of these sets must contain more than m�1
m n

individuals. But, for combinatorial reasons, any m or fewer subsets of size greater

than m�1
m n from a set of n individuals must have a non-empty intersection. For

example, any two or fewer subsets of size greater than 1
2n must have a non-empty

intersection; any three or fewer subsets of size greater than 2
3n must have a non-empty

15Aggregate cycles of length 1 (where V cV for some variable V in V ) could never occur under any

threshold rule, since no individual i will have V ciV (assuming acyclicity at the individual level).
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intersection; and so on. Since m0 � m, this implies that there must exist at least one
individual i who is contained in all of N1, N2, ..., Nm0 , and he or she must then have

V1ciV2; :::; Vm0�1ciVm0 ; and Vm0ciV1:

But this contradicts individual acyclicity, which completes the argument.

Conversely, if the threshold k does not exceed m�1
m n, it becomes possible to con-

struct an admissible pro�le hc1; c2; :::; cni of individually acyclic causal relevance re-
lations such that, for some set of distinct variables V1, V2, ..., Vm0 , each of V1cV2, ...,

Vm0�1cVm0 , and Vm0cV1 is a¢ rmed by k or more individuals. For such a pro�le, the

intersection of the relevant sets N1, N2, ..., Nm0 is empty, and hence the presence of

a cycle in the aggregate causal relevance relation does not con�ict with acyclicity in

the individual relations. Formally, our necessary and su¢ cient condition for acylicity

(namely a threshold k above m�1
m n) can be derived from a characterization of con-

sistent (but possibly incomplete) quota rules in judgment aggregation (Dietrich and

List [2007]; the present combinatorial argument builds on a result in List [2001], ch.

9).

Note that if the set of variables V is in�nite, only the intersection (or unanimity)

rule guarantees acyclicity at the aggregate level. However, if V is �nite, then a

supermajority rule with a suitably high threshold is su¢ cient. A problem with this

approach, as noted above, is that it may lead to sparse or even empty aggregate

causal relevance relations unless the disagreement between experts is limited.

An independence relaxation. If we relax the independence part of unbiasedness,

there can exist pairs of variables V and W in V such that the aggregate judgment

on whether V is causally relevant to W depends not only on individual judgments on

whether V is causally relevant to W but also on individual judgments involving other

variables. Examples of causal judgment aggregation rules violating independence are

sequential priority rules (adapted from List [2004]) and distance-based rules (adapted

from Pigozzi [2006] and Miller and Osherson [2009]). Under a sequential priority rule,

the di¤erent possible pairs of variables are considered one by one in a given order

(which may be chosen, for example, by some criterion of epistemic priority). On each

pair of variables V;W , the aggregate judgment is then determined as follows:

(i) If the question of whether V is causally relevant to W is constrained (in light

of the acyclicity requirement) by the aggregate judgments on pairs of variables

considered earlier in the given order, then the aggregate judgment on V �s causal

relevance to W is derived from those earlier constraints.

(ii) If it is not constrained in this way, then the aggregate judgment on V �s causal

relevance to W is made by applying some voting method, such as majority

voting, to the individual judgments on V vis-à-vis W .
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This approach guarantees acyclicity of the aggregate causal relevance relation, but

at the expense of path-dependence: the order in which causal judgments are made

on di¤erent pairs of variables may determine what the aggregate causal relevance

relation will look like. An agenda setter on a committee of experts may strategically

exploit this feature of the causal judgment aggregation rule by proposing an order

of priority among di¤erent pairs of variables that is likely to give rise to aggregate

causal judgments that he or she wants the committee to make.

Under a distance-based rule, we �rst de�ne a distance metric between causal

relevance relations. For instance, we could de�ne the distance between two relations

c and c0 to be the number of ordered pairs of variables V;W on which c and c0 disagree,

i.e., d(c; c0) = jf(V;W ) 2 V2 : V cW < V c0Wgj. (This is the Hamming distance.) We
then de�ne the aggregate causal relevance relation for any given pro�le hc1; c2; :::; cni
as an acyclic causal relevance relation c that minimizes the total distance from the

individual causal relevance relations, i.e., where
P
i=1;:::;n d(c; ci) is minimal. Since

there need not be a unique such distance-minimizing relation c, we may require an

additional rule for breaking ties. Distance-based rules can be interpreted as generating

compromise causal relevance relations.

In some cases, a rather signi�cant departure from independence (as a property

of the aggregation rule) may be desirable. Suppose, for instance, that all individuals

agree that there is a causal path from V1 to V2, but di¤erent individuals disagree

about the intermediate variables along this path. Some think that the path goes

from V1 to V3 to V2; others think it goes from V1 to V4 to V2; still others think it goes

from V1 to V5 to V2; and so on. In such a case, no single causal link between any pair

of variables is accepted by more than a small minority of the individuals. If we used a

causal judgment aggregation rule satisfying independence, say a threshold rule with

a majority or even sub-majority threshold, we could end up with an empty aggregate

causal relevance relation here, without any causal links at all. This would fail to

do justice to the fact that all individuals agree that V1 is at least indirectly causally

relevant to V2. We do not o¤er a concrete proposal on how to handle such cases,

but mention it in order to illustrate why a signi�cant relaxation of independence may

sometimes be justi�ed.16

The fourth route: relaxing non-dictatorship. A �nal way to avoid the impos-

sibility result of Theorem 1 is to allow the aggregate causal relevance relation to be

determined by an antecedently �xed individual: a �dictator�. But since we are nor-

mally interested in the information contained in the causal judgments of more than

one individual, this is not generally an attractive solution to our aggregation problem.

Sometimes, however, it may be an acceptable compromise to appoint a trusted expert

as the �dictator�for arriving at qualitative causal judgments �in the form of a DAG

16We are grateful to an anonymous referee for raising this point.
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�while continuing �democratically� when it comes to determining the associated

quantitative probability information at the second stage of our two-stage approach.

Concluding remark Which of the di¤erent possible escape routes from the impos-

sibility result of Theorem 1 is compelling depends on details of the decision problem

at hand, the nature of the disagreements between the experts, the level of trust we

place in them, whether we are worried about possible agenda manipulation, and other

factors. In the next section, we assume that through one of the identi�ed routes �

excluding that of relaxing acyclicity �a �consensus� on a causal relevance relation

and thereby on a DAG has been achieved, and we turn to the question of how the

associated conditional probabilities can be determined.

4 Preliminaries to the quantitative stage

We have analysed how a group can arrive at an aggregate judgment on the qualitative

causal relations between variables. We now assume that such an aggregate causal

judgment has been reached through one of the routes just discussed and suppose

that the group seeks to make an aggregate probability judgment (about the variables

taking various values) that is compatible with the given aggregate causal judgment.

In its most general form �ignoring for the moment the causal judgment �a prob-

ability judgment can be represented by a joint probability function over the variables

in V. For simplicity, we assume that each variable can take �nitely, or countably in-

�nitely, many possible values. For example, we may distinguish between a particular

number of possible levels of con�ict. Let us label the variables V1; :::; Vm. A joint

probability function Pr assigns a probability Pr(v1; :::; vm) � 0 to each combination
(v1; :::; vm) of values of these variables, where the sum of the probabilities is 1.

The joint probability Pr(v1; :::; vm) can be factorised into the product of condi-

tional probabilities:17

Pr(v1; :::; vm) = Pr(v1) Pr(v2jv1) Pr(v3jv2; v1) � � �Pr(vmjvm�1; :::; v1)

=
mY
j=1

Pr(vj jv1; :::; vj�1): (1)

In our famine example, where V1; V2; V3; V4 are the levels of rainfall, crop yield, po-

17 In this expression, the conditional probability Pr(vj jv1; :::; vj�1) can be derived from the joint

probability function Pr via the formula Pr(vj jv1; :::; vj�1) = Pr(v1;:::;vj)

Pr(v1;:::;vj�1)
(where Pr(v1; :::; vj) and

Pr(v1; :::; vj�1) are marginal probabilities derived from Pr), provided that Pr(v1; :::; vj�1) 6= 0. If

Pr(v1; :::; vj�1) = 0, then Pr(vj jv1; :::; vj�1) can be viewed either as unde�ned or as a primitive not
derived from the function Pr. Under both interpretations, the factorisation (1) is still possible even if

some Pr(v1; :::; vj�1) is zero whatever value is substituted for Pr(vj jv1; :::; vj�1) (because some other
factor on the right-hand side of (1) will be zero, as will be the left-hand side of (1)).
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litical con�ict, and famine, we have

P (v1; v2; v3; v4) = P (v1)P (v2jv1)P (v3jv1; v2)P (v4jv1; v2; v3).

When is the probability judgment expressed by Pr compatible with a given causal

judgment? Recall that a causal judgment takes the form of a particular directed

acyclic graph (DAG) over the variables V1; :::; Vm, with an arrow from Vj to Vk just

in case Vj is considered causally relevant to Vk (VjcVk). For any variable Vj , we write

PA(Vj) to denote the list of Vj�s parent variables in the graph, and we write pa(Vj)

to denote any list of values of these parent variables.18

For instance, suppose that the consensus DAG in our famine example is as shown

in Figure 2: no variable is causally relevant to rainfall (V1); only rainfall (V1) is

causally relevant to crop yield (V2); only crop yield (V2) is causally relevant to political

con�ict (V3); but both crop yield (V2) and political con�ict (V3) are causally relevant

to famine (V4). Then PA(V1) contains no variable, PA(V2) contains precisely V1,

PA(V3) contains precisely V2, and PA(V4) contains both V2 and V3.

V2

V4

V1

V3

Figure 2: An illustrative aggregate causal judgment in the famine example

Without loss of generality, suppose the variables V1; :::; Vm are labelled such that

those with no parent come �rst, those with a parent but no grandparent come next,

those with a grandparent but no great-grandparent come thereafter, and so on. If

the original labelling V1; :::; Vm does not have this property, we can simply relabel

the variables appropriately and replace the factorisation (1) by one using the new

labelling. So the parents of any variable Vj come before Vj .19 But of course not all

of V1; :::; Vj�1 need to be causally relevant to Vj . For instance, in our famine example

V2 but not V1 is (directly) causally relevant to V3. Since causally irrelevant variables

should have no e¤ect on Vj , the conditional probability Pr(vj jv1; :::; vj�1) should be
insensitive to the non-parental values among v1; :::; vj�1. In other words, it should be

18So pa(Vi) is any instantiation of PA(Vj).
19Formally, PA(Vj) is a sublist of (V1; :::; Vj�1).
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sensitive only to the sublist pa(Vj) of v1; :::; vj�1. Formally,

Pr(vj jv1; :::; vj�1) = Pr(vj jpa(Vj)). (2)

We say that the probability judgment Pr is compatible with the given aggregate causal

judgment if identity (2) holds for every variable Vj and every combination of values

v1; :::; vj with Pr(v1; :::; vj�1) 6= 0. (This compatibility requirement is the ordered

Markov condition, which is, in turn, equivalent to the parental Markov condition:

any variable is independent of its non-descendants given its parents.20) The joint

probability (1) then reduces to

Pr(v1; :::; vm) =
mY
j=1

Pr(vj jpa(Vj)). (3)

For instance, in our famine example,

P (v1; v2; v3; v4) = P (v1)P (v2jv1)P (v3jv2)P (v4jv2; v3).

5 Two-stage aggregation: the quantitative stage

As we seek to reach an aggregate probability judgment that is compatible with the

aggregate causal judgment, the probability function Pr should satisfy the decompo-

sition (3). This requirement is usually violated by standard, one-stage probability

aggregation, where the individual probability functions

Pr1(v1; :::; vn); :::;Prn(v1; :::; vn) (4)

are directly merged into an aggregate probability function Pr(v1; :::; vn). On our

proposed two-stage approach, by contrast, Pr is explicitly constructed so as to meet

the necessary decomposition requirement.

Let the aggregate causal relevance relation (the �consensus�DAG) be given, and

consider the decomposition constraint (3) relative to that relation. The quantitative

stage of our approach now consists in

(i) determining each factor of the decomposition, Pr(vj jpa(Vj)), through separate
probability aggregation, and

(ii) computing the joint probability function Pr(v1; :::; vm) as the product of these

separately determined factors.

20There are multiple equivalent ways to de�ne �compatibility�of Pr with the DAG. In addition to

the ordered Markov condition and the parental Markov condition, a third de�nition (chosen by Pearl)

is given in terms of the validity of the decomposition (3). On the equivalence of these de�nitions, see

Theorems 1.2.6 and 1.2.7 in Pearl [2000].
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More formally, for every variable Vj inV and every combination pa(Vj) of parental

values, we merge the individual conditional probability functions

Pr1(vj jpa(Vj)); ::;Prn(vj jpa(Vj)) (5)

into an aggregate conditional probability function Pr(vj jpa(Vj)). These separate ag-
gregation exercises can each be performed, for example, by linear or geometric pooling.

In our famine example, this involves

merging Pr1(v1); ::;Prn(v1) into Pr(v1);

for any �xed v1, merging Pr1(v2jv1); ::;Prn(v2jv1) into Pr(v2jv1);
for any �xed v2, merging Pr1(v3jv2); ::;Prn(v3jv2) into Pr(v3jv2);
for any �xed v2; v3, merging Pr1(v4jv2; v3); ::;Prn(v4jv2; v3) into Pr(v4jv2; v3).

(6)

The present approach has several distinctive properties, to which we now turn.

Compatibility with causal judgments. The aggregate probability function Pr,

given by (3), is automatically compatible with the aggregate causal relevance re-

lation, represented by the appropriate DAG. In particular, Pr respects the causal

Markov condition: any variable Vj is probabilistically independent of all its causal

non-descendants given its causal parents. In our famine example, Pr makes political

con�ict independent of rainfall conditional on crop yield,21 and famine independent

of rainfall conditional on crop yield and political con�ict.22 The causally motivated

conditional independencies are thus respected, whereas other conditional independen-

cies may or may not arise. By contrast, standard one-stage probability aggregation

does not generally produce an aggregate probability judgment that is consistent with

any prior judgments of causal relevance.

Preservation of causal (conditional) independencies. What about the preser-

vation of unanimously held independencies between variables (both conditional and

unconditional ones)? Suppose, for example, that all individuals consider variables

Vj and Vk probabilistically independent given Vl.23 Does the aggregate probability

judgment preserve this conditional independence? As we have seen, for standard

probability aggregation methods the answer is usually negative. Under our approach,

by contrast, causal conditional independencies are preserved. To see why, suppose all

individuals judge Vj and Vk to be probabilistically independent given Vl because of a

unanimous agreement that Vj�s only causal parent is Vl and that Vk is not a causal

descendant of Vj . Then the aggregate probability judgment respects this indepen-

dence: according to Pr, Vj and Vk are also probabilistically independent given Vl.24

21Formally, Pr(v1; v3jv2) = Pr(v1jv2) Pr(v3jv2).
22Formally, Pr(v1; v4jv2; v3) = Pr(v1jv2; v3) Pr(v4jv2; v3).
23Formally, Pri(vj ; vkjvl) = Pri(vj jvl) Pri(vkjvl).
24Formally, Pr(vj ; vkjvl) = Pr(vj jvl) Pr(vkjvl):
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The reason is that, so long as a �reasonable�causal judgment aggregation rule is used

at the �rst stage of our two-stage process, we will have arrived at an aggregate causal

relevance relation that re�ects the unanimous opinion on the causal relations between

Vj ; Vk; Vl; the second stage then leads to a probability function that is compatible with

this aggregate causal relevance relation.25

Variable expert weights In contrast to one-stage linear or geometric pooling of

probabilities, our approach is compatible with the assignment of di¤erent weights

to di¤erent experts� judgments so as to re�ect their di¤erent levels of competence

on the relevant issues. Once the consensus DAG for the causes of famine is given,

for instance, greatest weight can be assigned to the climatologist�s judgment in the

aggregate probability for rainfall (Pr(v1)), to the agriculturalist�s judgment in the

aggregate conditional probability for crop yield, given a level of rainfall (Pr(v2jv1)),
and to the political scientist�s judgment for the aggregate conditional probability for

political con�ict, given crop yields (Pr(v3jv2)). In the limit, an aggregate judgment on
the probability of famine might be constructed using only the consensus DAG and the

judgments of the relevant expert on each variable. But as the literature on epistemic

democracy shows, there can be advantages to consulting a range of opinions provided

that all who are consulted are su¢ ciently competent. Instead, the two-stage method

can be used to optimise the balance between competence and diversity of opinion by

suitable assignment of weights in the aggregation of probabilities for each variable.

Complexity reduction. Our two-stage approach subdivides an m-dimensional

probability aggregation problem into several one-dimensional ones. Rather than ag-

gregating joint probability functions over the vector V1; :::; Vm (of the form (4)), we

aggregate conditional probability functions of a single variable Vj (of the form (5)).

But we face several such aggregation problems, namely one for each variable Vj and

each �xed combination of parent values paj(Vj). This is less demanding on the side

of individual inputs, as long as the aggregate DAG is not too rich in causal connec-

tions. To illustrate this complexity reduction, consider our famine example again,

and suppose for simplicity that each variable can take only two values, i.e., there are

only two levels of rainfall, two levels of crop yield, and so on. If we were to aggregate

the joint probability functions Pri(v1; v2; v3; v4) directly, each individual would have

25Note that unanimously held conditional independencies that are not causal (i.e., which are not

implied by the structure of the DAG, together with the Markov condition) are not generally preserved

under our approach. However, in the important special case in which all individuals hold the same

DAG (i.e., the causal structure is not in dispute) and satisfy faithfulness in relation to their probability

judgments, there will not be any unanimously held independencies between variables (conditional or

unconditional) that are not implied by the DAG, and hence all such unanimous independencies will

be preserved in the aggregation (assuming the unanimous DAG is also the aggregate DAG). We are

grateful to an anonymous referee for pressing this point.
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to submit 24�1 = 15 probability values (there are 24 possible combinations of values
(v1; v2; v3; v4), but once the probabilities of 24�1 of them are speci�ed, the remaining
probability is given by one minus the sum of the rest). Specifying any one of these

15 probabilities is hard in practice: what, for example, is the probability of a combi-

nation of high rainfall and low crop yield and low political con�ict and high famine?

Under our approach, by contrast, each individual has to submit only probabilities or

conditional probabilities of singular events, like the probability of high rainfall or the

conditional probability of high crop yield given low rainfall. The number of required

probabilities is smaller than 15 in our example. Using (6), we can see that it equals

4X
j=1

�number of possible values of Vj minus 1�

� �number of possible parent values pa(Vj)�
= (2� 1)� 1 + (2� 1)� 2 + (2� 1)� 2 + (2� 1)� 22

= 1 + 2 + 2 + 4 = 9.

Types of informational input. Our approach not only reduces the complexity

of the aggregation problem; it also uses a di¤erent informational input, compared

to one-stage probability aggregation. First, we use the additional information of the

individuals� qualitative causal judgments � the information aggregated at the �rst

stage of our two-stage process. Second, an interesting question arises about the nature

of the probabilistic input used at the second stage. Consider a variable Vj with parents

PA(Vj) in the aggregate causal relevance relation (DAG). Since that relation is the

result of the aggregation of individual causal relevance relations, some individuals

may not agree that the variables listed in PA(Vj) are the correct causal parents of

Vj . They may think instead that not all of these variables are causally relevant to

Vj or that some other variables are relevant, despite not being included in PA(Vj).

But then, what does such an individual�s conditional probability Pri(vj jpa(Vj)) �
the informational input at the second stage � represent? For instance, individual

1�s causal relevance relation may be of the form V1 ! V2 ! V3, while all other

individuals� causal relevance relations may be of the form V1 ! V2  V3, which

might then also become the aggregate relation. Here, individual 1 disagrees with

everyone else about both PA(V2) and PA(V3): How should we interpret individual

1�s conditional probabilities Pr1(v2jpa(V2)) and Pr1(v3jpa(V3)) at the second stage of
our two-stage aggregation process? Similarly, what is someone supposed to answer

to the question �how probable is high political con�ict given low crop yield?�if he or

she actually thinks that famine rather than crop yield is causally relevant to political

con�ict?

There are at least three possible interpretations of an individual�s conditional

probabilities in such cases: an evidential, a causal, and a hypothetical one. We begin
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with a discussion of the �rst two interpretations. To give an informal example, sup-

pose for a moment that, according to individual i�s qualitative causal judgment, the

variables in PA(Vj) are not causally relevant to Vj but nonetheless probabilistically

correlated with Vj . Then, if Pri(vj jpa(Vj)) represents an evidential conditional prob-
ability, its value is sensitive to pa(Vj) (by probabilistic dependence), whereas if it is

understood as a causal conditional probability, its value does not depend on pa(Vj)

(by causal independence). More generally, an evidential conditional probability repre-

sents an agent�s belief, given a particular evidential supposition (here the supposition

that the values of the variables in PA(Vj) are pa(Vj)). A causal conditional proba-

bility represents an agent�s belief, given a particular counterfactual supposition (its

content again being that the values of the variables in PA(Vj) are pa(Vj)). This causal

conditional probability can be understood as resulting from supposing an external in-

tervention in our system that sets the values of the variables PA(Vj) to pa(Vj). The

two kinds of conditional probability take the same value if PA(Vj) consists of the cor-

rect causal parents according to individual i�s qualitative causal judgment, but may

di¤er in general.

Formally, in the evidential case, Pri(vj jpa(Vj)) is a standard conditional proba-
bility, which can be derived from individual i�s joint probability function over the

variables using Bayes�s rule.26 In the causal case, Pri(vj jpa(Vj)) can be calculated
as follows (and is sometimes denoted Pri(vj jjpa(Vj)) or Pri(vjnpa(Vj)) to mark the
di¤erence; see also Pearl [2000]).

(i) Modify individual i�s causal relevance relation by deleting relevance links from

any variable to any of the variables in PA(Vj). So, the variables in PA(Vj) have

no parents left (intuitively, they are set by an external intervention).

(ii) Modify the probability assignment to the variables PA(Vj) by letting them take

the values pa(Vj) with probability one (unconditionally, since these variables no

longer have any parents).

(iii) Relative to this new �post-intervention�Bayesian network, compute the prob-

ability that Vj takes the value vj in the usual way. This probability then co-

incides with the causally understood conditional probability Pri(vj jpa(Vj)) (=
Pri(vj jjpa(Vj))) of the initial Bayesian network.27

26Provided that Pr (pa(Vj)) 6= 0.
27To be precise, this causal conditional probability measures the possibly indirect causal e¤ect of

the variables PA(Vj) on Vj , according to individual i�s judgment. There may be such an e¤ect even

if none of the variables in PA(Vj) are directly causally relevant to Vj according to individual i�s

DAG, since Vj may depend on these variables indirectly. Note that PA(Vj) contains the parents

of Vj according to the aggregate DAG; these need not be parents of Vj according to individual i�s

DAG. If we wanted to de�ne a direct causal conditional probability of vj , given pa(Vj), according

to individual i�s DAG, we would have to re-do the calculation described in steps (i) to (iii) with

the set of variables PA(Vj) replaced by its subset consisting only of variables that are also parents
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Let us now turn to the third possible interpretation of the individuals�conditional

probabilities submitted at the second stage of our two-stage aggregation process: the

hypothetical interpretation. Here, individuals are asked to entertain the hypothesis

that the aggregate causal relevance relation is correct and to express conditional

probabilities based on this hypothesis. It is unclear, however, whether and how

Pri(vj jpa(Vj)) can be derived from the individuals�Bayesian networks. This raises a

number of challenges for future research.

6 A �nal challenge

The �rst stage of our two-stage approach restricts the second by requiring the ag-

gregate probability function to display certain conditional independencies mandated

by the aggregate causal relevance relation. Roughly, the fewer causal links are ac-

cepted at the �rst stage, the more probabilistic independencies are enforced at the

second stage. In the extreme case in which no variable is deemed causally relevant

to any other variable, the second stage produces an aggregate probability judgment

according to which every variable is probabilistically independent of every other. Ac-

cepting few causal connections has the advantage of reducing the complexity of the

probability aggregation problem at the second stage but the potential disadvantage

of over-restricting the admissible probability assignments. This restriction is prob-

lematic when the sparse set of accepted causal links between variables is not a result

of the individuals believing in sparse causal links but a result of a causal judgment

aggregation rule setting a high threshold for the acceptance of causal links.

We are thus faced with a trade-o¤ between (i) the goal of reducing the complexity

of the probability aggregation problem (achieved via a high threshold for accepting

causal links between variables) and (ii) the goal of representing causal e¤ects between

variables when there are such e¤ects (achieved via a low threshold for accepting causal

links). We have argued that a high threshold for accepting causal links may help to

prevent a cyclical aggregate causal relevance relation, whereas in other situations,

particularly if the variables can be put into a temporal order, even a low threshold

(perhaps lower than the majority threshold) guarantees acyclicity. We leave it as a

challenge for future research to come up with causal judgment aggregation rules that

perform well on both aspects of this trade-o¤: being neither too permissive nor too

restrictive in accepting causal links while avoiding cyclical causal judgments.

of Vj according to i�s DAG. This subset may be empty, in which case the direct causal conditional

probability of vj , given pa(Vj), coincides with the unconditional probability of vj .
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