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Abstract

This paper provides new foundations for Bayesian Decision Theory based on a representation
theorem for preferences de�ned on a set of prospects containing both factual and conditional pos-
sibilities. This use of a rich set of prospects not only provides a framework within which the main
theoretical claims of Savage, Ramsey, Je¤rey and others can be stated and compared, but also
allows for the postulation of an extended Bayesian model of rational belief and desire from which
they can be derived as special cases. The main theorem of the paper establishes the existence of a
such a Bayesian representation of preferences over conditional prospects i.e. the existence of a pair
of real-valued functions respectively measuring the agent�s degrees of belief and desire and which
satisfy the postulated rationality conditions on partial belief and desire. The representation of
partial belief is shown to be unique and that of partial desire, unique up to a linear transformation.

Key Words: Bayesian decision theory; conditionals; probability; desirability; representation
theorem

1 Introduction

Bayesian decision theories are formal theories of rational agency: they aim to tell us both what the
properties of a rational state of mind are (the theory of pure rationality) and what action it is rational
for an agent to perform, given her state of mind (the theory of choice). This unity of theoretical purpose
is matched by commonality in the ontological commitments of decision theories, in their representations
of the basic objects and relations constitutive of rational agency, and in their commitment to the idea
that what matters in choosing an action is the expected bene�t of performing them. Indeed such is the
extent of this common ground, that it seems natural to speak of versions of Bayesian Decision Theory
rather than separate and competing theories of decision making.
Once we look closely at the details of these theories, however, this picture of unity gives way to

something altogether more complicated. The theories of Leonard Savage [31] and Richard Je¤rey [18],
to take two especially prominent examples, make what appear to be di¤erent claims about the nature
of rationality. They respectively claim, for instance, that preferences for actions should be determined
by the expected utility of their consequences and the conditional expected utility of their consequences
given their performance. But as their theories don�t represent actions in the same way, it is di¢ cult

�Many thanks to Philippe Mongin for his meticulous scrutiny of the ideas contained in this paper.
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to say how these claims are related and to what extent they con�ict. Are Savage and Je¤rey o¤ering
rival Bayesian theories of rational agency, di¤erent expressions of the same theory or complementary
theories applying to di¤erent domains? In this paper I show that the last interpretation is the correct
one, that both of their accounts amount to restrictions, to a particular domain of prospects, of a more
comprehensive Bayesian decision theory.
The demonstration that this is the case depends crucially on the identi�cation of a domain of

prospects su¢ ciently comprehensive that it allows us to express versions of both these theories and,
indeed, many others. The set of prospects in question consists not just in the factual possibilities
typically countenanced, such as the possibility that it will rain tomorrow or that in�ation will exceed
3%, but also conditional possibilities, such as the possibility that if it rains tomorrow, the trip to the
seaside will be cancelled, or that if the con�ict in Iraq continues, in�ation will rise. Various special kinds
of conditional prospects will be familiar from other decision theories. They are central to Ramsey�s [30]
pioneering work, for instance, while Savage�s [31] acts may usefully be regarded as conditional prospects
of the form �If the prevailing state of nature is (or belongs to) X, then consequence c will result; if it
is not X, then consequence c0 will result�, with the antecedents of conditionals playing the role of
states or events and the consequents playing the role of consequences or outcomes. More recently, the
theories of conditional expected utility of Luce and Krantz [26], Fishburn [17] and Joyce [19] posit
direct comparisons between act-event pairs which, on the face if it, are conditional prospects of the
form �Action A if event E�.1 What distinguishes the use made here of conditional prospects is that we
explicitly impose an algebraic structure on the set of conditional prospects akin to a logic containing
conditional propositions. The resulting algebra of prospects we term a conditional algebra.
The main formal result of the paper is a representation theorem for preferences de�ned on conditional

algebras showing that if they satisfy a number of intuitively plausible rationality assumptions, plus a
number of technical conditions, then they may be represented by a pair of functions, respectively
measuring the agent�s degrees of belief and desire, and displaying a number of important properties.
These properties are the contents of some familiar hypotheses; namely:

The Probability Hypothesis Rational degrees of belief in factual possibilities are probabilities.

The SEU Hypothesis Suppose that fXig is a set of n mutually exclusive and exhaustive possibilities
and fCig a set of arbitrary prospects. Then the desirability of the prospect of C1 if X1 is the
case, C2 if X1 is the case, ..., and Cn if Xn is the case, is the weighted average of the desirabilities
of the XiCi with the weights being given by the probabilities of the Xi.

The CEU Hypothesis The desirability of the prospect of X is a weighted average of the desirabilities
of the di¤erent possible ways X could be true, where the weight on each possible way is its
conditional probability, given the truth of X.

Adams�Thesis The rational degree of belief for the prospect of Y if X is the conditional probability
of Y given X.

The Probability Hypothesis has the widest support of the four and has been defended by, amongst
others, Ramsey [30], De Finetti [12], Savage [31], Je¤rey [18] and Anscombe and Aumann [2]. It will be
of little surprise to �nd it here as well. It is important to note, however, that the scope of the claim does
not extend to degrees of belief in conditional prospects. In fact, as has been thoroughly demonstrated
by the triviality results of David Lewis [24] and others2 , such an extended claim is in contradiction
with Adams�Thesis3 , the hypothesis that the degrees of rational belief in conditionals are conditional
probabilities. Many philosophers have for this reason regarded Adams� Thesis as comprehensively

1Though this interpretation is not without its di¢ culties: see section 4.
2See, for instance, Hajek [20], Edgington [14], Döring [13] and Bradley [7].
3So called because it has been most actively championed by Ernst Adams. See Adams [1].
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refuted, thereby implicitly taking it to be part of the concept of rational partial belief that it should
have a standard probabilistic representation. My view is very much to the contrary. Much of the
evidence relating to the way in which we reason with conditionals and the conditions under which we
are prepared to assert them speaks for the truth of Adams�thesis.4 This gives us good reason to call
into question some of the assumptions implicit in the triviality results: in particular, the assumption
that the logic of conditionals is Boolean in character. The signi�cance of this will be apparent later on.
The SEU hypothesis is the core of subjective expected utility theory and has been endorsed in one

form or another by a number of decision theorists and especially those working in the tradition of Savage
or Ramsey. Note that, as formulated here, the SEU hypothesis does not assume that the desirabilities of
consequences are independent of the states of the world in which they are realised. For it says that the
desirability of the prospect of, say, consequence C if event E is the case, depends on the joint desirability
of C and E. So the theories of Ramsey and Savage establish special cases of the SEU hypothesis as
stated here, obtained by restricting the hypothesis to the class of prospects formed from conditionals
with consequents that are maximally speci�c. In this case, all relevant utility dependencies between
antecedent (state or event) and consequent (consequence or outcome) are automatically captured by
virtue of the fact that the latter implies the former. There is a di¤erence here of course: this restriction
on the domain is perfectly consistent with Ramsey�s theory, but incompatible with another of Savage�s
assumptions; namely that every possible (total) function from events to consequences belongs to the
domain of actions.
Finally the CEU hypothesis is the core of Bolker-Je¤rey conditional subjective expected utility theory

(see Je¤rey [18] and Bolker [3] and [4]). As formulated here it is clearly not a competing hypothesis to
SEU for they apply to di¤erent �compounds�of prospects. This �eshes out our claim that the theories
of Savage and Je¤rey apply to di¤erent domains and can, hence, be regarded as elements of a uni�ed
theory whose domain encompasses both.
We proceed as follows. In the next section conditional algebras are de�ned and relevant properties

derived. In section 3, Bayesian models of the attitudes of rational agents are characterised axiomatically
and it is established that Bayesian utility measures are averaging functions with a particular structure.
In section 4, we identify su¢ cient conditions on a preference relation de�ned on a conditional algebra
of prospects for the existence of Bayesian model, unique up to a choice of scale for the utility function.

2 Conditional Algebras

2.1 Vocabulary

Let � = hX;�i be any poset with X a set partially ordered by the relation �. Let a and b be any
elements of the set X. Then, when the relevant objects exist:

1. ab denotes the greatest lower bound on fa; bg

2. a _ b denotes the least upper bound on fa; bg

3. :a denotes the (unique) complement of a in X.

4. > and ? respectively denote the greatest and least element in X:

5. a = b means a � b and b � a:

6. X
0
is X � f?g

4See, for instance, Over and Evans [28].
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A set Y is said to be closed under the operation ! of conditionalisation on a set X i¤ 8(a 2
X;� 2 Y ), a ! � 2 Y . The closure of a set Y under conditionalisation on X is the set Z such that
a 2 X;� 2 Y , a ! b 2 Z. A subset of X; A = fx1; x2; :::; xng is called a n-fold partition of X i¤
x1 _ x2 _ ::: _ xn = > and 8(xi; xj 2 A), xixj =?. If A is such an n-fold partition of X then for any
y1; y2; :::; yn 2 X the object (x1 ! y1)(x2 ! y2):::(xn ! yn) is called a partitioning conditional.

2.2 Types of Conditional Algebras

The structure 	 = hY;�;!i is said to be a conditional algebra based on � i¤ Y is closed under
conditionalisation on X � Y , � = hX;�;>;?i is a Boolean algebra, 	 is a lattice bounded above and
below by > and ?, and 8(a; b; c; d 2 X):
(C1) > ! b = b
(C2) ab � ac, a! b � a! c
(M1) (a! b)(a! c) � a! bc
(J1) a! (b _ c) � (a! b) _ (a! c)

A conditional algebra 	 is said to be

1. Indicative i¤ a! (b! c) = ab! c

2. Normally bounded above i¤ a ! > = > and below i¤ if a 6= ? then a ! ? = ? (and just
normally bounded if both hold)

An indicative conditional algebra that is normally bounded (above and below) is called a Ramsey
algebra.

Example 1. (Set-valued functions) One very broad-ranging interpretation of! is as a restriction
operation on the domains of set valued functions. Let Z be any set and Y the set of all functions from
Z to }(Z). In particular let X � Y be the set of constant valued, total functions on Z, containing
in particular the functions > and ? which map all elements of Z respectively to Z and to ?. For
any a 2 X and f 2 Y , a ! f =def f(x) if x 2 a(x) and is unde�ned otherwise; hence a ! f is the
restriction of f to fx 2 Z : x 2 a(x)g. We write x 2 f i¤ x belongs to the domain of f . De�ne f � g
i¤ 8(x 2 g), x 2 f and f(x) \ x � g(x) \ x. Then hY;�;!i is an indicative conditional algebra based
on hX;�;>;?i. However it is not normally bounded either above or below.

Example 2. (Conditional sentences) The correct logic and semantics of conditional sentences,
both indicative and counterfactual, has been a source of considerable controversy and one that cannot
be dispelled by mere algebra. The algebraic framework we develop here can, however, serve to organise
the argument in a way that is particularly relevant to our concerns. Let X be a set of non-conditional
sentences, ! a two-place sentential operator and XX the set of simple conditionals i.e. the set formed
from X by closing it under conditionalisation on itself. Let Y be the closure of XX under negation,
disjunction, conjunction and conditionalisation on X. Most accounts of conditionals agree that when
the ordering relation � is interpreted as logical implication then hY;�;!i forms a conditional algebra.
The exception is Lewis� [25] theory of counterfactuals according to which J1 is not satis�ed: it can
be the case that in all nearest possible worlds to the actual one in which a is true that b _ c is true
without it being the case that either b is true at all such worlds or that c is true at all such worlds. On
the material conditional construal of conditionals, the algebra of conditional sentences is indicative and
normally bounded above, but is not normally bounded below. On Stalnaker�s [33] theory of conditionals
it is normally bounded both above and below but not indicative (though it is consistent with his theory
that this principle does hold for indicative, as opposed to counterfactual, conditionals). On the theories
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of Adams [1] and McGee [27] it is both indicative and normally bounded above and below; hence a
Ramsey algebra.

Theorem 1 Suppose that 	 is a conditional algebra. Then 8(a; b; c 2 X):
(i) a! b = a! ab
(ii) (a! b)(a! c) = a! bc
(iii) (a! b) _ (a! c) = a! (b _ c)

If 	 is normally bounded above then:
(iv) a! a = b! b

and if 	 is normally bounded below then:
(v) If a 6= ? then a! :b = :(a! b)

Proof. Note that a; b; c 2 X, so that the normal Boolean laws apply. (i) Follows immediately
from C2 and the fact that ab = a(ab). (ii) By C2, a ! bc � a ! b; a ! c. But by M1 (a !
b)(a ! c) � a ! bc. (iii) By C2 and J1. (iv) If 	 is normally bounded above then by (i) above
a ! a = a ! > = > = b ! b. (v) If 	 is normally bounded below and a 6= ? then by (ii) and (iii)
(a! b)(a! :b) = a! ? = ? and (a! b) _ (a! :b) = a! > = >. So a! :b = :(a! b).

Theorem 2 Let 	 = hY;�;!i be a normally bounded conditional algebra based on � = hX;�i and for
any f 2 X, let Xf be the closure of X under conditionalisation on ffg. Then the structure hXf ;�i is
a Boolean algebra with upper bound f ! f and lower bound f ! :f .

Proof. We prove the theorem by showing that there exists a structure-preserving mapping � from
the Boolean algebra hX;�;>;?i to hXf ;�; f ! >; f ! ?i. For all a 2 X let a� =def f ! a. Then
>� = f ! > and ?� = f ! ?. Now by Theorem 1 (iii), (b _ c)� = f ! (b _ c) = (f ! b) _ (f ! c) =
b� _ c� and by Theorem 1 (ii), (bc)� = f ! bc = (f ! b)(f ! c) = b�c�. Finally note that f ! b0 is
the unique complement of f ! b, since (f ! b)(f ! :b) = f ! ? and (f ! b) _ (f ! :b) = f ! >.
So by Theorem 1 (iii), (b0)� = f ! :b = :(f ! b) = :(b�).

3 Bayesian Models of Rationality

A Bayesian model of a rational agent is a quantitative representation of her state of mind canonically
taking the form of a pair of functions respectively measuring her degrees of belief and preference for
some class of objects. Our aim here is to axiomatically characterise the class of such models in the case
where the agent�s partial beliefs and desires are de�ned over a Ramsey algebra of conditional prospects
and to study some of the properties of this class.
The study reveals interesting connections between the various decision theoretic hypotheses that we

identi�ed in the introduction to the paper. Bayesianism is, of course, a species of Probabilism: the
view that rational degrees of belief are probabilities. But one of its central claims, from Ramsey and
Savage onwards, has been that this view about rational belief is derivable from a theory of rational
preference or value. The strongest expression of the latter is found in the SEU and CEU hypotheses,
but underlying both is a more basic principle; namely that the value of any prospect lies between those
of the various disjoint ways it can be realised and can therefore be represented as a weighted average
of the values of these ways. More concisely:

Averaging Slogan No prospect is better (worse) than its best (worst) realisation in a set of mutually
exclusive and exhaustive prospects

For instance, since the prospect of x can be realised by either of xy or x:y being the case, the value
of x should lie between those of xy and x:y. Similarly the prospect that if x then y and if not x then z
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can be realised by either xy being the case or :xy being the case, so its value should lie between those
of xy and :xy. The rationale in both cases is the same. Any prospect may be realised in a number
of di¤erent possible ways, but generally one will not be certain as to which of these is the actual one.
But at worst it will be realised in the least preferred of the ways and at best by the most preferred of
the ways. So a prospect can never be better than the best case scenario or worse than the worst case
scenario. And in general one�s attitude to the prospect should depend on how likely one thinks the
worst and best cases are, given the prospect.
Any function representing the preferences or values of an agent that has this feature, I will dub

an averaging function. A Bayesian utility function is an averaging function on prospects with two
characteristic features:

(i) The value of a prospect that consists of a number of disjoint conditional prospects is represented
as the sum of the values of each of the disjoint conditional prospects.

(ii) The utility value of the conditional prospect of y if x is proportional to the conditional utility of
y given x.

This claim about the nature of the Bayesian value function follows from results that we prove below.
In essence they establish that if functions P and V respectively represent an agent�s degrees of belief
and preference and that V is an averaging function that satis�es (i) and (ii), then V satis�es the SEU
hypothesis. Moreover, given a couple of additional technical conditions, P and V satisfy not only the
Probability hypothesis but also the CEU hypothesis and Adams�Thesis as well. As for the two features
themselves, we shall see later on that the former is a consequence of a particular condition of rationality,
while the latter is more a consequence of a choice of representational format than anything else.
A �nal point is worth noting. Since the SEU hypothesis can be shown to imply (i) and (ii) (see

below), there is a sense in which it is the strongest of our Bayesian hypotheses. For it follows that if V is
an averaging function then, given the extra technical conditions mentioned before, the SEU hypothesis
implies the other three.

3.1 The Rationality Axioms

We build up the domains of the representations of rational agents degrees of belief and preference from
a basic set A = ff; g; h; :::g of non-conditional prospects ordered by a relation � expressing logical
connections between them. Assume that hA;�i is a Boolean algebra and let 	 = hC;�;!i be a
Ramsey algebra of prospects based on hA;�i. Let AA be the closure of A under conditionalisation.
Note that in the light of the indicative property of conditionals, AA is the set of all simple conditional
prospects i.e. all prospects in C of the form f ! g, where f; g 2 A.
A Bayesian model for a rational agent based on the algebra 	 is de�ned as a pair of functions hP; V i,

respectively on AA and C
0
, and satisfying for all f; g; h 2 A:

Axioms of Credibility

P0 P (f) � 0

P1 P (>) = 1

P2 If fg = ?, then P (f _ g) = P (f) + P (g)

P3 P (f ! h) = P (hjf)
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Axioms of Desirability

V1 V (>) = 0

V2 If fg = ?, then V (f _ g):P (f _ g) = V (f):P (f) + V (g):P (g)

V3 V (f ! h) = V (hjf):P (f)

V4 If ffig is an n-fold partition, then V ((f1 ! g1)(f2 ! g2):::(fn ! gn)) =
Pn

i=1 V (fi ! gi)

Intuitively P and V respectively represent the agent�s degrees of belief in, and degrees of desire
or preference for, the prospects contained in the underlying conditional algebra. Axioms P0, P1 and
P2 are no doubt familiar and require that the restriction of P to the Boolean sub-algebra hA;�i of
non-conditional prospects is formally a probability. V1 and V2 similarly ensure that the restriction of
V to non-conditional prospects is formally a desirability.5 P3 is Adams�Thesis, the aforementioned
hypothesis that rational belief in a conditional goes by the conditional probability of its consequent given
its antecedent. V3 is the companion axiom to P3: it says that the desirability of a conditional is the
conditional desirability of its consequent given the truth of its antecedent, weighted by the probability
of its antecedent. Conditional probability and desirability are de�ned in the usual way by6 :

De�nition 3 If P (f) 6= 0, then:

P (hjf) =
p(fh)

p(f)

V (hjf) = V (fh)� V (f) + V (>)

Note that in the light of this de�nition, P3 and V3 jointly ensure that P and V are respectively
a probability and a desirability function when restricted to the Boolean sub-algebra, Af , of simple
conditional prospects with antecedent f . Conversely if we suppose that P and V are respectively a
probability and desirability on the sub-algebra Af , then V3 implies P3.7

V4 is an additivity axiom for partitioning conditionals. Its signi�cance is perhaps best appreciated
by noting that, in the presence of V1 and V2, axioms V3 and V4 are equivalent to the SEU hypothesis. It
follows that the species of Bayesian decision theory characterised here is a proper extension of standard
subjective expected utility theory.

Proposition 4 (SEU Hypothesis) Let P and V respectively measure an agent�s degrees of belief and
preference. If ffig is an n-fold partition of A, then for all g1:::gn 2 A:

V ((f1 ! g1)(f2 ! g2):::(fn ! gn)) =
nX
i=1

V (figi):P (fi)

Theorem 5 Assume V1. Then:
(i) V2, V3 and V4 jointly imply the SEU hypothesis.
(ii) The SEU hypothesis implies V3 and V4.

Proof. (i) By V4, V ((f1 ! g1)(f2 ! g2):::(fn ! gn)) =
Pn

i=1 V (fi ! gi). But by V3, V (fi !
gi) = V (figi):P (fi)� V (fi):P (fi): So

Pn
i=1 V (fi ! gi) =

Pn
i=1 V (figi):P (fi)�

Pn
i=1 P (fi):P (fi). But

by V2, V (f1 _ f2 _ :::_ fn) =
Pn

i=1 V (fi):P (fi) = 0 by V1. So
Pn

i=1 V (fi ! gi) =
Pn

i=1 V (figi):P (fi).

5See Je¤rey [18]. The normalisation of desirabilities with respect to > is typically not speci�ed axiomatically in Je¤rey�s
work, but adopted as a scaling convention. The advantage of having axiom V1 is the symmetry with P1.

6See Bradley [8] for the justi�cation of this expression for conditional desirability.
7These claims are respectively proved as Theorems 2 and 3 in Bradley [6, pp. 195-198].
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(ii) Now assume that the SEU hypothesis is true. Since the algebra of prospects is normally bounded,
V (f ! h) = V (f ! h)(:f ! :f) = V (fh):P (f) + V (:f):P (:f). In particular, V (f ! f) =
V (f):P (f) + V (:f):P (:f) = V (>) = 0 by V1. Hence V (f ! h) = V (fh):P (f) � V (f):P (f) =
(V (fh)� V (f)):P (f) = V (hjf):P (f) as required by V3. Now by the SEU hypothesis:

V ((f1 ! g1)(f2 ! g2):::(fn ! gn)) =
nX
i=1

V (figi):P (fi)

In particular V ((f1 ! f1)(f2 ! f2):::(fn ! fn)) =
Pn

i=1 V (fi):P (fi) = 0 in virtue of V1 and the fact
that the algebra of prospects is bounded by (fi ! fi) = >. So:

nX
i=1

V (figi):P (fi) =
nX
i=1

V (figi):P (fi)�
nX
i=1

V (fi):P (fi)

=
nX
i=1

(V (figi)� V (fi)):P (fi)

=
nX
i=1

V (fi ! gi)

3.2 Averaging Functions

A real-valued function � on a Ramsey algebra 	 based on hA;�i is said to be an averaging function
i¤ 8f; g; h; i 2 A0:

1. �(fg) � �(f:g) =) �(fg) � �(f) � �(f:g), and

2. �(f ! gh) � �(f ! :gi) =) �(f ! gh) � �(f ! (g ! h)(:g ! i)) � �(f ! :gh).

It is straightforward to establish that any function, V , satisfying the Bayesian rationality axioms is
an averaging function in this sense. Much more interesting is the fact that any averaging function that
satis�es V3 and V4 also satis�es all the other Bayesian rationality axioms (and hence by Theorem 5(i)
above, the SEU hypothesis as well). To prove this we require that two conditions hold; namely:

1. Non-triviality: 8(f 2 A0);9(h 2 A0) such that V (fh) = V (f)

2. Mitigation: 8(f; g 2 A0);9(h 2 A0) such that V (fh) � V (g)

Neither condition is necessary for the truth of the hypothesis that rational degrees of belief and
desire satisfy the Bayesian axioms. And while the non-triviality condition is very weak, the mitigation
condition is anything but, requiring in e¤ect that the di¤erence in desirability of any two prospects may
be o¤set (or neutralised) by mitigating conditions that render them equally desirable or undesirable.
Nonetheless I do not think the role that either assumption plays in the theorem below is one which
is distortive of the results obtained with their help. Their function is technical: they make the result
easier to obtain, but do not determine its nature.

Lemma 6 If fg = ?, then fh � gi, (f _ g)! fh � (f _ g)! gi

Proof. fh � gi, V (fh) � V (gi), (V (fh)� V (f _ g)):P (f _ g) = (V (gi)� V (f _ g)):P (f _ g).
But since fg = ?, fh = (f _ g)fh and gi = (f _ g)gi, it follows by V3 that V ((f _ g) ! fh) =
(V (fh) � V (f _ g)):P (f _ g) and V ((f _ g) ! gi) = (V (gi) � V (f _ g)):P (f _ g). Hence fh � gi ,
(f _ g)! fh � (f _ g)! gi.

8



Theorem 7 Let PA be a strictly positive real valued function on A and V a real numbered function on
C

0
that jointly satisfy V3 and V4. Suppose that V satis�es the non-triviality and mitigation conditions.

Then if V is an averaging function on C
0
, there exists a function P on AA which agrees with PA on A

and such that hP; V i constitutes a Bayesian model of the agent.

Proof. We prove the theorem by de�ning a function P in terms of V and PA and then proving
that P and V jointly satisfy the axioms of Bayesian decision theory. Recall that AA is the set of
all conditional prospects of the form f ! g, where f; g 2 A, and in particular that by property C1,
f = > ! f . For all such f and g: (i) If f ! g = ?, P (f ! g) =def 0; (ii) If V (f ! g) = V (>), then
P (f ! g) =def

PA(fg)
PA(f)

; (iii) Else:

P (f ! g) =defn
V (f ! :g)

V (f ! :g)� V (f ! g)

Note that by V3, V (f ! g) 6= V (>) = V (f ! f) i¤ V (fg) 6= V (f) 6= V (f:g), since V is an averaging
relation. Hence by V3, V (f ! g) 6= V (f ! :g). So V (f ! :g)� V (f ! g) 6= 0.
P0). If V (f) = V (>), then it follows from (ii) and the fact that PA is strictly positive that P (f) � 0.
Else, since V is an averaging relation, V (:f) � V (f) , V (:f) � V (>) � V (f). So V (:f) � V (f) �
0, V (:f) � 0. Hence by de�nition P (f) � 0:
P1). By the normality of conditional prospects f ! f = >. Then by de�nition, P (f ! f) = PA(f)

PA(f)
= 1.

V1). By the normality of conditional prospects f ! f = >. But by V3, V (f ! f) = (V (f) �
V (f)):PA(f) = 0.
P3). If V (f ! h) = V (>) then P3 follows by de�nition. Else by de�nition and V3:

P (f ! h) =
V (f ! :h)

V (f ! :h)� V (f ! h)

=
PA(f):(V (f:h)� V (f))
PA(f):(V (f:h)� V (fh))

=
V (f)� V (f:h)
V (fh)� V (f:h) (1)

Now by the mitigation condition there exists an i such that V (fhi) = V (f:h). Then by V3, V (f !
:h) = V (f ! hi) and since V is an averaging relation, V (f ! :h) = V (f ! ((:h ! :h)(h ! i))) =
V (fh! i) by the indicative and normality properties of conditionals. Now by V3,

P (f) =
V (f ! :h)

V (f:h)� V (f)

P (fh) =
V (fh! i)

V (fhi)� V (fh) =
V (f ! :h)

V (f:h)� V (fh)

Hence:
P (fh)

P (f)
=

V (f:h)� V (f)
V (f:h)� V (fh) = P (f ! h)

by equation (1).
P2). Suppose that V (f) 6= V (g). By the complementation property of conditionals P (:((f _ g) !
f)) = P ((f _ g) ! :f) = P ((f _ g) ! g) by Theorem 1(i). And by equation (1) above, P ((f _ g) !
f) + P ((f _ g) ! g)) = V (f_g)�V (g)

V (f)�V (g) + V (f_g)�V (f)
V (g)�V (f) = 1. So by P3, P (f)

P (f_g) +
P (g)
P (f_g) = 1. Hence

P (f _ g) = P (f) + P (g). Now suppose that V (f) = V (g). Hence since V is an averaging relation,
V (f) = V (f _g) = V (g). Now by the non-triviality condition there exists i 2 A such that V (gi) 6= V (g)
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and by the mitigation condition there exists an h 2 A such that V (fh) = V (gi). Then since V is an
averaging relation, V (fh) = V (fh_gi) = V (gi) and by Lemma 6, V ((f ! h)(g ! i)) = V ((f_g)! gi).
But by V4 and V3:

V ((f ! h)(g ! i)) = V ((f _ g)! gi)

, V (f ! h) + V (g ! i) = V ((f _ g)! gi)

, V (fh):P (f) + V (gi):P (g)� V (f):P (f)� V (g):P (g) = V (fh _ gh):P (f _ g)� V (f _ g):P (f _ g)
, (V (gi)� V (g)):(P (f) + P (g)) = (V (gi)� V (g)):P (f _ g)

So P (f _ g) = P (f) + P (g).
V2). By equation (1) and P3, P ((f_g)! f)) = V (f_g)�V (g)

V (f)�V (g) = P (f)
p(f_g)) . Hence, V (f):P (f)+V (g):P (f_

g) � V (g):P (f) = V (f _ g):P (f _ g). But by P2, P (f _ g) � P (g) = P (f). So V (f _ g):P (f _ g) =
V (f):P (f) + V (g):P (g).

4 Preference For Conditional Prospects

We now turn to the question of foundations for Bayesian models of rational agents. As is usual we will
introduce a two-place relation % on the set of prospects and give su¢ cient (and, for the most part,
necessary) conditions on this relation for the existence of a Bayesian model that coheres with it. The
standard interpretation of % is as a �as least as preferred�relation on prospects, so that � % � expresses
the thought that the agent does not prefer that it be the case that � to that it be the case that �.
The other common interpretation of % as a choice or revealed preference relation seems doubtful in
this context, for the choice behaviour of an agent will only indirectly re�ect his or her attitudes to
conditional prospects.
The postulation of a preference relation on conditional prospects raises an important interpretative

issue, however, concerning how a preference for it to be the case that if f then g rather than the case
that if h then i is to be understood. In my opinion it is as a judgement which is made relative to current
beliefs about the state of the world and which compares two (epistemically) possible features of it. It
it not a comparison between a judgement made about g relative to, or on the assumption that, f and
a judgement made about i relative to, or on the assumption that, h. Comparisons of the latter kind
are apparently postulated by conditional expected utility theory; at least this is what is suggested by
the formalism. Such comparisons may be possible and indeed may depend on preference judgements in
some way, but they cannot themselves be preference judgements, simply because the objects �g relative
to f�and �i relative to h�are not prospects. A topographical analogy may help to clarify the point.
There is a di¤erence between comparing how high g will look if you are at f to how high i will look
if you are at h and comparing the height of g given that you are at f to the height of i given that
you are at h. The former is a judgement about relative heights made from some �xed point, while the
latter seems to require that one be able to compare judgements that are made from di¤erent points.
That no such ability to make comparisons from di¤erent point of views is presupposed here is one of
the strengths of the theory.

4.1 Axioms of Rational Preference

As before let 	 = hC 0
;�;!i be a Ramsey algebra based on � = hA;�i with C 0

= f�; �; ; :::g a set
of prospects closed under conditionalisation on A. Let % be a two-place relation on C

0
, standardly

interpreted as expressing a judgement of preference between prospects. A decision theoretic model of
an agent hP; V i will be said to represent her preferences just in case the measures of her degrees of
belief and desire cohere with her preferences in the sense that for all prospects � and � in the domain
of %, V (�) � V (�), � % �. Our task now is to show under what conditions rationality of preference
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implies the existence of a decision theoretic model of the agent and to determine to what extent such
a model uniquely represents her preferences. The following set of axioms on the preference relation %
will be assumed throughout. For all �; �;  2 C 0

and f; g; h; i 2 A such that fg = ?:

1. Transitivity: � % � and � % , then � % 

2. Completeness: � % � or � % �

3. Independence: (f ! �)(g ! �) % (f ! )(g ! �)() f ! � % f ! 

4. Preference for Conditionals: f ! � % f ! � () f� % f�

5. Averaging Disjunctions: fg % f:g , fg % f % f:g

6. Averaging Conditionals: f ! gh % f ! :gi, f ! gh % f ! (g ! h)(:g ! i) % f ! :gi

We will refer to the set of axioms 1 - 6 as the axioms of rational preference, though strictly speaking
Completeness is not a principle of rationality. The Transitivity axiom is absolutely standard and the
Independence axiom is a version of von Neumann-Morgenstern�s eponymous axiom and of Savage�s
Sure-Thing principle. Neither requires further comment here.8

The axiom of Preference for Conditionals is closely related to Savage�s D2 whereby he induces a
preference ordering over consequences from that over actions, but it does not have the implication (that
D2 does) that preferences for consequences are independent of the state in which they are realised. On
the contrary, Preference for Conditionals can rightfully be termed a �state-dependency�assumption for
it says that our preference between the prospect of � if f and that � if f should depend, not on our
preference between � and �, but that between � and � when co-realised with f .
Finally, the axiom of Averaging Disjunctions is the central axiom of Bolker-Je¤rey decision theory

and, like the axiom of Averaging Conditionals, �nds its justi�cation in the Averaging Slogan: that no
prospect can be better (or worse) than its best (or worse) realisation in a given set of mutually exclusive
and exhaustive prospects. In the �rst case the relevant set of realisations of f is the set ffg, f:gg. In
the second case the relevant realisations of f ! (g ! h)(:g ! i) is the set ff ! gh, f ! :gig since it
follows from the former that if f then either gh or :gi but not both.
We now show that, under technical conditions still to be speci�ed, the rationality axioms imply the

existence of a numerical representation of rational preference for conditional prospects satisfying V3 and
V4, the principles we showed to be jointly equivalent to the SEU hypothesis (in the presence of the other
Bayesian axioms). We also show that the representation is unique up to linear transformation. Since the
axioms of Averaging Disjunctions and Averaging Conditionals jointly require that the representation
be an averaging function, it then follows from Theorem 7 in the previous section that the rationality
axioms in conjunction with the mitigation and non-triviality conditions are su¢ cient for the existence
of a Bayesian model of the agent�s preferences that is unique up to a choice of scale for the desirability
measure.
The solution given here exploits an idea of Ramsey�s; namely that conditionals can be used to de�ne

the �sum�of any given pair of prospects and thereby making it possible to apply some standard results
in the theory of measurement. The Ramseyian approach that is followed provides a particular elegant
solution to the problem of �nding a representation of the agent�s preferences, but I do not claim that
this is the only one. To my mind, it has a couple of particularly attractive features. Firstly, rather
than depending on an assumption that preferences are state-independent, the method assumes only
that there exists a special class of events - called neutral prospects - which do not a¤ect the agent�s
attitude to prospects consistent with them. And secondly, the method makes little appeal to expected
utility theory to justify its assumptions. The same cannot be said of Savage�s P4 or of Bolker�s axiom
of Impartiality, for instance.

8See Broome [11] for a discussion of these principles.
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We proceed as follows. In section 4.2 we introduce the concepts of preference neutrality and inde-
pendence and use them to identify sets of prospects that are equally credible from the agent�s point of
view. In section 4.3. we use such prospects to de�ne an addition operation on values, where the latter
are sets of prospects that are preference ranked together. In section 4.4. we apply a version of Hölder�s
measurement theorem that is proved by Krantz et al [23] to the structure imposed on the set of values
by our addition operation. This allows us to prove the existence of numerical measures of the agent�s
beliefs and preferences that jointly satisfy V3 and V4.

4.2 Neutral Prospects

Suppose �;  2 C 0
and f 2 A. Then we say that � is neutral with respect to  i¤ � �  and that

f is independent of � i¤ 8�; � 2 C
0
, �(f ! �)(:f ! �) � (f ! ��)(:f ! ��). Note that since

� � ��_(:�)�, it follows from the axiom of Averaging Disjunctions that �� � �() �� � � � (:�)�.
Hence � is neutral with respect to � i¤ :� is. Equally it follows immediately from the de�nition of
independence that if f is independent of �, then so too is :f . Now let �p =def f� 2 C

0
: p is neutral

with respect to �g.

Lemma 8 Suppose that p; q 2 A are neutral with respect to � and � and pq = ?. Then p! � � p!
� , � � �:

Proof. By the axiom of preference for conditionals p ! � � p ! � , p� � p� , � � � by
the de�nition of neutrality. (ii) By de�nition, p� � � � q�. But then by the axiom of Averaging
Conditionals, (p _ q)! � � (p! �)(q ! �).

Suppose that p; q 2 A are such that p � > � q and �p \�q contains elements not ranked with >.
Then p and q are said to be equi-credible i¤ 8(�; � 2 �p\�q); (p! �)(:p! �) � (q ! �)(:q ! �).
Let us denote by � the set of elements p 2 A, such that p and :p are equi-credible. Intuitively, these
are the prospects that should be assigned a value of one-half by any measure of the agent�s degrees of
belief taking values in the [0; 1] interval.

Lemma 9 If p; q 2 A are neutral with respect to � and equi-credible then p! � � q ! �.

Proof. Since p and q are neutral with respect to � and >, it follows from the de�nition of equi-
credibility and the normality of the conditional algebra that p ! � = (p ! �)(:p ! >) � (q !
�)(:q ! >) � q ! �.
We now introduce a number of axioms of preference for neutral elements and, in particular, ones

which are equi-credible with their negations.

N1 8(�; �; ; �; � 2 C
0
; f 2 A) there exists p; q 2 � such that �; �; ; �; � 2 �p, �q and �pq, and p

and q are independent of each other and f .

N2 Suppose that p; q 2 �. Then 8(�; � 2 �p;�q); (p! �)(:p! �) � (q ! �)(:q ! �)

N3 8(�; � > >) there exists a partition fp1; p2; :::; png of equi-credible elements such that for some
i � n; � > pi ! �

N4 Suppose that p 2 � and �; � 2 �p. Then there exists ; � 2 C
0
such that (p ! �)(:p ! �) �

(p! )(:p! >) and (p! �)(:p! �) � >.

N1 ensures the existence of equi-credible and independent prospects and N2 that the de�nition of
equi-credibility is coherent. N3 is an Archimedean axiom. N4 is a domain assumption whose role is to
ensure, for any pair of prospects � and �, the existence of a prospect that intuitively has a desirability
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equal to the sum of that � and �, and of a prospect whose desirability is just the same as that of � but
with the opposite sign. Strictly speaking we do not need N4 to apply to all prospects in the domain
of the preference ranking and could restrict it to all prospects falling within certain bounds. But this
would require us to make use of a much more complicated version of Hölder�s measurement theorem
and I do not think that the gain in generality justi�es the increase in mathematical complexity.9

4.3 Addition of Values

An ordering on sets of equally preferred prospects, to be called values, is now derived from the initial
preference orderings of the prospects themselves. Let the value of �, denoted by �, be de�ned as the
set f� 2 C 0

: � � �g. Let � be the set of all the values of the prospects in C 0
and de�ne the ordering

� on � by � � � ,def8(� 2 �; � 2 �); � % �. Next we de�ne an addition operation, �, on such sets
of options with a view to establishing the fact that h�;�; �i is a group.

De�nition 10 For any � 2 C 0
, let p� be any element of � that is neutral with respect to �; � and �.

Then � � � =def f� 2 C
0
: p� ! � � (p� ! �)(:p� ! �)g

Note that the coherence of the de�nition is ensured by axiom N2, for it follows from the latter that
if p�� 2 � is also neutral with respect to �; � and �, that (p�� ! �)(:p�� ! �) � (p� ! �)(:p� ! �).

Theorem 11 Suppose that p; q 2 �, �; � 2 �p; and ; � 2 �q. Then � � � �  � � , (p! �)(:p!
�) % (q ! )(:q ! �)

Proof. By axiom N2, (p� ! �)(:p� ! �) � (p ! �)(:p ! �) and (p� ! )(:p� ! �) � (q !
)(:q ! �). So by de�nition, � � � �  � �
,f� 2 C 0

: p� ! � � (p� ! �)(:p� ! �)g � f� 2 C 0
: p� ! � � (p� ! )(:p� ! �)g

,f� 2 C 0
: p� ! � � (p! �)(:p! �)g � f� 2 C 0

: p� ! � � (q ! )(:q ! �)g
, (p! �)(:p! �) % (p! )(:p! �).

Corollary 12 (i) � � � = � ��
(ii) � � � � � �  , � � 

Proof. Let p 2 � be neutral with respect to �; �;  and �. Then (i) by de�nition, if � � � = � ��
then (p ! �)(:p ! �) � (:p ! �)(p ! �) = (p ! �)(:p ! �). But by Theorem 11, (p ! �)(:p !
�) � (p ! �)(:p ! �) , � � � = � ��. (ii) by de�nition, � � � � � �  , (p ! �)(:p ! �) %
(:p ! �)(p ! ). But by the Independence axiom, (p ! �)(:p ! �) % (:p ! �)(p ! ) , :p !
� % :p !  , :p� % :p by the axiom of Preference for Conditionals. But :p� � � and :p � .
So � � � � � �  , � � .

Theorem 13 � � > = �

Proof. By de�nition � � > = f� 2 C 0
: p! � � (p! �)(:p! >)g = f� 2 C 0

: p! � � p! �g
by the normality of the conditional algebra. But by Lemma 8, p ! � � p ! � , � � �. So
f� 2 C 0

: p! � � p! �g = f� 2 C 0
: � � �g = �.

De�nition 14 �� =def f� 2 C
0
: (p! �)(:p! �) � >g

Theorem 15 � � (��) = >
9The version we would need to use is that given as Theorem 4 in Krantz et al [23, p. 45].
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Proof. Let  2 ��. Then by de�nition � � (��) = � � =  �� = f� 2 C
0
: p ! � � (p !

 )(:p ! �)g. But by de�nition of ��, (p !  )(:p ! �) � >. So f� 2 C
0
: p ! � � (p !

 )(:p ! �)g = f� 2 C
0
: p ! � � >g. Now by Lemma 8, p ! � � > � p ! p , � � p � >. So

f� 2 C 0
: p! � � >g = f� 2 C 0

: � � >g = >.

Theorem 16 (f ! �)(:f ! �) = (f ! �) � (:f ! �)

Proof. Let p 2 � be neutral with respect to f ! � and :f ! � and (f ! �)(:f ! �). Then since
p and :p are equi-credible, it follows from Corollary 9, that p ! (:f ! �) � :p ! (:f ! �). Hence
by repeated application of the import-export condition, :f ! (p ! �) � :f ! (:p ! �) and by the
axiom of independence, (f ! (p! �))(:f ! (p! �)) � (f ! (p! �))(:f ! (:p! �)). Then again
by repeated application of the import-export condition, (p ! (f ! �))(p ! (:f ! �)) � (p ! (f !
�))(:p ! (:f ! �)). But (p ! (f ! �))(p ! (:f ! �)) = p ! ((f ! �)(:f ! �)) = (p ! ((f !
�)(:f ! �))(:p ! T ). So (p ! ((f ! �)(:f ! �))(:p ! >) � (p ! (f ! �))(:p ! (:f ! �)).
Hence by Theorem 11, (f ! �) � (:f ! �) = (f ! �)(:f ! �) � > = (f ! �)(:f ! �) by Theorem
13.

Theorem 17 (� � �) �  = � � (� � )

Proof. Suppose that � 2 � � �,  2 � � , and that p; q 2 � are both neutral with respect to �; �
and , respectively neutral with respect to  and �, and independent of one another. Then by axiom
N2, (q ! �)(:q ! �) � (p! �)(:p! �) and q !  � :p! . So by substitution of identical values,
(q! �)(:q! �) � q!  = (p! �)(:p! �) � :p!. But then by Theorem 11:
(p! (q ! �)(:q ! �))(:p! (q ! )) � (q ! (p! �)(:p! �))(:q ! (:p! )
� ((pq ! �)(:pq ! �))(:p:q ! )
� (p! (q ! �))(:p! (q ! �)(:q ! ))

by application of the import-export condition and the commutativity of conditionals. So by Theorem
11,
(q!�)(:q!�)�(q! ) = (q!�) � (q! �)(:q! )

But by de�nition of � � � and  � �, :q ! � � (q ! �)(:q ! �) and :p !  � (p ! �)(:p ! ).
So by substitution of identical values,
(:q! �) � (q! ) = (q! �) � (:p!  ) = (p!�) � (:p!  )

since q ! � � p! �. And so by Theorem 16, (q! �)(:q! ) = (p! �)(:p!  ). So by Theorem
11, � �  = � � . But � = � � � and  = � � . So (� � �) �  = � � (� � ).

4.4 Additive Functions on Preference

Let hA; �i be a group with identity > and let � be an ordering relation on A. The triple hA;�; �i
is called a simply ordered group i¤ 8(a; b; c 2 A), a � b =) a � c � b � c and c � a � c � b: Let
>a =def a and, for any n 2 I+, let na =def (n � 1)a � a. Then hA; �i is said to be Archimedean i¤
a > 0 =) na > b for some n 2 I+.

Theorem 18 (Hölder�s Theorem) Let hA;�; �i be an Archimedean simply ordered group. Then hA;�
; �; 0i is isomorphic to a subgroup of h<;�;+; 0i and if � and �0 are any isomorphisms, � = ��0 for
some � > 0.10

Lemma 19 (Archimedean) Suppose �;� 2 �, � � > and that fp1; :::; png is a partition of equi-
probable propositions such that � % p1 ! �. Let 1:� =def � and, for any n 2 I+, let n� =def
(n� 1)� ��. Then n� % �:
10Proved as Theorem 5 in Krantz et al [23, p.53].
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Proof. By Lemma 9, p1 ! � � p2 ! � � ::: � pn ! �. So by Lemma 6, for i; j � n,
(pi ! �)(pj ! �) � (pi _ pj)! �. Hence (p1 ! �)(p2 ! �):::(pn ! �) � > ! � � �. Now we prove
the theorem by induction on n. It is immediately true for n = 1. Now assume it is true for n = k. Then
k� � (p1_::: _ pk)! �. Now by Corollary 12 (ii), since � � pk+1! �, k� �� � (p1_::: _ pk)! � �
pk+1! �. But by Theorem 16, (p1_::: _ pk)! � � pk+1! � = ((p1_::: _ pk)! �)(pk+1! �) =
(p1_::: _ pk+1)! � = �, by Lemma 6.

Theorem 20 There exists a function U on � such that 8(�;� 2 �)
(i) U(�) � U(�), � � �
(ii) U(>) = 0
(iii) U(� � �) =U(�) + U(�)
Furthermore, if U 0 is another function on � satisfying (i) - (iii), then U 0 = aU , for some a > 0.

Proof. We prove this theorem by showing that h�;�; �i is a simply ordered group. By N4, � � �
belongs to �. By Theorem 17, � is associative; by Corollary 12 (i), it is commutative. By Theorem 13
the group identity, >, exists and by N4 and Theorem 15, additive inverses exist. So h�; �i is a group.
Now we show that � is simply ordered by �. Suppose �; �;  2 C 0

, that � % � and that p is neutral
with respect to �, �, � 2 � �  and  2 � � . Then by the de�nition of neutrality and the axiom of
conditional preference, � %  , p' % p , p ! ' % p !  . But by de�nition of neutrality and the
axiom of independence p ! ' � (p ! �)(:p ! ) % (p ! �)(:p ! ) � p !  . So p ! � % p !  
and, hence, by Lemma 8, � %  . It follows that � �  � � � . Hence h�;�; �i is a simply ordered
group. But by Lemma 19, it is Archimedean. The existence of the postulated function U on � now
follows immediately from Theorem 18:

Lemma 21 (i) f ! � = (f ! �) � (:f ! �), f� � f = f� � f�
(ii) f ! � = �(f ! �), f� � f� = f � f

Proof. (i) Assume that � 2 C
0
is such that f ! � 2 (f ! �) � (f ! �). Let p 2 � by such

that f�; f�; f�; f 2 �p and independent of f . Then by de�nition and by virtue of the fact that
:p! (f ! f) = :p! > = >:

(p ! (f ! �))(:p! (f ! �)) � p! (f ! �) = (p! (f ! �))(:p! (f ! f))

, (pf ! �)(:pf ! �)) � (pf ! �)(:pf ! f)) [indicative property]

, f ! ((p! �)(:p! �)) � f ! ((p! �)(:p! f)) [indicative property]

, f(p! �)(:p! �)) � f(p! �)(:p! f)) [by the axiom of preference for conditionals]

, (p! f�)(:p! f�)) � (p! f�)(:p! f)) [by the independence of p from f ]

, (f� � f�) = f� � f [by Theorem 11]

(ii) Assume that � 2 C
0
is such that f ! � 2 �(f ! �). Let p 2 � by such that f�; f�; f 2 �p

and independent of f . Then by de�nition:

(p ! (f ! �))(:p! (f ! �)) � (p! (f ! f))(:p! (f ! f)) = >
, (pf ! �)(:pf ! �)) � (pf ! f)(:pf ! f) [indicative property]

, f ! ((p! �)(:p! �)) � f ! ((p! f)(:p! f)) [indicative property]

, f(p! �)(:p! �) � f(p! f)(:p! f)) [by the axiom of preference for conditionals]

, (p! f�)(:p! f�)) � (p! f)(:p! f) [by the independence of p from f ]

, f� � (�f�) = f � f [by Theorem 11]
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Theorem 22 For all f 2 A, let C
0

f be the set de�ned by: if � 2 C
0
then f ! � 2 C

0

f . Let �f be

the corresponding set of the values of prospects in C
0

f . Then there exists a function on �f , Uf (�) =def
U(f �)� U(f), such that 8(f ! �; f ! � 2 �f )
(i) Uf (f ! �) � Uf (f ! �), f ! � � f ! �
(ii) Uf (f ! f) = 0
(iii) Uf ((f ! �) � (f ! �)) =Uf (f ! �) + Uf (f ! �)
Furthermore, if U 0f is another function on �f satisfying (i) - (iii), then U

0
f = afUf , for some af > 0.

Proof. We begin by constructing a function Uf on �f from the function U on � whose existence
was established in Theorem 20 and showing that it satis�es conditions (i) - (iii). Let Uf (f ! �) =def
U(f�)� U(f). Then by construction:
(i) Uf (f ! �) � Uf (f ! �)

, U(f�)� U(f) � U(f�)� U(f)
, U(f�) � U(f�)

, f� � f� [Theorem 20]

, f ! � � f ! � [Axiom of Preference for Conditionals]

(ii) Uf (f ! f) = U(f)� U(f) = 0.
(iii) By Lemma 21 (i) Uf ((f ! �) � (f ! �)) =Uf ((f ! ') where ' is such that (f� � f�) = f�� f .

By Theorem 20, U(f�) + U(f) = U(f�) + U(f�). So

Uf (f! ') = U(f')� U(f)
= U(f�) + U(f�)� U(f)� U(f)
= Uf ((f ! �) + Uf (f ! �)

Let �f be the restriction of � to �f . We now prove that h�f ;�f ; �i is a simply ordered group.
We have already shown that � is associative and commutative. Since f ! f = > the group identity
exists. By the axiom of mitigation there exists a prospect � such that f� 2 (f� � f�)�(�f). So by
Lemma 21(i), f ! � 2 (f ! �) � (f ! �); hence (f ! �) � (f ! �) has an element in C

0

f . Similarly
by the axiom of mitigation that there exists a � such that f� 2 (f � f) � (�f�). So by Lemma 21(ii),
f ! � 2 �(f ! �); hence C

0

f contains additive inverses. So h�f ; �i is a group. That it is simply ordered
by �f follows immediately from the fact that � simply orders all of �. So by application of Theorem
18, since both Uf and U are functions on �f that satisfy conditions (i)-(iii), it follows that there exists
a unique real number af > 0 such that for all � 2 �, U(f ! �) = afUf (f ! �) = afU(f�)� afU(f).

Corollary 23 There exists a real-valued function V on C and a strictly positive real-valued function
PA on A that jointly satisfy V3 and V4.

Proof. We begin by de�ning V on C
0
in terms of U . For all � 2 C 0

, let V (�) = U(�). It follows by
Theorems 16 and 20 that 8(�; � 2 C 0

), V ((f ! �)(:f ! �)) = V (f ! �) + V (:f ! �). Let ffig be
an n-fold partition of prospects and fgig be a set of prospects. We now prove by induction on n that
V satis�es V4. It is immediately true for n = 1. Assume true for n = k. Now by indicative property of
conditionals :

V ((f1 ! g1)(f2 ! g2):::(fk+1 ! gk+1))

= V (((f1 _ f2::: _ fk)! ((f1 ! g1):::(fk ! gk))(fk+1 ! gk+1)

= V ((f1 _ f2::: _ fk)! ((f1 ! g1):::(fk ! gk)) + V (fk+1 ! gk+1)
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by virtue of the fact that that :(f1 _ f2::: _ fn) = fk+1. Hence, since the hypothesis holds for n = k,

V ((f1 ! g1)(f2 ! g2):::(fk+1 ! gk+1)) =
k+1X
1

V (fi ! gi)

Hence V satis�es V4. We now de�ne, for all f 2 A, PA(f) as the unique real number af > 0 such that
for all � 2 �, U(f ! �) = afUf (f ! �) = afU(f�) � afU(f), whose existence was established by
Theorem 22. Hence by de�nition, V (f ! �) = PA(f):V (f�) � PA(f):V (f) = (V (f�) � V (f)):PA(f).
So V and PA jointly satisfy V3.
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