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Abstract
The most discussed and mysterious column within the Babylonian astronomy is col-
umn Φ. It is closely connected to the lunar velocity and to the duration of the Saros. 
This paper presents new ideas for the development and interpretation of column Φ. 
It combines the excellent Goal-Year method (for the prediction of Lunar Six time 
intervals) with old ideas and practices from the “schematic astronomy”. Inspired by 
the old “TU11” rule for prediction of times of lunar eclipses, it proposes that col-
umn Φ, in a similar way, used the sum of the Lunar Four to predict times of lunar 
eclipses as well as the duration of one, 6, and 12 months by means of what usually 
is called “R–S” schemes. It also explains fully the structure and development of such 
schemes, a fact that strongly supports the new interpretation of column Φ.

1  Preliminaries for readers not familiar with Babylonian astronomy

This paper makes frequent reference to the following sources for Babylonian astron-
omy. They are found in a procedure text, TU 11, and in two collections of cuneiform 
tablets, Enūma Anu Enlil and MUL.APIN.

Enūma Anu Enlil (henceforth EAE) is a compilation of astral omens and related 
material that has early roots, in part back to the third millennium BC. The most 
important tablet for this paper is EAE 14; it existed around 700 BC; but we do not 
know when it was composed. It is not an omen tablet but contains astronomical 
quantities approximated by numbers and written in schemes. MUL.APIN is a more 
advanced astronomical handbook but uses similar numerical schemes. It is more 
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elaborate and comprehensive than EAE, and it was composed sometime between 
1200 and 750 BC (Hunger and Steele 2019).

TU 11 is a procedure text written in Uruk towards the end of the third century BC 
and published as No. 11 in “Tablettes d’Uruk” (Thureau-Dangin 1922). The tablet is 
a copy of an older tablet, but we do not know when that was composed. Parallel tab-
lets dating back to the fifth century BC have been found in the British Museum. TU 
11 contains a variety of early prediction rules and methods for finding lunar events. 
Most methods were introduced by means of calculated examples. Some were based 
on EAE numbers; others give advice of how to make predictions based on observa-
tions (Brack-Bernsen and Hunger 2002). Two prediction rules are used extensively 
in this paper: the TU 11 prediction method for Lunar eclipses, which was probably 
developed around 650 BC, and the Goal-Year method which was in practice since 
600 BC.

The Babylonian lunisolar calendar was regulated by astronomical events. Each 
day started at sunset, a new month began in the particular evening in which the new 
crescent became visible for the first time after the conjunction of sun and moon. 
The year had mostly 12 months, but around every third year a thirteen month was 
inserted, so that month I (Nisanu) always started near the spring equinox. Note that 
the day number within each month had information about the phase of the moon: its 
first quarter would occur around day 7, full moon around day 15, the second quarter 
around day 22, and the moon would be invisible on the last day, i.e. the day of con-
junction between sun and moon. Years in the cuneiform texts are usually Babylo-
nian calendar years. Beginning from the later fourth century BC, they were counted 
by numbers of the so-called Seleucid Era (SE). Year 0 SE started in the spring of 
311 BC, and from then on the years were counted continuously.

In Mesopotamia, time intervals were measured in time degrees UŠ. UŠ is, in 
modern terms, a measure of how far the celestial sphere has rotated during the time 
interval in question. One whole revolution of the celestial sphere takes 24 h. There-
fore, 24 h equal 360°, 1 h equals 15° = 15 UŠ, and 4 min equal 1 UŠ.

In EAE and MUL.APIN, time intervals smaller than a day were measured in 
bēru, UŠ, and NINDA, where 12 bēru = 24 h, 30 UŠ = 1 bēru, and 60 NINDA = 1 
UŠ.

In both compendia, time intervals were also measured in mina and shekel, where 
1 mina = 60 shekel and 1 shekel ≈ 1 UŠ.

The Babylonians used a sexagesimal number system for their astronomical cal-
culations. This is a positional system with basis 60, just as our decimal system with 
has basis 10. We follow the convention of Neugebauer, which separates sexagesimal 
digits with commas except that a semicolon separates units from the sixtieths, so 
that, for example, 2.13; 20 equals 2 × 60 + 13 + 20/60.

In order to give an impression of the schematic astronomy, some of the numerical 
schemes are reproduced in Table 1 in a condensed and simple form which exclu-
sively uses the time unit UŠ. Roman numbers represent the Babylonian month 
names, and the duration of day and night and the retardation of the moon are given 
for day 15 of each month, i.e. the day of full moon. The first four columns are a 
compilation of tables C and D from EAE. The last column gives the time shift cal-
culated according to the TU 11 prediction rule for lunar eclipses.
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Note that the numbers in each column differ from month to month (i.e. from line 
to line) by a constant difference, increasing or decreasing between fixed limiting val-
ues. Such numerical functions are called linear zigzag functions. The TU 11 predic-
tion rule leads to the linear zigzag function X with a minimum of 1.40 UŠ and a 
maximum of 2.20 UŠ as shown in the last column.

Lunar Eclipses reoccur under similar conditions after one Saros.
The Saros = 223 lunar months ≈ 18 Years is an important period, known and 

used by the Babylonian astronomers at least since the seventh century BC.
A Saros scheme for Lunar eclipses is a matrix in which the Babylonians had writ-

ten year and month of those full moons which were in danger of becoming eclipsed. 
Not all lunar eclipses in such a matrix would have been visible from Mesopotamia; 
therefore, we call henceforth all dates in the scheme Eclipse Possibilities, or EPs. 
Each column of the scheme covers one Saros = 18 years and has 38 lines with the 
38 EPs of that Saros. There are 19 EPs with the moon close to the ascending node 
and 19 EPs near the descending node. Table 2 reproduces a small part of the whole 
scheme with 24 Saros cycles, as reconstructed by J. Steele (2000). Each line of the 
scheme lists a series of eclipses (or EPs) taking place at distances of 1 Saros.

On the edge of some Saros scheme fragments, a few numbers were written. The 
number N in front of a line gives the approximate time shift from one column to the 
next one, i.e. from one eclipse to the next one expected 1 Saros later.

An example may illustrate how such predictions work: if the beginning 
of an eclipse was observed at time T on 19  April year − 712, then the eclipse 
expected to occur on 1 May  − 694 could be predicted to begin at time T + 1.50 
UŠ. It turned out that the early Babylonian astronomers had developed a “simple 
18-year function” for the prediction of times of coming eclipses. A numerical 

Table 1  A condensed compilation of some of the numerical schemes from the schematic astronomy

The duration of day and night is from EAE tables C and D. The daily retardation of the moon and the 
time shift of eclipses after 1 Saros are derived from the length of the night. All times are given the unit 
UŠ

Month day 15 Day length Night length Retardation of the 
moon = 1/15 night length

Time shift after 1 
Saros = 1,0 + 1/3 night 
length

I 3,20 2,40 10; 40 1,53; 20
II 3,40 2,20 9; 20 1,46; 40
III 4,00 2,00 8; 00 1,40; 00
IV 3,40 2,20 9; 20 1,46; 40
V 3,20 2,40 10; 40 1,53; 20
VI 3,00 3,00 12; 00 2,00; 00
VII 2,40 3,20 13; 20 2,06; 40
VIII 2,20 3,40 14; 40 2,13; 20
IX 2,00 4,00 16; 00 2,20; 00
X 2,20 3,40 14; 40 2,13; 20
XI 2,40 3,20 13; 20 2,06; 40
XII 3,00 3,00 12; 00 2,00; 00



608 L. Brack-Bernsen 

1 3

zigzag function found on cuneiform tablets attests to such a practice. Also, the 
TU 11 method introduced above will lead to such a “18-year function”: for the 
19 EPs taking place near descending (or ascending) node, the time shift can be 
calculated by the TU 11 method. This leads to a linear zigzag function with the 
period 18 years, maximum 2,20 UŠ and minimum 1,40 UŠ. It is more precise but 
agrees well with the other numerical function (Brack-Bernsen and Steele 2005). 
This TU 11 Saros function is, of course, derived as a function of the month; how-
ever, it tabulates time shifts not month by month as our zigzag function X, but in 
steps of 12 or 11 months.

The most remarkable achievement of Babylonian astronomy consists of the 
Lunar table texts. They origin from the last three centuries BC. A system A table 
text combines skilfully the effects of all variables that determine the conditions at 
full or old/new moon. A typical table text will have 12 or 13 lines, one for each 
month within a year, and up to 13 or 19 columns recording the numerical functions 
necessary for the calculations. Neugebauer (1955) identified the columns of a sys-
tem A table text by the following letters:

The astronomical significance of some of the columns is the following. In the 
first column, T is the independent variable, namely the year and month in the Seleu-
cid era. Each line of the table contains in the following columns the astronomical 
functions for the month T. The next column Φ is the main concern of this paper. 
In the following columns, B is the position λ☾ of the moon in the ecliptic, C is the 
duration of daylight, E is the latitude β☾ of the moon, F is its velocity v☾, M is the 
time of conjunction or opposition, and P is the time between rising or setting of sun 
and moon at full or new moon. The duration of the synodic month is calculated as a 
sum of two components: G is the contribution depending on the lunar velocity and 
J depending on the position of the moon in the ecliptic. Columns G and F are both 
intimately connected with column Φ.

Column Φ yields a linear zigzag function with maximum = 2,17; 4,48,53,20 UŠ, 
minimum = 1,57; 47,57,46,40 UŠ, and a period  PΦ slightly less than 14 months. If 
the Φ numbers are mapped in a coordinate system as in Fig. 1, the discrete Φ points 
will be placed equidistantly on a linear zigzag function, returning back after 6247 

T , �, B, C, E, � , F, G, J, C′, K, M, P

Table 2  A small part of the 
reconstructed Saros scheme for 
Lunar eclipses

EPs Saros cycle 1 Saros cycle 2 Saros cycle 3

1,40 1 − 746 Feb 6 − 728 Feb 17 − 710 Feb 27
2,10 2 − 746 Aug 2 − 728 Aug 12 − 710 Aug 23
… 3 … … …
… … … … …
1,50 35 − 730 Apr 9 − 712 Apr 19 − 694 May 1

36 − 730 Oct 2 − 712 Oct 13 − 694 Oct 24
37 − 729 Mar 30 − 711 Apr 9 − 693 Apr 20
38 − 729 Sep 22 − 711 Oct 2 − 693 Oct 13



609

1 3

Babylonian astronomy: a new understanding of column Φ  

points and exactly 448 zigzags. Only after 6247 months = 448 Periods  PΦ, the num-
bers will repeat. 448  PΦ = 6247 months ≅ 505 Years.

The period  PΦ of Φ equals that of F, i.e.  PF, which is the period of the lunar veloc-
ity measured once each month at full or new moon, respectively. Φ measures the 
time shift between lunar eclipses situated 1 Saros = 223 months apart. To be more 
precise, Φ gives the lunar contribution to the time shift, while the larger contribution 
depending on the solar velocity has not been found. There are many open questions 
to this enigmatic column Φ. Accordingly, there have been several attempts to inter-
pret and reconstruct column Φ.

This paper combines old prediction methods and techniques and results in a new 
understanding of column Φ. Our new understanding of column Φ answers many 
questions about number schemes, and it gives advice for finding the lunar contribu-
tion to the duration of 1, 6, and 12 months, respectively. It gives a natural explana-
tion of the development and structure of such schemes and calculations.

For the calculation schemes, the extrema of the zigzag function in Fig.  1 was 
cut off: at the top by 2,13; 20 UŠ and at the bottom at the values of 1; 58,31, 6, 40 
UŠ. This truncated version �̄� of Φ, visualized like in Fig. 1, would have the peaks 
removed and replaced by horizontal lines at the levels of 2,13; 20 UŠ and 1; 58,31, 
6, 40 UŠ, respectively. According to our hypothesis, the numerical linear zigzag 
function Φ is developed as a numerical fit to observed data. Maximum and mini-
mum of those data are around 2,15 UŠ and 1,59 UŠ, respectively.

Fig. 1  Column Φ plotted versus the month (lunation) number L. The small vertical intervals represent 
successive numbers in column Φ, through which we have drawn straight lines. Half the numbers lie on 
ascending branches and the other half on descending branches
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2 Introduction

The mathematical lunar table texts of system A start with the quite enigmatic col-
umn Φ.1 It is connected to the duration of the Saros, an eclipse period of 223 synodic 
months ≅ 18 years. Neugebauer writes (1955, p. 44) that column Φ must describe a 
phenomenon very closely related to the lunar velocity, and in HAMA (1975, p. 505) 
he summarizes the result of joint research (with Aaboe, van der Waerden, Britton, 
Neugebauer, and Sachs) in the definition:

counted from the end of the month for which Φ is tabulated. But this understanding 
does not solve the problem of how to derive Φ from observations, since systematic 
observations of eclipses situated at distances of 1, 2, 3, 4, 5, 6, Saroi would lead to 
a function varying in tune with the solar and not with the lunar velocity. Therefore, 
it is a challenge to reconstruct column Φ from Babylonian observations.2 Britton 
(2009) and de Jong (2017) have given their answer to the challenge. This paper pre-
sents another answer: it combines the excellent Goal-Year method (for the predic-
tion of Lunar Six time intervals) with older ideas and practices from the “schematic 
astronomy”. And, inspired by the old “TU 11” rule for prediction of times of lunar 
eclipses, it shall present a new idea for the development and interpretation of col-
umn Φ. The proposed connection between Φ, the Goal-Year method, and the Lunar 
Six delivers a natural derivation of the Babylonian method for finding the duration 
of 1 and 12 months by means of what we here call “R–S schemes”. It also explains 
fully the structure and development of such schemes, a fact that strongly supports 
our new interpretation of column Φ.

3  Column Φ and its functions

A lunar system A table text lists astronomical data for consecutive months in con-
secutive lines. The first column T in these texts lists dates: year number in the Seleu-
cid era and name of month. All following columns list astronomical quantities, cal-
culated for the month given in column T. Some tablets calculate conditions around 
new moon and others the same around full moon. The second column, Φ, plays a 
significant role in these texts. All full-moon texts are connectable, and hence dat-
able, through column Φ. And all new-moon texts are in the same way connectable 
and datable, through column Φ1.

3 But full- and new-moon texts are not connectable, 
which means that the numbers in Column Φ of a system A lunar tablet text indicate 
the type: either full- or new-moon calculations.

1 Saros = 223 syn. M. = 6585d + �

1 Column Φ lists time intervals measured in time degrees, UŠ, where 360 UŠ = 24 h, so that 1 h = 15 UŠ 
and 1 UŠ = 4 min.
2 See Brack-Bernsen (1980, 1990).
3 ϕ1 is used by conjunction. It is derived from column Φ, also named Φ2, which has its origin in obser-
vations around full moon.
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Column Φ gives the variable lunar contribution to the length of the Saros. The 
Saros (= 223 synodic months) is an eclipse period, which was known to the Babylo-
nians at least since the seventh century BC. The numbers in column Φ can be placed 
on a linear zigzag function having up to 6 sexagesimal places.4 They repeat only 
after 1,44,7 = 6247 synodic months, which is more than 500 years. Column Φ is in a 
special way used to find the time of oppositions. The time differences between two 
consecutive oppositions, Δ1t, were calculated as 29 days plus the sum of two com-
ponents G, a contribution due to the varying lunar velocity, and J, a contribution due 
to the variable solar velocity. 

The values of G were found from a particular scheme involving two different values 
R and S of Φ, where R and S measure the Saros length for two consecutive months, 
respectively. In his book on procedure texts (2012, p. 146) Ossendrijver summarizes 
how the interpolation scheme for computing G from Φ works. He comments: “A 
remarkable and unique feature of lunar system A is that G is computed from Φ. It 
cannot be stressed enough that there is no obvious and compelling astronomical or 
mathematical reason for computing the duration of 1 m from the duration of 223 m”. 
He also described the use of the fully developed system, which is based on a trun-
cated version of Φ. Here, we shall concentrate on the long linear parts of G and 
neglect the details around the extrema: Table 3 illustrates the structure of the R–S 
scheme. It was constructed as auxiliary table for finding G for an arbitrary month m 
by means of its Φ value, Φ(m). Similar schemes were constructed by the Babylo-
nians for finding the lunar contributions W and Λ to the duration Δ6t and Δ12t of 6 
or 12 successive months, respectively. These schemes all have the same structure. 
The scheme did not list all Φ numbers, but only values of Φ in steps of 1 Saros, so 
that G in most cases was found through linear interpolation within the R–S scheme. 
An example may illustrate the functioning of the scheme: you want to find G(m). 
Take the case where the value Φ(m) of month m is listed in column S, line k of the 

Δ1
t = 29d + G + J

Table 3  The structure of a R–S scheme for finding out how much the duration of a lunar month has 
changed from 1 month (m − 1) to the next (m)

This change, ΔGk−1, is found as the difference between the Φ values Rk−1 and Sk−1 in the line above. The 
duration of the month k, G

k
= G

k−1 + ΔG
k−1 , equals the duration of the month k − 1 above plus the dif-

ference ΔGk−1

Line number R S S − R = ΔG(m) G
Φ (m − 1) Φ (m) Φ (m) − Φ (m − 1) G(m)

k − 1 Rk − 1 Sk − 1 Rk − 1− Sk − 1= ΔGk − 1 Gk−1

k Rk Sk Rk − Sk = ΔGk Gk = Gk−1 + ΔGk−1

K + 1 Gk+1 = Gk + ΔGk

4 The sexagesimal number system is a positional system with 60 as basis, just as our decimal sys-
tem with has 10 as basis. I follow the convention of Neugebauer, so that, for example, 2,13;20 equals 
2x60 + 13 + 20/60. 
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scheme. Then, you find the value G(m) = Gk listed in the last column of the scheme. 
This value G(m) = Gk for month m is found from the value Gk−1 in the line above by 
adding the difference ΔG

k−1 ∶ G
k
= G

k−1 + ΔG
k−1 , so that the change in G from 

line k − 1 to line k of the scheme was the difference: ΔGk−1 = Sk−1 − Rk−1.
For all months, for which the value of Φ did not occur, the corresponding value of 

G was found through interpolation within the R–S scheme. Similarly, the difference 
in time between two oppositions (or conjunctions) 12 months apart, Δ12t, was found 
as an entire number of days plus a lunar contribution Λ and a solar contribution Υ:

The lunar contribution Λ was here, again, found from a scheme using the difference 
between two values R and S of Φ. But this time S was the Φ value of the month in 
question, while R was its value 12 month earlier. The trick behind such a procedure, 
using the R–S scheme to determine time intervals, is that it delivers a function with 
the same period  PΦ as Φ, but with another amplitude.

For more information about such number schemes for finding G and Λ functions, 
see Neugebauer (1975, pp. 505–513), Britton (2009) and Ossendrijver (2012, pp. 
125 ff. and 145–155). Britton (2009) has presented a detailed study and a recon-
struction of these schemes, using skilled manipulations of numbers in combina-
tion with modern algebra. (See pages 376–379 where the cuneiform tablets, BM 
36699 + 51262 and BM 36737 for finding G, and BM 36311 for finding Λ and W, 
have been edited and reconstructed by Britton.)

We thus understand how to calculate times of oppositions as the Babylonian 
astronomers did it. We know how to use column Φ and the R–S schemes for finding 
the duration (Δ1t, Δ6t, and Δ12t) of 1, 6, and 12 months, but we still do not know 
how these numerical methods and schemes were developed. And we still do not 
know how column Φ was developed from the observations made by the Babylonian 
astronomers. It cannot have been found from observation of lunar eclipses situated 1 
Saros apart: see Brack-Bernsen (1980), where it was investigated how the length of 
1, 12, and 223 synodic months could be found as the sum of two functions, one giv-
ing the lunar contribution and the other giving the solar contribution.5 The duration 
of a Saros can approximately be written as a constant plus two terms:

In case of the Saros, the solar term dominates, which means that one will get a 
function with the year as period (as A⨀) by comparing durations of Saroi, starting at 
consecutive lunations. The period of B☾ (i.e. that of Φ) was suppressed by the domi-
nating term A⨀. This means that column Φ could not have been found empirically 
from observation of times of eclipses.

Δ12
t = 354d + � + �

5 At opposition, sun and moon have the same zodiacal longitude. Thereafter, the sun moves around 30°, 
while the moon, moving around 12 times as fast as the sun, passes through the whole zodiac plus the arc 
moved by the sun, until it again is at the same length as the sun. Clearly, both velocities—that of the sun 
and that of the moon—will determine the difference in length and time between two consecutive opposi-
tions.
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Aaboe had in (1968) published several table texts with Φ occurring in R–S 
schemes for finding the lunar component of Δ1t and Δ12t. He raised similar ques-
tions in (1969, p. 16): “It is clear that the remaining questions … are raised by Φ. 
The central role of Φ is obvious, and it is now apparent that Φ was in continuous 
use—in the strong sense that its values computed month by month connect the ear-
liest to the latest texts—since times already before the System A schemes reached 
their final form. However, I am still at a loss to explain in a satisfactory manner 
how the amplitude of Φ can be derived from the sort of observations which were 
recorded by the Babylonians … And there is still the uncomfortable fact that Φ is 
found side by side with early and primitive solar models, while S6 as constructed 
above depends on the fully developed System A solar scheme. We can only hope that 
the appearance of new texts will help us solve these problems”.

The tight connection between Φ and the lunar velocity made it evident that one 
should look for Babylonian observations which contained information on the lunar 
velocity. The only possible observations that I found were some time intervals (regu-
larly measured around full or new moon) between setting and rising of the sun and 
the full (or old/new) moon. There are six such time intervals, called the Lunar Six. 
Two intervals were measured around conjunction, and four intervals, the Lunar Four, 
were measured around opposition. These time intervals were observed and recorded 
regularly. Working with computer-simulated Lunar Six data, through trial and error, 
I finally found that the sum Σ of the Lunar Four oscillated in tune with the Saros and 
that the linear zigzag function �̂� which approximated the sum Σ optimally, varied 

Fig. 2  For a series of eclipse possibilities at descending nodes from the Saros Cycle scheme, the Saros 
length is compared to the reconstructed TU 11 Saros length zigzag function. The comparison takes place 
over 16 consecutive Saros, starting with the very first EP of SC 5, 21 March 675 BC and ending with EP 
1 on SC 21, 26 April 369 BC. The first EP of each SC is marked by a circle. As independent variable, we 
use L, i.e. the Goldstine numbers (1973) for the respective lunations. The Saros length, measured from 
consecutive EPs at descending node, is marked by crosses and connected by a thin line. The TU 11 zig-
zag function is drawn with a thick line

6 S means here the proposed solar component of the duration of the Saros, as reconstructed by Aaboe 
(1969).



614 L. Brack-Bernsen 

1 3

with the same amplitude, period, and phase as column Φ. Surprisingly, it turned out 
that Φ−100° was a perfect fit to the observable curve Σ (see Brack-Bernsen 1990, 
Fig. 2). This has led to the hypothesis that Φ equals �̂� + 100°, where �̂� is the linear 
zigzag function, approximating Σ, shifted by 100°. Note that there is an important 
difference between the zigzag functions which we find in the schematic astronomy, 
and those in the later ACT table texts. The former have integer periods, while the 
latter often have non-integer periods. This poses, however, not a severe problem, 
since we have indications how such a new type of numerical function may have been 
developed: namely by successive approximations, as exemplified in the atypical text 
E which starts with a period that is too long and then corrects it. For further details, 
see “Appendix 2”.

4  Attempts to reconstruct column Φ

Based on the fact that function �̂� had the same period and amplitude as column 
Φ, I proposed that Column Phi had been derived from the sum of the Lunar Four: 
Φ = 100° + �̂� , this being a pure empirical zigzag function, perhaps without connec-
tion to the duration of the Saros (see Brack-Bernsen 1990). The first thing I noticed, 
analysing computer-simulated Lunar Four data, was that the linear zigzag function 
�̂� was in phase with the function F for the lunar velocity of system A, but it had 
twice the mean value of F.7 In Brack-Bernsen and Schmidt (1994), the astronomi-
cal significance of Σ was analysed by means of spherical astronomy and spherical 
geometry. The problem of oblique ascension of ecliptic arcs was explained by mod-
ern means. We understood the significance of Σ and its connection to F on our prem-
ises; but at that time, we were aware of the fact that the Babylonians could neither 
have known our results nor understood our astronomical interpretation.

In the meantime, it has been demonstrated that the Lunar four were, indeed, 
observed and treated regularly since the seventh century BC, and we know that they 
were measured with a high precision, so that such data, indeed, could have been 
used for the construction of column Φ (see Brack-Bernsen 1997). In addition, we 
realized that the Babylonians had found a very elegant and efficient method for the 
prediction of Lunar Six time intervals, namely the Goal-Year method (see Brack-
Bernsen 1999, and TU 11, Brack-Bernsen and Hunger 2002). We now understand 
the Babylonian argumentation, so that we know how and why they used the par-
tial sums of the Lunar Four: ŠÚ + NA is the retardation of the setting moon meas-
ured at full moon from one morning to the next, and ME + GE6 is the retardation of 
the rising full moon measured from one evening to the next. Therefore, their sum, 
Σ = ŠÚ + NA + ME + GE6 is the retardation of the moon measured over two days, 
and this was known and understood by the Babylonians. Σ approximates the move-
ment of the moon relative to the sun over two days, which is a good measure for the 
lunar velocity measured over two days. This explains why F has exactly the same 

7 �̂� has the maximum 37;30 UŠ, minimum 17;30 UŠ, and mean value 27;30 UŠ. The mean value of F is 
13;30 UŠ, which is very close to 13:45 = ½ times 27;30.
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phase as Φ and roughly half its mean value. For more information on the Lunar Six 
and the Goal-Year method for the prediction of Lunar Six, see “Appendix 1”.

The tablet TU 11 contains a variety of procedures, one of which is important 
in this connection: sections 9–12 give rules for the prediction of eclipses, situated 
1 Saros apart, by means of calculated examples. Surprisingly, this method, which 
was based on the early schematic astronomy, was quite good (see Brack-Bernsen 
and Steele 2005).8 Later, in this paper we shall see how the « know how » behind the 
Goal-Year method in connection with this schematic predicting rule can lead to a 
new understanding of column Φ. As a strong support of this new approach, I see the 
fact that it gives a natural explanation for the construction and structure of the R–S 
schemes: how they calculate the lunar components G, W, and Λ to the durations of 
1, 6, and 12 months.

There have been several other approaches to reconstruct column Φ from Babylo-
nian observations by Britton (2007, 2009) and de Jong (2017). Although there are 
good impulses and ideas in these papers, I am convinced that they do not give any 
final solution. One problem which I see, especially in Britton’s reconstruction, is 
that too much modern mathematics and techniques have been used in the recon-
structions—despite the fact that the Babylonian mathematicians had no kind of alge-
bra. A reconstruction of Φ must be possible without the use of algebra and modern 
techniques.

Another problem which I see is, for instance, that in Britton’s reconstruction of 
column Φ the solar year, with the solar velocity approximated by a step function, 
plays an important role. Britton postulates that the whole system A was created at 
once by one genius astronomer, while I think that column Φ was derived early, and 
that all the other columns were developed over time by several astronomers. One 
reason for this conviction is that we have an early text S (mentioned above in the 
quotation of Aaboe) in which values of Φ are given in a scheme where the move-
ment of the sun was described by a more primitive mean-value system.9 This seems 
to imply that column Φ was developed independently of the mathematical solar 
theory. For other questionable points in Britton’s reconstruction, see Brack-Bernsen 
(2020, pp. 163, 164). John Steele (private communication) has drawn my attention 
to the fact that Text S may have been written as late as 300 BC. This text employs, 
for instance, abbreviations for the zodiacal signs which were only used after 370 BC. 
The zodiac was introduced around 450 BC. Text S could be a copy of an older text—
which I tend to believe. This would explain the occurrence of the mean-value system 
for the solar movement—or it may be a newer text which analyses old astronomical 
data in connection with the fully developed function Φ. The important question in 
this connection is, if column Φ was developed before and independently of the step 
function for the solar movement or not. The hypothesis for the development of Φ, 

8 During the collaboration of this paper, Steele and I decided to use the term “Schematic astronomy” for 
the early Babylonian astronomy, which are found as number schemes in EAE and MUL.APIN. We chose 
this name in order to signalize that we see these early mean-value schemes as the beginning of the Baby-
lonian astronomy.
9 See Text S in Britton (1989, pp. 30 and 31), and Aaboe et al. (1991). Text S comprises the cuneiform 
tablets BM 36850 and BM 36737.
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presented in this paper, makes it independent of the model for the solar velocity; but 
the hypothesis does not exclude the possibility of a contemporaneous model for the 
solar velocity. Until now, it was taken for granted that column Φ was constructed 
under the assumption of a solar velocity of 30° per month, which is the case for the 
winter months when the sun is in the zodiacal sign from Virgo to the end of Pisces. 
If so, then it must be pointed out that it would be somewhat inconsistent if column Φ 
in text S were written next to a column where the solar movement is calculated just 
by using a mean value for its velocity.

After a conference in Jerusalem 2018, Steve Shnider started a discussion with me 
about column Φ. He wanted to understand why I was not satisfied with John Brit-
ton’s reconstruction. (See Shnider 2017, where he gives a survey on the research 
on column Φ and then presents Britton’s reconstruction in a good and comprehen-
sive way.) It developed to become a long and fruitful discussion, where I could pre-
sent and discuss my understanding and point of view on the developing Babylonian 
astronomy and Steve could question and argue. He ended up with a proposal how 
one can connect the Lunar Four to eclipse observations. I was pleased to see his pro-
posal; but still I was a bit sceptical, since he used modern algebra. I want to thank 
Steve Shnider warmly for the fruitful discussion, since it let me come back to old 
ideas, which I shall present here.

5  The Lunar Six and the Goal‑Year Method

The Goal-Year method (for details see “Appendix 1”) is very elegant and was uti-
lized over hundreds of years. A so-called Goal-Year text for a year Y collects all 
Lunar Six data from year Y-18, the year situated 1 Saros earlier than year Y. An 
early collection of such data can be found on the table Kambyses 400, collecting all 
Lunar Six from April 523 BC to April 522 BC (see Kugler 1907 SSB I, pp. 61–75). 
The Goal-Year tablets were compiled as sources for astronomical predictions for 
Babylonian years between 241 BC and 74 BC (the goal years being SE 79 to SE 
256), see Hunger (2006). This implies that the Goal-Year predicting method had 
been used at least during 450 years. It connects Lunar Six data situated 1 Saros (1 
Saros = 223 synodic months) apart. In order to predict the time ŠÚi from moonset to 
sunrise (ŠÚ) in month i, one just has to take the value ŠÚi−223 measured one Saros 
earlier and add a third of the daily retardation (ŠÚ + NA)i−223, of the setting moon:

I am convinced that this excellent prediction method must have played an impor-
tant role in the construction of the columns related to the lunar velocity. We find one 
important hint to the Goal-Year method in the mathematical astronomical texts of 
system A, namely that the value of Φ for month M gives the duration of the Saros 
connected to month M. The month M is the independent variable in a lunar sys-
tem A table text. It is written in the first column T, and the corresponding value 
of Φ is written in the next column Φ. All other variables are given in the follow-
ing columns of this line for month M. In HAMA (1975, p. 505) Neugebauer writes 

ŠÚ
i
= ŠÚ

i−223 + 1∕3
(

ŠÚ + NA
)

i−223
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“The fundamental relation which connects the function Φ with the eclipse cycle of 
223 months rests on the definition

The relation is derived under the assumption that the solar velocity has the round 
value of 30°/m”. This formulation gives the impression that the Babylonian Lunar 
theory was derived from theoretical assumptions, like our modern science. I find it 
more probable that the number schemes and numerical functions were found empiri-
cally, by fitting observed values of one observable by sequences of numbers hav-
ing the same period and amplitude as the observable. Now the Φ number written 
next to month M in a system A lunar table gives the duration of the Saros start-
ing (or ending) with month M. I see this fact as a “greeting from the Goal-Year 
method”.10 Remember that the time from sunrise to moonset (ŠÚi), in month i, was 
determined by data measured 1 Saros earlier. The change in visibility time of the 
moon between the two full moons i and i − 223 was calculated as 1/3(ŠÚ + NA)i−223, 
where (ŠÚ + NA)i−223 is the daily retardation of the setting full moon, measured 1 
Saros earlier than month i. Therefore, I believe that column Φ somehow must have 
grown out of the Goal-Year method and was developed first, after which the whole 
system A was developed.

6  Schematic astronomy and the Goal‑Year method

Already in the schematic astronomy, periodically varying phenomena were 
described by numerical functions approximating the period and amplitude of the 
phenomena in question. The schematic astronomy connected variables with the 
same period. In EAE XIV and MUL.APIN,11 the Babylonian month M was used 
as an independent variable from which many other quantities were derived. For 
instance, the lengths of day and night given in a number scheme were organized 
by the Babylonian months. But also, the visibility time of the moon and its daily 
retardation were derived from the night length, and hence, they were functions of 
the month M. Let me illustrate how the daily retardation of the moon may have been 
found by the early astronomers. The time interval during which the moon was vis-
ible on the sky was derived from the length of the full-moon night in month M in 
question: at full moon, the schematic moon was visible the whole night, from sun-
set to sunrise. At new moon, the moon was invisible; therefore, within 15 days the 
visibility time of the moon changed from 0 to the whole night N(M). For the first 
15 days of month M, the visibility time of the moon increased by N(M)/15 per day. 
This explains why the Babylonians approximated the daily retardation of the moon 
in month M by N(M)/15 (the night length at full moon in month M, divided by 15).

1 Saros = 223 syn. M. = 6585d + �

10 See “Appendix 1”.
11 See Al-Rawi and George (1991), Hunger and Pingree (1989), and Brack-Bernsen (2005).
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We have later learned that also the duration of the Saros was derived from the 
length of the night (TU 11, pp. 80–85). The Saros equals a whole number of days 
plus approximately 8 h, ~ 1/3 (day + night). In TU 11, sections 10 and 12, the shift 
in time (t − t0) between two lunar eclipses one Saros apart was calculated as 1 + 1/3 
(length of) night. We have called this method the TU 11 predicting method: let  t0 
be the time of an observed lunar eclipse, and then the time t of the eclipse expected 
1 Saros later was calculated as t = t0 + 1 mina + 1/3 night length, which leads to a 
linear zigzag function X with minimum 1,40; 00 UŠ = 100° and maximum 2,20; 00 
UŠ = 140°, since 1 mina equals 60 UŠ = 1,0 UŠ (see Preliminaries)

(see Brack-Bernsen and Steele 2005). Note that (t − t0) just measures the shift in 
time between the old eclipse and the one a Saros later. The duration of a Saros,  
Δ223 t, was implicitly approximated by

If we identify the lunations by numbers, we can formulate the TU 11 rule as

In our paper (2005), we also presented cuneiform tablets with similar number 
schemes that confirmed the predicting rule. The old numerical functions were 
adjusted to the Saros Cycle scheme, so that their zigzag functions tabulated the 
Saros time shift not month by month but in steps of 11 or 12 months. In that way, 
all 19 eclipse possibilities within a Saros, taking place near the same (ascending 
or descending) node, were included. Therefore, the linear zigzag function cov-
ered 18 years corresponding to one column (i.e. one Saros Cycle, SC) of the Saros 
scheme. In analogy to these number schemes, we had reconstructed the TU 11 zig-
zag function for the 19 eclipse possibilities within a Saros Cycle, and we could show 
that this linear zigzag function for the time from 675 BC to 522 BC approximates 
the Saros length surprisingly well. Therefore, we concluded that the Babylonians 
since the seventh century BC had a well-working scheme for the prediction of lunar 
eclipse times.

However, from 520 BC to 369 BC we see that there is an increasing shift between 
the real Saros length and the TU 11 function (see Fig. 2). The Babylonians may have 
noted the discrepancy and looked for corrections. Around the same time, the new 
and very elegant and precise Goal-Year predicting method must have been devel-
oped. We have strong arguments that the Goal-Year method was known at least from 
550 BC, since table Kambyses 400 collects all Lunar Six for a whole year—many 
of which may not have been visible and hence must have been predicted. The qual-
ity of those Lunar Six data is so high that we must conclude that they were found by 
means of the Goal-Year method.12

TU 11 Predicting method: t = t0 + 1, 0 + 1∕3 (length of) night,

Δ223
t = 6585 days + 1, 0 + 1∕3 night.

t(i) = t(i − 223) + 1, 0 + 1/3 night.

12 Later, Huber and Steele (2007) have been able to date collections of Lunar Six data back to 643 BC.
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Remember that this method utilizes the two different values ŠÚ + NA and 
ME + GE6 for the daily retardation of the moon. In case of ŠÚ + NA, ŠÚ is the time 
from moonset to sunrise, and NA is the time from sunrise to moonset measured the 
next morning M. We see that ŠÚ + NA measures how much later the full moon sets 
on morning M than on the day before—it measures the daily retardation of the set-
ting moon. Similarly, ME + GE6 is the retardation of the rising full moon measured 
over 1 day. We have here a differentiation of the daily retardation of the moon: one 
measured at the western horizon and one measured at the eastern horizon. From the 
viewpoint of classical astronomy, we can say that the Babylonians had discovered 
the effects of the oblique ascension of ecliptic arcs. That was not the case in the 
schematic astronomy. EAE XIV, table D, had only one value for the daily retardation 
of the full moon, namely 1/15 night for the month in question. Several Babylonian 
model calculations, performed on the basis of the early schemes, neglect the dif-
ference between the ecliptic and the equator (see TU 11, section  19). This is not 
the case with the Goal-Year method: the time interval ŠÚ + NA is a measure for 
how fast the full moon passes the point of opposition, this effect being superimposed 
by the effects of the varying angle between the western horizon and the ecliptic at 
moonset (the effects of oblique ascension). Similarly, the time interval ME + GE6 is 
determined by the momentary velocity of the full moon, but superimposed by the 
fact that the rising time of ecliptic arcs are essentially determined by the momen-
taneous angle between the ecliptic arc and the eastern horizon. Knowing the nor-
mal stars along the path of the moon, the Babylonians knew and could observe the 
changing positions (angles) of the moon path to the horizon. There are good rea-
sons to suppose that the Babylonians had noticed the effects of oblique ascension 
and found a way to eliminate it: the dominating effect of oblique ascension can be 
largely reduced by adding the two time intervals ŠÚ + NA and ME + GE6 resulting 
in the sum ŠÚ + NA + ME + GE6 = Σ. When the velocity of the moon is high, Σ will 
be long, while it is low when the lunar velocity at the full moon in question is low. 
These effects were observable and could easily have been found by the Babylonian 
astronomers.

I propose now that the Babylonians must have realized that 
Σ = ŠÚ + NA + ME + GE6 could be a good value for the retardation of the 
moon, measured over two days around full moon. The TU 11 predicting method 
(t(i) = t(i−223) + 1,0 + 1/3 night) combined with this new knowledge may have 
led to the construction of a new numerical function for the prediction of times of 
eclipses involving the sum ŠÚ + NA + ME + GE6 instead of the varying length of 
the night divided by 3. Remember that the daily retardation of the moon in EAE 
was derived from the length of the actual night: it was calculated as 1/15 night. 
Using our algebra, we would maybe calculate as follows: 1/3 night = 5 times 
1/15 night = 5 times the daily retardation of the moon, and we know that the sum 
Σ = ŠÚ + NA + ME + GE measures the retardation of the moon measured over two 
days. Therefore, we would replace 1/3 night by 5/2 (ŠÚ + NA + ME + GE6) = 5/2 
Σ, resulting in the new rule, where the time shift between the lunar eclipse in 
month i−223 and that taking place in month i one Saros later could be calculated 
as: t(i) − t(i − 223) = 1,0 + 5/2 (ŠÚ + NA + ME + GE6).
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But the Babylonians had no algebra to calculate 1/3 night = 5/2 Σ. Maybe they 
could have figured it out; but we have no evidence for such a function. My proposal 
below is inspired from section 18 in TU11, where the goal-Year method is applied 
to data from the schematic astronomy—instead of using the observed 1/3(ŠÚ + NA), 
the text used 1/30 night length, which equals ½ and not 1/3 of the daily retardation. 
Here, I shall propose the opposite, to transfer a rule from the schematic astronomy 
and use observational data instead of schematic data. In both cases, the factor used 
for the variable not is the one we would expect, using our algebra for finding it. 
What I think that they have done is to replace the old eclipse predicting rule with 
a rule involving (ŠÚ + NA + ME + GE6) instead of 5 times the daily lunar retarda-
tion = 1/3 night, ending up with a function varying in phase with Σ and with similar 
maximum as X (which is the linear zigzag function defined by the TU 11 eclipse 
predicting rule, see Preliminaries). When X is reproduced in form of the number 
scheme, we have a “linear zigzag function” with minimum 1,40 and maximum 2,20. 
We can approximate the sum Σ of the Lunar Four by the linear zigzag function �̂� . 
This function �̂� varies roughly between 20 and 40 UŠ. If this function is added to 
the minimum, 1,40 of X, then we get a new zigzag function with a higher mini-
mum but approximately the same maximum as X. Therefore, the new prediction 
rule could be something like: the time shift t(new) − t(old) between eclipses 1 Saros 
apart equals 1,40 UŠ + �̂�.13 Such a numerical function would have approximately 
the same maximum 2,20, as the old function, but vary in phase with the lunar veloc-
ity, and it fits very well for all months during the winter. Here, I got back to my 
first intuitive proposal from 1990; but now with a better understanding and in a new 
interpretation: Φ is the (preliminary) Babylonian function for the duration of the 
Saros: Φ = Δ223 t = (6585 days +) 100° + �̂� , or better formulated as a hypothesis: the 
time shift, Φ, between eclipses 1 Saros apart was taken to be 1,40 U Š + �̂�

6.1  Cuneiform support for the arguments and methods proposed above

Now one could object that this is a speculative mixture of methods and that one 
should use 1,0 UŠ + 5/2 �̂� and not 1,40 UŠ + �̂� . My answer would be to   refer to a 
peculiar prediction rule found in TU 11 section 18, where we find similar calcula-
tions: in this section 18, the time  NA1 from sunset to setting of the new crescent in a 
month II is found. The text tells us to go 18 years back to  NA1 of month II in the old 
year (i.e. the year 1 Saros earlier), and subtract a time difference which is derived 
from the length of the night: 1/30 night. Then to subtract this value from the old 
N  A1:  NA1 (new) = NA1 (old)−1/30 night. According to the schematic theory, 1/30 
night equals the daily retardation of the moon divided by 2.

This procedure reminiscent of the Goal-Year method for finding  NA1:

𝛷 = 1, 40 UŠ + �̂�

13 Note that the sexagesimal number 1,40 equals our decimal 100.
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The Goal-Year method has utilized the fact that the daily retardation of the new 
moon in month i−223, which cannot be observed, is well approximated by the daily 
retardation of the full moon measured 6 months earlier in month i − 229. Section 18 
of TU 11 seems to combine ideas from the Goal-Year method with old methods: the 
daily retardation of the moon is in section 18 derived from the length of the night, 
exactly as in EAE. The Goal-Year method subtracts 1/3 of the daily retardation of 
the moon, whereas this method subtracts 1/30 night which, according to the EAE 
theory equals ½ and not 1/3 of the daily retardation of the night. To us this is incon-
sistent. Here, again we have a hint of the fact that the Babylonians had not developed 
any kind of algebra.

One could also object that the length of the Saros, Δ223 t = 6585d + Φ, where Φ 
equals 1,40 + �̂� , cannot be verified by observation since the Saros varies in phase 
with the year. My point is that the proposed time shift (1,40 + �̂� ) was derived from 
the old TU 11 rule by introducing the new successful observables. This new eclipse 
rule was introduced theoretically, not necessary based on observations (or eventually 
based exclusively on observations undertaken during the winter). And here, again, 
we have examples of old schematic astronomy producing functions and methods 
from their schemes: functions which do not reproduce celestial phenomena cor-
rectly. Hermann Hunger (2017) has interpreted a number scheme and shown that 
it gives the velocity of the sun as a function of the month. This velocity function is 
in accordance with the EAE schemes: the solar velocity is taken proportional to the 
length of the day, and the ratio of longest to shortest daylight is 2:1, exactly as in the 
schematic astronomy. But the constructed numerical function does not depict nature 
correctly. The variation of the solar velocity becomes too high, but much graver is 
the fact that the velocity is highest at summer solstice (SS). The apogee of the solar 
velocity in the Babylonian system A is astronomically correctly situated at Gemini 
20°. This means that the sun is moving at its slowest velocity around SS. Seemingly, 
the Babylonian astronomers have used their theory to deduce other models and con-
sequences of the number schemes. But such a practice is still a common method in 
modern science. Different models or theories are tested against each other by cal-
culating and looking at consequences of the models and then compare to measure-
ments. New ideas in one kind of theory are also tested in other approaches. I am 
convinced that the schematic astronomy was used by the Babylonians in a similar 
way, and sometimes, they ended up with functions that did not reproduce celestial 
phenomena correctly. Several texts confirm that the Babylonians performed such 
calculations. It just shows that a new theory is better—or needed. Therefore, I pro-
pose that at some time between 500 BC and 400 BC, the old eclipse predicting rule 
was replaced, and the numerical function Φ = 1,40 + �̂� was taken to be the time 
shift between Lunar eclipses taking place 1 Saros apart.14

NA1(new) = NA1(old) − 1∕3(daily retardation of the new crescent)

Or in the other formulation: (NA1)i = (NA1)i−223 − 1∕3(ŠÚ + NA)
i−229

14 Note that we are back to the intuitive proposal from 1990 since Φ = 1,40 UŠ + �̂� equals 100° + �̂�.
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It is a bit too modern, or “leading”, to say that the Babylonians here had a func-
tion for the duration of the Saros: 1 Saros = 6585 days + Φ. I call this formulation 
leading, because it implies that the Babylonians calculated length of the Saros to be 
6585 1/3 day and used this knowledge to find the time of the new expected eclipse. 
In the new interpretation, it is just the time shift which was calculated. And that was 
all that they needed: the so-called Saros schemes collected all those months in which 
the full moon was in danger of being eclipsed. For those months, the Babylonian 
astronomers could determine the time of an expected lunar eclipse. But note that this 
time shift Φ = 1,40 + �̂� was not restricted to eclipse observations; it could (like the 
time shifts for Goal-Year predictions) be measured for consecutive months! If we 
now remark that the time of an eclipse is a good measure for the time of opposition, 
then we have here a function which could be used for all oppositions and not only 
for eclipse lunations. I therefore propose that the Φ = 1,40 + �̂� was the theoretical 
Babylonian function for the shift in time between oppositions 1 Saros apart. Note 
that this understanding of Φ makes it independent of the knowledge of a step func-
tion for the solar velocity.

7  Consequences of the new proposal that Φ = 1,40 + ̂̇  
was the function for the time shift between oppositions 
223 months apart

Only at lunar eclipses is it possible to observe the time of opposition with an accept-
able accuracy—and hence to determine the duration of the Saros. But there are not 
many such observable events, and the question is how to connect them. With the 
new proposed term Φ = 1,40 + �̂� for the Saros length, it was possible to determine 
the time of opposition (or conjunction) for consecutive lunations, and not only for 
observable lunar eclipses. The Lunar Four, which had been observed and collected 
monthly over many hundred years, made it somehow possible to construct the linear 
zigzag function Φ, a function, which for consecutive lunations could predict the 
time shift between oppositions taking place 1 Saros apart. With the proposed under-
standing of Φ, the Babylonians would have had an instrument which could connect 
discrete eclipse lunation with all other lunations.

Let me try to illustrate the idea by means of the Goal-Year method and first point 
out how important it is to have continuous observations month by month. The 
Goal-Year method can deliver a link between observations undertaken month 
by month and those undertaken Saros by Saros. Having only disjunct eclipse 
observations at disposal, it is much harder to find regularities and understanding of 
dependencies, than if one has month by month observations.

We remember that the Goal-Year tables collected all Lunar Six data necessary 
for the prediction of Lunar Six data for the goal year Y. In the Diaries (Sachs and 
Hunger 1988–1996), as well as in the Goal-Year tables, we often find a Lunar Six 
sign together with its size measured in UŠ, but with the additional remark that it was 
not observed [NU PAP “I did not watch”]. Evidently, such data must have been pre-
dicted. Let us therefore imagine how the Babylonians could predict such data: on the 
Goal-Year tablet for the year in question, they had listed all the necessary lunar data 
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month by month. I shall first give an example using our modern notation to illustrate 
such a calculation, and afterwards, I shall show in words how easily such calcula-
tions and comparisons could be done by head.

Imagine that we have a table where the times ŠÚn−1 and ŠÚn as well as  NAn−1 
and  NAn, observed for two consecutive full moons n − 1 and n, were noted. The 
intervals ŠÚn+222 and ŠÚn+223 to be observed 1 Saros later could be found:

Subtracting the two equations gives

Let us denote the difference between two consecutive ŠÚ by Δ1 ŠÚ and the dif-
ference between two ŠÚ situated one Saros apart by Δ223 ŠÚ, then we have: 

and we can formulate the equation above in the following way:

The change in Δ1ŠÚ over one Saros: Δ1 ŠÚn+223 − Δ1 ŠÚn equals the monthly 
change in Δ223 ŠÚ = Δ223 ŠÚn − Δ223 ŠÚn−1.

Note also that the prediction rules easily could deliver a way to update the ŠÚ of 
month n + 222 to that of month n + 223:

This means that ŠÚn+223 now can be found also from ŠÚn+222 by means of the 
data from the Goal-Year table for the actual year.15 And similarly ŠÚn+224 can be 
found from ŠÚn+223.

This may look a little complicated as I have used our algebra to present the cal-
culations. Therefore, I shall now present these calculations in words. Imagine that 
a Babylonian astronomer is using a Goal-Year tablet for predicting Lunar Six for 
year Y. All data necessary for that purpose were collected on the Goal-Year tab-
let for year Y. In order to predict ŠÚ of month M in this new year Y, he finds the 

ŠÚ
n+222 = ŠÚ

n−1 + 1∕3(ŠÚ + NA)
n−1

ŠÚ
n+223 = ŠÚ

n
+ 1∕3(ŠÚ + NA)

n

(

ŠÚ
n+223 − ŠÚ

n+222

)

=
(

ŠÚ
n
− ŠÚ

n−1

)

+ 1∕3(ŠÚ + NA)
n
− 1∕3(ŠÚ + NA)

n−1
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(

ŠÚ
n+223 − ŠÚ

n+222

)

−
(

ŠÚ
n
− ŠÚ

n−1

)

= 1∕3(ŠÚ + NA)
n
− 1∕3(ŠÚ + NA)

n−1

Δ1ŠÚ
n+223 =

(

ŠÚ
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n+222

)

and Δ1ŠÚ
n
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n
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n−1 with

Δ223ŠÚ
n
= 1∕3(ŠÚ + NA)

n
and Δ223ŠÚ

n−1 = 1∕3(ŠÚ + NA)
n−1,

Δ1ŠÚ
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= Δ223ŠÚ

n
− Δ223ŠÚ

n−1

(1)
ŠÚ

n+223 = ŠÚ
n+222 +

(

ŠÚ
n
− ŠÚ

n−1

)

+ 1∕3
((

ŠÚ + NA
)

n
−
(

ŠÚ + NA
)

n−1

)

15 The term “update” was introduced by Ossendrijver (2012), he used it for the procedures of the math-
ematical astronomy, where a series of consecutive phenomena of moon, sun or a planet were calculated: 
time and positions of one phenomenon were found or “updated” from one phenomenon to the next by 
applying additive or subtractive differences.
 .
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value of ŠÚ in month M in his old year Y-18, and to this value he adds the time 
shift 1/3 (ŠÚ + NA) (M old) [= 1/3 (ŠÚ + NA)n]. In this way, he finds ŠÚ (M new) 
[= ŠÚn+223]. Similarly, he can find ŠÚ of the next month M + 1 in his new year Y by 
adding the time shift 1/3 (ŠÚ + NA) (M + 1 old) to the value of ŠÚ (M + 1 old). Now 
it does not require any algebra to conclude that the difference between ŠÚ in month 
M and M + 1 in the new year Y equals the difference between the two old ŠÚ plus 
the difference of the time shifts: if, for example, the time shift in month M is 4° and 
that in month M + 1 only 3°, then clearly, the difference between ŠÚ of month M 
and M + 1 in the new year will become 1° smaller than it was in the old year. I think 
that this consequence of the Goal-Year calculations is important, since we have here 
a method which allows one to find Lunar Six times from their values in the month 
before. Maybe these considerations could be used for a new investigation of the 
atypical cuneiform text K, in which the Lunar Six intervals are updated from month 
to month by applying differences depending on the moon’s zodiacal position.16

8  Goal‑Year techniques and the development of the R–S schemes

Another consequence of our hypothesis for Φ is that we now can give an easy and 
natural explanation of how the number schemes for finding the change in 1 or 12 
synodic months can be derived from the R and S versions of column Φ. We just 
have to transfer the Goal-Year method to the times T of opposition. Remember that 
the Goal-Year method finds a time interval, e.g. ŠÚ, from its value 1 Saros earlier, 
ŠÚ(old), by adding the time shift for the Saros in question to the observable time. 
Similarly, the time interval from sunset to opposition, T(new), in month M could be 
found from its value T(old) determined for the full moon 1 Saros earlier by the addi-
tion of the time shift Φ:

Our hypothesis postulates that the Babylonians found the (sarosly) shift at times 
of oppositions as 1,40 + Σ or as numbers in column Φ. In the example above, the 
time shift of ŠÚ was 1/3(ŠÚ + NA). The time shift Φ between oppositions situated 1 
Saros apart simply uses 1,40 + the sum Σ of all Lunar Four, for which the same kind 
of rules must be valid as for the partial sums (ŠÚ + NA) and  (GE6 + ME). Note that 
the time shift implicitly gives the duration of the Saros between the old month and 
the new month. This means that Φ is a measure for the Saros beginning with month 
M(old) and ending with month M in the new year. We shall see that exactly as in 
the example above, expressed in Eq. (1), the time T(new) of an opposition in month 
M(new) can similarly be found from its value in the month before, i.e. from month 
(M-1)(new) using known values from the old year.

Let us look at the concrete calculation of times of consecutive oppositions: the 
time T(new) of an opposition in a new year Y could be found by adding the shift 
Φ to the time T(old) of the opposition which had taken place 1 Saros earlier. For a 

T(new) = T(old) +�

16 See Neugebauer and Sachs (1969) and Ossendrijver (2012, pp. 116–120).
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series of consecutive lunar oppositions …O(−1), O(0), O(1), O(2), O(3),… we shall 
call the corresponding times after sunset: …T(−1), T(0),T(1), T(2), T(3), …T(n),… 
These times can determine the times of the oppositions taking place one Saros later, 
namely at the times …T(−1 + 223), T(223), T(1 + 223), T(2 + 223), T(3 + 223), 
…T(n + 223) after sunset. The time shift for these oppositions then is the corre-
sponding value of Φ, i.e. the shift in time between the oppositions n and n + 223. We 
shall call this time shift Φ(n). Our hypothesis thus means that

Φ(n) = 1,40 + �̂� is a measure for the duration of the Saros starting at month n 
and ending at month n + 223. According to this hypothesis, we find

The time shift G(n + 223) between two consecutive oppositions n − 1 + 223 and 
n + 223 can now be found:

Now the difference T(n) − T(n − 1) is the time shift, G(n), between the two old 
successive oppositions O(n − 1) and O(n). Therefore, we get:

We have here found G (for the duration of Δ1t of month n + 223) by its value G(n) 
in the “old” year and the difference between two consecutive Saroi, exactly as in the 
R–S schemes. Similarly, G(n) can be found from its value one Saros earlier, i.e. from 
G(n−223) by adding the difference Φ(n − 223) − Φ(n − 1−223) of the two Saroi end-
ing at the oppositions n and n − 1:

Here lies the clue for the understanding of the R–S method. Remember that the 
R–S scheme listed values of Φ in steps of 1 Saros, just as in the equations above.

Formulas (2) and (2a) describe exactly the way to find the values of G by means 
of an R–S scheme, where G and the difference S–R = ΔG in one line was used to find 
G in the next line. The structure of such a table is shown in Table 3. It is repeated 
in Table 4, so that we can identify the elements with the notation in Eqs.  (2) and 
(2a) above, where G and Φ (on the ascending branch) are written as functions of the 
lunation number n.

Let us imagine the case where the Φ values Φ(n) = Sk and Φ(n − 1) = Rk (for a 
month n and the previous month n − 1) were listed in line k of such an R–S scheme. 
Together with Gk = G(n), these values were used for finding G(n + 223) = G(k + 1) 
one Saros later, listed in the line k + 1 below, according to Eq. (2):

T(n − 1 + 223) = T(n − 1) +�(n − 1)

T(n + 223) = T(n) +�(n)

G(n + 223) = T(n + 223) − T(n − 1 + 223) = T(n) − T(n − 1) +�(n) −�(n − 1)

(2)G(n + 223) = G(n) + �(n) − �(n − 1)

(2a)G(n) = G(n − 223) +�(n − 223) −�(n − 1 − 223)

G(n + 223) = G(k + 1) = G(k) + (�(n) −�(n − 1)) = G(k) +
(

S
k
−R

k

)

= G(k) + ΔG
k



626 L. Brack-Bernsen 

1 3

Similarly, the value of G in line k is found from its value in the previous line 
k − 1 (corresponding to lunation n − 223, 1 Saros earlier) through the addition of 
ΔGk−1 = Sk−1 − Rk−1 = Φ (n − 223)−Φ (n − 1−223) (calculated in line k − 1)

We can now rewrite this equation which describes the R–S scheme, knowing that 
the values of G, Gk, and Gk−1 refer to two full moons n and n−223 taking place 1 
Saros apart. We can identify the months involved and replace Gk by G(n), Gk−1 by 
G(n−223), and ΔGk by Φ(n)–Φ(n − 1), resulting in

 and we are back to our Eq. (2), which obviously conforms with the R–S scheme.
The R–S scheme uses the fully developed function Φ. But note that the proce-

dures and calculations described in eq. (2) could be performed “by hand” for each 
month for which the old values T(n) and T(n − 1), and the durations Φ(n) and 
Φ(n − 1) of the Saroi beginning with month n and n − 1, respectively, were known. 
It is therefore natural to propose that the Babylonians in the beginning have used the 
values of 1,40 + Ʃ, found by observations, for such calculations. Later, they some-
how constructed the linear zigzag function �̂� which approximates the “observed” 
Ʃ optimally, leading to Φ = 1,40 + �̂� . Using Φ, one could in principle calculate all 
G values “by hand”. The Babylonians have obviously constructed the R–S schemes 
in order to facilitate the calculations. The structure of the scheme, for example, that 
there is 1 Saros from one line to the next and that the Φ values of two consecutive 
months are needed for finding G, is dictated by the procedure. Now we understand 
the astronomy and arithmetic behind the R–S schemes, but the end result is a bit 
tricky. We can see from the fully developed procedure that a lot of elegance, numeri-
cal tricks and technical finesses were required for the construction. Our scheme 
above is a simplified version of the final schemes. Some small tricks and approxi-
mations were used in order to save calculations and compensate for the fact that the 
period 6247 of Φ is not exactly a multiple of φ, which is the change in Φ value from 
one Saros to the next. In addition, the extrema of Φ were cut off, so that the maxi-
mum was truncated at the round value 2,13:20. This means that the numbers, which 
we find in the final version of the R–S number schemes, come from the truncated 

G
k
= G

k−1 ± ΔG
k−1

G(n) = G(n − 223) +�(n) − �(n − 1)

Table 4  The R–S schemes as in Table 3, but now we identify the months’ numbers according to Eq. (2a) 
above

Note that the R–S schemes only tabulate Φ values in steps of 1 Saros: let Rk and Sk represent the values 
Φ(n − 1) and Φ(n), and then Rk−1 and Sk−1 in the line above will list the Φ values of month (n − 1−223) 
and month (n − 223) which occurred 1 Saros earlier

Line number ≈ oppo-
sition number

R S S−R = ΔG G
Φ (m − 1) Φ (m) Φ (m)−Φ (m − 1) G(m)

k − 1 ≈ n − 223 Rk−1 Sk−1 Sk−1−Rk−1 = ΔGk−1 Gk−1

k ≈ n Rk = Φ(n−1) Sk = Φ(n) Sk− Rk = ΔGk Gk = Gk−1 + ΔGk−1

k + 1 ≈ n + 223 Gk+1 = Gk + ΔGk
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version �̄� of Φ. I surmise that this special number 2,13; 20 was used as a name for 
the R–S schemes and not for the original, non-truncated version of Φ.17 Lunar table 
texts of system A list numbers from the non-truncated Φ. These numbers were used 
for finding G by means of the refined scheme, but the principles behind the scheme 
remained the same as outlined above. In order to explain how the calculations for 
finding G from Φ work, I have [following Neugebauer (1975, p. 509 table 14)] pre-
sented all four columns R, S, S-R = ΔG, and G, which are needed for the construc-
tion of such a scheme. In a developed final scheme, only S = Φ and G are necessary. 
It is therefore possible that the finished table for finding G(n) from its value Φ (n) 
only had the two columns S and G. The structure is, however, explained better, when 
we also consider all columns R, S, ΔG, and G.

9  The “2,13,20” schemes for finding G from Φ by interpolation

Until now there has been a variety of reconstructions of the R–S schemes: in HAMA 
pp 508 and 509, Neugebauer has in table 14 given his reconstruction and explained 
how it works. Later (2009) in table 3.2 on pages 378 and 379, Britton presents his 
complete and reconstructed version of the R–S table for finding G. Here, he had 
also included newly found cuneiform texts with �̄� and G numbers. Britton’s recon-
structed table is a little different from that of Neugebauer, some numbers are differ-
ent and Britton indicates behind the R and S numbers of �̄� if they are placed on a 
descending or ascending branch. In addition, he had introduced new names for col-
umn R and S, calling them I = Φs,n and II = Φs,n+1, respectively. But the principle of 
the schemes is the same. I have followed the convention of Neugebauer and Britton, 
which finds Gk in line k from Gk−1 and ΔGk−1 in line k − 1 above: Gk = Gk−1 + ΔGk−1. 
This convention assumes that the values of Φ in a lunar ACT text indicate the dura-
tion of the Saros starting during the month in question, since this Φ value is also 
used as index for finding the corresponding value of G for that month. However, if 
the Φ values in a ACT table text would give the duration of the Saros ending with 
the month n in question, then the R–S scheme must have been constructed on the 
basis of the slightly different formula Gk = Gk−1 + ΔGk, using the difference S–R in 
line k, since the Saros ending in n in this case would be Φ(n) instead of Φ(n−223).18 
In any case, we now understand the basis for the construction of the R–S schemes, 
and we know how they were used: for a date—month n—in a lunar ACT table text, 
the time shift G was found in that line of the R–S scheme where Φ(n) was listed. 
This was, indeed, the way in which the Babylonians used the scheme. I quote Ossen-
drijver (2012), who on page 148 has translated an advice from a procedure text: 
Opposite Φk, increasing, you put down Gk. [Whatever] (the amount) by which it 

17 It has been proposed that the number “2,13;20” was the Babylonian name for column Φ in the same 
way, as the number “18” was used as name for the Saros. Maybe “2,13;20” rather refers to the truncated 
version of Φ and thus to the R-S schemes.
18 Many years ago, John Britton surmised that the values of Φ in ACT table texts listed the durations of 
the Saros ending with the month in question. If so, then the alternative formula  (Gk = Gk-1 + ΔGk) should 
be used. It is my hope that this new understanding will lead to a reconstruction of the R-S schemes, 
which all can agree on.
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exceeds Φk, increasing, until Φk+1, [increasing,] you multiply by 3; 22,30, and what 
comes out for you, you multiply by ckΦ, and add to Gk, and put down.

The structure of our scheme must be correct, and we know the way in which it 
was used: when Φ(n) of a month n is listed in column S, line k, then G(n) can be 
found in column G of the same line k. The quotation above also indicates how val-
ues of G for the months n, for which Φ(n) did not occur in column S, were found: by 
interpolation in the scheme between the lines k and k + 1, where Φ(k) < Φ(n) < Φ(k+1). 
The interpolation was easy for all lunations on the linear part of G, since the differ-
ence between the lines, Φ(k+1) − Φ(k), was always equal to the well-known number 
φ = 0; 17,46,40, whereby the number 0; 17,46,40 = φ is the difference between Φ 
values for two months situated 223 months apart.

Until now, we have been considering values of Φ situated on the ascending 
branch of the linear zigzag function Φ = 1; 40 + �̂� . This led to the numerical func-
tion Ĝ described by Neugebauer in HAMA p. 487ff. and helped in understanding the 
procedure and its development. We know that sometimes function Φ was truncated 
around its maximum to the value 2,13; 20. The truncation around the minimum was 
at 1; 58,31, 6, 40. The new version �̄� of Φ was called “2,13,20” by the Babylonians. 
All arguments above are true for the long linear parts of the R–S schemes. Around 
the extrema of �̄� , the same rules work for the “truncated values” of �̄� . But the inter-
polation between the lines around the extrema was modified, namely in the cases 
where the difference between R and S was smaller than φ.

Ossendrijver (2012, pp. 145–150) has edited a series of procedure texts which 
give advice for calculations when G is found by interpolation—most of them con-
cern the truncated and irregular parts of the scheme. He has compiled the separate 
computation rules into an auxiliary scheme (table 4.21). The scheme has 36 lines 
and lists the independent variable Φ in the first column. It starts with the truncated 
value 2,13; 20 and give in steps of 1 Saros the following Φ values, but also extreme 
values, outside the truncated area: the minimum m which occurs only in Φ1 and also 
the maximum M value of Φ. Clearly, the advice for interpolation shows us that R–S 
schemes were meant to be used for calculating G for both full and new moon by 
means of the independent variables Φ or Φ1.

10  The development of the schemes for finding Λ (and W) from Φ

In his two detailed studies in Babylonian Lunar Theory, Part I and II, Britton has 
given a sound analysis of data and useful reconstructions of numerical schemes. 
He had found and utilized connections and inner structures of the Babylonian sys-
tem, some of which we have found above in a different way. In tables 2.4a and 3.1, 
Britton (2009, p. 372 ff.), in continuation of the work of Aaboe (1971), presents a 
scheme for finding W and Λ, the duration of 6 and 12 months, as a function of Φ. 
The last scheme is based on cuneiform tablets (BM 36311 and BM 36699) with 
numbers from small parts of Φ Λ schemes. We shall here see how such a table can 
be derived in the same way as the “2,13,20” scheme for G was developed.

Exactly as shown above, the hypothesis that Φ = 1,40 + �̂� will lead to a scheme 
for calculating the durations of 12 or 6  months, respectively. Here, the process 
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will only be shown for the time shift Λ between lunations 12 months apart. The 
same arguments will lead to W in the case of 6 months.

Note that our procedure described above, directly leads to the following 
equation:

The change in G over one Saros equals the monthly change in Φ. But note that 
this is a direct consequence of the way it is constructed. A similar rule is valid 
for the numerical functions Λ and Φ, and our hypothesis for Φ can again easily 
explain how schemes for finding Λ (and W) from Φ were developed:

Let T(n) and T(n−12) be the time from sunset to opposition for two lunations 
situated 12 months apart. Since the time shift, Φ(n) and Φ(n−12), from these old 
lunations to the full moons in month n + 223 and n-12 + 223 is known, we get:

Therefore, the time shift Λ between two oppositions situated 12 months apart can 
be found from the values given for the corresponding full moons 1 Saros earlier:

Note that the difference T(n)–T(n−12) equals the time shift Λ(n) between the 
two lunations n−12 and n. Therefore, we get:

Here, again, we naturally get a rule that the Sarosly change in the duration of 
12 months equals the change of Φ after 12 months:

Equation  (4) shows how a R–S scheme for finding Λ from Φ must be con-
structed: it will again have lines with Φ—numbers of months situated 1 Saros 
apart, but the numbers of Φ in column R and S must correspond to lunations 
which have a distance of 12 months. The development of the schemes for find-
ing Λ from Φ is outlined here. Similarly, the scheme for finding W from Φ can 
be derived from our hypothesis, and we would again naturally find the rule that 
the Sarosly change in the duration of 6  months equals the change of Φ after 
6 months. These rules are a simple consequence of the proposed way to find times 
of oppositions by means of Φ and Goal-Year techniques. We note that such con-
nections between numbers in the schemes (namely that the change in G over one 
Saros equals the monthly change in Φ, and similarly, the change in Λ over one 
Saros equals the change in Φ after 12 months) are just a consequence of the pro-
posed derivation from our hypothesis. The Babylonians, of course, knew these 
rules which we also find written on cuneiform tablets.

Britton formulated a similar, but very general rule which he called the “Inter-
val Rule” and which he proposes to be one of the theoretical bases for the con-
struction of the general lunar theory.

(3)G(n + 223) − G(n) = �(n) −�(n − 1)

T(n + 223) = T(n) +�(n) and T(n − 12 + 223) = T(n − 12) +�(n − 12)

�(n + 223) = T(n + 223) − T(n − 12 + 223) = T(n) − T(n − 12) +�(n) −�(n − 12)

(4)� (n + 223) = � (n) +�(n) −�(n − 12)

�(n + 223) − �(n) = �(n) −�(n − 12)
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I quote Britton (2009) p. 361:

“Interval Rule”. An important element in the development of the theory is a 
general theorem, which I call the “Interval rule”. This recognizes that if there 
are two intervals with a common starting point such that one contains A units 
of some variable sub-interval such as months, and the other B such units, 
then, generally and strictly, the change in A over B sub-intervals will equal the 
change in B over A sub-intervals, i.e. DBA = DAB.

The rule is correct, and Britton continues to prove it using our algebraic nota-
tion heavily. It is, of course, allowed to analyse and explain the old calculations and 
methods by means of modern science and its tools, e.g. algebra. But such methods 
should not be used to construct the Babylonian calculating schemes, and it is ques-
tionable if the Babylonian numerical astronomy was constructed on a solid theoreti-
cal basis like our sciences. In addition, it is not necessary at all to propose an abstract 
theoretical basis, since we have seen that the relevant cases of “interval rules” in this 
new approach are a simple consequence of the way times of oppositions were calcu-
lated. We have here a special rule for the time shift of 1, 6, and 12 months—and not 
a general and abstract interval rule.

Britton’s reconstruction of column Φ is (to my taste) too technical, and it is heav-
ily based on a proposed—and beautifully symmetric—function for the duration of 
235 months. He emphasizes the fact that after 235 months ≅ 19 years, sun and moon 
will be at the same point of the ecliptic so that lunations which are 235 months apart 
are only influenced by the irregular lunar velocity and not by the solar velocity. This 
is correct in principle. But it is questionable if the Babylonians noticed and used it. 
In table 3.1 mentioned above, Britton adds the values of Φ to Λ in each line of the 
reconstructed scheme, and so he finds the shift in time after 235 months. But we 
have no textual evidence for such a scheme; the Babylonians just used the 19-year 
period to regulate intercalations in their calendar, but we have no evidence for its use 
for other astronomical purposes. We know, for sure, that the Babylonians knew and 
utilized the Saros extensively.

de Jong (2017) goes another way in his article “On the Origin of the Lunar 
and Solar Periods in Babylonian Astronomy”. He starts out with a clearly writ-
ten and very nice overview of the Babylonian functions and their astronomical 
basis—explained by our astronomy. Then, he focusses on the old 27-year Sirius 
period, which is attested in several early astronomical texts. The period of 27 years 
equals approximately 334 synodic months, and de Jong proposes that this rela-
tion, 27 (sidereal) Years ≅ 334 synodical months, was used to find the duration of 
the Saros in years. This means that the Sirius Year was taken to be what we call 
the tropical year. The Babylonians did at that time not differentiate between these 
two types of the year. Later, the 19-year calendar cycle = 235 synodic months was 
found and used for calendar regulations from around 500 BC and onward. Now, 54 
Sirius years = 2 × 334  months = 668  months, and 3 Saroi = 3 × 223  months = 669 
months. Therefore, de Jong suggests that the Babylonians used the connection: 3 
Saros = 54 years + 1 month to find that 1 Saros = 18 years + 1/3 month. This equality 
is then used to determine period relations between the Saros and solar years, the first 
being: 37 Saroi = 667 years. By the stepwise subtraction of 3 Saroi − 1 month = 54 
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years, one gets other period relations. After 3 steps, one arrives at the relation: 
505 years = 6247 months, which is the period of column Φ. Maybe the period was 
found in this manner and then used for constructing Φ. If so, then this early column 
Φ had, indeed, been composed from a theoretically constructed period relation. It 
must, however, still be investigated how the observed data of the Lunar Four came 
into play, since we also have to explain how the Babylonians’ function Φ was con-
structed so that it oscillates with the same amplitude, period, and phase as our pro-
posed function 1,40 + �̂� . Another possibility, which I see for finding the period of 
6247 months, is that the skilled Babylonian astronomers were analysing special cho-
sen data of Σ, for example, in distances of a whole number of Saroi, namely those 
special months for which the sum Σ changed rapidly. In this way, they could have 
found how much the little change “φ pro Saros” had been added up after n Saroi. 
Such a knowledge could have been used, too, to find the period of Φ. Maybe the 
two approaches can be combined; at least they seem to support each other since they 
both build on early astronomy and old practices.

11  Babylonian practices, summary, and conclusion

Let me summarize and draw attention to the important points. The rule for predic-
tion of opposition times T(n+223) = T(n) + Φ(n), as introduced above, makes it 
possible to determine the new opposition from an old one using the data written 
on a Goal-Year tablet alone. By calculating the time for consecutive months, the 
Babylonians may easily have found the way to determine T(n + 1) from T(n) as 
described above. As consequence, the following rule emerges naturally: the differ-
ence G(n+223) between two consecutive oppositions, n+222 and n+223, can now 
be found from Eq. (3)

Note that the new G(n + 223) is found from the old G(n) plus the difference 
Φ(n)− Φ(n−1) in duration of the two Saroi beginning in month n − 1 and n. If one 
does not want to calculate month by month, but create a practical scheme for finding 
values of G, then such a scheme must acquire a structure like the R–S schemes with 
two versions of Φ at a distance of 1 (or similarly 12 months). The old difference S–R 
must be added to (or subtracted from) the old G value, and the result could practi-
cally be listed in the line below. We see that the whole structure of the schemes for 
the calculation of G and Λ comes out very naturally. It also explains why the Φ value 
attached to a month n measures the duration of the very Saros starting (or ending) 
at month n. The new understanding, namely that the numerical function Φ = 100 + �̂� 
was used as the shift in time between two oppositions taking place 1 Saros apart, 
explains technical details and answers many questions: not only does it explain why 
the calculation of G (the time shift between consecutive full moons) involves the 
previous Saros, but it also leads to the concepts behind the construction of the R–S 
schemes. And it only uses calculations, techniques, and arguments which were at 
the disposal of the Babylonians. I see all these connections or arguments as a strong 

G(n + 223) = G(n) +�(n) −�(n − 1)
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support for the proposal. Especially, the fact that the Saros from month n to month 
n + 223 is used for finding G(n + 223) indicates to me clearly a connection to the 
Goal-Year method. Therefore, I now claim that the hypothesis has been confirmed, 
namely that Φ = 100 + �̂� was taken to be shift in time between Lunar Eclipses 
and other oppositions taking place 1 Saros apart.

This understanding of Φ also explains the existence of Text S, which contains Φ 
values together with a primitive mean-value model for the solar movement. Φ may 
have been introduced before the solar movement was modelled by the system A step 
function B, i.e. it can have been introduced independently of and before the whole 
system A was developed. I think that we are a long step further in the reconstruction 
of the Babylonian astronomy, but we have not yet been able to completely reconstruct 
the R–S schemes with its interpolation advices, and we are still far away from a com-
plete understanding of how the linear zigzag function Φ = 100 + �̂� was derived from 
observations of the Lunar Four. Which techniques were used, and which observations? 
Maybe the Sirius year was involved? In any case, is it obvious that lunar eclipses were 
involved, but I surmise that also consecutive lunations, for which the sum of the Lunar 
four changed with a high and approximately constant difference, were important.

12  Outlook

In case of Φ, we know that this function only gives the lunar component for the 
time shift between eclipses taking place 1 Saros apart; the larger solar component 
was neglected. The solar component was also neglected by the components G and 
Λ. They only give the lunar components of time shifts Δ1t and Δ12t, since they were 
deduced from Φ alone. Evidently, the Babylonians must have noticed that something 
was missing and given a correction. Such a task was not too difficult for them, tak-
ing their practice of recording into account: we know that the Babylonian listed all 
relevant observables as a function of the month—in other words, the month was the 
independent variable: all observed or calculated quantities were recorded as func-
tions of the month. Observations undertaken from month to month would show a 
systematic difference between predicted and observed full or new moons, and this 
holds exactly for those months of the Babylonian calendar during which the sun was 
moving slowly. Such observations could lead to the correcting subtraction J from G, 
which we find in system A texts. System A calculates corrections J and Y to G and 
Λ for the duration Δ1t and Δ12t of 1 or 12 months, respectively. No such correction 
for the Saros has ever been found. Maybe the reason is that it was no longer nec-
essary: system A calculations delivered from month to month all relevant data for 
lunar eclipses

I am convinced that the data recorded on the Goal-Year tablets were used heav-
ily for the construction of the mathematical astronomy. We must try to use these 
data more in our effort to reconstruct the numerical functions of the Babylonian 
mathematical astronomy. It should also be emphasized strongly that we shall try 
to work with the means and concepts known to the Babylonians: they were very 
skilled calculators, but they did not have anything like our algebra, where quantities 
can be presented by abstract notation and used for calculations or in equations. At 
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some time, maybe after the invention of Φ, the function for the solar movement was 
found, and the position of the moon (at conjunction or opposition) was calculated 
as function of its position in the zodiac. It is important also to keep the schematic 
astronomy in mind. Note that some of the old concepts and methods were kept all 
the way through the development of the Babylonian astronomy, from the schematic 
astronomy in the early texts EAE XIV and MUL.APIN to the fully developed lunar 
theory of system A and system B. The schematic day = 1/30 schematic months is 
found in the later unit “tithi” = 1/30 synodic month. The schematic astronomy seems 
to play a more important role in the reconstruction of the mathematical astronomy 
than what was supposed until now. As an example, I can mention that a linear zigzag 
function for the rising and setting times of ecliptic arcs can easily be found when 
the partial sums (ME + GE6) and (ŠÚ + NA) are listed as functions of the month.19 
(Remember: in the schematic astronomy the schematic months were identified with 
the corresponding zodiacal signs.)20 This may be a fruitful starting point for recon-
structing the calculations behind the duration of daylight given in column C. A tech-
nical detail may also be very helpful, when we try to reconstruct the numerical zig-
zag or step functions, the smallest interval δ.

12.1  The smallest interval δ between the numbers of a numerical function

In the fully developed Babylonian astronomy, we find many numerical step functions 
and linear zigzag functions. The smallest distance between numbers in each of these 
functions is important: if all numbers of a linear zigzag function are sorted according 
to their magnitude and listed within one period, then we can find the smallest interval 
δ, for example, between successive values of Φ. The values of Φ are situated at the 
constant distance δ. Similarly, there are smallest distances δ for each linear interval 
of a step function, as shown by Aaboe (1964). He pointed at the importance of such 
smallest intervals and saw them as a sensible starting point in the construction of 
the step functions. I am convinced that he was right and that the smallest interval 
δ also was used extensively in the construction of linear zigzag functions. I do not 
know how—but the Atypical Text C21 may become important in the reconstruction 
of column Φ (see Brack-Bernsen and Steele 2011). Here, the so-called Q-polygon is 
introduced, which depicts the Φ values situated equidistantly on the circumference of 
a circle, the distance being δ. It is shown how such a representation and the interval δ 
can be used for easy calculations of Φ numbers and for finding their differences over, 
for example, 1, 12, 14, and 223 months, expressed in units of δ. Text C lists a quite 
particular sequence of 10 Φ values, which reveals a very clear hint to the interval δ. 
In addition, all the dates which correspond to the Φ values are situated some multiple 
of 14 months apart, and their distances to the truncated values of Φ are also a multi-
ple of 14 months. To this adds that the Atypical Text C contains a list of 14 numbers, 

19 I have presented this method at the 4th Regensburg Workshop on Mesopotamian Astral Sciences, held 
in Berlin in May 2014.
20 Brack-Bernsen (2003, p. 25).
21 Neugebauer and Sachs (1967).
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called igi.gub.ú.meš. The Sumerian word, igi.gub, can be translated as “constant fac-
tor” or “coefficient”. They signify relevant constants or numbers which are essential 
for special calculations. The igi.gub.ú.meš numbers in Text C are all special multiples 
of δ, and nine of them are equal to the change in Φ value after n times 14 months. 
The interval of 14 months is a quite good approximation to the period of the lunar 
velocity. Maybe this 14-month period played a larger role in the construction of Φ 
than we have imagined until now. It must also be stressed that Text C contains early 
data. We have two possibilities to connect the given values of Φ with Babylonian 
dates, depending on our choice of letting the Φ values be situated on the ascending 
or on the descending branch of Φ. In both cases, three of the dates correspond to 
eclipse dates. Clearly, eclipse observation must also have played an important role in 
the construction of the column Φ. This is evident, since the fine and round value 2, 
0 of Φ corresponds to the date of a lunar eclipse. Normally, Φ numbers have up to 6 
sexagesimal places. Even if Text C should happen to be a text written later, for which 
purpose ever, then it is worthwhile to be analysed more careful. Each time we are 
able to find connections, see how the Babylonians analysed data or utilized them, we 
learn more of their concepts and methods, which brings us nearer to a deeper under-
standing and reconstruction of their fascinating Astronomy. To sum up, we still have 
many interesting challenges left for future research.
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Appendix 1

“Lunar Six” time intervals and the Goal‑Year method for their prediction

Babylonian astronomy was especially concerned with the moon in the time around 
full und new moon. Lunar and solar eclipses were of great interest but also the ris-
ing and setting times of the full and old/new moon. Six special time intervals were 
observed regularly over hundreds of years, the “Lunar Six”.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
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KUR and  NA1 were observables in the days before and after conjunction:

KUR = time from last visible rising of the old moon to sunrise.
NA1= time from sunset to the first visible setting of the new crescent.

Around opposition, four time intervals, the “Lunar Four”, were observed:

ŠÚ = time from moonset to sunrise, measured at last moonset before sunrise.
NA = time from sunrise to moonset, measured at first moonset after sunrise.
ME = time from moonrise to sunset, measured at last moonrise before sunset.
GE6 = time from sunset to moonrise, measured at first moonrise after sunset.

These intervals, measured in time degrees, are evident and easy to observe, but 
they are quite complicated quantities from an astronomical point of view. Each 
of them depends on the momentary latitude β☾ of the moon, on its momentary 
velocity v☾, on its position λ☾, in the ecliptic at conjunction or opposition, respec-
tively, and on the time difference Δt between the time of observation and con-
junction or opposition, respectively. Taking the interval  NA1 as an example, we 
write it as a function of these four variables:

Figure  3 illustrates the situation at the western horizon when the new crescent is 
about to set at that evening, when  NA1 could be measured. This was an important 
moment, since the new crescent announced the beginning of a new Babylonian 
month. Obviously, the distance between the sun and the new crescent is determining 
for the length of  NA1, and this length depends on the lunar velocity v☾ and on Δt. 
But it also depends on the momentary angle between the ecliptic and the horizon, 
which is a function of λ☾, and finally, it depends also on the lunar latitude β☾.

At latest from 643 BC onward, the Lunar Six were observed regularly. They 
played an important role within the Babylonian astronomy. One of the aims of 
mathematical lunar table texts was to calculate the values of the lunar six. That the 
Babylonians were able to cope with such complex quantities illustrates how elegant, 
powerful and to which high level their astronomers had developed their numeri-
cal astronomy. But even in the times before the fully developed astronomy, they 
could cope with these time intervals. The skill of the early Babylonian astronomers 
became evident when the elegant method for the prediction of the Lunar Six time 
intervals was discovered (Brack-Bernsen 1997, 1999).

We have called these prediction rules for “the Goal-Year method”, since all data 
necessary for such predictions for a whole year were collected on the Goal-Year 
tables. Such a table collected observed data of special astronomical events for the 
planets and the moon. The colophon at the end of each table indicates that all data 
were to be used for predictions of the same events in a year Y to come. On the rear 
of such a table, the lunar events which had taken place in year Y-18 were recorded: 
lunar and solar eclipses (or eclipse possibilities), and all Lunar Six time intervals 
were listed under the day numbers within the Babylonian month at which they had 

(5)
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taken place. Some partial sums, (ŠÚ + NA) and (ME + GE6), were also noticed, and 
these measure the daily retardation of the setting and rising full moon, respectively 
(see Fig. 4). These time delays were used in the prediction rules in connection with 
the Saros period.

We note that the Saros = 223 synodic months ≅ 18  years, besides being a well-
known time interval between eclipses, also is an import lunar period:

The Goal-Year method utilizes the fact that both, the lunar latitude β☾ and the veloc-
ity v☾, will repeat after one Saros = 223 months and that conjunction (or opposition) 
will take place at almost the same place λ☾ in the ecliptic as in year Y-18. Only the 
time of opposition (or conjunction) will be shifted by 1/3. This results in a shift in 
time of both ŠÚ and NA by 1/3 of the daily retardation (ŠÚ + NA) of the setting 
full moon, and similarly in a shift in time for both ME and  GE6 by 1/3 of the daily 
retardation (ME + GE6) of the rising full moon. Hence, the new Lunar Six values, 
i.e. those of the new year Y to come, were calculated from the old values from year 
Y-18, listed on the Goal-Year tablet for year Y. This corresponds to the following 
calculational procedures:

223 syn. m. = 6585 1∕3 day ≈ 239 anom.m. ≈ 241 drac. m. ≈ 242 sid. m. ≈ 18 Years

Fig. 3  The western horizon at the moment of sunset on an evening shortly before fall equinox. The sun, 
⨀, is setting. The solid long line shows the equator and the arrow the direction of the daily revolution of 
the sky. The parallel arrows indicate the direction along which the moon will set. The dashed long line is 
the ecliptic with an arrow indicating the direction in which the sun ⨀ and the moon ☽ move. The moon 
has passed the sun around a day before. In case of lunar latitude of 0 or 5°, respectively, the new crescent 
will be visible for the first time after conjunction, and it will set  NA1 = NA1(0°), respectively  NA1(+ 5°), 
time degrees after sunset. In case of β = − 5°, the still invisible moon has already set, so that the new 
crescent only can be seen on the next evening
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Sometimes, the procedure required corrections, namely when the subtractions in Eqs. (6), 
(8), or (10) would lead to negative numbers. Then, the Babylonians solved this problem ele-
gantly: they realized that when NA(old) < 1/3(ŠÚ + NA)(old), then NA(new) would occur 1 day 
later, and the difference 1/3(ŠÚ + NA)(old) − NA(old) was correctly identified as ŠÚ(new). [For 
further details, see Brack-Bernsen (1999) and Brack-Bernsen and Hunger (2008).]

Appendix 2

Development of linear zigzag functions

The atypical text E (Brack-Bernsen and Hunger 2005/2006) is concerned with lunar 
latitude. It started with a simple rule of thumb for finding the position of the lunar 

(6)NA1(new) = NA1(old) − 1∕3
(

ŠÚ + NA
)

(old-6)

(7)ŠÚ(new) = ŠÚ(old) + 1∕3
(

ŠÚ + NA
)

(old)

(8)NA(new) = NA(old) − 1∕3
(

ŠÚ + NA
)

(old)

(9)ME(new) = ME(old) + 1∕3
(

ME + GE6

)

(old)

(10)GE6(new) = GE6(old) − 1∕3
(

ME + GE6

)

(old)

(11)KUR(new) = KUR(old) + 1∕3
(

ME + GE6

)

(old-6)

Fig. 4  The situation on the celestial sphere at sunrise on two mornings m1 and m2 around full moon: the 
symbol ⨀ on the eastern horizon shows the rising sun. The symbol for the “anti-sun”, situated at the west-
ern horizon, is about to set. On the first morning m1, the moon was in position ŠÚ and has already set. On 
the next morning m2, the moon has moved with respect to the sun and is at position NA at the moment of 
sunrise. On morning m1, the moon sets at ŠÚ time degrees before sunrise, and on the next morning m2, it 
sets NA time degrees after sunrise. Evidently, ŠÚ + NA measures the daily retardation of the setting moon, 
namely how much later with respect to sunrise the moon sets on day 2 than on the first day
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nodes—and it utilized the schematic year of 12 months of 30 days and often identi-
fied dates with positions. We have showed how the schematic year and the corre-
sponding schematic movement in latitude of the moon may have been utilized as a 
practical tool for the construction of a linear zigzag function. The important point 
in this connection is that the Babylonians started with a period P which was a little 
too long. Instead of shortening the period by the appropriate amount a, they first 
calculated the latitude by means of the scheme with period P. Then, they used the 
scheme once more to find the change over the interval a, and so they found the cor-
rection to the period by dividing by 12 for each month. In our vocabulary: they used 
successive approximations. I shall illustrate here how this method works if we start 
out with a schematic zigzag function with the period of a year = 12 months, and then 
add a correction which is due to the fact that 12 months is about 1/3 months shorter 
that the solar year.

I shall argue on an imaginary function with the period of 1 year = 12 months. Let 
our imaginary function have the minimum = 28 in month 1, maximum = 30 in month 
7, and minimum again in month 13. The change over 6 months equals to 2 = 30–28; 
therefore, the change per month would be 2/6 = 0; 20. This numerical function has 
the period P = 12 months and the following values:

Month 1 2 3 4 5 6 7

Value 28 28; 20 28; 40 29 29; 20 29; 40 30
Month 13 12 11 10 9 8 7

We now subtract a correction for the fact that the solar year is not equal to 
12 months but rather to 12 1/3 month. The change per month, d(old) = 0; 20 leads to 
the change over 1/3 month being equal to 1/3 times 0; 20 = 0; 6,40. This is the cor-
rection for the period of 12 months. The correction for 1 month would therefore be 
1/12 times 0; 6,40 = 0; 0, 33,20. We have here constructed a linear zigzag function 
with a non-integer period.

Month 1 2 3 4 5 6
Value 28 28; 19,26,40 28; 38,53,20 28; 58,20,0 29; 17,46,40 …

Let me add some technical details, using the letters introduced by Neugebauer in 
ACT for the characterization of Babylonian numerical functions.

The starting point, a simple zigzag function, had the amplitude 2, the monthly 
change, d(old), equals 0; 20, and the period P = 12  months, which was also the  
number period Π, so that z = 1. Our new zigzag function still has the amplitude 
2 (still varying between 28 and 30), but the other parameters are different: the  
monthly change, d equals d(old) − d(old)/(3 × 12) = d(old) × 35/36:  
d = 0; 19, 26, 40 = 0; 20–0; 0, 33, 20 = 0; 20 × 35/36.

We have now 36 times more values; therefore, Π = 12 × 36 = 432, Z = 35, and 
the new period P(new) = Π/Z = 432/35 = 12; 20,57,34, … which is non-integer. The 
smallest distance δ between values of this function comes out naturally: it is just 
the correction δ = 0; 0, 3,20. Note that this very primitive numerical function is 
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quite similar to the linear zigzag function A of system B. Therefore, it gives us an 
idea to how some of the linear zigzag functions, which we find in the ACT mate-
rial may have been developed. It may also give us a hint to how one can recon-
struct Φ = �̂� + 1; 40 from observations of the sum Σ of the lunar four. The 14-month 
period for the lunar velocity was probably known to the Babylonians. Maybe it had 
been noticed that this period was a little too large, so that a correction was intro-
duced. The sum Σ varies very irregularly, so it is not easy to construct a linear zig-
zag function which fits the data well. It is possible that special eclipses were chosen, 
situated n Saros apart, for which the sum Σ of the Lunar Four was changing rapidly. 
This is the case when the difference to the value of Σ for the month before and for 
the month after was large. But this is another story—or another research project.
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