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Abstract

The desirability of what actually occurs is often influenced by what
could have been. Preferences based on such value dependencies between
actual and counterfactual outcomes generate a class of problems for or-
thodox decision theory, the best-known perhaps being the so-called Allais
Paradox. In this paper we solve these problems by extending Richard
Jeffrey’s decision theory to counterfactual prospects, using a multidimen-
sional possible-world semantics for conditionals, and showing that prefer-
ences that are sensitive to counterfactual considerations can still be de-
sirability maximising. We end the paper by investigating the conditions
necessary and sufficient for a desirability function to be an expected util-
ity. It turns out that the additional conditions imply highly implausible
epistemic principles.

The desirability of what actually occurs is often influenced by what could have
been. Suppose you have been offered two jobs, one very exciting but with a
substantial risk of unemployment, the other less exciting but more secure. If you
choose the more risky option, and as a result become unemployed, you might
find that the fact that you could have chosen the risk-free alternative makes
being unemployed even worse. In addition to experiencing the normal pains
of being out of job, you might then be filled with regret for not having chosen
the risk-free alternative. On other occasions something different from regret
explains the dependence of our assessments of what is the case on what could
have been. Suppose a patient has died because a hospital gave the single kidney
that it had available to another patient. Suppose also that the two patients
were in equal need of the kidney, had equal rights to treatment, etc. Now if
we were to learn that a fair lottery was used to determine which patient was to
receive the kidney, then most of us would find that this makes the situation less
undesirable than had the kidney simply been given to one of them. For that at
least means that the patient who died for lack of a kidney had had a chance to
acquire it. In other words, had some random event turned out differently than
it actually did, the dead patient would have lived.

This desirabilistic dependency between what is and what could have been
creates well-known problems for the traditional theory of rational choice under
risk and uncertainty, as formulated by John von Neumann and Oskar Morgen-
stern [von Neumann and Morgenstern, 1944] and Leonard Savage [Savage, 1954].
The first example is just a simplified version of Maurice Allais’ infamous para-
dox [Allais, 1953], [Allais, 1979], whereas the latter is an instance of a decision
theoretic problem identified decades ago by Peter Diamond [Diamond, 1967].
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In this paper we use a framework based on a combination of Richard Jeffrey’s
decision theory [Jeffrey, 1983] and a multidimensional possible-world semantics
for counterfactual conditionals [Bradley, 2012] to explore the above dependency.

Section 1 explains the two paradoxes and why they cast doubt on a ratio-
nality postulate, known as separability. Separability is assumed by a class of
mainstream decision theories – for which we will reserve the label ‘expected
utility theory’ – including those of von Neumann and Morgenstern (where it is
called Independence) and Savage (where it is called the Sure-thing principle).
Separability is not presupposed by Richard Jeffrey’s decision theory, however:
His is a theory of desirability maximisation that is not an expected utility the-
ory (in the vocabulary adopted in this paper). This makes his theory a good
candidate for handling the Allais’ and Diamond’s examples but, as we explain
in section 2, the lack of counterfactual prospects in his theory means that it too
cannot easily represent the preferences revealed in these examples. To overcome
this problem, in section 3 we introduce counterfactuals into Jeffrey’s theory and
then, in section 4, show how this makes it possible to represent such preferences
as maximising the value of a Jeffrey desirability function, even though they can-
not be represented as maximising expected utility. In section 5 we show that,
contrary to what decision theorists and philosophers have typically assumed, a
second assumption of ethical actualism, quite different from the aforementioned
separability property, is also involved in the clash between Allais’ and Diamond’s
preferences and expected utility theory. Indeed it turns out that ethical actual-
ism and separability are both necessary for expected utility maximisation and,
given the other assumptions of Jeffrey’s theory, sufficient for it. Since ethical ac-
tualism and separability impose unreasonable constraints on agents’ attitudes,
we conclude that rationality does not require that agent’s maximise expected
utility.

1 Two Paradoxes of Rational Choice

The Allais Paradox has generated a great deal of discussion amongst philoso-
phers, psychologists and behavioural economists. The paradox is generated by
offering people a pair of choices between different lotteries, each of which con-
sists in tickets being randomly drawn. First people are offered a choice between
a lottery that is certain to result in the decision maker receiving a particular
prize, say £2.400, and a lottery that could result in the decision maker receiving
nothing, but could also result in the decision maker receiving either as much as
or more than £2.400. The situation can be represented as a choice between the
lotteries L1 and L2 below, where for instance L1 results in the decision maker
receiving a prize of £2.500 if one of tickets number 2 to 34 is drawn:

1 2− 34 35− 100
L1 £0 £2500 £2400
L2 £2400 £2400 £2400

Having made a choice between L1 and L2, people are asked to make a second
one, this time between lotteries L3 and L4:
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1 2− 34 35− 100
L3 £0 £2500 £0
L4 £2400 £2400 £0

Repeated (formal and informal) experiments have confirmed that people
tend to choose and strictly prefer L2 over L1 and L3 over L4. (See [Kahneman
and Tversky, 1979] for discussion of an early experiment of the Allais Paradox.)
One common way to rationalise this preference, which we will refer to as ‘Allais’
preference’, is that when choosing between L1 and L2, the possibility of ending
up with nothing when you could have received £2.400 for sure outweighs the
possible extra gain of choosing the riskier alternative, since receiving nothing
when you could have gotten £2.400 for sure is bound to cause considerable regret
(see e.g. [Loomes and Sugden, 1982] and [Broome, 1991]). When it comes to
choosing between L3 and L4, however, the desire to avoid regret does not play
as strong role, since decision makers reason that if they choose L3 and end up
with nothing then they would, in all likelihood, have received nothing even if
they had chosen the less risky option L4.

Intuitively rational as it seems, Allais’ preference is inconsistent with the
most common formal theory of rational choice: expected utility theory (assum-
ing, that is, that the probabilities of each ticket is the same in the two choice
situations.) According to expected utility theory (EU theory for short), all
rational preferences over prospects can be represented as maximising the expec-
tation of a utility function. Formally, let any prospect or option f be a function
from a sets of states of the world, S = {Si}, to a set of consequences, with f(Si)
being the consequence of exercising option f when the state of the world is Si.
The expected utility of a prospect f is then defined by:1

EU(f) =
∑
SiεS

u(f(Si)).Pr(Si)

where Pr is a probability measure on the states and u a utility measure on
consequnces. In von Neumann and Morgenstern’s theory the probabilities on
states are objective and the prospects are called lotteries; in Savage’s more
general framework the probabilities are subjective and the prospects called acts.
But these differences will not matter to our discussion.

In the usual manner let % represents the agent’s ‘... is least as preferred as ...’
relation between alternatives and � and ∼ the corresponding strict preference
and indifference relations between them. Then EU theory states that for any
rational agent:

f � g iff EU(f) > EU(g) (1)

When this holds for someone’s preferences, we say that the EU function repre-
sents their preferences.

The problem the Allais Paradox poses to decision theory, is that there is no
way to represent Allais’ preference over lotteries in terms of the maximisation
of the value of a function with the EU form. To see this, let us assume that
in both choice situations the decision maker considers the probability of each

1We will throughout this paper use period for multiplication.
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ticket being drawn to be 1/100. Then if Allais’ evaluation of the alternatives is
in accordance with the EU equation, Allais’ preference implies that both:

u(£0) + (33u(£2500)) + (66u(£2400)) < 100u(£2400) (2)

and:
u(£2400) + 33u(£2400) < u(£0) + 33u(£2500)

But the latter implies that:

u(£2400) + 33u(£2400) + 66u(£2400) = 100u(£2400)

< u(£0) + 33u(£2500) + 66u(£2400)

in contradiction with inequality 2. Hence, there is no EU function that simul-
taneously satisfies EU(L1) < EU(L2) and EU(L4) < EU(L3). In other words,
there is no way to represent a person who (strictly) prefers L2 over L1 and L3

over L4 as maximising utility as measured by the an EU function. Since all
rational preference should, according to EU theory, be representable as max-
imising expected utility, this suggests that either Allais’ preference is irrational
or EU theory is incorrect. Hence the ‘paradox’: Many people both want to say
that Allais’ preference is rational and that EU theory is the correct theory of
practical rationality.

Another way to see that Allais’ preference cannot be represented as max-
imising the value of an EU function, is to notice that the preference violates
a separability condition on preferences that is required for it to be possible to
represent them by an EU function. The condition requires that when comparing
two alternatives whose consequences depend on what state is actual, rational
agents only consider the states of world where the two alternatives differ. More
formally:

If

S1 S2

Li x z
Lj y z

then Li � Lj iff x � y.

In the choice problem under discussion, this means that you only need to
consider the tickets that give different outcomes depending on which alternative
is chosen. Hence, you can ignore the fourth column, i.e. tickets 35-100, both
when choosing between L1 and L2 and when choosing between L3 and L4,
since these tickets give the same outcome no matter which alternative is chosen.
When we ignore this column, however, alternative L1 becomes identical to L3

and L2 to L4. Hence, by simultaneously preferring L2 over L1 and L3 over L4,
the decision maker seems to have revealed an inconsistency in her preferences.

The second example discussed in the introduction generates a paradox sim-
ilar to Allais’ if we assume that there is nothing irrational about strictly prefer-
ring a lottery that gives the patients an equal chance of receiving the kidney to
giving the kidney to either patient without any such lottery being used. If we
call the patients Ann and Bob, and let ANN represent the outcome where Ann
receives the kidney and BOB the outcome where Bob receives the kidney, then
to represent the aforementioned attitude, which we will refer to as ‘Diamond’s
preference’, as maximising the value of an EU function, it has to be possible to
simultaneously satisfy:

4



u(ANN) < 0.5u(ANN) + 0.5u(BOB)

u(BOB) < 0.5u(ANN) + 0.5u(BOB)

But that is of course impossible: An average of the values u(ANN) and
u(BOB) can never be greater than both values u(ANN) and u(BOB).

Again, we can see the tension between Diamond’s preference and standard
theories of rational choice by noticing that it violates separability. An implica-
tion of separability is that, given the prospects displayed below, where E repre-
sents the outcome of some random event (e.g. a coin toss), L � LA iff LB � LA
and L � LB iff LA � LB . Hence, Diamond’s preference in conjunction with
separability implies a contradiction.

E ¬E
L ANN BOB
LA ANN ANN
LB BOB BOB

The fact that both Allais’ and Diamond’s preferences involve a violation of
separability and that their preferences seem intuitively rational (or at least not
irrational), casts doubt on separability as a rationality postulate. Moreover,
both the desire to avoid regret, as manifested in Allais’ preference, and the
concern for giving each patient a ‘fair chance’, which seems to be what underlies
Diamond’s preference, have something to do with counterfactuals. Regret, at
least in the situation under discussion, is a bad feeling associated with knowing
that one could have acted differently and that if one had things would have been
better. And to say that even if Bob did not receive a kidney he nevertheless
had a chance, seems to mean that there is a meaningful sense in which things
could have turned out differently – for instance, a coin could have come up
differently – and if they had, Bob would have received the kidney. So both
Allais and Diamond violate the formal separability requirement of standard
decision theories since they judge that the value of what actually occurs at least
partly depends on what could have been, i.e. on counterfactual possibilities.2

Perhaps for the reason discussed above, some economists and philosophers
have thought that separability as a requirement on preference is implied by an
evaluative assumption we call ethical actualism. Informally put, ethical actual-
ism is the assumption that only the actual world matters, so that the desirability

2Lara Buchak has recently suggested a solution to the Allais Paradox that relies on a
slightly different interpretation of Allais’ preference than the one we suggest here [Buchak,
2013]. Whereas we interpret people that display this type of preference as being regret averse,
she interprets them as being risk averse. And she introduces a risk function, that, in addition
to a utility and probability function, represents a person’s attitudes, and argues that rational
agents maximise risk-weighted expected utility. A limitation of Buchak’s account, we think,
is that her theory cannot rationalise Diamond’s preference, since her risk-weighted expected
utility function is such that the expected benefit of a lottery can never exceed the benefits of
each of its prizes. If we are right in that Allais’ and Diamond’s preferences are two instances
of a general type of preference – namely, counterfactual-dependent preference – then it is an
advantage of our theory over Buchak’s that we can solve the two paradoxes in the same way,
namely by introducing counterfactuals into the domain of Jeffrey’s decision theory.
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of combinations of what actually occurs and what could have occurred only de-
pends on the desirability of what actually occurs. In a well-known defence of
separability, Nobel Laureate Paul Samuelson argues that it would be irrational
to violate ethical actualism, and since he thinks that ethical actualism implies
separability, he takes this argument to show that it would be irrational to vi-
olate separability. The separability postulate Samuelson was defending, which
is implied by what we above called separability, states that if some outcome
(A)1 is at least as good as (B)1 and (A)2 is at least as good as (B)2, then
an alternative that results in (A)1 if a fair coin comes up heads but (A)2 if it
comes up tails, is at least as good as an alternative that results in (B)1 if the
coin comes up heads but (B)2 if it comes up tails. Here is Samuelson’s informal
justification of the axiom:

[E]ither heads or tails must come up: if one comes up, the other
cannot; so there is no reason why the choice between (A)1 and
(B)1 should be ‘contaminated’ by the choice between (A)2 and (B)2.
([Samuelson, 1952]: 672-673)

In other words, the reason an evaluation or ordering of alternatives should
satisfy separability, is that there should be no desirabilistic dependencies be-
tween mutually incompatible outcomes; in other words, our preferences should
satisfy separability since our evaluation of outcomes should satisfy ethical actu-
alism.

Some philosophers and decision theorists have cited Samuelson’s remark
favourably. John Broome, who takes it to at least provide a “prima facie pre-
sumption in favour of [separability]”, rhetorically asks: “How can something
that never happens possibly affect the value of something that does happen?”
([Broome, 1991]: 96). But however closely related ethical actualism and sepa-
rability might seem to be, the former does not (by itself) imply the latter. In
fact the two are based on different, though consistent, intuitions. The former
expresses the idea that only what actually happens matters, while the latter
expresses the idea that the desirability of what would be the case if one set of
conditions held true is independent of what would be the case if some other set
of conditions did. To see that these are different requirements consider the set
of prospects displayed in the matrix below.

E ¬E
L1 ANN BOB
LA ANN ANN
LB BOB BOB
L2 BOB ANN

Now, as we have seen, separability requires that L1 � LA iff LB � L2. On
the other hand, ethical actualism requires that, conditional on E being true,
L1 ∼ LA and LB ∼ L2. Clearly, in the absence of further restrictions, it is
possible for one of these to hold without the other. So even if Samuelson and
Broome are right about the intuitive appeal of ethical actualism, this does not
establish that separability is rationally required.
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2 Jeffrey Desirability

Not all decision theories assume separability. In particular, the version of de-
cision theory developed by Richard Jeffrey [Jeffrey, 1983] makes do with much
weaker rationality conditions on preference. Indeed, although in an informal
sense it is true that Jeffrey’s theory prescribes choosing actions that have the
best expected consequences, the value function that rational agents maximise
on his theory is, strictly speaking, a desirability function but not an expected
utility function (the difference is explained below). The question that we now
want to explore is whether we can represent Allais’ and Diamond’s preferences
as maximising Jeffrey desirability, even though they cannot be represented as
expected utility maximising.3

In Jeffrey’s theory preferences are numerically represented by a desirability
function, Des, and a corresponding probability measure, Prob, both defined
on a Boolean algebra of propositions – i.e. a set of propositions closed under
negation, conjunction and disjunction – from which the impossible proposition
has been removed. If we take a proposition to be a set of possible worlds, we
can state his theory more formally as follows. Let W be the universal set of
possible worlds and Ω the set of subsets of W (i.e. the power set of W). Then
desirability and probability measures are defined over Ω, elements of which (the
propositions) we denote by non-italic uppercase letters (A, B, C, etc.). We can
thus think of each way in which proposition A can be true as a world that is
compatible with the truth of A. Assuming for simplicity that there are countably
many mutually exclusive worlds compatible with A, then the Jeffrey-desirability
of a proposition is given by:

Des(A) =
∑
wi∈W

Des({wi}).P rob({wi} | A)

One way to think of a desirability measure is as an extension of the util-
ity measure on consequences that expected utility theory postulates (i.e. on
possible worlds or maximally specific propositions) to the entire Boolean al-
gebra of prospects formed from them.4 For given such a utility measure on
consequences/worlds, we can define the desirability of any prospect as the con-
ditional expectation of utility, given the truth of the prospect. Note that if
for each wi such that Prob({wi} |A) > 0, we can find a proposition Si that is
probabilistically independent of A and such that wi is the consequence of A in
Si, then it will be the case that Prob({wi} |A) = Prob(Si) and the desirability
of A will be its unconditional expectation of utility relative to the probability
distribution over the Si. But this is a special case and in general desirabilities
may not take this form.

Our interest in Jeffrey’s theory lies mainly in the possibility that Allais
and Diamond’s preferences are desirability maximising, but there is a second
reason for favouring it over the expected utility theories of Savage and oth-

3The possibility of representing Allais’ preference as maximising desirability would prob-
ably not have impressed Jeffrey himself, who was satisfied with Savage’s view that Allais’
preference reveals some sort of ‘error’ of judgement ([Savage, 1954]: 102-103; [Jeffrey, 1982]:
722).

4Jeffrey’s theory does not however require that there be such maximally specific proposi-
tions or, to put it differently, that the Boolean algebra of prospects contains atoms. We work
with them for expositional purposes.
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ers. To apply Savage’s theory one must model the decision problem in a very
specific way. In particular, one must find states of the world that are prob-
abilistically independent of the acts amongst which one may choose and con-
sequences whose utilities are independent of the states of the world in which
they are realised. In effect, this latter requirement means that consequences
must be identified by propositions that are maximally specific about everything
that matters to the agent. Real agents are rarely able to formulate decision
problems in a manner which meets these requirements. But if they do not,
then there is no guarantee that by maximising expected utility relative to the
coarse-grained specification of the decision problem (i.e. relative to the ‘small-
world’ decision problem) then they do so relative to fully refined description of
it (i.e. relative to the ‘grand-world’ problem).5 In contrast, Jeffrey’s notion of
desirability is partition invariant in the sense that if a proposition A can be
expressed as the disjoint disjunction of both {B1,B2,B3...} and {C1,C2,C3...},
then

∑
Bi∈A Prob(Bi | A).Des(Bi) =

∑
Ci∈A Prob(Ci | A).Des(Ci).

6 It follows
that applying the rule of desirability maximisation will always lead to the same
recommendation, irrespective of how the decision problem is framed, while ex-
pected utility theory may recommend different courses of action depending on
how the decision problem is formulated.

In Jeffrey’s theory acts are just propositions that can be made true at will
and so the desirabilities of acts will partly depend on the conditional proba-
bilities of their consequences, given the performance of the acts. As a result,
separability can fail. For instance, consider two acts A and B with consequences
contingent on states S1 and S2, as displayed below:

S1 S2

A x z
B y z

Separability requires that A � B iff x � y. But if z is considered a more
desirable outcome than both x and y, and A makes S2 more likely than does B,
then A might be assigned a higher Jeffrey desirability than B even when x is
not preferred to y. So Jeffrey’s theory does not require separability.

Unfortunately, this does not completely solve our problem of making Allais’
and Diamond’s preferences consistent with decision theory. For although Jef-
frey’s theory does not imply separability, the theory as it is usually applied is
also inconsistent with Allais’ and Diamond’s preferences. Let us focus on the
Diamond paradox to see the problem. LB now represents the set of worlds where
Bob gets the kidney no matter what, L¬B the set of worlds where Ann gets the
kidney no matter what, and L the set of worlds where the toss of a fair coin
decides who gets the kidney. Then for Diamond’s preference to be compatible
with Jeffrey’s theory, it would seem that there has to be a function Des such
that:7

5See [Joyce, 1999], chapter 3.4 for a fuller discussion.
6See [Joyce, 1999], Theorem 4.1
7We assume that both outcomes, ANN and BOB, are desirabilistically independent of the

random events E and ¬E (e.g. coin comes up heads/tails) that determine the result of the
lottery.
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Des(ANN) < Des(ANN).P rob(ANN | L) +Des(BOB).P rob(BOB | L)

Des(BOB) < Des(ANN).P rob(ANN | L) +Des(BOB).P rob(BOB | L)

But again, a probability mixture of the desirabilities of ANN and BOB can
never exceed the desirability of both ANN and BOB.

What this shows is that there is more at play than just the failure of separa-
bility in the explanation of Allais’ and Diamond’s preferences. For the standard
representation of the two problems, and our application of Jeffrey’s theory to
them, implicitly builds in the aforementioned assumption of ethical actualism.
Without this assumption (but still assuming that the desirability of Ann or Bob
getting the kidney is independent of the random event E), Jeffrey’s theory just
says that:

Des(L) = Des(ANN ∧ L).P rob(ANN | L) +Des(BOB ∧ L).P rob(BOB | L)

and nothing requires that Des(ANN∧L) = Des(ANN) or Des(BOB∧L) =
Des(BOB).

It seems then that the way to accommodate the Allais’ and Diamond’s pref-
erences within Jeffrey’s framework is just to specify the consequences of actions
sufficiently broadly so as to make it intelligible that, for instance, Ann getting
the kidney in a fair lottery is a different consequence from her getting it as a
part of a process that made it certain she would receive it. More generally, the
notion of consequence should be broadened to take account of what could have
happened as well as what did happen. Just such a response to the two paradox
has been suggested by, for instance, John Broome [Broome, 1991], who argues
that if regret and fairness matter to an agent then that should be part of the
description of the outcomes of lotteries,8 and by Paul Weirich [Weirich, 1986],
who argues that the correct way to account for the risk attitudes displayed in
the Allais paradox is to allow that the risk involved in exercising an option
counts as one of its consequences.

Solutions of this kind will be unsatisfactory however if they involve intro-
ducing new primitive consequences in the representation of the decision prob-
lem, without explaining their relationship to the available actions. In particu-
lar, they must explain what it is about the form of the lottery L that makes
Des(ANN∧L) > Des(ANN). It is not, in our view, sufficient to say that the
first outcome is fair while the latter is not; what is needed, is an explanation of
why the first outcome is fair. Moreover, to avoid trivialising decision theory by
making it allow that any possible choice can be rational, we should require that
exercises of this kind, where new propositions (or consequences) are created to
make seemingly problematic preferences compatible with decision theory, ad-
here to some independently plausible principles (as Broome himself points out
[Broome, 1999]; see also discussion of this in [Stefánsson, 2014]).

In the context of Jeffrey’s framework, avoiding these objections requires a
specification of the propositional structure of lotteries and acts and the attitudes

8Broome makes his suggestion for resolving the problem within Savage’s framework but,
as he notes, this leads to other problems; most notably to a tension with what he calls the
rectangular field assumption. As Jeffrey’s theory makes no such assumption, the solution
looks more promising in his framework.
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that they support. We do so by widening the domain of Jeffrey’s theory to in-
clude counterfactual propositions and showing that the properties that generate
Allais’ and Diamond’s paradoxes, respectively regret and fairness, then emerge
as a relationship between factual and counterfactual propositions. Our solution
thus provides at least a partial explanation the preferences that generate these
paradoxes, by highlighting the effects counterfactuals have on the desirabilities
of the prospects in question.9 Moreover, our solution does not trivialise decision
theory, since the domain of Jeffrey’s original theory is extended in a principled
way (to be explained in next section) and the resulting theory requires that
people’s preferences between all propositions satisfy the so-called Bolker-Jeffrey
axioms (which we introduce in section 3.2).

This solution to the problems raised by Allais and Diamond is not an ad hoc,
we think, since decision theory should, independently of these problems, allow
for the value dependencies one often finds between actual and counterfactual
outcomes. And this solution has the advantage over the refinement solution
suggested by Broome, that whereas he solves each of the two problems under
discussion by introducing different properties to the description of the outcomes,
our solution solves both problems at once by introducing counterfactual con-
ditionals to the domain of Jeffrey’s decision theory. Hence, while the typical
refinement solution to the problems raised by Allais and Diamond treats the
two preferences as having nothing in common except violation of separability,
our solution makes explicit that these are two instances of a general type of
preference that causes trouble for EU theory; namely, counterfactual-dependent
preference.

Before introducing counterfactual conditionals to Jeffrey’s theory, let us first
briefly explain why introducing indicative conditionals to Jeffrey’s theory (as e.g.
done in [Bradley, 1998] and [Bradley, 2007]) will not solve the problem of repre-
senting Allais’ and Diamond’s preferences. An indicative conditional is generally
considered to be what Jonathan Bennett calls zero intolerant, “meaning that
such a conditional is useless to someone who is really sure that its antecedent
is false” ([Bennett, 2003]: 45). In other words, if ‘ 7→’ represents the indicative
conditional connective, then A 7→ B is informative for someone who thinks that
A might be true (where ‘might’ is understood epistemically, not merely logically
or metaphysically). But A 7→ B provides no information about a world where
one is certain that A is false. (Hence, it is ‘uselessness’ to someone who is cer-
tain that A is false.10) It is therefore plausible to assume, as Bradley does, that
Des(¬A∧ (A 7→ B)) = Des(¬A), since if A is believed to be false A 7→ B makes
no desirabilistic difference. Thus the conditionals that generate the paradoxes
under discussion cannot be indicative conditionals, since the problems they gen-
erate consist exactly in the fact that they have desirabilistic impact when their
antecedents are believed to be false.

What we need to do therefore is introduce counterfactual conditionals into

9The explanation is only partial since a full explanation would, in the case of the Diamond
paradox, give a philosophical account of why counterfactuals can have moral value and, in the
case of the Allais paradox, give a psychological account of why people care about what could
have been. But such a discussion would go beyond the topic of this paper.

10The fact that a conditional is zero-tolerant does not necessarily mean that its antecedent
is false. Hence, some want to call such conditionals subjunctive conditionals rather than
counterfactuals. That name is however not necessarily any better, since zero-tolerant condi-
tionals are not always expressed in the subjunctive mood. Hence, we will stick with the term
‘counterfactual’.
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Jeffrey’s theory. Jeffrey himself recognised the need to do so and tried to solve
the problem of providing an account of counterfactuals, but in his own view did
not succeed.

(If I had, you would have heard of it. There’s a counterfactual for
you.) In fact, the problem hasn’t been solved to this day. I expect
it’s unsolvable. ([Jeffrey, 1991]: 161)

Jeffrey was unduly pessimistic. Since he made this remark there has been
considerable progress in the understanding of counterfactuals, progress that we
now build on.

3 Counterfactuals

Our problem is to find a way of representing counterfactual propositions (coun-
terfactuals for short) in a way that enables us to exploit the resources of Jeffrey’s
decision theory to model Allais’ and Diamond’s preferences. To do so we extend
standard possible world modelling of propositions in a natural way by introduc-
ing the notion of a possible counteractual world under a supposition. A possible
world is a way things might be or might have been. A possible counteractual
world under the supposition that some A is true, on the other hand, is just a
way things might be, or might have been, were A true.

If world wA could be the case under the supposition that A, then we will
say that wA is a possible counteractual A-world. If A is false, wA will be said to
be strictly counterfactual. (Any counteractual A-world is strictly counterfactual
relative to any possible world in which A is false for instance. But counteractual
worlds are not always strictly counterfactual: If A is true then wA may not only
be a possible way things are under that supposition that A, but the way things
actually are.)

Our basic thesis is: Possible counteractual worlds make counterfactual claims
true in the same way that possible actual worlds make factual claims true. For
instance, if wA is a counteractual A-world at which it is true that B, then wA
makes it true that if A were the case then B would be. Thus the counteractual
world in which Obama is born in Kenya and goes to school in Nairobi makes
it true that had Obama been born in Kenya he would have gone to school in
Nairobi, while the counteractual world in which he is born in Kenya but goes
to school in Mombasa, makes it false.

To illustrate this thesis, consider a simple model based on the set W =
{w1, w2, w3, w4, w5} of just five possible worlds (that are the primitives of the
model) and the corresponding set Ω of its subsets, including the events A
= {w1, w2, w3}, Ā = {w4, w5}, B = {w1, w2, w4} and C = {w1, w3, w5} which are
respectively the sets of worlds at which it is true that A, ¬A, B and C (through-
out, we use Ā to denote W - A). Relative to the set of possible worlds W, a
supposition induces a set of possible counteractual worlds. The supposition that
A, for instance, induces the set of counteractual A-worlds, WA = {w1, w2, w3},
and the corresponding set of sets of counteractual worlds, ΩA, containing condi-
tional events BA = {wi ∈ WA : wi ∈ B} = {w1, w2}, CA = {w1, w3} and so on.
The supposition that A is false induces a different set of counteractual worlds
– namely WĀ = {w4, w5} – and a corresponding set of conditional events ΩĀ.
The supposition that B yet another. And so on. Note that we have adopted
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the convention of denoting sets of worlds with non-italicised letters, with A de-
noting the set of worlds at which it is true that A and BA denoting the set of
A-worlds at which it is true that B. Also note that the same world can represent
a potentially actual world and a counteractual world under a supposition: w1,
for instance, can represent the actual world (if A, B and C are all true) but also
the world that would be actual if, say, A were true.

For simplicity, we restrict attention to a single supposition for the moment,
namely the supposition that A. The set of elementary possibilities is then given
by a subset z of the cross-product of W and WA, which can be presented in
tabular form as follows.

Supposed A-worlds
Worlds w1 w2 w3

w1 〈w1, w1〉 〈w1, w2〉 〈w1, w3〉
w2 〈w2, w1〉 〈w2, w2〉 〈w2, w3〉
w3 〈w3, w1〉 〈w3, w2〉 〈w3, w3〉
w4 〈w4, w1〉 〈w4, w2〉 〈w4, w3〉
w5 〈w5, w1〉 〈w5, w2〉 〈w5, w3〉

Table 1: Possibility Space

Each ordered pair ωij = 〈wi, wj〉 appearing in the cells of the table repre-
sents an elementary possibility: that wi is the actual world and that wj is the
counteractual A-world. Sets of such possibilities will serve for us as propositions.
Factual propositions are given by unions of rows of the table. The proposition
that A, for instance, is given by the first, second and third rows of the table,
while that of B by the first, second and fourth. Conditional propositions, on
the other hand, are given by unions of columns of the table. The proposition
that if A then B, for instance, is given by the first and second columns of the
table, while the proposition that if A then C is given by the first and third
columns. Conjunctions, disjunctions and negations of propositions (conditional
or otherwise) are given by their intersection, union and complements.

Table 1 implicitly assumes that every element of W × WA is a possible
combination of facts and counterfacts, but this assumption is easy to dispense
with. To generate a space z of elementary possibilities we make use of a selection
function on worlds which determines which counteractual worlds are ‘accessible’
from them. Formally, a selection function f is a mapping from W×Ω to Ω
satisfying, for all w ∈W and A ⊆ W:

1. f(w, A) ⊆ A

2. f(w, A) = ∅⇔ A = ∅

3. If w ∈ A then w ∈ f(w, A)

The first condition simply states that counteractual worlds under the sup-
position that A must be worlds at which it is true that A and the second that
the set of counteractual worlds is empty only if the supposition is contradictory.
The third condition requires that any world at which it is true that A must be
a possible counteractual A-world. This condition is termed Weak Centering, in
contrast to its stronger ‘cousin’ that is typically assumed in the semantics of
counterfactuals, namely:
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Centering: If w ∈ A then f(w, A) = {w}

Centering expresses a particular conception of the relation between factual
and counterfactual possibility, according to which what is actually true deter-
mines what might have been true under any supposition consistent with the
actual truth. This is surely right for epistemic possibility: If an agent takes
the actual world to be w, and knows that A is true at w, then it should not be
epistemically possible according to her that any world other than w be the case
on the supposition that A. Epistemic possibility would seem to be what is at
issue when we reason evidentially using indicative conditionals. On the other
hand it is much more controversial whether Centering governs causal possibility
and hence whether it is appropriate to counterfactual reasoning. Both Lewis
and Stalnaker assume that it is, perhaps because they take counterfactual and
evidential reasoning to coincide when what is being supposed is in fact true.
But in the absence of a deterministic relationship between two events it does
not seem obviously right to regard the fact of their co-occurrence to imply that
the occurrence of one causally necessitated the other. So it is not clear that the
assumption is appropriate for counterfactuals. In any case, we do not need to
settle the issue here and will for the sake of generality not assume Centering.11

We now have all the ingredients in place to state our account of counterfac-
tual possibility. As before let W be a set of possible worlds, Ω be a Boolean
algebra of subsets of W, and S = {Si} ⊆ Ω be a set of n suppositions. The
elementary possibilities on this account are n-tuples of worlds 〈w,w1, ..., wn〉,
with w ∈ W and each wi ∈ Si. Propositions are sets of such n-tuples of worlds.
More formally, a Suppositional Algebra is a structure 〈W,Ω,S, f,z,Γ〉 with
f a selection function from the set of worlds W and set of suppositions S to sets
of worlds, that determines a set z of elementary n-tuples of worlds by:

z := {ω = 〈w,w1, ..., wn〉 : w ∈W, wi ∈ f(w,Si)}

and Γ a Boolean algebra of subsets of z (the propositions).
For any Si ∈ S, let Ωi be the power set of Si. We adopt the convention of

denoting subsets of Ωi by non-italicised capitals subscripted by i. Given X ∈
Ω and Yi ∈ Ωi, let 〈X, Y1, ..., Yn〉 be the element of Γ that is the proposition
that X is the case, that Y1 is or would be the case, on the supposition that S1

is or was, ..., and that Yn is or would be, on the supposition that Sn. Each such
ordered n-tuple is thus a coarse-grained but complex proposition concerning
both what is and what could be. When there is no risk of ambiguity we drop
‘empty’ notation and write X for 〈X, S1, ..., Sn〉, the proposition that X is the
case; Yi for 〈W, S1, ..., Yi, ..., Sn〉, the proposition that if Si is or were the
case then Yi is or would be; (X, Yi) for 〈X, S1, ..., Yi, ..., Sn〉; and so on. It
follows that (X, Yi) = X ∩ Yi, 〈Y1, ..., Yn〉 = ∩(Yi) and so on. A special
convention for the propositions Si serving as suppositions: We will write (Si)i

for the proposition that if Si is or were the case then Si is or would be. Note
that (Si)i = z, since for all w ∈W, f(w,Si) ∈Si.

11However, the simple version of the multidimensional model that we will work with entails
the so-called Conditional Excluded Middle (CEM) – according to which it is either the case
that if A were true then B would be true, or if A were true then B would be false – which
together with Weak Centring entails Centring. A more general version of this model does not
entail CEM.
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Propositions of the form 〈Y1, ..., Yn〉, which specify what will or would
be the case under each supposition, are of particular interest to our discussion
in virtue of serving as representations of the actions over which agents have
preferences. Consider, for instance, the case described by Diamond which was
previously represented in tabular form by:

E ¬E
L ANN BOB
LA ANN ANN
LB BOB BOB

In our framework, ANN , BOB and E, as well as any Boolean compound
of them, would make up the set of factual propositions, with E and ¬E serving
as the suppositions of interest. The full set of propositions would then be given
by the cross product of the set of factual propositions and {E,¬E}, and any
Boolean compounds of them. This would contain such conditional propositions
as ANNE , the proposition that Ann would get the kidney if E were the case, and
BOBĒ , the proposition that Bob would get the kidney if E were not the case.
The lottery L would be identified by the complex proposition (ANNE , BOBĒ);
a proposition that is a conjunction of the conditional propositions ANNE and
BOBĒ , i.e. L = ANNE ∩ BOBĒ . Similarly for the degenerate lotteries LA =
(ANNE , ANNĒ) and LB = (BOBE , BOBĒ). Our task now is to say what
attitudes one can rationally take to such propositions.

3.1 Probability and Desirability of Counterfactuals

Beliefs about counterfactual possibilities play an important role in our reason-
ing about what we should do, for they are the means by which we consider
the consequences of our actions. So too do our evaluative attitudes to counter-
factual possibilities: for instance, through the regret we anticipate if we forego
opportunities that would have led to desirable outcomes. These attitudes to
the counterfacts are at least partially independent of our attitudes to the facts.
One might be pretty sure that the match is to be played tomorrow, for instance,
but quite unsure as to whether it would be played were it to rain. Equally one
could be quite sure that the match will not be played were it to rain, but quite
unsure as to whether it will rain or not. Similarly, our assessment of how de-
sirable something is can differ from our assessment of how desirable it is on the
supposition of some condition or other. Even if one prefers to be served a cold
beer rather than a hot chocolate tonight, the preference could be reversed under
the supposition that the evening will be very cold.

An agent’s combined uncertainty about what is the case and what would
be so under various possible suppositions will be captured here by probability
mass function, p, on the set z of ordered n-tuples of worlds that constitute the
elementary possibilities in our model. The mass function p measures the joint
probabilities of actuality and counteractuality under the various suppositions:
p(〈w,w1, ..., wn〉) is the probability that w is the actual world, that w1 is/would
be the counteractual world on the supposition that S1, ..., and that wn is/would
be the counteractual world on the supposition that Sn. Similarly we introduce
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by a utility function, u, on n-tuples of worlds to measure the agent’s evalua-
tions of different combinations of factuality and couterfactuality. For example,
u(〈w,w1, ..., wn〉) will measure the desirability that w is the actual world, that
w1 is/would be the counteractual world on the supposition that S1, ..., and that
wn is/would be the counteractual world on the supposition that Sn. For conve-
nience, we assume (like Jeffrey does [Jeffrey, 1983]: 99) that u is zero-normalised
in the sense that:12 ∑

ω∈z
u(ω).p(ω) = 0

The mass function p and utility function u induce a corresponding pair of
measures, Prob and Des, on the set Γ of all propositions by means of the follow-
ing definitions. For all α ∈ Γ (where α could be either factual or conditional):

Prob(α) :=
∑
ω∈α

p(ω)

Des(α) :=
∑
ω∈α

u(ω).p(ω)

Prob(α)
(3)

Within our multidimensional possible world model, Prob and Des respec-
tively encode the agent’s state of belief and desire regarding both the facts and
the counterfacts, with Prob(〈X,Y1,...,Yn〉) measuring the joint probability that
X is the case and that Yi is or would be the case if Si, and Des(〈X,Y1,...,Yn〉)
measuring the joint desirability that X is the case and that Yi is or would be
the case if Si.

It is evident that Prob satisfies the standard axioms of probability. In virtue
of the zero-normalisation of u it follows immediately from equation 3 that Des
is normatilised with respect to the tautology, i.e. that Des(z) = 0. Finally, it
follows from equation 3 that Des respects Jeffrey’s axiom of desirability, namely:

Desirability: If α ∩ β = ∅, then:

Des(α ∪ β) =
Des(α).P rob(α) +Des(β).P rob(β)

Prob(α ∪ β)

To see this, let α and β be two disjoint propositions. Then:

Des(α ∪ β) =
∑

ω∈α∨β

u(ω).p(ω)

Prob(α ∪ β)

=
∑
ω∈α

u(ω).p(ω)

Prob(α ∪ β)
+

∑
ω∈β

u(ω).p(ω)

Prob(α ∪ β)

=
Des(α).P rob(α) +Des(β).P rob(β)

Prob(α ∪ β)

We conclude that our possible world model allows for an extension of Jeffrey’s
decision theory to counterfactual propositions.

12Nothing of any substance depends on this zero-normalisation which is introduced for
mathematical convenience alone.
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3.2 Representations

We are now in a position to address is the question of the conditions under which
an agent’s preferences can be represented by a pair of functions, Prob and Des,
as defined above. In other words, what conditions must her preferences satisfy if
they are to be representable in terms of desirability maximisation? In fact most
of the work needed to answer this question has already been achieved by showing
how to construct an Boolean algebra of counterfactual propositions (indeed, the
difficulty in doing so was the main stumbling block in previous attempts to
extend Jeffrey’s theory). For given this, we can simply help ourselves to the
representation theorem for Jeffrey’s decision theory proved by Ethan Bolker
[Bolker, 1966] to establish the existence of such a representation.

Bolker imposes two main conditions on preferences in addition to the stan-
dard requirement that they be continuous, complete and transitive. To state
them in a form appropriate to our discussion, let % be a complete, transitive
and continuous relation on a Boolean algebra of propositions (construed as sets
of n-tuples of worlds) and let ≈ and � be the corresponding indifference and
strict preference relations on propositions. Then Bolker postulates:

Averaging: If α ∩ β = ∅, then α % (α ∪ β) % β ⇔ α % β

Impartiality: Suppose α ≈ β and α∩ β = ∅, and that for some γ 6≈ α, β such
that and α ∩ γ = β ∩ γ = ∅, it is the case that α ∪ γ ≈ β ∪ γ. Then for
all such γ, α ∪ γ ≈ β ∪ γ.

The axiom of Averaging is the main rationality constraint on preference
required for desirability maximisation and was implicitly assumed in our con-
struction of a value function on counterfactual propositions. The essential idea
that motivates it is that no proposition can be better (worse) than its best
(worst) realisation. The proposition that α ∪ β is consistent with it being the
case that α and with it being the case that β, but not both if α and β are mu-
tually exclusive. Suppose α is preferred to β. Then at worst it being the case
that α ∪ β means that β and, at best, that α. So the desirability one attaches
to α ∪ β should lie between that of α and β.

Impartiality, on the other hand, is a rationality constraint on the relation
between preference and belief. It says that we can test for the equiprobability
of any two co-ranked propositions α and β by taking a third proposition γ that
is inconsistent with both and checking to see whether α∪γ and β∪γ are ranked
together. For suppose that the probability of α was in fact greater than that of
β. Then it would be less likely that γ given that α ∪ γ than it would be that
γ given that β ∪ γ. And so α ∪ γ would be either a less or a more attractive
proposition than β ∪ γ depending on whether γ � α, β or α, β � γ. But if
the probabilites of α and β are the same then it should be the case for all γ
inconsistent with both α and β, that α ∪ γ ≈ β ∪ γ.

Let us say that a pair of desirability and probability functions, Des and
Prob, jointly represent a preference relation % just in case for all α and β in
the domain of %:

α % β ⇔ Des(α) ≥ Des(β)

In this case we say that the pair (Prob,Des) constitute a Jeffrey representation
of the preference relation %. What Bolker proved was that, given some tech-
nical conditions on the set of propositions (specifically that they constitute a
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complete, atomless Boolean algebra) and on the preference relation % (specifi-
cally that it generates a weak and continuous order on the set of propositions),
satisfaction of the axioms of Averaging and Impartiality is necessary and suffi-
cient for the preference relation to be desirability maximising. Since the sets of
n-tuples of worlds forms a Boolean algebra of propositions, his theorem applies
directly to our framework. More formally:

Theorem 1 [Bolker, 1966] Let 〈Γ,⊆〉 be a complete, atomless Boolean algebra
of sets of n-tuples of worlds (propositions). Let % be a complete, transitive and
continuous relation on Γ − {∅}. Then there exists a pair of desirability and
probability functions, Des and Prob, respectively on Γ− {∅} and Γ, that are a
Jeffrey representation of % iff % satisfies Averaging and Impartiality.

4 Counterfactual-Dependent Preferences

Let us then return to the task of representing Allais’ and Diamond’s preferences.
Recall that these preferences cannot be represented as maximising the value of
an EU function because the EU equation implies that the value of an outcome
in state Si is desirabilistically independent of any outcome in state Sj that
is incompatible with Si; which in turn implies that the value of what actually
occurs never depends on what merely could have been. (In next section we define
EU functions for Suppositional Algebras.) But for people with Allais’ preference,
the desirability of receiving nothing is not independent of whether or not one
could have chosen a risk-free alternative. Similarly, for people with preferences
like Diamond’s, the desirability of either patient not receiving the kidney is not
independent of what would have occurred had some random event turned out
differently. So both Allais’ and Diamond’s preferences, on this interpretation,
are dependent on the truth of counterfactuals. Moreover, the part that causes
the violation of expected utility theory can in both cases be formalised as a
relationship between a proposition and a set of worlds that are strictly counter-
actual.

To make the above claim more precise let’s look at Diamond’s preference
first and suppose that Diamond wants to use a coin toss to decide who receives
the kidney. Let H be the set of worlds where the coin comes heads up and T
the set of worlds where the coin comes tails up (so T ≡ H̄). Let B be the set
of worlds where Bob receives the kidney and A the set of worlds where Ann
receives the kidney (so A ≡ B̄ given the assumption that exactly one of them
receives the kidney). We have thus made two simplifying assumptions already.
Firstly, it might seem more natural to let H (T) be the set of worlds where
the coin comes heads (tails) up if tossed. But nothing is lost, we believe, by
this simplification. Secondly, we have limited our attention to situations where
either Ann or Bob receives the kidney. But what is distinctive about Diamond’s
preference is what it has to say about situations where a number of individuals
have an equal claim on an indivisible good that some but not all of them get.
(Any kind of welfarism for instance condemns a situation where none of the
needing patients receive the kidney.) Hence, since we want to focus on what is
special about this preference, it is justifiable to limit our attention to situations
where one of Anna and Bob receives the kidney.

The part of Diamond’s preference that leads to violation of expected utility
theory can then be formulated thus:
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(H ∩ B,AT) � (H ∩ B,BT) (4)

In other words, Diamond prefers the proposition that the coin comes heads
up and Bob receives the kidney but Ann would have gotten it had tails come
up, to the proposition that the coin comes heads up and Bob receives the kidney
and would also have gotten it had the coin come tails up.

Let us then turn to Allais’ preference and let R represent the set of worlds
where Allais chooses the risky option (which will be L1 or L3 depending on
the choice situation) and G the set of worlds where Allais is guaranteed to win
something. Unlike when representing Diamond’s preference, we need a third
(basic) set of worlds to represent Allais’ preference, since the worlds where
Allais is not guaranteed to win anything are not necessarily the same as the
worlds where Allais wins nothing. But it is relative to a situation where Allais
has won nothing that the fact that he could have chosen a risk-free alternative
makes a difference. Let N denote the set of worlds where Allais wins nothing.
Then the preference that causes Allais to violate expected utility theory can be
represented thus:

(R ∩ Ḡ ∩N, ḠR̄) � (R ∩ Ḡ ∩N,GR̄) (5)

In other words, according to Allais, winning nothing after having made a
risky choice is made worse when it is true that had he chosen differently he
would definitely have won something.

4.1 Preference Actualism and Desirability Maximisation

We have seen that both Diamond’s and Allais’ preferences exhibit a non-trivial
sensitivity to counterfactual states of affairs that is manifested in the violation
of a condition that we will call Preference Actualism: the requirement that
preferences for propositions be independent of the strict counterfacts. Formally:

Preference Actualism: For all sets of worlds A, B, C such that C ∩ Ā = ∅:

(C,BĀ) ∼ (C, B̄Ā)

Preference Actualism is of course just a version of the doctrine of ethical
actualism that was informally introduced earlier. As we mentioned then, and
will explain more precisely in section 5, it is not sufficient that preferences are
separable for them to satisfy Preference Actualism. An agent may regard the
desirability of the counterfacts to be independent without thinking that the
counterfacts do not matter. In the Diamond example such an agent might have
preferences LB � L � LA, in accordance with separability, but contrary to
Preference Actualism not be indifferent between L and LA, conditional on E
being the case, perhaps because she values the two relevant strict counterfacts
– that Bob or Ann would have got it if E had not been the case – differently
but positively.

In the appendix, we prove (as Theorem 15) that preferences that violate
Preference Actualism cannot be represented as maximising expected utility (as
defined in next section). Since a preference might violate Preference Actualism
without violating separability, this result does not simply follow from the fact
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that separability is a necessary condition for expected utility maximisation. The
independence of these two assumptions has not been recognised in the decision
theoretic literature, perhaps because, together with certain assumptions that are
either implicitly or explicitly part of standard formulations of expected utility
theory and which do seem to be satisfied in Allais’ and Diamond’s examples (in
particular, Centering and an assumption about the probabilistic independence
of counterfacts under disjoint suppositions), Preference Actualism does imply
separability. Indeed, given these assumptions, Allais’ and Diamond’s violation
of Preference Actualism can be seen as explaining why they violate separability.

While expected utility maximisation requires adherence to ethical actualism,
it is perfectly possible for preferences to satisfy Bolker’s axioms but violate Pref-
erence Actualism. To show this we work again with our simple model based on
the set W = {w1, w2, w3, w4, w5} of five possible worlds and the corresponding
set Ω of its subsets, including the events A = {w1, w2, w3}, Ā = {w4, w5}, B
= {w1, w2, w4} and B̄ = {w3, w5}. For present purposes we only need to focus on
one supposition, namely the supposition that A is false. Then the set of elemen-
tary possibilities is given byW = {w1, w2, w3, w4, w5}×{w4, w5} and, in partic-
ular, (A∩B, B̄Ā) = {〈w1, w5〉, 〈w2, w5〉} and (A∩B, BĀ) = {〈w1, w4〉, 〈w2, w4〉}.

To induce the preferences required, we define a pair of probability and utility
mass functions, p and u, on this set of world pairs, by setting p(〈w4, w5〉) =
p(〈w5, w4〉) = 0 and assigning the values to remaining possibilities displayed in
Table 2.

World Pairs Probability Utility
〈w1, w4〉 0.125 −1
〈w1, w5〉 0.125 1
〈w2, w4〉 0.125 −1
〈w2, w5〉 0.125 1
〈w3, w4〉 0.125 −1
〈w3, w5〉 0.125 1
〈w4, w4〉 0.125 0
〈w5, w5〉 0.125 0

Table 2: Probability-Utility Values

Let Prob and Des be pair of probability and desirability functions on ℘(W)
constructed from p and u in the manner previously outlined by application of
the standard axioms of probability and desirability. It is easy to see that the
preferences induced by Des will violate Preference Actualism. In particular
they will be such that:

(A ∩ B, B̄Ā) � (A ∩ B,BĀ) (6)

(A ∩ B̄,BĀ) � (A ∩ B, B̄Ā) (7)

But by construction they satisfy the standard preference axioms of Jeffrey’s
decision theory. So it follows that preferences violating Preference Actualism,
although not representable as expected utility maximising, may nonetheless be
desirability maximising.
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4.2 Modelling Allais’ and Diamond’s preferences

Strictly speaking, equation 4 does not quite represent Diamond’s preference in
full. Recall that Diamond’s preference consists in preferring a lottery (say a
coin toss) that results in either Bob or Ann receiving a kidney (alternative L)
to giving the kidney to Ann without using a fair lottery (alternative LA) and
also to giving the kidney to Bob without using a fair lottery (alternative LB).
This is how Diamond might evaluate the ‘constant’ alternatives:

Des(LA) = Des(H ∩A,AT)

Des(LB) = Des(H ∩ B,BT)

But since the lottery can turn out in more than one way, Diamond must, if
he is to satisfy Jeffrey’s equation, evaluate its desirability as a weighted sum of
the ways in which it might turn out, for instance:

Des(L) = 0.5Des(H ∩ B,AT) + 0.5Des(T ∩A,BH)

assuming that he believes the coin to have an equal chance of coming up heads
as tails when it is tossed.

There is thus a Jeffrey-desirability function representing Diamond’s prefer-
ence as long as there is a function Des that simultaneously satisfies:

Des(H ∩ B,BT) < 0.5Des(H ∩ B,AT) + 0.5Des(T ∩A,BH)

Des(H ∩A,AT) < 0.5Des(H ∩ B,AT) + 0.5Des(T ∩A,BH)

Since what motivates Diamond’s preference is his concern for fairness, he is
(let us suppose) indifferent between Bob and Ann actually receiving the kidney.
Moreover, the value generated by having used the lottery, or the disvalue gen-
erated by not having used the lottery, is according to Diamond independent of
whether Ann or Bob actually receives the kidney. Hence, for Diamond:

0.5Des(H ∩ B,AT) + 0.5Des(T ∩A,BH) = Des(H ∩ B,AT)

= Des(T ∩A,BH)

Des(H ∩ B,BT) = Des(H ∩A,AT)

Therefore, to be able to represent Diamond’s preference as maximising Jeffrey-
desirability, all that is required is that there is a Jeffrey-desirability function such
that:

Des(H ∩ B,BT) < Des(H ∩ B,AT)

That is, all we need is that there be a Jeffrey function that can represent a
preference that violates Preference Actualism. In last subsection we saw that
such a function exists.

The same can be said for Allais’ preference, namely that it is only partly
captured by equation 5. But again, it is not hard to show that in Allais’ case
all that needs to be established is that there is a desirability function such
that Des(R∩Ḡ∩N, GR̄) < Des(R∩Ḡ∩N, ḠR̄). And this follows from what we
established in last subsection.
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5 Ethical Actualism and Separability

We have argued that there are rational patterns of preference that are desir-
ability maximising but not expected utility maximising. In this last section we
turn to the question of what additional assumptions are needed for an agent’s
preferences to be representable, not just by a desirability function, but by a
desirability function that takes the form of an expected utility. Our ambitions
are three-fold: To establish the formal relationships between various salient
properties of value functions, to exhibit the conditions that are necessary for
expected utility maximisation, and to argue that these additional conditions
are too strong to apply generally and hence that rationality does not require
expected utility maximisation.

Let us begin by defining more carefully what it means for a desirability func-
tion to be an expected utility. Recall that acts are modelled in our framework
by propositions of the form 〈Y1, ..., Yn〉, where each Yi is the consequence of
choosing the action in question in the event that Si. An expected utility rep-
resentation of a preference relation is characterised by a particular form that
the desirability of such propositions take, namely that their desirabilities are
probability weighted averages of the desirabilities of the Yi. More exactly:

Expected Utility: A desirability functionDes defined on a suppositional alge-
bra of propositions is an expected utility on this algebra iff for any partition
of suppositions S = {Si}:

Des(〈Y1,...,Yn〉) =

n∑
i=1

Des(Yi|Si).P rob(Si)

Hereafter, EU theory should be understood as the claim that rational pref-
erences are representable by a desirability function that is an expected utility
as defined here. It should be noted however that this definition of an expected
utility is somewhat more general than the usual one in that it allows that the
desirabilities of consequences be dependent on the states of the world in which
they are realised. In the event that state-independence holds, it follows that
Des(Yi|Si) = Des(Yi). Then if we let act f be the proposition 〈Y1, ..., Yn〉
and f(Si) = Yi, we obtain the familiar Savage formulation of expected utility:
Des(f) =

∑n
i=1Des(f(Si)).P rob(Si).

Although state-dependence is natural in Jeffrey’s framework, only some ver-
sions of expected utility theory allow for it (for example [Karni, 1985]). Ac-
commodating state-dependence has the important, and beneficial, implication
that the expected utilities of actions with coarse-grained consequences can be
computed, so that the usual requirement of (e.g. Savage’s) EU theory that conse-
quences be maximally specific can be dispensed with. But another problematic
requirement of the theory, that the states of the world be probabilistically in-
dependent of the acts, cannot. For as we will show in section 5.3, such indepen-
dence is implied by the EU theory formulated here. But first we tackle our main
objective, namely showing that a preference relation that can be represented as
maximising desirability can also be represented as maximising expected utility
just in case it satisfies both a separability condition and a condition of ethical
actualism.
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5.1 Independence and Additive Separability

We have noted at various points that expected utility theory implies that the
agent’s preferences are separable or that they are representable by an additively
separable utility function. Our next task is to make precise what this require-
ment amounts to in the framework in which we are working. Intuitively two
sets of propositions are separable from the point of view of some agent if their
preferences for the members of one of the sets are independent of the truth or
falsity of the members of the other set. If we consider not the preferences but
the desirabilities that represent them, this translates into the requirement that
the desirability of any member of one set is independent of the truth of any
proposition in the other.

In this context, the sets of propositions that are relevant are the sets of
counterfactuals under disjoint suppositions. And the form of separability that
is required by expected utility theory can be rendered as the principle that the
desirability that any Yi would be the case if Si were true is independent of
what would be the case if any supposition inconsistent with Si were true. More
formally, given a set of disjoint suppositions {Si} and a desirability Des, it must
be the case that for any Yi∗ :

Des(Yi∗ |
⋂

i6=i∗
Yi) = Des(W, Yi∗)

Then it follows from the definition of conditional desirability13 that:

Des(〈Y1,...,Yn〉) = Des(Y1 | Y2,...,Yn) +Des(Y2,...,Yn)

= Des(Y1) +Des(Y2 | Y3,...,Yn) +Des(Y3,...,Yn)

= Des(Y1) +Des(Y2) + ...

=

n∑
i=1

Des(Yi)

When a numerical representation of preference takes this form then it is said
to be additive or additively separable. So we can conclude that a desirability
measure is additively separable over the Si iff the counterfacts under any sup-
position are desirabilistically independent of those under any other supposition
disjoint to it.

In the light of this we can state as follows the separability condition required
for expected utility:

Counterfact Separability: If {Si}ni=1 is a set of n disjoint suppositions, then:

Des(〈Y1,...,Yn〉) =

n∑
i=1

Des(Yi)

Just how strong a condition this is can be brought out by noting that if a
desirability function is additively separable then the corresponding probability
function is multiplicative, i.e. for any Yi 6≈ W:

13See the appendix for a statement of its definition.
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Counterfact Independence: If {Si}ni=1 is a set of n disjoint suppositions,
then:

Prob(〈Y1,...,Yn〉) =

n∏
i=1

Prob(Yi)

The claim that Counterfact Separability implies Counterfact Independence
is proven in the appendix as Theorem 9. But it can be intuitively explained by
the fact that the counterfacts cannot be desirabilistically independent of each
other unless knowing that one of the counterfacts holds is irrelevant to how likely
the other counterfacts are to be true. Note that this implication still holds even
if Counterfact Separability is restricted to just a particular class of propositions,
such as those that are maximally specific with regard to all that the agent cares
about.

Counterfact Independence is not a plausible candidate for a general ratio-
nality constraint on belief and it is easy enough ot find counter-examples to
the claim that it is. Suppose I know that a prize is contained in one and only
one of two boxes. I am about to pick one of the boxes but before opening it I
am told that were I to open the other box I would win the prize. I can infer
immediately that if I open the box I intended then I will not win the prize. So
the counterfacts under the supposition that I open one box are not independent
of those under the supposition that I open the other, in violation of Counter-
fact Independence. The fact that expected utility theory requires Counterfact
Independence (as we shall shortly show) therefore suggests that EU theory is
not a correct theory of rationality.

Let’s conclude by introducing another independence condition on belief that
will turn out to be important in our discussion of expected utility theory, namely
the requirement that the facts be probabilisically independent from the strict
counterfacts. More precisely:

Fact-Counterfact Independence: If X ∩ Si = ∅, then:

Prob(X,Yi) = Prob(X).P rob(Yi)

The two independence conditions are closely related, but not equivalent.
In the presence of Centering, Fact-Counterfact Independence does indeed imply
Counterfact Independence, but the latter only implies the former in the presence
of a further condition, namely:

Supposition Independence: Prob(Si,Yi) = Prob(Si).P rob(Yi)

Supposition Independence says that the probability that Yi is or would be
the case on the supposition that Si is independent of whether Si is true or not.
It is a much more compelling than the other two independence conditions and
arguably the characteristic property of evidential supposition. In this context,
however, its main significance lies in the following claim, which we prove in the
appendix as Theorem 7.

Probability Equivalence Theorem: Assume Centering. Then Fact-Counterfact
Independence is equivalent to the conjunction of Supposition Indepen-
dence and Counterfact Independence.
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We will show in the section after the next that Fact-Counterfact Indepen-
dence is also a consequence of EU theory. But the principle is implausibly strong
as a rationality constraint. Suppose again that I know that a prize is contained
in one and only one of two boxes. Then if pick one of them and discover that
there is no prize in it, I can be sure that if I had picked the other box then I
would have got the prize. So what is the case, namely that the prize is not in
the box I picked, determines what would have been case had I picked the other
one.

It seems clear then that counterfactual reasoning does not typically satisfy
Fact-Counterfact Independence; nor does rationality require that it be satis-
fied. In fact, certain theories of rational decision-making assume that rational
agents violate it. In game theory with imperfect information, for instance, which
concerns rational strategic decision-making for agents who are uncertain about
what moves other ‘players’ have already made, it is standardly assumed that a
rational strategy for figuring out whether a player P has made a particular move
M, is to ask oneself what were to happen if P did not make that move. If it
turns out that not making move M would lead to a bad outcome for P, then that
might reasonably lead one to increase one’s credence in the proposition that P
has made move M. Nonetheless, as we shall see, Fact-Counterfact Independence
is implied by EU theory as we reconstruct it within a proposition framework
(but not by Jeffrey’s weaker theory). We take it that a good theory of practical
rationality should, if possible, avoid such implausible epistemic implications.
Moreover, it seems particularly problematic if a theory of rational individual
decision-making contradicts an assumption that is standardly made in the the-
ory of rational strategic decision-making. Hence, this result casts doubt on the
claim that expected utility theory is our best theory of practical rationality.

5.2 Ethical Actualism

An additive desirability function is not yet an expected utility. An expected
utility is an additive desirability that satisfies a version of a principle common
to many decision theories and that we have termed ethical actualism. The basic
intuition behind this principle is that only the actual world matters, so that the
desirability of combinations of facts and counterfacts should depend only on the
desirability of the facts. In this section we consider several formulations of this
principle and clarify its relationship to separability.

One way of expressing ethical actualism more formally is as follows:

World Actualism: u(〈w,w1, ..., wn〉) = u(w)

World Actualism says that the desirability that w is the actual world and
that the wi worlds would be the case if the Ai were, depends only on the
desirability of w. In other words, once it has been established what world is the
actual one, then it should be a matter of indifference what the counteractual
worlds are. The applicability of World Actualism rests on the possibility of
giving a complete description of everything that matters. If we were able to do
so, then any way in which the counterfacts mattered to us in the actual world
could be registered in the description we give of that world. It is not that the
counterfacts themselves must be written into the descriptions of worlds – this
would lead to contradiction when the counterfacts specified in the description
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of a world differed from those in counteractual worlds – but that any way in
which these counterfacts bear on our evaluation of the facts must be specified.
For instance, suppose the desirability of dining at home is sensitive to how good
a meal one would have had, had one dined out at the local restaurant, because
the fact that one would have had a better meal at the restaurant causes one
to regret eating at home and the fact that one would have had a worse meal
makes one appreciate the home cooked meal all the more. Then these facts –
the regret or the appreciation one experiences in the light of the counterfacts –
must be built into the description of the actual world if World Actualism is to
obtain.

The problem with the condition of World Actualism is therefore that it
might hold for one specification of the possible worlds, but not for a model
in which they are specified more coarsely. So we should not think of it as
condition that applies to every model of counterfactual possibility, but rather
as a methodological principle: one which requires contingencies to be sufficiently
finely individuated for World Actualism to hold within the model. This principle
is one that many decision theorists seem to endorse. For instance, Broome
[Broome, 1991] recommends just such a strategy of fine individuation as a way
of avoiding Allais’ and Diamond’s putative counterexamples to the separability
of rational preference. In a nutshell his claim is that if there is some property of
the outcomes of a decision that makes it rational to value an outcome differently
depending on whether it has the property or not, then the outcomes should be
individuated in accordance with that property.

Contrary to what appears to be common view, however, imposing World
Actualism on a model by appropriate individuation of prospects does not suffice
to ensure the additive separability of desirabilities. For, as we have already
seen, additive separability requires that counterfacts under mutually exclusive
suppositions be probabilistically independent. But World Actualism alone does
not imply anything about the probabilistic relations between the counterfacts.
So the question of whether rationality requires expected utility maximisation is
not settled by the question of whether World Actualism is or is not a reasonable
condition.

A much stronger and partition-independent version of ethical actualism –
the quantitative analogue of the condition we termed Preference Actualism –
takes us much closer to what is required for desirabilities to be expected utilities.
Let S be a set of suppositions and suppose that X ∩ Si = ∅. Then consider:

Prospect Actualism: Des(X, Yi) = Des(X)

Prospect Actualism says that the desirability that X is the case and that the
Yi would be on the contrary-to-fact supposition that Si, depends only on the
desirability that X. Or to put it slightly differently, once it is given that X then
it does not matter what would be the case under any supposition inconsistent
with the truth of X.

Although Prospect Actualism expresses a similar idea to World Actualism,
the relationship between them is quite complicated. Given Centering, Prospect
Actualism implies World Actualism, but the converse is not true. In fact,
Prospect Actualism only follows from World Actualism in conjunction with the
assumption that the facts are stochastically independent of the strict counter-
facts, a condition we previously formalised as Fact-Counterfact Independence.
(This claim is proven in the appendix as Theorem 11.)
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Prospect Actualism substantially constrains how we may value outcomes.
Suppose for instance you have to choose between two restaurants. You go to
restaurant A and are served a very poor meal. An acquaintance goes to the
other restaurant and reports that they were served a very good meal. Are
things worse overall than they would have been if it had been the case that you
would have been served a poor meal at the other restaurant as well? The issue
is not whether your judgement concerning the meal at restaurant A can depend
on what the meal at restaurant B would have been like – surely it should not
– but whether the prospect of having a poor meal at restaurant A when you
would have had a good one at restaurant B is a worse one than that of having
the poor meal at restaurant A when you would also have had a poor one at
restaurant B.

In this case the issue boils down to whether the badness associated with
the difference between what is the case and what might have been if some
other course of action had been pursued is built into the description of the
actual state of affairs. In other cases, the plausibility of Prospect Actualism
depends on the information contained in the description of the counterfactual
circumstances. Suppose, for instance, that the acquaintance in our example
reports that standards of food hygiene were very poor at the other restaurant.
You know they have the same owner, so you infer that standards will also be poor
at the restaurant you chose. This affects your view about the desirability of your
choice. In other words, the desirability of the prospect of going to restaurant A is
not independent of the supposition that had you gone to restaurant B you would
have found food hygiene standards to be very poor. So Prospect Actualism will
be violated whenever there are either probabilistic or desirabilistic dependencies
between the facts and the strict counterfacts.

Although Prospect Actualism is a very strong condition, it alone is not
sufficient to constrain desirabilities enough for them to be expected utilities. But
jointly with the assumption that the facts are probabilistically independent of
the counterfacts, Prospect Actualism does entail that desirabilities are expected
utilities. More formally, as we prove in the appendix as Theorem 21:

First Sufficiency Theorem: Assume Centering. If Des is a desirability rep-
resentation of a preference relation % that satisfies Fact-Counterfact In-
dependence and Prospect Actualism, then Des is an expected utility rep-
resentation of %.

5.3 Expected Utility, Separability and Ethical Actualism

We are now in a position to make precise our earlier claim that separability
and ethical actualism are independent, necessary conditions for expected utility
maximisation. Let’s take each aspect in turn. First, as we prove in the appendix
as Theorems 15 and 18, strong forms of both separability and ethical actualism
are required for expected utility maximisation. More exactly:

Necessity Theorem: Assume Centering. If Des is an expected utility repre-
sentation of the preference relation %, then Des satisfies Counterfact Sep-
arability, Prospect Actualism, Fact-Counterfact Independence and Coun-
terfact Independence.
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The Necessity Theorem is surprisingly strong and forcefully demonstrates
just how much more demanding the requirement that agents maximise expected
utility is than the requirement that they maximise desirability. We consider it
highly implausible that failure to satisfy all four conditions entails irrationality
on the part of an agent. Hence we are doubtful that rationality requires us to
maximise expected utility.

Second, as we noted earlier on, ethical actualism and separability are based
on different, though consistent, intuitions. The former expresses the idea that
only what actually happens matters, while the latter expresses the idea that the
desirability of orthogonal counterfacts are independent of each other’s truth.
It is not difficult to see that the counterfacts can be separable even if ethical
actualism is false. To see this again, consider the set of prospects displayed below
and suppose you think that the counterfacts do matter. Specifically, suppose
that were E not the case then you would prefer BOB rather than ANN , in
violation of ethical actualism. So you prefer L1 to LA (in virtue of the former
dominating the latter) even when you know that E. Nonetheless you regard the
outcomes under E and ¬E as separable because your preference for BOB over
ANN were it the case that ¬E is not affected by whether BOB or ANN would
be the case if E. Hence LB � L2.

E ¬E
L1 ANN BOB
LA ANN ANN
LB BOB BOB
L2 BOB ANN

This example shows that satisfaction of ethical actualism is not necessary for
separability. On the other hand, it might seem that ethical actualism should be
sufficient for separability since if the counterfacts don’t matter, then trivially
they will be desirabilistically independent of one another (they won’t matter
whatever orthogonal counterfacts hold). But this intuition is false. Even if
ethical actualism is true, the counterfacts can matter because they can be infor-
mative about what the facts are. If for instance I don’t know which box contains
the prize, then I will, regardless of whether I am an actualist or not, care about
whether or not it is true that if I were to open one of them I would find the
prize, since learning this counterfact enables me to infer where the prize is.

What this example brings out is the possibility that the counterfacts matter
because of probabilistic dependencies between facts and counterfacts. So one
might hypothesise that when the counterfacts are probabilistically independent
of the facts, then ethical actualism should imply separability. It turns out that
this is true. More precisely, provided Centering holds, Prospect Actualism and
Fact-Counterfact Independence jointly imply Counterfact Separability (we prove
this in the appendix as Theorem 13).

We have already observed that separability is not sufficient for ethical actu-
alism. But Prospect Actualism, the strong form of ethical actualism required
by expected utility theory, is a consequence of separability together with the
following, weaker form of ethical actualism:

Restricted Actualism: Des(S̄i,Yi) = Des(S̄i)
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Restricted Actualism says that it does not matter that Yi is the case under
the supposition that Si, given that Si is false. Or to put it slightly differently,
given that Si is not the case, it is a matter of indifference what would be the
case if it were. Restricted Actualism, like Prospect Actualism, is a partition-
independent condition on evaluative attitudes, but it is quite a bit weaker than
the latter. While Prospect Actualism clearly implies Restricted Actualism, the
latter only implies Prospect Actualism when the counterfacts are probabilis-
tically and desirabilistically independent of each other. More formally, as we
prove in the appendix as Theorem 14, given Centering, Counterfact Separability
and Restricted Actualism imply Prospect Actualism.

In virtue of the First Sufficiency theorem, we can now infer a second set
of sufficient conditions for a desirability function to be an expected utility, by
drawing on the Probabilistic Equivalence Theorem and the fact that Counterfact
Separability implies Counterfact Independence. For then it follows, as we prove
in the appendix as Theorem 20, that:

Second Sufficiency Theorem: Assume Centering. If Des is a Jeffrey repre-
sentation of preference relation % that satisfies Counterfact Separability,
Supposition Independence and Restricted Actualism, then Des is an ex-
pected utility representation of %.

This second set of sufficient conditions is perhaps the more illuminating of
the two since the dual dependence of expected utility theory on separability
and ethical actualism is more transparent, as is the need for a distinct indepen-
dence condition relating suppositions to beliefs about counterfacts under these
suppositions. On the other hand, it somewhat obscures how demanding the
probabilistic independence conditions are on expected utility maximisation. So
to finish, let us bring our various results together into a single statement relat-
ing expected utility theory and the two pairs of conditions on desirability and
probability that have been discussed. It follows from the Necessity Theorem
and the two Sufficiency Theorems that:

EU Equivalence Theorem: Let (Des, Prob) be a Jeffrey representation of a
preference relation on a centred Suppositional Algebra. Then the following
are equivalent:

1. Des is an expected utility

2. Des satisfies Prospect Actualism and Prob satisfies Fact-Counterfact
Independence

3. Des satisfies both Counterfact Separability and Restricted Actualism
and Prob satisfies Supposition Independence

6 Concluding Remarks

We have seen that it is possible, when armed with an appropriate semantics,
to extend Richard Jeffrey’s decision theory to counterfactual propositions. By
doing so, one makes it possible to represent two preference patterns – those of
Allais and Diamond – that have discomforted decision theorists for decades, and
to rationalise them in terms of desirability maximisation. We have also seen that
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when we add the conditions necessary for an expected utility representation to
this framework, we can no longer represent these intuitively rational preferences.
Furthermore, the added postulates imply restrictions on the agent’s beliefs and
desires that have little plausibility as rationality constraints. On the face of it,
this seriously undermines EU theory’s claim to be the correct theory of practical
rationality.

It might nonetheless be objected that this conclusion depends on the pre-
cise characterisation of EU theory given in this paper, and in particular on our
partition-invariant formulation of it. This is only half-true. Restricting expected
utility maximisation to prospects 〈Y1,...,Yn〉 such that the Yi are maximally spe-
cific will not invalidate our results, only restrict their scope. But this alternative
characterisation of EU theory still faces the following problem: It requires that
maximally specific counterfacts under disjoint suppositions be both desirabilis-
tically and probabilistically independent of each other and of the facts, which
is not plausible as a requirement of rationality. It is true that it has already
been recognised that Savage’s EU theory does not apply in circumstances in
which the states of the world are not probabilistically independent of the acts.
But granting this restriction still falls far short of recognising that his theory
does not apply whenever there are desirabilistic dependencies between the facts
and the counterfacts. And to restrict application of expect utility theory to
cases when there are no such dependencies would render it inapplicable in the
circumstances imagined by Allais and Diamond. Either way, the claim that it
provides a general theory of practical rationality cannot be sustained.14

7 Appendix: Definitions and Proofs

7.1 Jeffrey Representations

In this first section we present some useful results relating to Jeffrey represen-
tations of preferences on Boolean algebras. Let 〈Ω,⊆,W,∅〉 be a complete,
atomless Boolean algebra of propositions with upper bound W and lower bound
∅ and let % be a preference relation on Ω. A pair of functions (Des, Prob) is
a Jeffrey representation of % just in case Prob is a probability function on Ω
and Des a desirability function on Ω′ = Ω − {∅} such that for all α, β ∈ Ω′,
Des(α) ≥ Des(β) ⇔ α % β. Recall that a desirability function on Ω′ is a
real-valued function such that for all α, β ∈ Ω′:

V1 (Normality): Des(W) = 0

V2 (Desirability): If α ∩ β = ∅, then:

Des(α ∪ β) =
Des(α).P rob(α) +Des(β).P rob(β)

Prob(α ∪ β)

Recall also the definitions of conditional probability and desirability.

Conditional Probability: If Prob(α) 6= 0 :

Prob(β|α) :=
Prob(α ∩ β)

Prob(α)

14Acknowledgements removed for anonymous refereeing.
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Conditional Desirability: If Prob(α ∩ β) 6= 0 :

Des(β|α) := Des(α ∩ β)−Des(α)

Lemma 2 Let (Des, Prob) be a Jeffrey representation of % . Then:

1. Des(α).P rob(α) = −Des(ᾱ).P rob(ᾱ)

2. Prob(α)
Prob(ᾱ) = −Des(ᾱ)

Des(α)

3. If Des(α|β) = Des(α) and Des(ᾱ|β) = Des(α), then Prob(α|β) = Prob(α)
and Prob(ᾱ|β) = Prob(α)

Proof. Given that α ∪ ᾱ = >, it follows by the axioms of Desirability and
Normality, that:

Des(>) = Des(α).P rob(α) +Des(ᾱ).P rob(ᾱ) = 0

Hence Des(α).P rob(α) = −Des(ᾱ).P rob(ᾱ). But this is the case:

⇔ Des(α).
P rob(α)

Prob(ᾱ)
= −Des(ᾱ)

⇔ Prob(α)

Prob(ᾱ)
= −Des(ᾱ)

Des(α)

Assume that Des(α|β) = Des(α) and Des(ᾱ|β) = Des(ᾱ). Then by application
of the above and from the fact that Des(·|β) is a desirability function:

Prob(α|β)

Prob(ᾱ|β)
= −Des(ᾱ|β)

Des(α|β)

= −Des(ᾱ)

Des(α)

=
Prob(α)

Prob(ᾱ)

Hence Prob(α|β) = Prob(α) and Prob(ᾱ|β) = Prob(ᾱ).

7.2 Suppositional Algebras

Hereafter our results pertain to Suppositional Algebras of propositions, where
the latter are construed as sets of n-tuples of worlds. Let S = 〈W,Ω,S, f,z,Γ〉
be a suppositional algebra with W a set of possible worlds, Ω a Boolean algebra
of subsets of W, S = {Si} ⊆ Ω a set of n suppositions, f a selection function
from W×S to Ω, z the set of n-tuples of worlds induced by f , and Γ a Boolean
algebra of subsets of z (the set of all propositions). If f satisfies Centering then
we say that S is a centered Suppositional Algebra.

Lemma 3 Assume that S is a centered Suppositional Algebra. Let X ⊆ Si.
Then (X, Y1,...,Yn) =(X ∩ Yi,

⋂
j 6=iYj).
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Proof. (X, Y1,...,Yn) = {〈w0, w1, ..., wn〉 : w0 ∈ X and wj ∈ Yj}. Since X ⊆
Si, it follows from Centering that 〈w0, w1, ..., wn〉 ∈ (X, Y1,...,Yn) ⇔ wi = w0.
So:

(X,Y1,...,Yn) = {〈w0, w1, ..., wn〉 : w0 ∈ X ∩Yi and for all j, wj ∈ Yj}
= (X ∩Yi,Y1,...,Si,...,Yn)

= (X ∩Yi,
⋂

j 6=i
Yj)

7.2.1 Probability Conditions

In this section we prove a number of results concerning the relation between
three different conditions of probabilistic independence. Throughout let S =
{Si} be a set of disjoint suppositions and Xi ⊆Si. Then consider:

Supposition Independence: Prob(Si,Xi) = Prob(Si).P rob(Xi)

Fact-Counterfact Independence: If X ∩ Sj = ∅, then:

Prob(X,Yj) = Prob(X).P rob(Yj)

Counterfact Independence: If {Si}ni=1 is a set of n disjoint suppositions,
then:

Prob(〈Y1,...,Yn〉) =

n∏
i=1

Prob(Yi)

Theorem 4 Fact-Counterfact Independence implies Supposition Independence.

Proof. Suppose that X⊆Si. Then by Fact-Counterfact Independence, since X
∩ S̄i = ∅, it follows that:

Prob(S̄
i
,Xi) = Prob(S̄

i
).P rob(Xi)

But then Prob(Si,Xi) = Prob(Si).P rob(Xi).

Theorem 5 Let Xi =X ∩ Si and assume Centering. Then Supposition Inde-
pendence implies that Prob(Xi) = Prob(X|Si).

Proof. Assume Centering. Then:

Prob(Xi | Si) =
Prob(Si,Xi)

Prob(Si)
=
Prob(Si ∩X)

Prob(Si)
= Prob(X | Si)

But by Theorem 4, Fact-Counterfact Independence implies that Prob(Xi|Si) =
Prob(Xi). Hence Prob(Xi) = Prob(X|Si)

Theorem 6 Let S = {S1, ...Sn} be a set of n disjoint suppositions and suppose
that for all Si,Sj ∈ S, Prob(Xi,Yj) = Prob(Xi).P rob(Yj). Then:

Prob(〈Y1,...,Yn〉) =
∏n

i=1
Prob(Yi)
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Proof. We prove the claim by induction on the number n of suppositions
in S. By assumption the claim is true for n = 2, i.e. that Prob(Y1,Y2) =
Prob(Y1).P rob(Y2). Assume true for n = k. Now:

Prob(Y1,...,Yk+1) = Prob(Y1,...,Yk|Yk+1).Prob(Yk+1)

= Prob(Yk+1).
∏k

i=1
Prob(Yi|Yk+1)

in virtue of the induction hypothesis for n = k and the fact that Prob(·|Yk+1) is
a probability on the space of propositions. But by assumption, Prob(Yi,Yk+1) =

Prob(Yi).P rob(Yi,Yk+1). So Prob(Y1,...,Yn) =
∏k+1
i=1 Prob(Yi).

Theorem 7 (Probability Equivalence) Assume Centering. Then Counter-
fact Independence and Supposition Independence are jointly equivalent to Fact-
Counterfact Independence.

Proof. Assume Centering, Counterfact Independence and Supposition Inde-
pendence. Suppose that Sj = W - Si, Xi = Si∩ X = X and Yj = Sj∩ Y = Y .
It follows by Centering and then Counterfact Independence that:

Prob(X,Yj) = Prob(Si∩X, Yj)

= Prob(Si, Xi, Yj)

= Prob(Xi, Yj |Si).P rob(Si)
= Prob(Xi|Si).P rob(Yj |Si).P rob(Si)

But by Supposition Independence:

Prob(Yj |Si) = Prob(Yj |S̄j) = Prob(Yj)

Hence:

Prob(X,Yj) = Prob(Xi|Si).P rob(Yj).P rob(S
i)

=
Prob(Si,Xi)

Prob(Si)
.P rob(Yj).P rob(S

i)

= Prob(Si∩X).P rob(Yj)

in virtue of Centering. So Prob(X,Yj) = Prob(Si∩X).P rob(Yj) = Prob(X).P rob(Yj),
in accordance with Fact-Counterfact Independence.

Now assume Fact-Counterfact Independence. Supposition Independence fol-
lows by Theorem 4. Now for all Si and Sj such that Si∩ Sj = ∅:

Prob(Si ∪ Sj ,Xi,Yj) = Prob(Si, Xi, Yj) + Prob(Sj , Xi, Yj)

But by Lemma 3, Centering implies that:

Prob(Si, Xi, Yj) = Prob(Si ∩X, Yj)

Prob(Sj , Xi, Yj) = Prob(Sj ∩Y, Xi)

And by Fact-Counterfact Independence:

Prob(Si ∩X, Yj) = Prob(Si ∩X).P rob(Yj)

Prob(Sj ∩Y, Xi) = Prob(Sj ∩Y).P rob(Xi)

Prob(Si ∪ Sj , Xi, Yj) = Prob(Si ∪ Sj).P rob(Xi, Yj)
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So:

Prob(Xi,Yj) =
Prob(Si ∩X).P rob(Yj) + Prob(Sj ∩Y).P rob(Xi)

Prob(Si ∪ Sj)

But by Theorem 5, it follows from Supposition Independence that:

Prob(Yj) = Prob(Y | Sj)
Prob(Xi) = Prob(X | Si)

So:

Prob(Xi,Yj) =
Prob(X | Si).P rob(Y | Sj).P rob(Si) + Prob(Y | Sj).P rob(X | Si).P rob(Sj)

Prob(Si ∪ Sj)

= Prob(Y | Sj).P rob(X | Si)
= Prob(Xi).P rob(Yj)

But by Theorem 6, if Prob(Xi,Yj) = Prob(Xi).P rob(Yj) for all such Xi and Yj ,
then Prob(Y1,...,Yn) =

∏n
i=1 Prob(Yi), in accordance with Fact-Counterfact In-

dependence. We conclude that, given Centering, Counterfact Independence and
Supposition Independence are jointly equivalent to Fact-Counterfact Indepen-
dence.

Corollary 8 Let X ∩Yi = ∅. Assume Centering. Then Fact-Counterfact
Independence implies that:

Prob(X,Y1,...,Yn) = Prob(X).
∏n

i=1
Prob(Yi)

Proof. By the definition of conditional probability and Fact-Counterfact Inde-
pendence:

Prob(X,Yi,...,Yj) = Prob(X,Y1|Y2...,Yn).P rob(Y2...,Yn)

= Prob(X|Y2...,Yn).P rob(Y1|Y2...,Yn).P rob(Y2...,Yn)

= Prob(X,Y2...,Yn).P rob(Y1)

by Theorem 6. Hence, by repeating the argument:

Prob(X,Yi,...,Yj) = Prob(X,Y2|Y3...,Yn).P rob(Y3...,Yn)

= Prob(X|Y3...,Yn).P rob(Y2|Y3...,Yn).P rob(Y3...,Yn)

= Prob(X,Y3...,Yn).P rob(Y1).P rob(Y2)

...

= Prob(X).
∏n

i=1
Prob(Yi)

7.2.2 Desirability-Probability Results

In this section we prove a number of results concerning the relation between
three different conditions on desirabilities and the probabilistic independence
conditions studied in the last section. As before, throughout let S = {Si} be a
set of disjoint suppositions and Yi ⊆Si. Then consider:
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Restricted Actualism: Des(S̄i,Yi) = Des(S̄i)

Prospect Actualism: If X ∩ Si = ∅, then:

Des(X,Yi) = Des(X)

Counterfact Separability: If
⋂

Si = ∅, then:

Des(〈Y1, ...,Yn〉) =

n∑
i=1

Des(Yi)

Theorem 9 Counterfact Separability implies Counterfact Independence.

Proof. Let S ={Si}ni=1 be a set of n disjoint suppositions, Si any other supposi-
tion and Yi any corresponding counterfactual proposition. We need to consider
two cases separately. First let Yj be any proposition such that Des(Yj) 6=
Des(Ȳj) (by the non-triviality assumption, such a Yj exists). Then by Coun-
terfact Separability and the fact that (Yi,Yj) = 〈W, (S1)1, ...,Yi,Yj, ..., (S

n)n):

Des(Yi,Yj) = Des(Yi) +Des(Yj) +
∑
k 6=i,j

Des((Sk)k)

Des(Yi,Ȳj) = Des(Yi) +Des(Ȳj) +
∑
k 6=i,j

Des((Sk)k)

But since (Sk)k = z, it follows by Normality that Des((Sk)k) = 0. So Des(Yi,
Yj) = Des(Yi) + Des(Yj) and Des(Yi, Ȳj) = Des(Yi) + Des(Ȳj). But by the
axiom of desirability:

Des(Yi) = Des(Yi,Yj).P rob(Yj|Yi) +Des(Yi,Ȳj).P rob(Ȳj|Yi)

= [Des(Yi) +Des(Yj)].P rob(Yj|Yi) + [Des(Yi) +Des(Ȳj)].P rob(Ȳj|Yi)

= Des(Yi) +Des(Yj).P rob(Yj|Yi) +Des(Ȳj).P rob(Ȳj|Yi)

But this can hold only if:

Des(Yj).P rob(Yj|Yi)+Des(Ȳj).P rob(Ȳj|Yi) = 0 = Des(Yj).P rob(Yj)+Des(Ȳj).P rob(Ȳj)

by Lemma 2. By assumption Des(Yj) 6= Des(Ȳj). So Prob(Yj|Yi) = Prob(Yj)
and hence Prob(Yi,Yj) = Prob(Yi).P rob(Yj).

Now let Xj be any proposition such that Des(Xj) = Des(X̄j). Let Yj any
proposition such that Des(Yj) 6= Des(Ȳj) and Xj∩ Yj = ∅. Note that it follows
from the axiom of deirability that Des(Xj∪ Yj) ≥6= Des(X̄j∩ Ȳj). Then it
follows from above that:

Prob(Yi, Xj ∪Yj) = Prob(Yi).P rob(Xj ∪Yj)

Prob(Yi, Yj) = Prob(Yi).P rob(Yj)

But:

Prob(Yi, Xj ∪ Yj) = Prob(Yi, Xj) + Prob(Yi, Yj)

= Prob(Yi, Xj) + Prob(Yi).P rob(Yj)

Prob(Yi).P rob(Xj ∪Yj) = Prob(Yi).P rob(Xj) + Prob(Yi).P rob(Yj)

It follows that Prob(Yi,Xj) = Prob(Yi).P rob(Xj). Counterfact Independence
then follows from Theorem 6.
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Theorem 10 Assume Centering. Then Restricted Actualism and Supposition
Independence imply that Des(Yi) = [Des(Si∩Y)−Des(Si)].P rob(Si).

Proof. By the axiom of desirability:

Des(Yi) = Des(Si,Yi).P rob(S
i|Yi) +Des(S̄

i
,Yi).P rob(S̄

i|Yi)

= Des(Si ∩Y).P rob(Si|Yi) +Des(S̄
i
).P rob(S̄

i|Yi)

in virtue of Centering and Restricted Actualism. And by Supposition Indepen-
dence Prob(Si|Yi) = Prob(Si) = Prob(S̄i|Yi). Hence

Des(Yi) = Des(Si ∩Y).P rob(Si) +Des(S̄
i
).P rob(S̄

i
)

= Des(Si ∩Y).P rob(Si)−Des(Si)].P rob(Si)

by Lemma 2. Hence Des(Yi) = [Des(Si∩Y)−Des(Si)].P rob(Si).

Theorem 11 Assume Centering. Then World Actualism and Fact-Counterfact
Independence imply Prospect Actualism.

Proof. Let S = {Si}ni=1 be a set of n disjoint suppositions and suppose that X
⊆Si

∗
. By Centering, (X, Y1,..., Yn) = (X, (

⋂
i6=i∗Yi)) and by construction:

Des(X,Y1,...,Yn).P rob(X,Y1,...,Yn) =
∑

ωj∈(X,Y1,...,Yn)

u(〈w0, w1, ..., wn〉j).p(〈w0, w1, ..., wn〉j)

=
∑
ωj

u((w0)j).p(〈w0, w1, ..., wn〉j)

by World Actualism. But by Centering and Fact-Counterfact Independence
Prob(X, Y1,..., Yn) = Prob(X,

⋂
i 6=i∗Yi) = Prob(X).P rob(

⋂
i 6=i∗Yi) and p(〈w0, w1, ..., wn〉) =

p(w0).p(
⋂
i6=i∗ wi). So:∑

ωj

u((w0)j).p(〈w0, w1, ..., wn〉j) =
∑
w0∈X

u(w0).p(w0)[
∑

〈w1,...wn〉∈(Y1,...,Yn)

p(
⋂

i 6=i∗
wi)]

=
∑

w0∈X
u(w0).p(w0).P rob(

⋂
i 6=i∗

Yi)

Hence:

Des(X,Y1,...,Yn).P rob(X) =
∑

w0∈X
u(w0).p(w0)

= Des(X).P rob(X)

It follows that Des(X,Y1,...,Yn) = Des(X) in accordance with Prospect Actu-
alism.

Theorem 12 Suppose that X ∩(
⋃

Si ∈ S) = ∅. Then Prospect Actualism
implies that Des(X,Y1,...,Yn) = Des(X).
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Proof. By repeated applications of the definition of conditional desirability and
Prospect Actualism:

Des(〈X,Y1,...,Yn〉) = Des(X,Y1 | Y2,...,Yn) +Des(Y2,...,Yn)

= Des(X | Y2,...,Yn) +Des(Y2,...,Yn)

= Des(X,Y2,...,Yn)

= Des(X,Y2 | Y3,...,Yn) +Des(Y3,...,Yn)

...

= Des(X,Yn)

= Des(X)

Theorem 13 Assume Centering. Then Fact-Counterfact Independence and
Prospect Actualism imply Counterfact Separability.

Proof. By the axiom of desirability and then Lemma 11, given Centering:

Des(〈Y1,...,Yn〉) =

n∑
i=1

Des(Si, Y1,...,Yn).P rob(Si | 〈Y1,...,Yn〉)

=

n∑
i=1

Des(Si ∩Yi,
⋂
j 6=i

(Yj)).P rob(S
i | 〈Y1,...,Yn〉)

=

n∑
i=1

Des(Si ∩Yi).P rob(S
i | 〈Y1,...,Yn〉)

in virtue of Prospect Actualism. Now by Corollary 8, given Centering, Fact-
Counterfact Independence implies that:

Prob(Si | 〈Y1,...,Yn〉) = Prob(Si)

It follows that:

Des(〈Y1,...,Yn〉) =

n∑
i=1

Des(Si ∩Yi).P rob(S
i)

=

n∑
i=1

Des(Si ∩Yi).P rob(S
i)−

n∑
i=1

Des(Si).P rob(Si)

=

n∑
i=1

[Des(Si ∩Yi)−Des(Si)].P rob(Si)

in virtue of the fact that by V1 and V2,
∑n
i=1Des(S

i).P rob(Si) = 0. In partic-
ular:

Des(Yi) = Des(〈S1,...,Yi,...,Sn〉)
= [Des(Si ∩Yi)−Des(Si)].P rob(Si) +

∑
j 6=i

[Des(Sj)−Des(Sj)].P rob(Sj)

= [Des(Si ∩Yi)−Des(Si)].P rob(Si)

Hence Des(〈Y1,...,Yn〉) =
∑n
i=1Des(Yi).
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Theorem 14 Given Centering, Counterfact Separability and Restricted Actu-
alism imply Prospect Actualism.

Proof. Let Xi = X ∩ Si and suppose Sj = W - Si. Then by Lemma 3,
given Centering, Des(Si, Xi,Yj) = Des(Si∩ X,Yj). But by the definition of
conditional desirability and Counterfact Separability:

Des(Si, Xi,Yj) = Des(Xi,Yj|Si) +Des(Si)

= Des(Xi|Si) +Des(Yj|Si) +Des(Si)

= Des(Si, Xi) +Des(Si, Yj)−Des(Si)
= Des(Si ∩X) +Des(Si)−Des(Si)
= Des(Si ∩X)

in virtue of Restricted Actualism and Centering. Hence Des(Si∩ X,Yj) =
Des(Si∩ X) in accordance with Prospect Actualism.

7.3 Characterisation Results for Expected Utility

Throughout we assume that (Prob,Des) is Jeffrey representation of preferences
defined on a Centered suppositional algebra Γ of propositions. Let S = {Si}
be a set of disjoint suppositions and Yi ⊆Si. Recall that a desirability function
Des defined on a centred suppositional algebra of propositions is an expected
utility on this algebra iff:

Des(〈Y1,...,Yn〉) =

n∑
i=1

Des(Yi|Si).P rob(Si)

7.3.1 Necessity Results

Theorem 15 Let Des be an expected utility. Then:

1. Des(Yi) = [Des(Si∩Yi)−Des(Si)].P rob(Si)

2. Des(〈Y1,...,Yn〉) =
∑n
i=1Des(Yi)

Proof. By definition if Des is an expected utility, then:

Des(〈Y1,...,Yn〉) =

n∑
i=1

Des(Yi|Si).P rob(Si)

So in particular, since Yi = 〈S1,...,Yi...,Sn〉 = 〈Yi,
⋂
j 6=iS

j〉, it follows that:

Des(Yi) = Des(Yi|Si).P rob(Si) +
∑
j 6=i

Des(Sj |Sj).P rob(Sj)

= Des(Yi|Si).P rob(Si)

since Des(Sj |Sj) = 0. But by the definition of conditional desirability:

Des(Yi | Si) = Des(Si ∩Yi)−Des(Si)
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So Des(Yi) = [Des(Si∩Yi)−Des(Si)].P rob(Si). But then.

n∑
i=1

Des(Yi) =

n∑
i=1

Des(Yi|Si).P rob(Si) = Des(〈Y1,...,Yn〉)

Hence:

Des(〈Y1,...,Yn〉) =

n∑
i=1

Des(Yi)

Theorem 16 Let Des be an expected utility. Then Prob satisfies Supposition
Independence.

Proof. Let Xi = Si ∩ X. By the axioms of normality and desirability:

Prob(Xi) =
Des(X̄i)

Des(X̄i)−Des(Xi)

=
Des(Si ∩ X̄).P rob(Si)−Des(Si).P rob(Si)

Des(Si ∩ X̄).P rob(Si) +Des(Si ∩X).P rob(Si)

by Theorem 15(1) and in virtue of the fact that Des is an expected utility. But
then by application of the axiom of desirability to Des(Si).P rob(Si):

Prob(Xi) =
Des(Si ∩ X̄).P rob(Si)−Des(Si ∩X).P rob(Si ∩X)−Des(Si ∩ X̄).P rob(Si ∩ X̄)

Prob(Si).[Des(Si ∩ X̄) +Des(Si ∩X)]

=
Des(Si ∩ X̄).P rob(Si ∩X)−Des(Si ∩X).P rob(Si ∩X)

Prob(Si).[Des(Si ∩ X̄) +Des(Si ∩X)]

=
Prob(Si ∩X).[Des(Si ∩ X̄) +Des(Si ∩X)]

Prob(Si).[Des(Si ∩ X̄) +Des(Si ∩X)]

=
Prob(Si,Xi)

Prob(Si)

Hence Prob(Si,Xi) = Prob(Xi).P rob(S
i) in accordance with Supposition Inde-

pendence.

Corollary 17 If Des is an expected utility then Des satisfies Counterfact In-
dependence and Fact-Counterfact Independence.

Proof. By Theorem 15 Des satisfies Counterfact Separability and by Theo-
rem 9, Counterfact Separability implies Counterfact Independence. Similarly,
by Theorem 16, Des satisfies Supposition Independence and by Theorem 10,
Counterfact Independence and Supposition Independence are jointly equivalent
to Fact-Counterfact Independence.

Theorem 18 Let Des be an expected utility. Then Des satisfies Restricted
Actualism.

Proof. By Theorem 16, Prob satisfies Supposition Independence. So Prob(Si|Yi) =
Prob(Si) and by the axiom of desirability:

Des(Yi) = Des(Si,Yi).P rob(S
i|Yi) +Des(Si,Yi).P rob(S

i|Yi)

= Des(Si ∩Yi).P rob(S
i) +Des(Si,Yi).P rob(S

i)
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by Lemma 3, given Centering. But by Theorem 15, Des(Yi) = (Des(Si∩Yi)−
Des(Si)).P rob(Si). Hence by Lemma 2, Des(Yi) = Des(Si∩Yi).P rob(S

i) +
Des(Si).P rob(Si). So, in accordance with Restricted Actualism:

Des(S̄
i
,Yi) = Des(S̄

i
)

Corollary 19 Let Des be an expected utility. Then Des satisfies Prospect Ac-
tualism.

Proof. By Theorem 15, Des satisfies Counterfact Separability and by Theorem
18, it satisfies Restricted Actualism. So by Theorem 14 it satisfied Prospect
Actualism.

7.3.2 Sufficiency Results

Theorem 20 Assume that Des satisfies Counterfact Separability and Restricted
Actualism and that Prob satisfies Supposition Independence. Then Des is an
expected utility.

Proof. Let Yi = Y ∩ Si. By Counterfact Separability:

Des(〈Y1,...,Yn〉) =

n∑
i=1

Des(Yi)

But by Theorem 10, Restricted Actualism and Supposition Independence imply
that Des(Yi) = [Des(Si∩Yi)−Des(Si)].P rob(Si). Hence:

Des(〈Y1,...,Yn〉) =

n∑
i=1

[Des(Si ∩Yi)−Des(Si)].P rob(Si)

=

n∑
i=1

Des(Si ∩Yi).P rob(S
i)−

n∑
i=1

Des(Si).P rob(Si)

=

n∑
i=1

Des(Si ∩Yi).P rob(S
i)

in virtue of the fact that by V1 and V2,
∑n
i=1Des(S

i).P rob(Si) = 0. But by
the definition of conditional desirability:

Des(Yi | Si) = Des(Si ∩Yi)−Des(Si)

So:

Des(〈Y1,...,Yn〉) =

n∑
i=1

Des(Y | Si).P rob(Si)

Theorem 21 Assume that Des satisfies Prospect Actualism and that Prob sat-
isfies Fact-Counterfact Independence. Then Des is an expected utility.
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Proof. Let Yi = Y ∩ Si. By the axiom of desirability and then Lemma 11:

Des(〈Y1,...,Yn〉) =

n∑
i=1

Des(Si, Y1,...,Yn).P rob(Si | 〈Y1,...,Yn〉)

=

n∑
i=1

Des(Si ∩Y,
⋂
j 6=i

(Yj)).
P rob(Si ∩Yi,

⋂
j 6=i(Yj))

Prob(Yi,
⋂
j 6=i(Yj))

Now by Theorem 7, Fact-Counterfact Independence implies Counterfact Inde-
pendence which implies, by Theorem 6, that Prob(Yi|

⋂
j 6=i(Yj)) = Prob(Yi).

Similarly, by Corollary 8, Fact-Counterfact Independence implies that Prob(Si∩Yi

|
⋂
j 6=i(Yj)) = Prob(Si∩Yi). Hence:

Prob(Si ∩Yi |
⋂
j 6=i(Yj))

Prob(Yi |
⋂
j 6=i(Yj))

=
Prob(Si ∩Yi)

Prob(Yi)
= Prob(Si | Yi)

Similarly by Theorem 12, Prospect Actualism implies thatDes(Si∩Y,
⋂
j 6=i(Yj)) =

Des(Si∩Y). So:

Des(〈Y1,...,Yn〉) =

n∑
i=1

Des(Si ∩Y).P rob(Si | Yi)

But by Theorem 4, Fact-Counterfact Independence implies that Prob(Si |Yi) =
Prob(Si). Hence:

Des(〈Y1,...,Yn〉) =

n∑
i=1

Des(Si ∩Y).P rob(Si)
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