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Abstract

McGarvey (1953) has shown that any irreflexive and anti-symmetric relation can be ob-
tained as a relation induced by majority rule. We address the analogous issue for dominance
relations of finite cooperative games with non-transferable utility (coalitional NTU games).
We find any irreflexive relation over a finite set can be obtained as the dominance relation
of some finite coalitional NTU game. We also show that any such dominance relation is
induced by a non-cooperative game through S-effectivity. Dominance relations obtainable
through a-effectivity, however, have to comply with a more restrictive condition, which we
refer to as the edge-mapping property.
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1 Introduction

Many important concepts in the mathematical social sciences are defined in terms of a binary
dominance relation on a set of outcomes or alternatives. These concepts can be applied to any
model of social interaction for which such a concept of dominance can be meaningfully defined.
For example, the set of undominated outcomes defines Gillies’ core in cooperative game theory,
Nash’s solution in the bargaining problem, or, more generally, the idea of Pareto optimality (see
Aumann, 1961, p. 539). Other notions that are similarly defined in terms of dominance are von
Neumann-Morgenstern stable sets for cooperative games as well as the Condorcet winner along
with Condorcet consistent choice rules, such as the Banks set, the uncovered set, and Dutta’s
minimal covering set in social choice theory (see, e.g., Laslier, 1997).1

Different models of interaction call for different notions of dominance. In social choice
theory, for example, dominance is defined with respect to a profile of individual preferences over
a set of social alternatives. Although other definitions are also possible, typically, an alternative a
is then said to dominate another alternative b if the number of individuals preferring a to b
exceeds the number of individuals preferring b to a. In coalitional games, on the other hand,
the concept of dominance is generally defined in terms of coalitional effectivity and individual
preferences. Effectivity can be defined in a number of ways, each of which reflects the power of
coalitions in terms of the outcomes they can enforce to come about. An outcome a is then said
to dominate another outcome b if some coalition is effective for a and, moreover, all members of



that coalition prefer outcome a to outcome b. Thus, cooperative majority voting can be seen as
the special case in which majorities are effective for any outcome (see also Taylor and Zwicker,
1999).

In either case, the dominance relation need not generally be transitive and may even contain
cycles. Accordingly, the common concept of maximality is no longer tenable with respect to the
dominance relation and new concepts have been developed to take over its function of singling
out elements that are in some sense primary. Von Neumann and Morgenstern considered this
phenomenon as one of the most fundamental problems the mathematical social sciences have
to cope with (see von Neumann and Morgenstern, 1947, Chapter 1). On this account, each of
the concepts mentioned above, be their roots in social choice theory or in cooperative game
theory, has to deal with what is essentially the same problem: to come to grips with a possibly
intransitive dominance relation. Each of them incorporates a different intuition and approaches
the issue from a different angle.

The dominance relations themselves, however, have different structural properties in both
disciplines. As it is defined for social choice on the basis of majority rule, the dominance re-
lation is asymmetric, i.e., both irreflexive and anti-symmetric. In coalitional games the domi-
nance relation is also irreflexive, but not generally anti-symmetric. The structural properties of
a dominance-based solution concept, such as existence and uniqueness, may vary, depending on
properties of the underlying dominance relation. Therefore, to judge the merits of a particular
dominance-based solution concept as a substitute for maximality, one need to know the struc-
tural properties of the dominance relation. In this vein, McGarvey (1953) has shown that, in the
setting of majority voting, it is precisely the asymmetric relations on a finite set of alternatives
that can be obtained as the dominance relation for some profile of linear preferences over those
alternatives.

We take up the analogous issue for finite coalitional games with non-transferable utility or
finite coalitional NTU games and give complete characterizations of the structural properties of
the dominance relations for three classes of such games.

There is a range of environments that are best modeled by assuming an infinite number of
alternatives (see, e.g., Bergin and Duggan, 1999). For instance, if coalitions are in a position to
play correlated mixed strategies, the outcomes of a coalitional game are a convex and compact
subset of Euclidean space. In other contexts it is more natural, desirable, or convenient to con-
sider a finite number of outcomes. This is, e.g., the case in situations where mixed strategies are
suspect or unnatural. In matters of life and death players and coalitions may not be willing to
have their behavior depend on some randomization device. In other contexts, mixed strategies
may simply not be available (see, e.g., Luce and Raiffa, 1957, Section 4.10 for an early discus-
sion). A finite number of outcomes is also a common and simplifying assumption in bilateral
bargaining (Kibris and Sertel, 2007) and cooperative majority voting games, which, interest-
ingly, is exactly where social choice and cooperative game theory intersect (see, e.g., Schwartz,
1990; Dutta and Laslier, 1999). Our results pertain to NTU games with a finite number of out-
comes (see, e.g., Farquharson, 1969; Kalai and Samet, 1985; Abdou and Keiding, 1991; Lahiri,
2007).

Another noteworthy property of the coalitional model studied in this paper is the way the
utility a coalition can guarantee its members is related to actual outcomes. In particular, our
finite model does not assume comprehensiveness of the coalitional effectivity functions, in the



Dominance Relation Properties Result

Finite NTU games irreflexivity Theorem 1
Finite NTU games through S-effectivity  irreflexivity Theorem 2
Finite NTU games through a-effectivity irreflexivity and EMP Theorem 3

Table 1: Characterizing properties of the various types of dominance relation. The edge-
mapping property (EMP) is defined in Section 4.

sense that if a coalition can guarantee its members a particular utility, it can also guarantee them
any lesser utility. Here, we take a more general approach. We assume every finite NTU game to
be subject to a so-called comprehension condition, which, as a function of the finite set of out-
comes, determines the range of utility vectors the various coalitions can be feasible for. Thus,
comprehensiveness can be accounted for by imposing a very liberal comprehension condition.
On the other extreme, the comprehension condition can be fight, meaning that coalitions can
only be effective for utility vectors that are actually instantiated by one of the outcomes. How
natural the assumptions of comprehensiveness and tightness are largely depends on the setting
that is being considered (see Bergin and Duggan, 1999, for an interesting discussion of compre-
hensiveness). Our results hold for every comprehension condition and are thus independent of
any specific choice in this respect.

Our first result pertains to the dominance relations of general finite NTU games. We find
that every irreflexive relation on a finite set A of alternatives can be obtained as the dominance
relation of some finite coalitional NTU game. Coalitional NTU games can also be obtained from
non-cooperative games, in particular normal-form games, in a variety of ways. Traditionally, the
notions of @- and B-effectivity are employed to obtain the characteristic function of a coalitional
NTU game (Aumann, 1959; Aumann and Peleg, 1960). It turns out that the structural properties
of the dominance relations of finite coalitional NTU games obtained through S-effectivity are
identical to those of the general case. The dominance relation induced by a finite NTU game ob-
tained through S-effectivity may be any irreflexive relation. The formal properties of dominance
relations obtained through a-effectivity, however, are subject to narrower constraints. We find
that they are characterized by irreflexivity and the edge-mapping property, a structural property
defined in this paper. Table 1 summarizes our results.

The significance of these results is mainly of theoretical nature. They show which struc-
tural properties of the dominance relation one can rely on when proving something about a
dominance-based concept in finite NTU games. On the other hand, they also determine the
extent of freedom one has in constructing counterexamples. In this context, it is also worth
mentioning that McGarvey’s characterization result was motivated by the construction of voting
paradoxes (McGarvey, 1953).

There is also an interesting conceptual connection between this paper and the literature on
non-cooperative foundations of cooperative solutions, also commonly referred to as the Nash
program. This line of research aims to provide non-cooperative models, e.g., bargaining envi-
ronments (Nash, 1950, 1953), in which the cooperative and non-cooperative solutions coincide
(e.g., Rubinstein, 1982; Hart and MasColell, 1996). Another connection concerns the theory of



implementation (e.g., Serrano, 1997; Bergin and Duggan, 1999). Assuming comprehensiveness,
Bergin and Duggan (1999) completely characterized the coalitional games that can be obtained
from strategic environments both through @- and S-effectivity. The objective of this paper, how-
ever, is different, as it aims to fully characterize the structural properties of the cooperative games
obtained in this manner, rather than the games themselves.”

2 Finite Coalitional NTU Games

The intuition underlying the models of coalitional game theory is that the players can make
binding commitments, form coalitions, and thus correlate their actions. Here we consider the
general case without the possibility of side-payments, i.e., we do not hypothesize the existence
of a transferable commodity with which all players’ preferences are positively associated. We
do, however, assume the set of possible outcomes to be finite.

Formally, in our framework we consider finite populations N = {1,...,|N|} of individuals
or players and finite sets A = {aj, ..., a4} of outcomes or alternatives. A coalition C is a non-
empty subset of N and we have —C denote the complement N \ C of C in N. The players
entertain preferences over A, which we assume to be represented by a real-valued |N| X |A| utility
matrix U = (u;j)ien,jea, Where u;; denotes the utility of the jth outcome to the ith player. Thus,
each row (u;1,...,u;4)) could be construed as representing player i’s utility function over A.
Accordingly we also write u;(a;) for u;; and u; for the entire row. Similarly, for each coalition C
we have uc(a) denote (u;(a))iec. On the other hand, each column (u1,, ..., un) is a utility
vector in RY, which we write as u(a). Given a utility matrix U, we have H(U) denote the
set {u(a): a € A} of feasible utility vectors in U, omitting the reference to U when it is fixed in
the context.

For a coalition C C N and a x = (x;);eny in RY we have x¢ denote the vector (x;);ec. For X C
RN we also write Xc = {xc: x € X}. With a slight abuse of notation, we write xy;, ;) for
(xi ..., x;), assuming the order of the players to be fixed. If C and D are disjoint coalitions
and xc € RC and yp € RP, let (x¢, yp) denote the utility vector (z;)iecup € REYD with z; = x;,
ifi e C,and z; = y;, if i € D. We also write xc > yc in case x; > y; forall i € C and x¢ > yc¢
if x; > y; forallieC.

By a comprehension condition we understand a function y that associates each subset X C R”
with a superset y(X) € R" of X. We assume comprehension conditions to be downward, i.e.,
forall X € R", X € y(X) € U,exly € R": x > y}. The largest comprehension condition, i.e.,
the one with y(X) = U,ex{y € R": x > y} for all X, we call (full) comprehensiveness, whereas
the smallest, i.e., the one for which y(X) = X for all X C R", we refer to as tight. It is worth
observing that the above assumption excludes the convex hull as a comprehension condition.

Given comprehension condition y, a characteristic function V under y with co-domain X C
RY maps each coalition C C N to a non-empty subset V(C) of utility vectors in y(Xc). We
usually omit the subscript if the comprehension condition is implicit in the context. Intuitively,
a characteristic function associates with each coalition a set of utility vectors the coalition can
guarantee its members. What this guarantee amounts to is left implicit.

Definition 1 (Finite NTU game). Given a comprehension condition y, a finite coalitional game
with non-transferable utility or finite NTU game is a tuple (N, H, V), where N is set of players,



H is a finite subset of RV, and V) is a characteristic function under y with co-domain H.

A finite NTU game (N, H, V) is comprehensive if for each coalition C, yc € R¢ and xc €
V(C), xc > yc implies yc € V(C). Similarly, we say (N, H, V) is tight if the associated com-
prehension condition is tight and, consequently, V(C) C H¢, for all coalitions C. A finite NTU
game is said to be ordinary whenever H C V(N), i.e., if the grand coalition N of all players is
effective for every feasible outcome (see, e.g., Aumann, 1961). It is monotonic in case C C D
and x¢ € V(C) imply that there is some y € V(D) such that yc > x¢, i.e., if a coalition can guar-
antee its members at least as much as each of its subcoalitions. A stronger condition is that of
superadditivity, which a characteristic function V satisfies if for all disjoint coalitions C and D,
xc € V(C) and yp € V(D) imply (xc, yp) € V(C U D). Superadditivity implies monotonicity but
not vice versa. Finally, a finite NTU game is binary if H C {0, 1}V,

We generally assume the set of feasible utility vectors of a finite NTU (N, H, V) game to
be given by the utility vectors of a utility matrix over a finite set of outcomes, i.e., H = H(U)
for some utility matrix U over A. Each utility vector in H, thus, represents a distribution of
utility that can actually come about. On the other hand, the utility vectors in V(C) for which
a coalition C is effective and which need not all be included in H¢ could be interpreted as
representing the bargaining position of C. The comprehension condition determines how the
bargaining position is related to the outcomes the coalition can achieve. More particularly, a
coalition’s bargaining position may be based on the sets of outcomes within which it can enforce
the outcome to fall, rather than particular individual outcomes it can force to come about. Thus,
a coalition C may be able to guarantee that the outcome is among a and b but cannot enforce
either a or b separately. Suppose that C consists of two players, 1 and 2, and the utility vectors
associated with a and b for C are given by u(a) = (2,1) and u(b) = (1,2). The coalition C
could then demand a utility of 1 to both of its members on this basis, even if there is no outcome
that yields precisely 1 to both player 1 and player 2. If the circumstances are such that such a
demand can reasonably be made, the utility vector (1, 1) should be included in V(C), calling for
a comprehension condition that makes this possible. On the other hand, if no such claim can
be made, coalition C should not be effective for (1, 1) and the situation should be modeled by
means of a tighter comprehension condition.

Formally, a utility vector u in RY is said to be feasible for C if there is some xc € V(C) with
xc > uc. We also say that a coalition is effective for a utility vector u if u is feasible for C. We
also say that a coalition is effective for an outcome a if C is effective for x¢ and x¢ = uc(a) for
some outcome a. Now, the notion of dominance in NTU games is defined in terms of players’
preferences and coalitional effectivity.

Definition 2 (Dominance). Let (N, H, V) be a finite NTU game and let C be a coalition. For u
and v’ utility vectors in H, we say u dominates u’ via C, in symbols u >¢ u’, if u is feasible for C
and uc > ug., i.e., if there is some xc € V(C) with x¢ > uc > u.. Utility vector u dominates u’,
in symbols u > u’, whenever 1 dominates #’ via some coalition C.

Obviously no utility vector dominates itself, i.e., the dominance relation for NTU games is
irreflexive.

Let H be a set of feasible utility vectors defined by a utility matrix U which defines the
players’ preferences over a finite set of outcomes A. Then, every dominance relation on H



straightforwardly defines a dominance relation on A. Thus, we say that outcome a dominates
outcome b whenever u(a) dominates u(b). More formally, we say that a binary relation R on
a finite set A = {ay,..., a4} is induced by a finite NTU game (N, H,V) whenever a utility
matrix U = (u;)ien,jea exists such that H = H(U), |H| = |A| and, for all a,b € A, aRb if and
only if a dominates b, i.e., if the function which maps each a € A to the vector u(a) € H is an
isomorphism between the graphs (A, R) and (H, >). We now have the following useful lemma,
which basically says that, for our purposes and as far as the structure of the dominance relations
is concerned, we can restrict our attention to tight games without loss of generality.

Lemma 1. Let (N, H, V) be a tight finite NTU game and y a comprehension condition. Then,
there is a finite NTU game (N, H, V') under y such that the dominance relations of (N, H, V) and
(N, H, V") coincide.

Proof. Define the characteristic function V’ such that V’(C) = y(V(C)) for every coalition C C
N. Consider the finite NTU game (N, H, V') and let > and >’ denote the dominance relations
of (N, H,V)and (N, H, V'), respectively. We show that u > u’ if and only if u >" u’ for all u,u’ €
H. First assume u > u’. Then there is some coalition C and some xc € V(C) such that xo >
uc > ug. Hence, xc € x(V(C)) and, accordingly, xc € V’(C). Therefore also u >" u’. For
the other direction, assume u >’ u’. Then there is some coalition C and some x¢c € V/(C) such
that xc > uc > up. As xc € x(V(C)) and comprehension conditions are downward, there is

some yc € V(C) such that yc > xc. It follows that yc > uc > u;.. Hence, u > u’. O

3 Dominance Relations of Finite NTU Games

We are now in a position to prove our first result, which states that every irreflexive relation on a
finite set of outcomes can be induced as the dominance relation of some finite NTU game. The
idea behind the proof is to construct a coalitional game for each irreflexive relation R on a set of
outcomes A. We introduce two players i, and j, for each a € A as well as an appropriate utility
matrix U, which depends on R and represents the players’ preferences over A. The set H feasible
utility vectors is then given by H(U) = {u(a): a € A}. Each coalition that contains both i, and j,
for some a € A, is defined to be universally effective, i.e., any such coalition C feasible for any
vector in Hc, whereas any other coalition D is so ineffective that no vector in H dominates any
other via D. The reader is referred to Figure 1 for an illustration of this construction, which
will also be used in the proof of Theorem 2 below. In Theorem 1 we formally define for each
irreflexive relation R a collection of finite NTU games and establish that the dominance relation
on A as induced by each of these games coincides with R.

Theorem 1. Let R be an irreflexive relation on a finite set A of outcomes and y a comprehension
condition. Then, R is induced as the dominance relation of some finite NTU game under y.

Proof. By virtue of Lemma 1, we may that y is tight. For R we define a collection of finite NTU
games Vi = (N, H, V), which only differ with respect to their characteristic functions.

With each a € A we associate two players i, and j,, and say that {i,, j,} are a pair and that i,
and j, are partners. Formally, N = {1,...,2|A]} and let {X},..., X|4} be a partitioning of N



iq ja ip jb e jc iq jd

a 11 01 00 01
b 100 11 01 01
c |00 00 11 00O
d \o1 00 01 11

Figure 1: The graph of an irreflexive relation that is induced by a finite NTU game (N, H, V)
where N is given by {ig, ja, ib, Jbs ic» jes id> ja}- The players’ preferences are given by the utility
matrix U. For reasons of readability we depict the transposal U™ of U on the right.

with |X;| = 2 for all 1 < k < |A]. We associate each X with outcome ay and write X = {ig,, jq, }-
Let U = (4;j)ien, je(1,...|A)) be the |[N| X |A] utility matrix such that for all a, b € A,

(1,1) ifa=0b,
ugi,.j.)(b) = 4(0,0) if a # b and aRb,
(0,1) otherwise.

Set H=H(U) = {u(a): a € A}. Observe that u(a) = u(b) if and only if a = b. Hence, |A| = |H|.
Let for each coalition C, H;, denote the subset of utility vectors in Hc that minimize the
utility of at least one of C’s members, i.e.,

Hé = U{XC € He: xj = minui}.
= ueH
i

As H is assumed to be finite, this set is well defined.
A characteristic function V for a game in the collection for R is then defined such that for
each coalition C in N,

He if{i,, j,} € C,forsomea € A,

X 2 otherwise,

V(C) ={

for some X C H;.. We show for every game in the collection of games for R that for all a,b € A
we have aRb if and only if @ dominates b.

First assume that aRb. Observe that, by construction, uy;, j)(a) = (1,1) and wuy;, (b)) =
(0,0). Moreover, (1,1) € V{iy, ju}). Accordingly, u(a) dominates u(b) via the coalition {i,, j,}
and we may conclude that a dominates b in V.

For the opposite direction, assume that a dominates » in Vg. Then, there is some coalition C
and some xc € V(C) such that xc > uc(a) > uc(b). Because Vg is binary, for each i € C we
have x; = u;(a) = 1 and u;(b) = 0. Accordingly, min,egy u; = 0 foreachi € C. As x¢c € V(C),
there is some ¢ € A with {i., jc} € C and uy;_j,(a) = (1,1). By definition of B, then, a = c.
Hence, j, € C and u;,(b) = 0 and, by construction, it follows that aRb. |

It is readily appreciated that the finite NTU game Vy constructed in the proof above is binary,
ordinary, and monotonic. Moreover, the construction used in the proof of Lemma 1 can easily



be seen to preserve these properties. Accordingly, under every comprehension condition there
is some finite NTU game that corresponds to some irreflexive binary relation and, moreover,
satisfies these natural properties.

4 Coalitional Effectivity in Non-Cooperative Games

Although in the formal definition of a finite NTU game the players’ strategies are abstracted
away, they are still implicit in the characteristic function. A coalition is assumed to be effective
for a particular utility vector if its members have a joint strategy that guarantees all of them the
utility specified in that vector. However, the definition gives no formal and precise interpretation
of this guarantee. The question keeps lingering how this guarantee should be given a formal
and precise interpretation. In a setting without transferable utility, @- and S-effectivity provide
two standard ways of determining the value of a coalition in a non-cooperative game (see, e.g.,
Aumann, 1959, 1961; Aumann and Peleg, 1960). After having introduced the appropriate formal
definitions of a non-cooperative game in normal form and those of a-effectivity and S-effectivity,
we show that irreflexivity characterizes dominance relations of NTU games obtained through -
effectivity. Dominance relations of NTU games obtained through a-effectivity, however, are
subject to more restrictive constraints.

Definition 3 (Normal-form game). A game G in normal form is a tuple (V, S, Q, g, U), where
Nis aset{l,...,|N|} of players, S = X,y S is an |[N|-dimensional space of strategy profiles,
Q = {wi,...,wig} a set of outcomes, and g: § — & an outcome function associating each
strategy profile s with an outcome g(s) in Q. Finally, U = (u;;)ien, jeq is a real-valued |N| X |Q)|
utility matrix.

We have (sc, 1-¢) denote the strategy profile s* such that s7 = 5;if i € C and 57 = 1;if i ¢ C.

A coalition C is said to be a-effective for a particular utility vector xc € RS, if in the normal-
form game coalition C has a joint strategy that guarantees each of its members i at least a utility
of x;, no matter which strategies the players not in C may adopt. By contrast, C is said to
be S-effective for a particular utility vector xc € RS, if the players that are not in C have no
joint strategy that precludes the coalition C from obtaining a utility of at least x; to each of its
members i.

Definition 4 (a-effectivity and S-effectivity). Let G = (N, S,Q,g,U) be a game in normal
form, C a coalition in N and xc € RE. Then,

C is a-effective for xc if there is an s € § such that for all t € §, uc(g(sc,t-c)) = xc,
C is B-effective for x¢ if forall s € §, there is at € S such that uc(g(tc, s—¢)) = xc.

For y € {@,B} and y a comprehension condition, a finite NTU game (N, H, V) is said to y-
correspond to a normal-form game G = (N, S, Q, g, U) under y, whenever H = {u(g(s)): se€ S}
and for each coalition C in N,

V(C) = {xc € x(H¢): C is y-effective for xc}.



Also, if a binary relation R on a set A can be induced as the dominance relation of some finite
NTU game under y that y-corresponds to some normal-form game, we say that R is obtainable
through y-effectivity under y. If the comprehension condition y is clear from the context, we
usually omit the reference to y.

The following example concerns a class of normal-form games that evince a particularly
sharp contrast between the sets of outcomes for which coalitions are a- and S-effective.

Example 1. Let Q = {w1,...,w|g} be a set of outcomes, N a set of players, and k € N. Let
further ¢: NV — N such that for each x € NV,

() =1+ (Z x; mod |Q|] :

ieN

The modulo game M(£,k) = (N, S, Q, g, U) on Q and k is then a game in normal form such that
for each player i, S; = {1,...,k} and g such that for each strategy profile s € S, g(s) = ay if
and only if k = ¢(s). Obviously, if k > |Q|, for every w,, € £ and every joint strategy s_c of its
non-members, every coalition C has a strategy f¢ that yields a,, as the outcome of the modulo
game M(Q, k). Merely set tc such that m = 1 + ((Xjec ti + Digc 5i) mod |Q2])). As this is always
possible, every coalition is S-effective for every outcome in £, whereas every coalition other
than the grand coalition N is only a-effective for outcomes in € that minimize the utility of at
least one of its members.

As for the general case, we find that the structure of dominance relations induced by finite
NTU games do not depend on the comprehension condition assumed. Rather, in order to estab-
lish the characterizing structural properties of the dominance relations obtained through either
a- or B-effectivity, we can assume the comprehension condition to be tight.

Lemma 2. Let v € {a,B}, R be a binary relation on a finite set A, and y a comprehension
condition. Then, if R is obtainable trough y-effectivity under the tight comprehension condition,
R is also obtainable through y-effectivity under .

Proof. Let (N,H,V)and G = (N, S, A, g, U) be such that aRb if and only if u(a) dominates u(b)
in (N, H,V) and (N, V, H) y-corresponds to G under the tight comprehension condition. Con-
sider the game (N, H,V,), where V,(C) = {xc € y(Hc): C is y-effective for xc in G} for all
coalitions C. Let > and >" denote the dominance relations of (N, H,V) and (N, H, V,), respec-
tively. Consider arbitrary a, b € A.

First assume aRb. Then, u(a) >¢ u(b) for some coalition C. Then, there is some x¢ € V(C)
such that xc > uc(a) > uc(b). Observe that V(C) € V,(C) and so xc € V,(C). Hence, u(a) >’C
u(b) and, subsequently, u(a) >" u(b).

For the opposite direction assume u(a) > u(b). Then, there is some x¢c € y(H) with x¢ >
uc(a) > uc(b) and C is y-effective for xc. If y = @, there is some s € S such that for all ¢ € §,
uc(g(sc,t—c)) = xc = uc(a). If y = B, forall s € § there is some ¢ € S such that uc(g(tc, s_¢)) =
xc = uc(a). In either case, C is y-effective for uc(a). It follows that both u(a) >¢ u(b) and
u(a) > u(b). Hence, aRb, which concludes the proof. O



(1,0,0) (1,2,0) (1,0,0) (2,1,0)
(0,0,0) (0,1,0) (0,0,0) (0,1,0)

Figure 2: A three-player game, in which player 1 chooses rows, player 2 chooses columns, and
player 3 chooses matrices, showing that if the comprehension condition is tight, a-effectivity
does not generally imply superadditivity.

Characteristic functions based on either a-effectivity or S-effectivity are perforce monotonic.
However, if no restrictions are imposed on the comprehension conditions, superadditivity does
not generally hold for characteristic functions obtained through either @- or S-effectivity. Even
if comprehensiveness is assumed, only a-effectivity guarantees superadditivity.3

Example 2. Consider the normal-form game depicted in Figure 2 and let V be the characteristic
function of the coalitional game a-corresponding to it under the tight comprehension condi-
tion y. We find that both player 1 and player 2 are a-effective for 1, player 1 in virtue of the
top row, player 2 because of the right column. Moreover, 1 € V({1}) and 1 € V({2}). Ob-
serve that the coalition {1, 2} consisting of player 1 and player 2 is a-effective for neither (1, 2)
nor (2, 1). Although, this coalition is a-effective for the utility vector (1, 1)—playing top row and
right column would achieve this—there is no outcome that guarantees both players these utilities
for which {1, 2} is a-effective. Therefore, due to tightness of the comprehension condition, we
merely have V({1,2}) = {(0,0), (1,0), (0, 1)} and superadditivity is not satisfied. It is worth ob-
serving that if full comprehensiveness were assumed, superadditivity would have been satisfied.
This would have also been the case if (1,2,0) and (2, 1, 0) were both replaced by (1, 1, 0).

Intuitively, superadditivity is a particularly natural property in the context of a-effectivity.
If two disjoint coalitions C and D can guarantee particular utilities to their members by playing
particular strategies, then each member of either coalition should also be guaranteed that utility if
both coalitions play those strategies simultaneously. Accordingly, examples like the above sug-
gest that tight comprehension conditions are conceptually dubious in the context of a-effectivity
and that looser ones are more appropriate. As the topic does not affect the issues at hand, we
will not pursue it here. Moreover, our model also allows for comprehension conditions which
do guarantee superadditivity of NTU games obtained through a-effectivity, , e.g., full compre-
hensiveness. We rather point at another important structural property related to superadditivity
that all finite NTU games obtained through a-effectivity satisfy. We will call a finite NTU game
(N, H, V) a-consistent if, for disjoint coalitions C and D, x¢ € V(C) and yp € V(D) imply that
there is some u € H such that ucyp > (xc, yp). Superadditivity is stronger than a-consistency in
that it additionally requires the coalition C U D also to be effective for ucup. We find that every
finite NTU game obtained through a-effectivity satisfies the weaker property of a-consistency.

Lemma 3. Let y be a comprehension condition. Then, every finite NTU game that a-corre-
sponds to a normal-form game under y is a-consistent.

Proof. Let (N,H,V) be an arbitrary finite NTU game and G = (N, S, Q, g, U) be an equally
arbitrary normal-form game such that (N, H, V) a-corresponds to G. Let C and D be disjoint
coalitions in N with xc € V(C) and yp € V(D). Then, there are strategy profiles s, € S such

10



that for all » € S both u(g(sc,r-¢)) = xc and u(g(tp,r-p)) = yp. Let § be a strategy profile
defined such that §¢ = sc and §p = tp. Then, for all r € S, u(g(Scup. r-«cup))) = (xc.yp).
Now observe that u(g(Scup, r-cupy)) is in H, and a fortiori also in y(H), which concludes the
proof. |

5 Dominance Relations through Coalitional Effectivity

As it turns out, the class of finite NTU games obtainable through a-effectivity and the class of
games obtainable through S-effectivity are not identical. Theorem 2 shows that a restriction to
the latter class of games imposes no constraints on the dominance relations that are obtainable in
addition to their being irreflexive. On the other hand, we find a-effectivity only yields dominance
relations that also satisfy the edge-mapping property, which is defined in Section 5.2.

5.1 Dominance Relations through s-Effectivity

We start by proving that every irreflexive relation on a set of outcomes A is obtainable through
B-effectivity and vice versa.

Theorem 2. Let R be a binary relation on a finite set A and y an arbitrary comprehension
condition. Then, R is obtainable through [3-effectivity under y if and only if R is irreflexive.

Proof. If |A| = 1 the proof is trivial and for the remainder of the proof we will assume that A
contains at least two outcomes. The only-if direction is also trivial, as the dominance relation of
any finite NTU game is irreflexive.

For the opposite direction, by virtue of Lemma 2, it suffices to give the proof for the case in
which y is tight. Consider an arbitrary irreflexive relation R on a set A along with a particular
finite NTU game Vg = (N, H,V) in the collection of games for R as defined in the proof of
Theorem 1. The set N of players and the set H of feasible outcomes are fixed by R, but we
still have to define V. Let A be enumerated as ay, ..., ap. Then, for each u € H there is some
1 < m < |A| such that u = u(a,,). For each player i € N we define an outcome a; € A as follows.
For each a € A, let,

min{m: aRa,,} if aRb for some b € A,

la Ja

a: =a’; =a, where k=1{ ]
min{m: a,, # a} otherwise.

Observe that u;(a;) = minyey u; for each i € N. Define for each coalition C,
Az = | J{aeA: uc) < uctap)
ieC

and set
Xe = {uc(a): ae€ AZ}

Obviously, X C H(. for each coalition C. Then, set for each coalition C in N,

V(C) = {HC if {i4, jo} € C, for some a € A,

X 2 otherwise,
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Defined thus, V is clearly in the collection of games for R as defined in the proof of Theorem 1.

It suffices to prove that V can be obtained through S-effectivity. To this end we construct
a normal-form game G&, which through S-effectivity induces a unique finite NTU game Vg.
We then show that Vp = Vg. Define Gg = (N,S,2,g,U) with Q = A, N = {iy, ju: a € A},
and U = (u;;)ien, jea as in the proof of Theorem 1. Moreover, for each player i in N, we have
S =1{0,1} x{0, 1} x {1, ...,]A|}, with representative element s; = (s} , s?, s?). This leaves us with
the definition of the outcome function g. Suppose strategy profile s is played. Intuitively, the

coalition C(s) consisting of all pairs i and j with sl.1 = s}. = 1 is then formed. Formally, we define

cr=\ i e i sh= st =11

acA

The members of C(s) then decide whether the game is continued by all players in N playing
the modulo game M(A,|A|) or the modulo game M(Afc(s), |A]). The latter is played if sl.2 =0
for all i € C(s) and C(s) # N, the former, otherwise. Observe that this also covers the case in
which C(s) = 0. Depending on which modulo game is played, the outcome is then determined

by $3 = (S?)ieN- Let for each non-empty B C A the function ¢p: NV — N be defined such that

for x = (x;)ieny € NV,
¢p(x) =1+ [Z x; mod |B|).
ieN

Formally, we define the outcome function g such that for all strategy profiles s € S,

$a(s®) if C(s) = N or s? = 1 for some i € C(s),

#p(s>) for B=A* otherwise.

g(s) =a,, where m= {
_C(S) £

Let H = {u(g(s)): s € S} and let
Vp(C) = {xc € Hc: C is p-effective for xc in Gg}.

Define Vg = (N, H’, Vg). Then, having assume the comprehension condition y to be tight, Vg
clearly B-corresponds to Gg under y.

To show that Vg = Vg, we first prove that H = H' = {u(g(s)): s € S}. As it is obvious that
{u(g(s)): s € S} C H, consider an arbitrary u € H. Then, u = u(a,,) for some 1 < m < |A|. Now
consider the strategy profile (s;);ey such that

i =

1,1,m) ifi=1
(1,1,|A]) otherwise.
Now C(s) = N and, informally, the modulo game M(A, |A]) is played. Hence, g(s) = oa(s>) = ap
and u(ay,) € {u(g(s)): s € S}, as desired.
It remains to be shown that for each coalition C in N, V(C) = Vg(C). To this end, first
consider an arbitrary coalition C containing a pair i* and j*. Then, V(C) = H¢. Having assumed
the comprehension condition y to be tight, trivially, Vg(C) C Hc. To show that also Hc C V(C),
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consider an arbitrary u € H. There is some 1 < m < |A| such that u = u(a,,). Now consider an
arbitrary strategy profile s = (s;)ien. Let t = (t;)ien be the strategy profile such that for all i € N

t = (1’15m1) lfl:l*,
L1, s)  otherwise.

where m’ satisfies

m=1+ [[m + Z s?] mod |A|].

i#i*
Because tl.l* =t} =1, we have {i*, j*} € C(tc,s_c). As ti = 1, moreover, (¢, s_¢) leads to
the modulo game M(A, |A|) being played. By choice of m’, this leads to outcome a,, to come
about. Formally, it is also easily appreciated that g(¢c, s_.¢) = a,,. Hence, C is B-effective for
u(a,) = xc and xc € Vg(C), as desired.

Finally, consider an arbitrary coalition C that contains no pairs, i.e., fornoa € A, {i,, j,} € C.
Also consider an arbitrary x¢ € RC. First assume that xc € V(C). Then, x¢ = uc(a,,) for some
I <m < |Al and xc < uc(a;.) for some i* € C. Consider an arbitrary strategy profile s € § and
define a strategy profile t = (#;);ey such that t; = s; for all j # i* and #; = (0,0,m’), where m’

satisfies
m=1+ [[m + > s?] mod |B|],

i#i*
for B = A if sl.2 = 1 for some i € C(s) and B = A*—C(s)’ otherwise. Because tl.l* = 0 we
have i* ¢ C(s_c,tc). Hence, (s_c, tc) leads to some modulo game M(B, |A]) being played with
an € B. Moreover, the choice of m’ guarantees a,, as the outcome. Formally, it is easily checked
that g(s_c, 1c) = ap. It follows that xc = uc(a,) € Vg(C).

For the opposite direction, assume x¢ € Vg(C). Let D be the set of partners of the members
inC,i.e.,
D ={j € N: jis the partner of some i € C}.

Because C contains no pairs, C and D are disjoint. Moreover, {a:: i € C} = {a;: i € D}. Also
ucup(a) > ucup(b) implies uc(a) > uc(b) for all a,b € A. Hence, Ay, € A. Let further
E = N\ (CU D). Thus, E only contains pairs, i.e., if i and j are partners, then i € E if and only
if j € E. Now let s = (s;);ey be the strategy profile such that

(1,1,1) ifieE,
S:
" 10,1,1) otherwise.

Then, informally, if the players in E U D adhere to s, no matter which joint strategy C adopts, the
coalition £ will be formed and the modulo game M(A( ,,, |A]) will played. Because xc € Vg(C),
there is some strategy profile ¢ = (#;);ey such that uc(g(s_c, tc)) > xc. Observe that g(s_c, t¢c) €

Agp and, since A, € Ag, also g(s—c, Ic) € A(.. By tightness of y and C containing no pairs,

cuDp =
there is some b € A with x¢c = uc(b) and, therefore, b € A*C as well. Hence, uc(b) € Xz and we
may conclude that xc € V(C). |
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(I, ) (1,1 (1,1
(c) (1,1) (1,0) (0,1)
(1,1) (0,1) (1,0)

(B)

Figure 3: Example showing that it can occur that two outcomes dominate each another in a
graph obtained through a-effectivity, where u(a) = (1,0), u(b) = (0,1) and u(c) = (1,1). In
the two-player non-cooperative game depicted on the right player 1 chooses rows and player 2
columns.

5.2 Edge-Mappings and the Edge-Mapping Property

For dominance graphs obtained through a-effectivity matters are slightly more complicated than
for those obtained through g-effectivity. For instance, it is not the case that every irreflexive
dominance relation can be obtained through a-effectivity. To appreciate this, consider the dom-
inance graph on two alternatives a and b such that a and b dominate each other, i.e., a > b
as well as b > a. Now assume for a contradiction that this graph can be induced through a-
effectivity. As a > b, there must be some coalition C that is a-effective for outcome a and such
that all of its members strictly prefer outcome a to outcome b, i.e., uc(a) > uc(b). Similarly,
because b > a there is some coalition D that is a-effective for outcome b and up(b) > up(a).
It follows that C and D are disjoint. Moreover, by @-consistency, there is some outcome ¢ such
that ucyp(c) > (uc(a), up(b)). Clearly, c has to be distinct from both a and b, a contradiction.
On the other hand, a dominance graph containing alternatives that dominate each other does
not preclude that dominance relation being obtainable through a-effectivity. Consider, for in-
stance, the dominance graph on three alternatives, a, b and ¢, depicted in Figure 3. There al-
ternative a dominates alternative b and alternative b dominates alternative a. Nevertheless, the
graph is obtainable through a-effectivity from the non-cooperative game depicted on the right.
If a dominance relation > is obtained through a-effectivity from a normal-form game, it is
worth remarking that a >¢ b does not so much mean that coalition C has a strategy that, no
matter which strategies the other players adopt, a is the outcome of the game. Rather, a >¢ b
signifies that in the normal-form game coalition C has a strategy at her disposal which guaran-
tees, irrespective of the strategies the other players adopt, that the outcome falls within a set of
outcomes each of which is at least as good for the members of C as a and strictly better than b.
Accordingly, it is possible to associate with each edge (a, b) in the dominance relation > a so-
called witnessing coalition C, along with such a set of outcomes that are at least as good as a
and strictly better than b for all members in C. Moreover, for all distinct edges (a, b) and (c, d)
with disjoint witnessing coalitions these sets of outcomes should have a non-empty intersection.
Otherwise the witnessing coalitions of (a, b) and (c, d) could each play a strategy that guarantees
the outcome to fall within disjoint sets, which is impossible. Accordingly, if a binary relation R
is obtainable through a-effectivity, it must at least be possible to associate with each edge (a, b) a
set of outcomes containing @ but not b. Moreover, any such so-called edge mapping has to satisfy
a number of consistency conditions. For instance, if both (a, ) and (b, a) are edges in R, they
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have disjoint witnessing coalitions. Hence, the edge mapping should associate overlapping sets
of outcomes with (a, b) and (b, a). The full set of consistency conditions is summarized in the
edge-mapping property below. We will see that binary relations obtainable through a-effectivity
are completely characterized by irreflexivity and the edge-mapping property.

Formally, we define an edge mapping for a given irreflexive binary relation R on a set A as a
function ¥: A X A — 24 such that for each edge (a,b) € R we have a € y(a,b) and b ¢ y(a, b).
Observe that an edge mapping ¢ is not commutative. Rather, in general ¥(a, b) # (b, a). Given
an edge mapping ¥ for R, we say that two edges (a, b) and (c, d) in R are y-exclusive whenever
at least one of the following two conditions holds:

(i) {a,b} N y(c,d) # 0 and d € y(a, b),
(i) {c,d} N y(a,b) # 0 and b € Y(c, d).

In this context it is worth observing that for every asymmetric relation there is an edge mapping ¥
such that no two edges are y-exclusive. Merely set ¥/(a, b) = {a}. Then, for all edges (a, b) and
(c,d) such that {a, b}Ny(c,d) # 0, either a = c or b = c. If the former we have d # a immediately,
if the latter this follows by asymmetry. In either case d ¢ ¥(a, b) (also see Corollary 1, below).
On the other hand, for any alternatives a, b in A, if both (a,b) € R and (b, a) € R, (a, b) and (b, a)
are y-exclusive for any edge mapping . Intuitively, (a, b) and (c, d) being y-exclusive means
that the witnessing coalitions of (a, b) and (c, d) have to be disjoint given . To appreciate this,
recall the intuitive interpretation of y(a, b) as a set of outcomes that are at least as desirable
as a and strictly more desirable than b for the members of the coalition witnessing (a, b). Now
assume (7) to hold but that some player i is member of both the witnessing coalition for (a, b) as
well as the one witnessing (¢, d). As {a, b} N yY(c,d) # 0, then

ui(a) > ui(b) > ui(c) > u;i(d).

Hence, d ¢ ¥(a, b) and a contradiction follows, meaning that the witnessing coalitions of (a, b)
and (c, d) have to be disjoint. An analogous argument holds for (i7). This idea is made precise in
Lemma 5, below.

The edge-mapping property is then defined as follows.

Definition 5 (Edge-mapping property). Let R € A X A a binary relation on a set A. R is said to
satisfy the edge-mapping property (EMP) if an edge mapping y: A x A — 24 exists such that
Ma.byer ¥(a, b) # O for each subrelation R” C R of which the edges are pairwise /-exclusive.

Informally, the edge-mapping property guarantees that disjoint witnessing coalitions under
the edge-mapping ¢ cannot force the game to end in different outcomes.

Example 3. Consider the three binary relations, R, R, and R3 depicted in Figure 4. Only R
satisfies the edge-mapping property in virtue of the edge mapping  summarized in the table
below.

(xy) Y(xy)
(a,b) {a,d}
(a,c) {a,d}
(b,a) {b,d}
d,b) {d}
d,c) {d}
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© U

(R1) (R2) (R3)
Figure 4: Of the three binary relations depicted, only R; satisfies the edge-mapping property.

Then d € y(x,y) for all x,y € {a, b, c,d} and, therefore, cannot fail to satisfy EMP. In R;, the
edges (a,b) and (b, a) are clearly y-exclusive for every edge mapping ¢, as b € y(b,a) and
a € y(a,b). Suppose ¥ were an edge mapping with respect to which R; satisfies EMP. In that
case, Y(a,b) = {a,c}, y(b,a) = {b,c}, and b € Y(b,c). Now (a,b) and (b, c) are y-exclusive
because ¢ € ¥(a, b) and b € (b, c) whereas (b, a) and (b, ¢) are y-exclusive because b € (b, c)
and ¢ € Y(b,a). As, however, a ¢ y(b,a), b ¢ W¥(a,b) and c & ¥ (b, c), Yy(a, b)Ny(b,a)N(b,c) = 0.
Hence, R, does not satisfy EMP. We leave it to the avid reader to verify that R3 does not satisfy
EMP either.

We find that the dominance relation of every a-consistent finite NTU game satisfies the
edge-mapping property.

Lemma 4. The dominance relation of every a-consistent finite NTU game satisfies the edge-
mapping property.

Proof. Let > be the dominance relation of an a-consistent finite NTU game (N, H, V). For all
u,v € H with u > v, there is some coalition C(u, v) such that uc,,) > vc,y). Moreover, there is
some x € V(C(u,v)) with xcq,y) > Ucwy) > Vew,y). Now define y: H X H — 2H such that, for
allu,ve H,

Y(u,v) ={x € H: Xc@uy) = UC@uy) > VC(uw)}-

Obviously, y is an edge mapping for the dominance relation >, as for all u,v € H we have u €
Y(u,v) and v ¢ ¥(u,v). Let ul vl ., u™, v € H such that (u!,v)),... ", V™) are pairwise -
exclusive edges in the dominance relation >. For each 1 < k < m, we have C; denote the
coalition C(uk, V%).

First, we establish that the coalitions C; and C; are disjoint, for all 1 < i < j < m. Without
loss of generality we may assume that {u',v'} N Y(u/,v/) # 0 and v/ € Y(u',v"). Now observe
that the former implies that ”lcj > vjcj or VIC,- > vjcj, whereas the latter yields both VJci > ”lci and
v(. 2 vi. Hence, C; N C; = 0. We now show that (<, ¥(',v') # 0. Foreach 1 <k <m
there is some x¢, € V(Cy) such that x¢, > u’ék > v’ék. Because C1, ..., Cy are pairwise disjoint

and V is a-consistent, there is some u* € H such that uzlu-nuc > xc,u-uc,- It follows that
u* € y(u',v') for all 1 < i < m. Hence, (<j<m ¥(u!, V') # 0, which concludes the proof. O
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With Lemma 3, every finite NTU game obtained through a-effectivity is @-consistent. Hence,
Lemma 4 implies that the dominance relation of any such game satisfies the edge-mapping prop-
erty.

5.3 Dominance Relations through a-Effectivity

In order to obtain a full characterization of the dominance relation that can be obtained through
a-effectivity, we construct for each irreflexive relation R with the edge-mapping property a non-
cooperative game GR. We then show that R is induced as the dominance relation of the NTU
game that a-corresponds to GR. The players of this game are defined by the weak (i.e., reflexive,
transitive and complete) orders over the outcome set A. Thus, by contrast to the constructions
used in the proofs of Theorems 1 and 2, the number of players is exponential, rather than linear,
in the number of vertices.

Let #/(A) denote the set of weak orders P over the set A. We write a Zp b to signify that
(a,b) € P. Also a ~p b denotes that both @ >p b and b >p a, and a >p b that a =p b but not
b 2p a. Then, define, for each X C A witha € X and b ¢ X,

CX,a,b)={P € #(A): x zpa>pbforall x € X}.

If an edge mapping ¢ is fixed in the context we will denote C((a, b),a, b) by Cy(a,b), even
omitting the subscript if i is clear from the context. Before we give our characterization result,
we first prove a lemma, establishing the exact conditions under which two coalitions Cy(a, b)
and Cy(c, d) are disjoint.

Lemma S. Let be an edge mapping for an irreflexive relation R on A. Then, for all (a,b), (c,d) €
R,
Cyla,b) N Cy(c,d) = 0 if and only if (a, b) and (c,d) are y-exclusive.

Proof. For the if-direction assume (a, b) and (¢, d) to be y-exclusive. Without loss of generality
we may assume that {a, b} N Y(c,d) # O and d € Y(a,b). From the former follows that either
a>pdorb >pdforeach P € C(c,d), whereas the latter yields both d >p a and d 2p b for each
P € C(a,b). Hence, C(a,b) N C(c,d) = 0.

For the opposite direction assume that (a, b) and (c, d) are not y-exclusive. Then,

(i) d € y¥(a,b) implies {a, b} N Y(c,d) = 0, and
(ii) b € Y(c,d) implies {c,d} NyY(a,b) = 0.

We distinguish three cases: (1) d € ¥(a,b), (2) b € Y(c,d) and (3) neither d € Y(a, b) nor
b € Y(c,d). First assume d € Y(a,b). Then, d # b. By (i), moreover, {a,b} N Y(c,d) = 0.
Hence, a # c and b ¢ y(c,d). Therefore, there exists a weak order P on A such that for all
x € (Y(a,b) Uyl(c,d)) \ {a,d},

x>pa~pd>pb.

Observe that both P € C(a,b) and P € C(c,d). Hence, C(a,b) N C(Y,c,d) # 0. Case (2) is
covered by an analogous argument.
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Finally, in case (3), we have a # b, ¢ # d, a # d as well as b # c¢. Moreover, {b,d} N
(W(a,b) U Y(c,d)) = 0. It follows that there is a weak order P on A such that for all x €
Y(a,b) Vy(c,d)) \ {a, c},

x>pa~pc>pb~pd.
Then, both P € C(a, b) and P € C(c,d) and we may conclude C(a,b) N C(c,d) # 0. m|

We are now in a position to prove our characterization result for dominance graphs obtained
through a-effectivity. Even if the edge-mapping property may appear a bit contrived, it is a
property of binary relations that is defined independently of their interpretation as dominance
relations. Moreover, Theorem 3 can be used to obtain more intuitive results. Three of these are
captured in Corollaries 1, 2, and 3.

Theorem 3. Let R be a binary relation on a finite set A and y a comprehension condition.
Then, R is obtainable through a-effectivity under y if and only if R is irreflexive and satisfies the

edge-mapping property.

Proof. The only-if direction is an immediate consequence of Lemma 3 and Lemma 4: Every
finite NTU game that @-corresponds to some normal-form game under y is a-consistent, and the
dominance relation of every a-consistent finite NTU game satisfies the edge-mapping property.

For the opposite direction, assume R to satisfy the edge-mapping property and letyy: AXA —
24 be the witnessing edge mapping. We first construct a normal-form game GX = (N, S, Q, g, U),
where the set of players N is given by the set #(A) of weak orders over A and Q = A =
{ai,...,aa)}. By virtue of Lemma 2 we may assume that y is tight. Each player P defines his
own preference relation over A, i.e., up(a) > up(b) if and only if a 2p b. We have the utility
matrix U = (4;j)ien, jea represent these preferences. By ¢'(R) we denote the set {Cy(a, b): aRb}.
In the remainder of the proof we will omit the subscript ¢ in Cy(a, b). For each player i € N, the
set S; of strategies is defined as §; = A X A X {1, ...,|A|}, with typical element s; = (sl.l, sl.z, s?).

This leaves us with the definition of the outcome function g: S — A. For a better under-
standing, however, we first give an informal description of the game G¥ and introduce a number
of notational conventions. The game G® can be understood as follows. By choosing the strate-
gies s} and sf a player announces which coalition C(x,y), where x,y € A and xRy, he wishes
to belong to. Only if all members of a coalition express the wish to belong to that very coali-
tion, it is actually formed. In this way the simultaneous formation of overlapping coalitions is
precluded. Then, a modulo game M(X, |A]) is played, where X C A and the outcome of which
is determined by (sf),-eN. The resulting outcome is also the outcome of GX. Accordingly, each
coalition C(a, b) in € (R) can force the outcome of the game to fall within the set y¥(a, b) by
choosing an appropriate joint strategy. This guarantees the members i of C(a, b) a utility of
minimally «;(a), no matter which strategies the other players adopt.

Formally, for each strategy profile s = (s!, s2,83)in S, we say that C(a, b) forms at s if
s} = a and sl.2 = b for all i € C(a,b). Now define €'(s) as the set of coalitions in %' (R) that form
at s, i.e.,

€ (s) ={C(a,b) € €(R): C(a,b) forms at s}.

Defined thus, all coalitions in % (s) are pairwise disjoint. Moreover, by virtue of Lemma 5, for
alla, b, c,d € A with C(a, b) and C(c, d) distinct coalitions in €(s), the edges (a, b), (c,d) € R are
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y-exclusive. With each strategy profile s = (s!, 52, s*) we associate a set X(s) C A of outcomes
defined as,

X(s) = [ (@, b): C(a,b) € E(s)}.

We postulate that X(s) = A in case €' (s) = 0. As R satisfies the edge-mapping property, for each
strategy profile s the set X(s) is non-empty.

We are now in a position to formally define the outcome function g, such that for all strategy
profiles s = (s, s, 53)in S,

g(s) =a,, where m=1+ (Z s? mod IX(s)I].
ieN

Accordingly, by merely forming, each coalition C(a, b) in €’ (R) has a strategy that guarantees
the outcome of G to fall within (a, b), no matter which strategies the other players adopt.
Let Vf be the finite NTU game (N, H, V) where H = {u(g(s)): s € S} and for each coali-
tion C in N,
Vo (C) = {xc € Hc: C is a-effective for x¢ in GS}.

Having assumed the comprehension condition y to be tight, VX clearly a-corresponds to G%, so
it remains to be shown that VX induces R.

Observe that u(a) = wu(b) if and only if a = b. The if-direction is trivial. For the other
direction, observe that there is some weak order P € #(A) such that a >p b. As P € N,
also up(a) > up(b) signifying that a # b. Consequently, |H| = |A| and it suffices to prove that for
all a,b € A, aRb if and only if u(a) > u(b).

Consider arbitrary a,b € A and assume aRb. Then, C(a,b) € € (R). Let s = (s;)ien be
strategy profile such that s; = (a,b, 1) for all i € C(a,b) and consider an arbitrary strategy
profile t = (tj)ien. Let s* = (Sc(ap), t-c@p))- Then, C(a,b) is formed at s*, i.e., C(a,b) €
€' (s*). Hence, X(s*) C y(a,b) and thus g(s*) € ¥(a, b). Moreover, uc( ) (8(s*)) > ucp(a) >
uc(a,p)(b). As t had been chosen arbitrarily, it follows that uc(,p)(a) € Vo(C(a, b)). Therefore,
u(a) dominates u(b) via C(a, b), which yields u(a) > u(b).

For the opposite direction, assume that a > b. Clearly, a # b. Also, there is some coalition C
in N and some strategy profile § € S such that,

uc(g(8c,t-c)) = uc(a) > uc(b), forallresS. (%)

observe that C # N—otherwise C would also have contained weak orders P with up(b) >
up(a)—and let i* € N \ C. Now assume for a contradiction that it is not the case that aRb and
define for each 1 < k < |A| a strategy profile s[k] = (s[k];)ien such that for all i € N

Sl = {(a, b k) ifi=i,

(a, b, E?) otherwise.
Observe that for each strategy profile s = (s', 52, %), the set €(s) of coalitions that form under s

as well as the set X(s) only depend on the first two components s' and s> of 5. Accordingly,
there is some set of disjoint coalitions ¢* and some set X* C A of outcomes such that €* =

19



€ (3¢, slkl-¢) = €3¢, s[k']-¢c) and X* = X (3¢, s[k]-¢) = X(3¢, s[k’]-¢) for all 1 < k, k" < |A|.
Also observe that C(c,d) € %" implies C(c,d) C C for all c,d € A. Moreover, for each
1 <m < |A| such that a,, € X* we can find a 1 < k < |A| such that

8¢, slkl-c) = am

by setting k = m’, where m’ satisfies

m=1+ ([m' + Z §13) mod |X*|].
i#i*
As a consequence we may assume that b ¢ X*, for otherwise there were some 1 < k < |A| with
g(8¢, slkl-¢) = b, which would be at variance with (x). This, in turn, implies that X* # A.
Accordingly, there are some ¢, d € A such that C(c,d) € €* and C(c,d) C C.

Observe that for all (¢,d) € €* we have d = b. Assume d # b and consider the weak order
P e W (A) with x ~p y >p dforall x,y € A\ {d}. Clearly, P € C(c,d) and, hence P € C. Hence,
it is not the case that up(a) > up(b), which, however, is at variance with (x).

It now follows that |¢*| = 1. To appreciate this, consider arbitrary c,¢’,d,d’ € A such that
both C(c,d) € €* and C(c’,d’) € €*. Then, ¢ = ¢’ = b and consider the weak order P € # (A)
with x ~p y >p b forall x,y € A\ {b}. Asboth P € C(c,d) and P € C(c’,d"), C(c,d) and
C(c’,d’) are not disjoint. Hence, C(c,d) = C(c’,d’).

Thus, €* = {C(c, b)} and X* = y(c, b) for some ¢ € A. To show that ¢ = a, assume for a
contradiction that ¢ # a. Then, there is a weak order P € #'(A) with a >p ¢ >p b. Observe
that P € C(c,b) and, hence, P € C. Moreover, as obviously ¢ € ¥(c,b), i.e., c € X*, there
is some 1 < k < |A| such that g(5¢, slk]-¢) = ¢. Now, however, up(a) > up(g(3c, slkl-c¢)),
contradicting (). Therefore, C(a, b) € €* and, by construction, aRb holds. |

The following corollaries show how the edge-mapping property can be employed. The first
two can also easily be obtained by other means, but are included for illustrative purposes. Corol-
lary 3 is slightly more substantial.

Corollary 1. Let y be a comprehension condition. Then, every asymmetric relation on a finite
set A is obtainable through a-effectivity under y.

Proof. Define y: A x A — 24 such that y(a,b) = {a} for all (a,b) € R. Obviously, i is an
edge mapping. Asymmetry of R, moreover, guarantees that no two edges in R are y-exclusive.
Hence, R satisfies the edge-mapping property trivially. Theorem 3 then yields the desired result.

O

Corollary 2. Let y be a comprehension condition and R an irreflexive relation on a finite set A
such that there is some a* € A with bRa* forno b € A. Then, R is obtainable through a-effectivity
under y.

Proof. Define ¢: A x A — 24 so that y(b,c) = {a*,b} for all b,c € A with bRc. Consider
arbitrary such b, c € A. Then, obviously, b € ¥(b, c). By irreflexivity of R, we have ¢ # b and,
since a* is undominated, also ¢ # a*. Hence, ¢ ¢ y(b,c) and we may conclude that ¢ is an
edge mapping for R. Now observe that a* € (¢, )er ¥(b, ¢). Accordingly, the relation R has the
edge-mapping property and Theorem 3 yields the desired result. |
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Corollary 3. Let y be a comprehension condition and A a finite set of at least two outcomes.
Then, the maximal irreflexive relation {(a,b) € A X A: a # b} on A is not obtainable through
a-effectivity under y.

Proof. Assume for a contradiction that the maximal irreflexive relation satisfies the edge-mapping
property and let i be the witnessing edge mapping. We first prove by induction on k that
for all 0 < k < |A| — 2 there are distinct c¢1,...,cx € A such that the edges (a,b), (b,a),
(a,cy),...,(a,cy) are pairwise y-exclusive. For k = 0 merely observe that (a, b) and (b, a) are Y-
exclusive as a € y(a, b) and b € Y (b, a) by the definition of an edge mapping. For the induction
step, assume that a, b, cy, ..., cy € A exist such that (a, b), (b, a), (a,cy1),...,(a,cy) are pairwise
y-exclusive. Having assumed the maximal irreflexive relation to satisfy the edge-mapping prop-
erty in virtue of , we have (1), ex, ¥(x,y) # 0, where Xi = {(a, D), (b,a)} U{(a,c;): 1 <i <k}
Observe, however, that a ¢ ¥(b,a), b ¢ ¥(a,b) and ¢; ¢ ¥(a,c;) for each 1 < i < k. Hence,
there is some cy4; distinct from a, b, cy,...,cx such that ¢x1 € ¥(a,b), ckr1 € W(b,a) and
Cik+1 € ¥(a, c;) for each 1 < i < k. Now consider the edge (a, ck+1). Obviously, a € ¥(a, ci+1). It
follows that the edges (a, b), (b, a), (a,c1), ..., (a, cir+1) are pairwise y-exclusive.

To conclude, consider the case where k = |A| — 2. Then, {a,b,c1,...,cja-2} = A and the
edges (a,b),(b,a),(a,c1),...,(a,cu—-2) are pairwise y-exclusive. However, a ¢ y(b,a) and
x & Y(a, x) for each x € A\{a}. Hence, [\, y)ex,,_, ¥(x,y) = 0, contradicting the assumption that
the maximal irreflexive relation satisfies the edge-mapping property. |

6 Conclusion

We characterized the structural restrictions of dominance relations in coalitional games that
denote whether there is an effective coalition that unanimously prefers one outcome to another.
We have shown that any irreflexive relation over a finite set can be obtained as the dominance
relation of some ordinary, monotonic, and simple finite NTU game, even if we require that game
to be induced by a non-cooperative game through S-effectivity. Dominance relations obtainable
through a-effectivity are characterized by a more restrictive condition, which we refer to as the
edge-mapping property.

Many well-known dominance-based solution concepts from coalitional game theory (e.g.,
the core or stable sets) lack existence, uniqueness, or even both. Social choice theory, on the
other hand, has produced solution concepts—e.g., the Banks set, the uncovered set, or the min-
imal covering set—of which existence, uniqueness, and several other desirable properties are
guaranteed for asymmetric dominance relations on a finite set of alternatives (see, e.g., Laslier,
1997). An important question for future work is whether there are extensions of these concepts
that retain most of their attractive properties for dominance relations that are not anti-symmetric.
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Notes

'There are also numerous concepts that take into account more structure of the social situation at hand. Thus,
Fishburn (1977) distinguishes C1 social choice functions, which merely involve the dominance relation, from C2
and C3 functions, for which this is not the case. In cooperative game theory, the dominance relation alone does not
suffice to determine the bargaining set, the kernel, or the nucleolus. The Shapley value is defined on an entirely
different basis.

2 Although in the cooperative model of Bergin and Duggan (1999) utility is taken to be non-transferable, it is
also crucially different from ours in that comprehensiveness is assumed throughout. Also the games they construct
to prove their results involve an infinite number of strategies for the players. Consequently, without modification,
Bergin and Duggan’s Theorems 1 and 2 are not applicable to our finite model.

3This follows from Bergin and Duggan’s characterization of NTU games supported by a- and B-effectivity in the
comprehensive setting. However, if, for each coalition C, V(C) is compact and convex, superadditivity is also satisfied
for NTU games obtained through S-effectivity. The proof of this result is non-trivial and relies on Kakutani’s fixed
point theorem (Aumann, 1959; Aumann and Peleg, 1960). Also, in settings where comprehensiveness is assumed,
this follows from Bergin and Duggan’s Theorem 2.
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