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Abstract. In this paper we study a new approach to classify mathemat-
ical theorems according to their computational content. Basically, we are
asking the question which theorems can be continuously or computably
transferred into each other? For this purpose theorems are considered
via their realizers which are operations with certain input and output
data. The technical tool to express continuous or computable relations
between such operations is Weihrauch reducibility and the partially or-
dered degree structure induced by it. We have identified certain choice
principles on closed sets which are cornerstones among Weihrauch de-
grees and it turns out that certain core theorems in analysis can be
classified naturally in this structure. In particular, we study theorems
such as the Intermediate Value Theorem, the Baire Category Theorem,
the Banach Inverse Mapping Theorem, the Closed Graph Theorem and
the Uniform Boundedness Theorem. Well-known omniscience principles
from constructive mathematics such as LPO and LLPO can also naturally
be considered as Weihrauch degrees and they play an important role in
our classification. Our classification scheme does not require any partic-
ular logical framework or axiomatic setting, but it can be carried out
in the framework of classical mathematics using tools of topology, com-
putability theory and computable analysis. Finally, we present a number
of metatheorems that allow to derive upper bounds for the classification
of the Weihrauch degree of many theorems and we discuss the Brouwer
Fixed Point Theorem as an example.

Keywords: Computable analysis, constructive analysis, reverse mathe-
matics, effective descriptive set theory

? This project has been supported by the Italian Ministero degli Affari Esteri and the
National Research Foundation of South Africa (NRF)

Andrej Bauer, Peter Hertling, Ker-I Ko (Eds.) 
6th Int'l Conf. on Computability and Complexity in Analysis, 2009, pp. 95-106 
http://drops.dagstuhl.de/opus/volltexte/2009/2262



96 Vasco Brattka and Guido Gherardi

1 Introduction

The purpose of this paper is to propose a new approach to classify mathematical
theorems according to their computational content and according to their logical
complexity3.

1.1 Realizability of theorems and Weihrauch reducibility

The basic idea is to interpret theorems, which are typically Π2–theorems of the
form

(∀x ∈ X)(∃y ∈ Y )(x, y) ∈ A,
as operations F :⊆ X ⇒ Y, x 7→ {y ∈ Y : (x, y) ∈ A} that map certain input
data X into certain output data Y . In other words, we are representing theorems
by their realizers or multi-valued Skolem functions, which is a very natural ap-
proach for many typical theorems. For instance, the Intermediate Value Theorem
states that

(∀f ∈ C[0, 1], f(0) · f(1) < 0)(∃x ∈ [0, 1])f(x) = 0

and hence it is natural to consider the partial multi-valued operation

IVT :⊆ C[0, 1] ⇒ [0, 1], f 7→ {x ∈ [0, 1] : f(x) = 0}

with dom(IVT) := {f ∈ C[0, 1] : f(0) · f(1) < 0} as a representative of this theo-
rem. It follows from the Intermediate Value Theorem itself that this operation is
well-defined. The goal of our study is to understand the computational content
of theorems like the Intermediate Value Theorem and to analyze how they com-
pare to other theorems. In order to understand the relation of two theorems T
and T ′ to each other we will ask the question whether a realizer G of T ′ can be
computably or continuously transformed into a realizer F of T . In other words,
we consider theorems as points in a space (represented by their realizers) and we
study whether these points can be computably or continuously transferred into
each other. This study is carried out entirely in the domain of classical logic and
using tools from topology, computability theory and computable analysis [17].

In fact the technical tool to express the relation of realizers to each other is a
reducibility that Weihrauch introduced in the 1990s in two unpublished papers
[15, 16] and which since then has been studied by several others (see for instance
[11, 2, 3, 12, 10, 6, 13]). Basically, the idea is to say that a single-valued function
F is Weihrauch reducible to G, in symbols F ≤WG, if there are computable
function H and K such that

F = H〈id, GK〉.

Here K can be considered as an input adaption and H as an output adaption.
The output adaption has direct access to the input, since in many cases the input

3 This paper is only an extended abstract, but a full version with all definitions and
proofs is available for the interested reader [7].
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cannot be looped through G. Here and in the following 〈 〉 denotes suitable
finite or infinite tupling functions. This reducibility can be extended to sets
of functions and to multi-valued functions on represented spaces. The resulting
structure has been studied in [6] and among other things it has been proved that
parallelization is a closure operator for Weihrauch reducibility. To parallelize a
multi-valued function F just means to consider

F̂ 〈p0, p1, p2, ...〉 := 〈F (p0)× F (p1)× F (p2)× ...〉,

i.e. to take countably many instances of F in parallel.

1.2 Effective choice and boundedness principles

A characterization of the Weihrauch degree of theorems is typically achieved by
showing that the degree is identical to the degree of some other known principle.
We have identified certain choice principles that turned out to be crucial corner-
stones in our classification. These principles are co-finite choice, discrete choice,
interval choice, compact choice, closed choice, and are exposed in Sect. 3.

Often it is more convenient to consider these choice principles as bounded-
ness principles and in particular the principles of interval choice have equivalent
boundedness versions. In Sect. 3 we will present some boundedness principles
that correspond to the above mentioned choice principles.

In Sect. 3 we will show the equivalence of certain choice and boundedness
principles and we will compare them to omniscience principles. Omniscience
principles have been introduced by Brouwer and Bishop [1, 9] as non-acceptable
principles in the intuitionistic framework of constructive analysis.

– (LPO) For any sequence p ∈ NN there exists an n ∈ N such that p(n) = 0 or
p(n) 6= 0 for all n ∈ N.

– (LLPO) For any sequence p ∈ NN such that p(k) 6= 0 for at most one k ∈ N,
it follows p(2n) = 0 for all n ∈ N or p(2n+ 1) = 0 for all n ∈ N.

The abbreviations stand for limited principle of omniscience and lesser lim-
ited principle of omniscience. The realizers of these statements correspond to
discontinuous operations of different degree of discontinuity [16].

The parallelizations L̂PO and L̂LPO turned out to be particularly important

cornerstones in our classification scheme, since L̂PO is a Σ0
2–complete operation

in the effective Borel hierarchy [3], i.e. it is complete among all limit computable

operations with respect to Weihrauch reducibility and similarly L̂LPO is complete
among all weakly computable operations [10, 6]. Limit computable operations are
exactly the effectively Σ0

2–measurable operations and these are exactly those
operations that can be computed on a Turing machine that is allowed to revise
its output. We have defined weakly computable operations exactly by the above
mentioned completeness property in [6]. In Sect. 3 we will show how the choice
and boundedness principles are related to the omniscience principles and their
parallelizations.

Figure 1 illustrates the relation between the choice principles and other re-
sults discussed in this paper.
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Fig. 1. Constructive, computable and reverse mathematics

1.3 Theorems in functional analysis

As a case study we analyze a number of theorems from analysis and functional
analysis and we classify their Weihrauch degree. In particular, we will consider
in Sections 4, 5, 6 and 7 the following theorems:

– (BCT0) Given a sequence (Ai)i∈N of closed nowhere dense subsets of a com-
plete separable metric space X, there exists a point x ∈ X \

⋃
i∈NAi (Baire

Category Theorem).
– (BCT) Given a sequence (Ai)i∈N of closed subsets of a complete separable

metric space X with X =
⋃∞

i=0Ai, there is some n ∈ N such that An is
somewhere dense (Baire Category Theorem).

– (IMT) Any bijective linear bounded operator T : X → Y on separable
Banach spaces X and Y has a bounded inverse T−1 : Y → X (Banach
Inverse Mapping Theorem).

– (OMT) Any surjective linear bounded operator T : X → Y on separable
Banach spaces X and Y is open, i.e. T (U) is open for any open U ⊆ X
(Open Mapping Theorem).

– (CGT) Any linear operator T : X → Y with a closed graph(T ) ⊆ X × Y is
bounded (Closed Graph Theorem).

– (UBT) Any sequence (Ti)i∈N of linear bounded operators that is pointwise
bounded, i.e. such that sup{||Tix|| : i ∈ N} exists for all x ∈ X, is uniformly
bounded, i.e. sup{||Ti|| : i ∈ N} exists (Uniform Boundedness Theorem).



Effective Choice and Boundedness Principles 99

– (HBT) Any bounded linear functional f : Y → R, defined on some closed
subspace Y of a Banach space X has a bounded linear extension g : X → R
with the same norm ||g|| = ||f || (Hahn-Banach Theorem).

– (IVT) For any continuous function f : [0, 1] → R with f(0) · f(1) < 0 there
exists a x ∈ [0, 1] with f(x) = 0 (Intermediate Value Theorem).

– (BFT) Any continuous function f : [0, 1]n → [0, 1]n has a fixed point x ∈
[0, 1]n, i.e. f(x) = x (Brouwer Fixed Point Theorem).

– (BWT) Any sequence (xi)i∈N of numbers in [0, 1]n has a convergent subse-
quence (Bolzano-Weierstraß Theorem).

– (WAT) For any continuous function f : [0, 1]→ R and any n ∈ N there exists
a rational polynomial p ∈ Q[x] such that ||f−p|| = supx∈[0,1] |f(x)−p(x)| <
2−n (Weierstraß Approximation Theorem).

– (WKL) Any infinite binary tree has an infinite path (Weak Kőnig’s Lemma).

The Baire Category Theorem is an example of a theorem for which it mat-
ters which version is realized. In the formulation BCT0 it leads to a continuous
and even computable realizer, whereas the version BCT is discontinuous. The
realizers of the given theorems are operations of different degree of discontinuity
and our aim is classify the computational Weihrauch degree of these results.
The benefit of such a classification is that practically all purely computability
theoretic questions of interest about a theorem in computable analysis can be
answered by such a classification. Typical questions are:

1. Is the theorem uniformly computable, i.e. can we compute the output infor-
mation y ∈ Y uniformly from the input information x ∈ X?

2. Is the theorem non-uniformly computable, i.e. does there exist a computable
output information y ∈ Y for any computable input information x ∈ X?

3. If there is no uniform solution, is there a uniform computation of a certain
effective Borel complexity?

4. If there is no non-uniform computable solution, is there always a non-uniform
result of a certain arithmetical complexity or Turing degree?

Answers to questions of this type can be derived from the classification of
the Weihrauch degree of a theorem. In the diagram of Fig. 1 we summarize
some of our results. The arrows in the diagram are pointing into the direction of
computations and implicit logical implications and hence in the inverse direction
of the corresponding reductions. No arrow in the diagram can be inverted and
no arrows can be added (except those that follow by transitivity).

In Sect. 7 we provide a number of metatheorems that allow to determine
upper bounds of the Weihrauch degree of many theorems straightforwardly, just
because of the mere topological form of the statement. For instance, any classical
result of the form

(∀x ∈ X)(∃y ∈ Y )(x, y) ∈ A

with a co-c.e. closed A ⊆ X × Y and a co-c.e. compact Y has a realizer that is
reducible to compact choice CK. The table in Fig. 2 summarizes the topological
types of metatheorems and the corresponding version of computability. We il-
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metatheorem computability unique case

open computable computable
compact weakly computable computable
locally compact limit computable non-uniformly computable

Fig. 2. Types of metatheorems, choice and computability

lustrate that these metatheorems are useful and we show that one directly gets
upper bounds for theorems such as the Brouwer Fixed Point Theorem and the
Peano Existence Theorem for the initial value problem of ordinary differential
equations.

2 Weihrauch reducibility, omniscience principles and
weak computability

In this section we briefly recall some definitions from [6] on Weihrauch reducibil-
ity. We assume that the reader has some basic familiarity with concepts from
computable analysis and otherwise we refer the reader for all undefined concepts
to [17]. In a first step we define Weihrauch reducibility for sets of functions on
Baire space, as it was already considered by Weihrauch [15, 16].

Definition 1 (Weihrauch reducibility). Let F and G be sets of functions of
type f :⊆ NN → NN. We say that F is Weihrauch reducible to G, in symbols
F ≤W G, if there are computable functions H,K :⊆ NN → NN such that

(∀G ∈ G)(∃F ∈ F) F = H〈id, GK〉.

Analogously, we define F ≤sW G using the equation F = HGK and in this case
we say that F is strongly Weihrauch reducible to G.

We denote the induced equivalence relations by ≡W and ≡sW, respectively.
In the next step we define the concept of a realizer of a multi-valued function

as it is used in computable analysis [17]. We recall that a representation δX :⊆
NN → X of a set X is a surjective (and potentially partial) map. In general, the
inclusion symbol “⊆” indicates partiality in this paper. In this situation we say
that (X, δX) is a represented space.

Definition 2 (Realizer). Let (X, δX) and (Y, δY ) be represented spaces and
let f :⊆ X ⇒ Y be a multi-valued function. Then F :⊆ NN → NN is called
realizer of f with respect to (δX , δY ), in symbols F ` f , if

δY F (p) ∈ fδX(p)

for all p ∈ dom(fδX).

Usually, we do not mention the representations explicitly since they will be
clear from the context. A multi-valued function f :⊆ X ⇒ Y on represented
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spaces is called continuous or computable, if it has a continuous or computable
realizer, respectively. Using reducibility for sets and the concept of a realizer we
can now define Weihrauch reducibility for multi-valued functions.

Definition 3 (Realizer reducibility). Let f and g be multi-valued functions
on represented spaces. Then f is said to be Weihrauch reducible to g, in symbols
f ≤W g, if and only if {F : F ` f}≤W{G : G ` g}. Analogously, we define
f ≤sW g with the help of ≤sW on sets.

That is, f ≤W g holds if any realizer of g computes some realizer of f with
some fixed uniform translations H and K. It is clear that Weihrauch reducibil-
ity and its strong version form preorders, i.e. both relations are reflexive and
transitive.

One can show that the product of multi-valued functions f × g and the
direct sum f ⊕ g are both monotone operations with respect to strong and
ordinary Weihrauch reducibility and hence both operations can be extended
to Weihrauch degrees. This turns the structure of partially ordered Weihrauch
degrees into a lower-semi lattice with the direct sum operation as greatest lower
bound operation. It turns out that a very important operation on this lower semi-
lattice is parallelization, which can be understood as countably infinite product
operation.

Definition 4 (Parallelization). Let f :⊆ X ⇒ Y be a multi-valued function.

Then we define the parallelization f̂ :⊆ XN ⇒ Y N of f by

f̂(xi)i∈N :=
∞
X
i=0

f(xi)

for all (xi)i∈N ∈ XN.

We mention that parallelization acts as a closure operator with respect to
Weihrauch reducibility.

3 Choice and boundedness principles

In this section we study choice principles and boundedness principles. Both types
of principles are closely related to each other and they are also related to the
omniscience principles mentioned earlier. In some sense most of the boundedness
principles are just variants of the choice principles that are more convenient for
some applications.

By A(X) or A−(X) we denote the set of closed subsets of a metric space
X. The index “−” indicates that we assume that the hyperspace A−(X) is
equipped with the lower Fell topology and a corresponding negative information
representation ψ− (see [8] for details). All choice principles are restrictions of
the multi-valued choice map

Choice :⊆ A−(X) ⇒ X,A 7→ A,
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which is defined for non-empty closed sets A ⊆ X and maps any such set in a
multi-valued way to the set of its members. That is, the input is a non-empty
closed set A ∈ A−(X) and the output is one of the (possibly many) points
x ∈ A. We can define restrictions of the choice map by specifying the respective
domains and ranges.

Definition 5 (Choice principles). We define multi-valued operations as re-
strictions of the respective choice maps as follows:

1. CF :⊆ A−(N) ⇒ N, dom(CF) := {A ⊆ N : A co-finite}.
2. CN :⊆ A−(N) ⇒ N, dom(CN) := {A ⊆ N : A 6= ∅}.
3. CI :⊆ A−[0, 1] ⇒ [0, 1], dom(CI) := {[a, b] : 0 ≤ a ≤ b ≤ 1}.
4. CI

− :⊆ A−[0, 1] ⇒ [0, 1], dom(CI
−) := {[a, b] : 0 ≤ a < b ≤ 1}.

5. CK :⊆ A−([0, 1]) ⇒ [0, 1], dom(CK) := {K ⊆ [0, 1] : K 6= ∅ compact}.
6. CA :⊆ A−(R) ⇒ R, dom(CA) := {A ⊆ R : A 6= ∅ closed}.

We refer to these operations as co-finite choice, discrete choice, interval choice,
proper interval choice, compact choice and closed choice, respectively.

For practical purposes it is often more convenient to handle these choice
principles in form of the closely related boundedness principles that we define
now.

Definition 6 (Boundedness principles). We define the following multi-val-
ued operations:

1. BF : R< ⇒ R, x 7→ [x,∞).
2. BI :⊆ R< × R> ⇒ R, (x, y) 7→ [x, y], dom(BI) := {(x, y) : x ≤ y}.
3. BI

− :⊆ R< × R> ⇒ R, (x, y) 7→ [x, y], dom(BI
−) := {(x, y) : x < y}.

4. BI
+ :⊆ R< × R> → R, (x, y) 7→ [x, y], dom(BI

+) := {(x, y) : x ≤ y}.
5. B : R< → R, x 7→ x.

Proposition 1 (Discrete choice). BF≡sW CF≡W CN.

Proposition 2 (Interval choice). BI≡sW CI, BI
−≡sW CI

−, BI
+≤sW CA.

We recall that it is known that B is equivalent to C : A 7→ cfA, dom(C) =
A−(N) (which can be considered as countable closed choice).

Proposition 3 (Countable closed choice). B≡W C≡W L̂PO.

We have identified two chains of choice principles that are related in the given
way.

Corollary 1 (Choice hierarchies). We obtain

1. LLPO<W CI
−<W CI<W CK≡W L̂LPO<W CA.

2. LPO<W CN<W BI
+<W CA<W C≡W L̂PO.

3. LLPO<W LPO, CI
−<W CN, CI<W BI

+.

Corollary 2 (Countable choice principles). We obtain the following two

equivalence classes: L̂LPO≡W ĈI
−≡W ĈI≡W ĈK<W L̂PO≡W ĈN≡W ĈA.



Effective Choice and Boundedness Principles 103

4 Discrete Choice and the Baire Category Theorem

In this section we want to classify the Weihrauch degree of the Baire Category
Theorem and some core theorems from functional analysis such as the Banach
Inverse Mapping Theorem, the Open Mapping Theorem, the Closed Graph The-
orem and the Uniform Boundedness Theorem.

Theorem 1 (Baire Category Theorem). Let X be a non-empty complete
computable metric space. Then BCTX ≡W CN.

Theorem 2 (Banach Inverse Mapping Theorem). Let X,Y be computable
Banach spaces. Then IMTX,Y ≤W CN≡W IMT`2,`2 .

Theorem 3 (Open Mapping Theorem). Let X,Y be computable Banach
spaces. Then OMTX,Y ≤W CN≡W OMT`2,`2 .

Theorem 4 (Closed Graph Theorem). Let X,Y be computable Banach spa-
ces. Then CGTX,Y ≤W CN≡W CGT`2,`2 .

Theorem 5 (Uniform Boundedness Theorem). Let X,Y be computable
Banach spaces different from {0}. Then UBTX,Y ≡W CN.

A common feature of all the theorems discussed in this section that are
equivalent to CN are:

1. They are discontinuous and hence non-computable (since CN is so).
2. They admit non-uniform computable solutions (since CN has a realizer that

maps computable inputs to computable outputs).

3. They have ∆0
2–complete sequential counterexamples (since ĈN≡W C, any

realizer maps some computable sequence to some ∆0
2–complete sequence in

the arithmetical hierarchy).

All the properties mentioned here are degree theoretic properties and any
theorem equivalent to CN will be of the same category.

5 Interval Choice and the Intermediate Value Theorem

Theorem 6 (Intermediate Value Theorem). IVT≡sW CI.

We list some common features of all theorems that are equivalent to CI.

1. They are discontinuous and hence non-computable (since CI is so).
2. They admit non-uniform computable solutions (since CI has a realizer that

maps computable inputs to computable outputs).
3. They are uniformly computable under all classical conditions where the so-

lution is uniquely determined (since CI is weakly computable).
4. They have limit computable sequential counterexamples of any basis type

(since ĈI≡W WKL).

By a basis type we mean any set B ⊆ NN that forms a basis for Π0
1 subsets

of Cantor space {0, 1}N, such as the set of low points.
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6 Compact Choice and the Hahn-Banach Theorem

Theorem 7 (Hahn-Banach Theorem). HBT≡W CK.

Common features of all theorems equivalent to CK are:

1. They are discontinuous and hence non-computable (since CK is so).
2. They are uniformly computable under all classical conditions where the so-

lution is uniquely determined (since CK is weakly computable).
3. They have limit computable counterexamples of any basis type (since we

have that CK≡W WKL).

7 Metatheorems and Applications

In this section we want to discuss a number of metatheorems that allow some
conclusions on the status of theorems merely regarding the logical form of these
theorems. Essentially, we are trying to identify the computational status of Π2–
theorems, i.e. theorems of the form

(∀x ∈ X)(∃y ∈ Y ) (x, y) ∈ A,

where depending on the properties of Y and A automatically certain computable
versions of realizers of these theorems exist. In many cases this allows to get some
upper bound on the Weihrauch degree of the corresponding theorem straight-
forwardly.

Theorem 8 (Open Metatheorem). Let X,Y be computable metric spaces
and let U ⊆ X × Y be c.e. open. If

(∀x ∈ X)(∃y ∈ Y )(x, y) ∈ U,

then R : X ⇒ Y, x 7→ {y ∈ Y : (x, y) ∈ U} is computable.

Corollary 3 (Weierstraß Approximation Theorem). WAT≡W id.

The next metatheorem is a similar observation for co-c.e. closed predicates
and co-c.e. compact Y .

Theorem 9 (Compact Metatheorem). Let X,Y be computable metric spac-
es and let Y be co-c.e. compact and A ⊆ X × Y co-c.e. closed. If

(∀x ∈ X)(∃y ∈ Y )(x, y) ∈ A,

then R : X ⇒ Y, x 7→ {y ∈ Y : (x, y) ∈ A} is weakly computable, i.e. R≤W CK.

Corollary 4 (Brouwer Fixed Point Theorem). BFT≤W WKL.
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Many other theorems of analysis that have to do with the solution of equa-
tions in compact spaces fall into the same category. This applies for instance to
the Schauder Fixed Point Theorem and also to the Intermediate Value Theorem.
Sometimes it is not immediately clear that a theorem is of this form. In case of
the Peano Existence Theorem for solutions of initial value problems of ordinary
differential equations it is easy to see that it can be reduced to the Schauder
Fixed Point Theorem (see [14]). Another example of this type is the Hahn-
Banach Theorem. As it is usually formulated, is not of the form of an equation
with a solution in a compact space. However, using the Banach-Alaoglu The-
orem, it can be brought into this form (see [4, 10]). Whenever a theorem that
falls under the Compact Metatheorem has a unique solution, then that solution
is automatically computable by Corollary 8.8 in [6].

Thus, under all (perhaps purely classical) conditions under which the Brouw-
er Fixed Point Theorem, the Intermediate Valued Theorem, the Hahn-Banach
Theorem or the Peano Existence Theorem have unique solutions, they are al-
ready automatically fully computable.

Theorem 10 (Locally Compact Metatheorem). Let X,Y be computable
metric spaces, let Y be effectively locally compact and let A ⊆ X × Y be co-c.e.
closed. If

(∀x ∈ X)(∃y ∈ Y )(x, y) ∈ A,

then R : X ⇒ Y, x 7→ {y ∈ Y : (x, y) ∈ A} satisfies R≤W CA(Y ), where CA(Y ) is
defined like CA with Y instead of R. In particular, R is limit computable.

Corollary 5. Let X be a computable metric space and let Y be an effectively
locally compact metric space. If f : X → Y is a function with a co-c.e. closed
graph graph(f) = {(x, y) ∈ X × Y : f(x) = y}, then f is limit computable.
In particular, the inverse g−1 : X → Y of any computable bijective function
g : Y → X is limit computable.
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Vollständigkeit in der C–hierarchie. PhD Thesis. Faculty for Mathematics and Com-
puter Science. University Hagen. Germany (2006)

13. Pauly, A.: On the (semi)lattices induced by continuous reducibilities.
http://arxiv.org/abs/0903.2177 (preliminary version)

14. Simpson, S. G.: Subsystems of Second Order Arithmetic. Perspectives in Mathe-
matical Logic. Springer, Berlin (1999)

15. Weihrauch, K.: The degrees of discontinuity of some translators between represen-
tations of the real numbers. Technical Report TR-92-050. International Computer
Science Institute. Berkeley. July (1992)

16. Weihrauch, K.: The TTE-interpretation of three hierarchies of omniscience princi-
ples. Volume 130 of Informatik Berichte FernUniversität Hagen, Hagen (1992)

17. Weihrauch, K.: Computable Analysis. Springer, Berlin (2000)




