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Abstract

Loop quantum gravity has formalized a robust scheme in resolving classical singu-
larities in a variety of symmetry-reduced models of gravity. In this essay, we demon-
strate that the same quantum correction which is crucial for singularity resolution is
also responsible for the phenomenon of signature change in these models, whereby
one effectively transitions from a ‘fuzzy’ Euclidean space to a Lorentzian space-time
in deep quantum regimes. As long as one uses a quantization scheme which re-
spects covariance, holonomy corrections from loop quantum gravity generically leads
to non-singular signature change, thereby giving an emergent notion of time in the
theory. Robustness of this mechanism is established by comparison across large class
of midisuperspace models and allowing for diverse quantization ambiguities. Con-
ceptual and mathematical consequences of such an underlying quantum-deformed
space-time are briefly discussed.

1 Introduction

It is not difficult to imagine a mind to which the sequence of things happens not in
space but only in time like the sequence of notes in music. For such a mind such
conception of reality is akin to the musical reality in which Pythagorean geometry
can have no meaning.

— Tagore to Einstein, 1920.

We are yet to come up with a formal theory of quantum gravity which is mathematically
consistent and allows us to draw phenomenological predictions from it. Yet, there are
widespread beliefs among physicists working in fundamental theory regarding some aspects
of such a theory, once realized. These premonitions about the final form of a quantum
gravitational theory comes from two somewhat mutually exclusive ideas. Firstly, experience
in dealing with other fundamental forces of nature and their quantization, which have
resulted in the Standard Model of Particle Physics, has led to certain expectations regarding
the outcome of quantizing gravity. This is, of course, quite natural and what one expects
to happen. The other major source of prejudice, however, comes from the rather maverick
nature of gravity as described through its classical theory – General Relativity (GR). The
foundational idea of relativity that gravity is geometry requires a rather careful handling
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in the way one approaches to ‘quantize’ such a theory. It has often been said that GR is
one of the most beautiful theory in physics; and like any beautiful object, its significance
lies in the eyes of the beholder. Let us give an example to illustrate this point.

Particle physicists considered the primary difficulty of quantizing gravity to be the
ultraviolet (UV) divergences which cannot be cancelled by a finite number of counter-
terms, as is done for every other fundamental force. This is what is commonly known as
the non-renormalizability of gravity [1]. Thus, they went looking for a more suitable way
to describe the dynamics of a massless, spin-2 particle – namely, the graviton – just as
for other such gauge bosons in the Standard Model. Broadly speaking, this search has
culminated in the foundation of String Theory [2, 3, 4] which describes not only gravity,
but also all the other fundamental forces through the spectra of string oscillations, as this
fundamental object (the string) travels through a d-dimensional spacetime1. Implementing
the excitations as extended objects (strings) with nonlocal interactions, one gets rid of the
infinities, the unwieldy mathematical objects standard field theory is beset with. Without
going through the extremely rich history of the development of String Theory in detail, it
is safe to say that one of the most ambitious goals for a String theorist is to unify all the
fundamental forces of nature via one common framework. In the more recent past, String
Theory has also led to rather amazing mathematical dualities whereby one is allowed to
study the quantum gravity theory in a bulk space-time by simply examining a quantum field
theory, without gravity, on its boundary [5]. This remarkable feature, termed the ‘Gauge-
Gravity duality’, or more generally the ‘Holographic Principle’, can be looked upon as one
of the most ‘beautiful’ artifacts of quantum gravity, arising from underlying mathematical
symmetries.

On the other hand, relativists2 take the idea of background independence as a guiding
principle for quantizing gravity rather seriously [6]. The idea here is that one cannot
quantize the graviton as a particle moving on a specified space-time, as is done for the
other fundamental gauge fields in nature. Rather gravity supplies us with both the stage
as well as the actors on it: the background space-time as well as the particle mediating
gravity has to emerge from the fundamental theory [7]. This ‘beautiful’ idea led to several
theories which do not assume a fixed form of a background space-time, most notably in
Loop Quantum Gravity (LQG). Under the rather minimal requirement of a differential
manifold, a suitable reformulation of GR is proposed such that the fields describing it do
not, à priori, require a background metric. This does not imply that there is no background
independence in String Theory; it is, however, implemented in a much more indirect manner
and is in a rather nascent stage at the moment (for instance in String Field Theory [8]).
It is important to emphasize that background-independence, as a motivation, is not a
monopoly of LQG, but there are other approaches, such as Aymptotic Safety or Causal
Dynamical Triangulations, which implement this feature in different ways. We mention
this example to cite what was at the heart of looking for an alternative to String Theory.

1Historically, String Theory did come about to describe Strong Interactions before one found a more
suitable candidate for the latter in Quantum Chromodynamics.

2Obviously, both these classifications of ‘particle physicists’ and ‘relativists’ are made rather loosely in
order to make a larger point.
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Similarly, although direct manifestations of the ‘Gauge-Gravity duality’ is yet to be revealed
in LQG, there is nothing to suggest that such a principle is lacking in the theory3 (see for
instance,[9]).

So we find that two of the major approaches to quantum gravity not only do not share
their technical and conceptual foundations but even diverge in their ambitions for the
resulting theory. And, of course, the diversity in research for a quantum theory of gravity
is also rather rich with many of the other approaches (not mentioned here) bringing distinct
aspects of gravity into play. How can such ideas converge in their expectations from the final
version of their individual quantum gravity theories? In order to understand this, let us first
recall what quantizing the other fundamental forces have taught us. Quantum theories,
typically, help us in resolving singularities which appear in their classical counterparts.
This general expectation, as can be understood from its origin, is shared by all theories
of quantum gravity. Since some well-defined physical quantity, such as energy density,
diverges at the singular point, one concludes that some of the laws of physics have broken
down at the singularity and we require a new set of rules to describe the dynamics in those
regimes. Let us recourse to a (perhaps over-)simplified example to make our case. Hooke’s
law, describing the force exerted by a spring, can be written as k = F/x. This implies if
we are to calculate the tension in the spring between two infinitesimally close points, then
it would indeed be infinite! But this is not a true infinity but rather only a mathematical
manifestation of the fact that we have applied the classical Hooke’s law beyond its realm of
validity. This can be seen if one recalls that the spring is built out of atoms, and once we
consider subatomic lengths, laws of atomic physics has to come in to replace the classical
Hooke’s law. Thus, the fundamental minimum distance scale of atomic spacings (which
is something that can be derived, and is not postulated, from the Schrödinger equation
governing the quantum theory) comes in to save the day. A similar thing is expected
to happen for the (curvature) singularities found in GR [10], mostly famously the initial
singularity in cosmology termed the ‘Big Bang’ and the one found inside the core of black
holes. Any quantum gravitational theory attempts to bring in a new set of laws which
would cure the theory of such (classical) pathologies.

Next we have to deal with the more subtle point of the expectation of a non-classical,
‘fuzzy’ nature of quantum space-times, which is also expected by and large from almost all
theories of quantum gravity4. This is a more surprising common factor between quantum
gravity theories since it is realized through distinct mathematical procedures having origin
in the different theories. Almost all background independent quantizations of gravity talk
of a discrete, granular description of space-time at some fundamental level. The guiding
principle for these theories is that space-time, on the most primordial level, is an irregu-
lar substratum made up of the fundamental building blocks, or the atoms of space-time.
Naturally, the explicit form of these elementary degrees of freedom depend on the specific
framework one deals with5 but, on the whole, one loses the smooth, continuous description

3However, key difference between the two theories remain that LQG is less ambitious than String
Theory in not attempting an unification of all the known forces in nature.

4One notable exception is the Asymptotic Safety program [11].
5In LQG, for instance, one has discrete spin-network states giving rise to a discrete area and volume
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of classical backgrounds geometries on sub-Planckian scales. On the other hand, although
String Theory is at least formulated over smooth manifolds, there is a growing consensus
that space-time in this case (and may indeed be for any consistent theory of gravity) is
built out of quantum entanglement (for instance, see [12]). Even proposals that String
Theory is an coarse-grained approximation of a more statistical phenomenon of micro-
scopic degrees of freedom, with gravity being an emergent interaction, has been gaining
ground [13]. The bottom line is that all of this points towards a description of gravity on
fundamental scales which is quite exotic compared to its classical counterpart as a smooth
space-time continuum.

In this essay, we aim to use the input of singularity resolution from LQG and show that,
demanding mathematical consistency leads to the emergence of non-Riemannian geometry
in the theory. Specifically, our goal is to show that ‘time’ is an emergent concept in LQG,
in the sense that one effectively transitions from a four-dimensional ‘fuzzy’ Euclidean space
to the usual (3+1)-dimensional Lorentzian space-time in high curvature regimes. Although
this shall be demonstrated only for symmetry-reduced systems in LQG, care needs to be
taken that they are not oversimplified toy models, bland enough to miss key subtleties
of the full theory. We emphasis that our goal is not to comment on the robustness of
singularity resolution in LQG, which has been established to a great extent in the existing
literature (for instance, see [14, 15, 16, 17]), but rather to only extract a crucial ingredient
commonly required for tackling singularities in the theory. The other input to be assumed is
that the theory avoids quantum gravitational anomalies and satisfies a well-defined notion
of covariance (adapted to a canonical setup) which is a strict requirement, not just of
LQG, but any consistent quantum gravity theory6. These two minimal requirements, when
combined, would be shown to give rise to a rather remarkable change in our understanding
of the underlying space-time, leading to emergence of time in LQG.

2 Singularity Resolution in LQG

Setting aside the mathematical beauty of GR, it has also been an extremely successful
theory and has passed all proposed experimental tests with flying colors thus far. Yet, a
more fundamental theory is required which incorporates not only the dynamical nature of
geometry but also the features of quantum physics. Indeed, a brief glance at Einstein’s
equations, Gµν = (8πG/3)Tµν , is enough to convince one of that. Since the right-hand
side of the equation consists of ‘quantum’ matter described by the Standard Model, the
left-hand side must be replaced by some suitable ‘quantum’ version of gravity. The more
obvious reason for invoking a quantum gravity theory obviously arises when dealing with
curvature singularities contained in solution to Einstein’s equations, where the equations
themselves fail. This is a more serious problem than the divergences which arise in other
gauge theories describing, for instance, the electromagnetic field. In Minkowskian physics,

spectra [6].
6What we mean precisely by this shall be spelled out more explicitly in a later section but it is important

to note that this is different from the idea of Lorentz covariance for a flat, Minkowski space-time.
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if such a field becomes singular at a given point, it does not affect the underlying space-
time and, consequently, has no effect on the evolution of the other fields in the theory.
However, since gravity is geometry according to GR, when the gravitational field becomes
singular, the picture of the continuum space-time itself breaks down and all of physics gets
disrupted. Now, we do not have a stage any longer on which to describe the dynamics of
the other matter or gauge fields. This points towards the fact that our picture of gravity
as a smooth continuum of space-time must itself not be applicable to points arbitrarily
close to such a singularity and what we require is a quantum theory of geometry (see, for
instance, [6, 18] for details).

Let us focus on the simple example of the k = 0, FLRW geometry to understand
how singularity-resolution takes place in LQG [19, 20]. (In this context, we would refer
to this theory as Loop Quantum Cosmology (LQC) from now on since it is indeed the
quantization of a symmetric sector of GR inspired by techniques from LQG rather than
a ‘coarse-graining’ of the cosmological degrees of freedom from the full quantum theory.)
The requirements of consistency from LQC are twofold: On one hand, the quantum theory
needs to have a regular behaviour for the quantum state in the higher curvature regime
and resolve the Big Bang singularity. On the other hand, these quantum corrections,
which are strong enough to overcome the gravitational collapse due to Planck scale energy
densities, have to die off extremely fast beyond the Planck scale so that we recover the well
known behaviour of GR. Both these conditions are met by LQC and thus we have a well-
defined quantum cosmological model. Inside the deep quantum regime, the density and
curvature reach a maximum value, as opposed to increasing indefinitely as in the classical
theory due to novel quantum geometry effects. This might be interpreted as an ‘effective’
repulsive force which overcomes the classical gravitational attraction and thus resolves the
singularity by preventing the quantum evolution from going to the singular point. In the
full quantum theory, one can show that singularity-resolution might be seen as the zero
volume state getting decoupled from the dynamics of the quantum state corresponding to
the universe. Although the main achievement of LQC is to incorporate novel quantum
geometry corrections, heuristically adapted from LQG in the form of a minimum non-zero
value of area (or the area-gap) in the left-hand side of the Einstein’s equation, we can shift
the correction to the right-hand side to facilitate comparison with the standard Friedmann
equation, which now reads

H2 =
8πG

3
ρ

(
1− ρ

ρc

)
, (1)

where H is the Hubble parameter and ρ is the energy density, which gets an upper bound
(the critical density, ρc, which is proportional to M2

Pl) from these quantum effects.
Although we describe the broad picture of singularity-resolution in the specific case of

LQC above, the mechanism remains the same for other models where it has been possible
to do the same. Specifically, singularity resolution has been achieved for a variety of cos-
mological models [21, 19] such as the Bianchi models, FLRW geometries with cosmological
constants, to Gowdy systems with additional symmetries [22] and for open or closed uni-
verses, in addition to the flat case mentioned above. Recently, similar techniques have been
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applied to black hole solutions, such as Schwarzschild [17] or CGHS models [23], with the
remarkable success of resolving the singularity inside the cores of such black holes much
like in the same manner as described above. However, for our purposes, we do not need to
go into the full quantum theory of any of these cases in detail. Instead, we focus on the
most crucial ingredient in LQG which leads to such singularity resolution across a variety
of different models.

In LQG, we have well-defined operators for holonomies (or parallel transports of connec-
tions) on the kinematical Hilbert space but not for the connections themselves7. Thus one
requires a different way of expressing connections on the Hilbert space via their holonomies.
Curvature of the connection, which shows up in the Hamiltonian of the theory, have to
be regularized in terms of these holonomies. Indeed, a direct consequence of this can be
seen in the minisuperspace quantization of LQC. The Wheeler-de Witt (WDW) theory
in this case, which arises from the Schrödinger quantization of the quantum mechanical
phase space, is known to suffer from the same pathologies as the classical solution as far
as the big bang is concerned. On the other hand, the Stone von-Neumann uniqueness
theorem guarantees that the quantum kinematics for a finite dimensional phase space iso-
morphic to Rn (such as the quantum cosmological model) is unique. The way LQC can
go past this obstruction is precisely via violating the assumptions of weak-continuity from
the von-Neumann theorem and thus, essentially, giving rise to a new form of quantum
mechanics. In effect, all of these mathematical rigor can be pinned down to give one effect:
the inclusion of holonomy corrections in the theory.

In an ‘effective’ theory of a loop-quantized model, the idea is to replace the connec-
tion (or, in practice, extrinsic curvature components) by a polymerization function in the
Hamiltonian of the theory [24]. This polymerization function is obviously not chosen ad
hoc, but rather through a rigorous regularization of the curvature components in a speci-
fied representation of the internal gauge group (SU(2)), along with inputs of the area-gap
from the full theory. Typically the holonomies are calculated in the fundamental spin-(1/2)
representation of SU(2) and the polymerization function, for some extrinsic curvature com-
ponent K, takes the form

K → sin(δK)

δ
, (2)

where δ is related to the Planck length in a specified manner. This kind of non-perturbative
correction, coming from LQG, is commonly known as holonomy correction (or equivalently,
modification) function. Although the sine function has been obtained explicitly in the case
of LQC, for the spin-(1/2) representation, we can allow for more general quantization
ambiguities and replace connection components by any local and bounded function of it.
This type of correction plays the most crucial role in singularity resolution and the bounded
nature of the function comes from this requirement. It is important to emphasize that LQG
does not resolve singularities by incorporating some arbitrary bounded functions of the
connection, but rather derives them in some symmetry-reduced models. For the purposes

7Mathematically, this implies that the holonomy operators are not weakly continuous.
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of this essay, we simply choose to not work with a specific form of this function but rather
keep it arbitrary, thus demonstrating that our conclusions are not tied to some specific
fine-tunings arising from a particular model in LQG but is rather general in its ambit.
Therefore, the first input for us is going to be incorporating such holonomy correction
functions which lead to singularity resolution (and is thus bounded) K → f(K).

Before concluding this section, we need to make a comment about why this function
has to be chosen to be local. It is tied to the same reason that we are yet to have a
consistent formulation of any canonical quantum gravity theory in (3 + 1)-dimensions. It
is only known how one can loop-quantize simpler, symmetry-reduced models and, only in
such cases, can singularity resolution be demonstrated manifestly. In LQG, one is yet to
understand how to explicitly evaluate holonomy operators in inhomogeneous directions,
along edges of spin-network states. Although the full technical details of this problem is
far beyond the scope of this essay, we shall revisit this issue in the simplified arena of
Schwarzschild space-times.

3 Covariance in canonical quantum gravity

It is well-known that coordinate freedom is one of the stepping stones of GR (and, in-
deed, of all general covariant theories going beyond GR), i.e. the theory remains invariant
under local diffeomorphisms xµ → xµ + ξµ(x). LQG is based on a Hamiltonian formu-
lation of gravity, where space-time is foliated into spatial hypersurfaces evolving along a
time parameter. However, in canonical theories, coordinate transformations of space-time
tensors are replaced by gauge transformations which generate deformations of the spatial
hypersurfaces in full space-time. The Hamiltonian (or scalar) constraint is defined as the
one which generates deformations along the direction normal to the hypersurface while
the (spatial) diffeomorphism constraint generates those along tangential directions. In
generally covariant theories, these four smeared constraints (per point) satisfy the (Dirac)
hypersurface deformation algebra8. These constraints satisfy a ‘first class’ system forming
a closed algebra, which implies that the Poisson brackets of the constraints vanish on the
constraint surface (see [18] for details).

The phase space of canonical gravity is formed by the metric on the spatial hypersur-
face qab and its conjugate momenta proportional to the extrinsic curvature components
Kab. The full space-time metric is typically parametrized by a lapse function M , the
shift vector fields Na and the spatial metric qab. The arbitrary function M labels the
Hamiltonian constraint while Na smears out the diffeomorphism constraint. The crucial
observation is that the symmetry deforming the spatial hypersurfaces, tangentially along
Na and along the vector Mnµ (nµ being the unit normal to the hypersurface), are equiv-
alent to Lie derivatives along space-time vector fields therefore representing coordinate
freedom. Gauge-covariance under hypersurface deformations (equivalent to the underlying

8Technically, it forms a Lie algebroid and not an algebra, a fact which we shall utilize in the next
section. However, in the meantime, we shall keep referring to it as an algebra as is common in the physics
literature.
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space-time diffeomorphisms) is ensured by the following algebra

{D [Na
1 ] , D [Na

2 ]} = D [LN1N
a
2 ] (3)

{H [M ] , D [Na]} = −H [LNM ] (4)

{H [M1] , H [M2]} = D
[
qab (M1∇bM2 −M2∇bM1)

]
. (5)

The Eqs. (3, 4) demonstrate the action of infinitesimal spatial diffeomorphisms with the
right-hand side given by the Lie derivatives LN1N

a
2 = [N1, N2]

a and LNM = Na∂aM .
The last Eq. (5) complicates the intuitive geometric picturization due to the appearance
of structure functions, in the form of the inverse of the spatial metric. The Hamiltonian
constraint does indeed provide the time reparametrizations required to supplement the
spatial diffeomorphisms generated by D[Na] to form the full space-time diffeomorphism
symmetry of gravity, but only on the constraint surface.

It is important to emphasize that covariance, in the canonical context, is an off-shell
property. Fields which do not satisfy the constraint equations D[Na] = 0 and H[M ] =
0, as derived from GR, still require to be well-behaved so as to not violate the above
algebra. This is in keeping with our understanding of four-dimensional symmetries from
Lagrangian theories where to write down a covariant action one only needs to define a
Lorentz-invariant measure and contract indices properly with any metric, without paying
attention to whether they are solutions to Einstein’s equations. The specific nature of
the algebra of the constraints has to be satisfied by the constraint functions on the whole
phase space and not just the constraint surface. Its form dictates the kinds of gauge
transformations the constraints generate and how they are related to space-time properties.
All of this is, however, well-understood in the classical formulation of GR as a canonical
theory. An open question, recently addressed, is regarding the fate of such symmetries
once quantum modifications from a particular theory are taken into account.

We first postulate the requirements for a canonical quantum theory of gravity to be
covariant [25, 26]:

1. The classical Hamiltonian and diffeomorphism constraint, on including quantum cor-
rections, must still act as generators which form a closed algebra free of quantum
anomalies.

2. The quantum algebra of the new generators must have a classical limit which is
identical to the classical hypersurface deformation one as defined in Eqs. (3 -5).

The first condition simply ensures that we do not violate the gauge symmetries of gravity
in the quantum theory. If the quantum constraint operators (or equivalently, effective ver-
sions of them including quantum corrections) still form a first-class system then we have
the same number of gauge conditions required to eliminate spurious degrees of freedom as
in the classical case. Thus the gauge generators, in the quantum theory, would also lead
to the same dimension of the solution space and thereby avoids gauge anomalies. Since
the absence of anomalies is the requirement for any consistent quantum (gauge) theory,
condition (1) is the corresponding one for a quantum version of gravity viewed as a gauge
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theory. The second condition ensures that what we end up with, the quantum gravity
theory, is a consistent quantum theory of space-time. This is an even stricter requirement
since this ensures that we end up with a theory which gives the correct space-time struc-
ture in the classical regime. While the first condition deals alone with the important issue
of anomaly-freedom in quantum gravity theories, both of them together ensure that one
ends up with a covariant quantization of gravity. It is conventional to assume that once
one can get the quantum corrected brackets to have a closed algebra, then the quantiza-
tion is covariant. What has been recently demonstrated is that a background-independent
quantization requires not only anomaly-freedom, but also a well-defined classical limit so
that the quantum theory is indeed one of space-time. This is indeed the difference of full
quantum gravity theory from a theory of matter on a quantum-modified space-time. The
latter by itself has severe requirements that the gravitational and the matter forms closed
first-class systems whereas the former not only requires this, but also that they have a
matching version of covariance. Naturally, this has severe ramifications for the way one
can covariantly couple matter to such quantum theories, which is beyond the scope of this
essay. As a final reminder, we stress that our key requirement is not that the theory re-
mains Lorentz invariant, which turns out to be a deformed symmetry in this context [27],
but simply that the gravitational gauge conditions are not violated.

We end this section with an important caveat: One cannot see the effects of covariance
in a minisuperspace model. One deals with homogeneous degrees of freedom alone in
such systems and thus the diffeomorphism constraint is trivially satisfied for such models.
Covariance cannot be addressed in such models because, owing to lack of inhomogeneities,
the relationship between both temporal and spatial variations of fields are absent in them.
Mathematically, since the diffeomorphism constraint is trivially zero, one cannot examine
any behaviour of the constraint algebra in such settings. As a consequence, no restrictions
on the dynamical equations of wavefunctions can be imposed by demanding covariance
in such models and any putative quantum effect can be included at will. However, such
arbitrary quantum modifications would result in a minisuperspace model that cannot be
embedded within a larger covariant full theory. Thus, we shall have to deal with models
which have at least one inhomogeneous component. In fact, all known models of LQG which
resolve classical singularities (and are not completely homogeneous) are of this form. Thus,
we shall hereafter restrict ourselves to such midisuperspace models.

4 Emergence of Time in LQG

We have all our ingredients and are ready to state our main result. From Sec (2), we infer
that singularity resolution in LQG typically introduces a bounded function for extrinsic
curvature components. We keep our assumptions to a minimum and do not even fix a
specific form for the holonomy correction function. This kind of a general ansatz, requiring
only that the correction function is bounded, then suggests that we are gathering the
least information necessary from the particular theory (LQG) and keeping ample room for
improvements to the quantization scheme within it. Our second requirement, following Sec
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(3) is the necessary condition that the quantization procedure is space-time covariant, in
a well-defined sense. Based on these two rather general assumptions, we shall show that
there is a remarkable deformation to the underlying space-time structure for such quantum
modifications.

4.1 Explicit example: Spherically symmetric gravity

It is easiest to first concentrate on a concrete example to illustrate our point and then
state the general result for other such systems. For spherically symmetric gravity adapted
to Ashtekar-Barbero variables [28], one has a two dimensional phase space spanned by the
triad variables Ex and Eφ in the radial and angular directions respectively, along with
their canonically conjugate extrinsic curvature components Kx and Kφ. There is only one
nontrivial component of the diffeomorphism constraint, given by

D[Nx] =
1

G

∫
dxNx(x)

(
−1

2
(Ex)′Kx +K ′φE

φ

)
, (6)

while the gravitational spherically symmetric Hamiltonian constraint takes the form

H[M ] = − 1

2G

∫
dxM(x)

(
|Ex|−

1
2EφK2

φ + 2|Ex|
1
2KφKx + |Ex|−

1
2 (1− Γ2

φ)Eφ + 2Γ′φ|Ex|
1
2

)
, (7)

with the spin-connection given by Γφ = −(Ex)′/2Eφ. The prime denotes a derivative with
respect to the radial coordinate. We have suppressed the dependence of the field variables
on the radial coordinate in the above expressions (due to spherical symmetry, we can safely
integrate out their dependence on the angular coordinates). Thus we have a system of 2-
dimensional phase space with 2 first-class constraints, thus resulting in no local physical
degrees of freedom (the only global degree of freedom is the ADM mass of the system).
The usual spatial metric of the system can be written in terms of the Ashtekar-Barbero
variables as

dq2 =

(
Eφ
)2

|Ex|
dx2 + |Ex|

(
dθ2 + sin2 θdϕ2

)
. (8)

The classical constraint algebra can be easily evaluated using the Poisson structure of the
phase space

{Kx(x) , Ex(y)} = 2Gδ(x, y) , {Kφ(x) , Eφ(y)} = Gδ(x, y) . (9)

The only quantity of the inverse spatial metric which shows up as a structure function in
the algebra is qxx = |Ex|/(Eφ)2 since the only derivative that gives a non-zero result is
along the radial coordinate.

We now proceed with our program of replacing the (angular) extrinsic curvature com-
ponents with local functions of itself, i.e. Kφ → f (Kφ) in the Hamiltonian constraint. As
mentioned before, we do not consider holonomies corresponding to the Kx variables since
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they are calculated along the edges of a (one-dimensional) spin-network and are, therefore,
non-local in nature and difficult to implement [29]. However, it has been shown that one
can suitably reformulate the constraints to eliminate the Kx variable from the Hamiltonian
constraint altogether and only have the Kφ one [17]. Thus, we can consider the point-wise
holonomy operators corresponding to the Kφ component alone, which act locally at the
nodes of the spin-networks, without loss of generality. With these modifications, the effec-
tive Hamiltonian constraint takes the form [26, 30]

H[N ] = − 1

2G

∫
dxN(x)

(
|Ex|−

1
2Eϕf1 (Kϕ) + 2|Ex|

1
2f2 (Kϕ)Kx

+ |Ex|−
1
2 (1− Γ2

ϕ)Eϕ + 2Γ′ϕ|Ex|
1
2

)
. (10)

Note that we do not replace both the instances where Kφ shows up in Eq. (7) with the same
function but allow for even more generalities by plugging in different correction functions
f1 and f2 (the classical expressions are recovered for f1(Kφ) = K2

φ and f2(Kφ) = Kφ).
However, we keep our diffeomorphism constraint unmodified from the classical case. The
reason for this is that, in LQG, one does not have an infinitesimal quantum operator
generating spatial diffeomorphisms represented on spin-network states but rather spatial
diffeomorphism invariance is implemented in the full quantum theory through finite unitary
transformations (See [31] and references therein for an attempt to define an infinitesimal
diffeomorphism constraint in LQG). The Hamiltonian constraint, on the other hand, acts
infinitesimally only on diff-invariant spin-network states in LQG. We are interested in
questions regarding the covariance of the theory and thus are interested in the off-shell
structure of the constraint algebra, which should be a largely representation-independent
question and not depend specifically on the spin-network states, the latter being after all
only a choice of basis. In other words, we assume that the flow of the diffeomorphism
constraint is not crucially different from the classical one as is done in all models of LQG
which achieve singularity-resolution9.

We are now ready to calculate the brackets between the quantum-corrected constraints
to find the resulting form of the constraint algebra. The algebra of basic variables is now
modified due to the inclusion of holonomy corrections for the angular connection component

{f(Kφ)(x), Eφ(y)} = G

(
df

dKφ

(x)

)
δ(x, y) . (11)

There is à priori no reason to assume that the quantum-corrected constraints would even
form a closed algebra and thereby satisfy the requirement of anomaly-freedom. However,
it turns out that the calculation of the brackets reveals two things. Firstly, we find a
condition relating the two arbitrary holonomy modification functions and hence they are
not both independent. This condition is a requirement for anomaly-freedom, which gives

9This presupposes that three-dimensional space, but not necessarily space-time, retains some features
of the classical structure.
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[26, 30]

f2(Kφ) =
1

2

df1
dKφ

. (12)

More importantly, we find that the full algebra of the quantum-corrected constraints stays
the same except for the bracket between two Hamiltonian constraints, which takes the
form [26, 30, 32]

{H [M1] , H [M2]} = D [β qxx (M1∂xM2 −M2∂xM1)] , (13)

where the classical structure function, qxx, is modified by the factor

β =
1

2

d2f1
dK2

φ

. (14)

We make the following observations regarding this deformation of the quantum constraint
algebra.

1. Since we kept both the holonomy modification functions arbitrary, there was no
guarantee that the algebra would close. However, we find that it is not only anomaly-
free but closure also requires that one of the function be expressed in terms of the
other.

2. When we take the classical limit of the holonomy correction function f1, we see
that β goes to 1 reproducing the familiar hypersurface deformation algebra. This
remarkable result satisfies our condition for a covariant quantization.

3. Classically, the curvature component can increase infinitely, which in turn implies
that the energy density gets infinite at the classical singularity. However, due to the
inclusion of the holonomy modification from LQG, the function f1 reaches a maximum
and we avoid the classical singularity. The deformation function β necessarily turns
negative when the holonomy modification function precisely reaches its maximum.
This is because β is the second order derivative of a function which reaches its
maxima. This simple, yet striking, feature of the deformation function has long-
ranging ramifications.

Once the deformation function changes sign, the bracket between two normal deforma-
tions10 in the modified constraint algebra has the same sign as one gets from Euclidean
gravity. This is referred to as signature change in the literature since, although we start
from the usual assumptions of a Lorentzian space-time, due to quantum corrections from
LQG, we end up in an Euclidean four-space in the deep quantum regime. This implies
radical new ideas regarding the nature of underlying quantum space-time and a new per-
spective of its geometrical structure above Planck scales. At this point, it is sufficient

10Throughout this essay, we have been using the word ‘deformation’ to mean two different things, which
should be clear from the context in which it is used.
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to point out that we have successfully derived a deformed notion of covariance for the
quantized system, whereby one modifies gauge transformations by quantum corrections
but does not allow them to be violated. As promised, we only introduced the crucial fea-
ture of bounded holonomy operators from LQG to achieve this goal. As a consequence of
this, ‘time’ appears as an emergent parameter below some energy scale during our effec-
tive transition from an Euclidean to the Lorentzian phase. Although all the calculations
shown above is for effective constraints for simplicity, i.e. we do not take explicit quantum
operators corresponding to the constraints into consideration, the same result holds when
operator effects are taken into consideration as shown in [30]. Thus this result is certainly
not the manifestation of some semiclassical approximation introduced within this scheme.
(It has also been shown that fluctuations and higher moments of the quantum state cannot
introduce perturbative loop corrections which can deform the structure functions of the
constraint algebra [33].)

4.2 Ubiquity of signature change in LQG

Since we have shown that time emerges at a some particular scale for spherically symmetric
gravity when effects required for singularity resolution are taken into account, how can one
be sure that this is not due to some additional quantization choices introduced by us?
We can answer this question in two ways. Firstly, the only assumption used by us, as
shown in the previous subsection, was that of bounded curvatures which is at the heart
of singularity resolution in LQG. However, although our framework was kept extremely
general on purpose, we can do even better to exhibit the robustness of our claims. The
same spherically symmetric system, or equivalently the Schwarzschild black hole model,
has been quantized based on a completely different, but classically equivalent, set of first-
class constraints where the most complicated part of the constraint algebra had been
Abelianized [17]. In other words instead of working with the familiar H[M ] and D[Nx]
constraints as introduced in Eqs. (7, 6), the quantization was performed over a newly
defined C[L] constraint and the usual diffeomorphism D[Nx] constraint. For this set, first-
class algebra has the same form for Eqs. (3-4) (with H replaced by C) while the last
relation is replaced by {C[L1] , C[L2]} = 0. Thus we do not have the structure functions
appearing anymore and we have a true Lie algebra. (This is possible by choosing some
judicious linear combination of the old constraints to define the new constraint C[L].) It
has been further shown that the Schwarzschild singularity has been resolved for a quantum
theory based on these constraints, after polymerizing them according to LQG. One would
then imagine that signature change would be impossible for such a system due to the
disappearance of the structure functions. However, as explained in [26], requiring that the
resulting quantum theory be covariant (as defined in Sec (3)), one can show that not only
does the structure functions reappear and get deformed but also we have signature change
for this model. Additionally, it was shown that if the holonomy correction functions were
kept arbitrary for this partially Abelianized system, then the restriction (12) is the same
one that is obtained even for the new system. Since the technical details of the two systems
were largely different except for the choice of bounded functions for curvature components,
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we conclude that signature change (and consequently, the appearance of time) does not
depend on any additional regularization choices made by us in the previous subsection but
is a rather general result for the Schwarzschild black hole model in LQG.

However, it might still be that there is some magical coincidence that leads to the fortu-
itous notion of deformed covariance in the spherically symmetric space-time and therefore
signature change is nothing but a manifestation of the symmetry of the system. To verify
that this is not the case, we can go back to the original cosmological setup where singular-
ity was first resolved within LQG. However, as explained before, one cannot ask questions
regarding covariance in homogeneous models, the traditional setup for LQC. Fortunately,
nature also demands that our universe is not exactly homogeneous but rather has small
inhomogeneities which leads to formation of galaxies. We should then loop quantize a
system which has perturbative inhomogeneities on top of a homogeneous FLRW back-
ground in cosmology to get a more realistic picture. Indeed such a quantum scheme leads
to resolution of singularties once again through a non-singular signature change (see, for
instance, [34, 35]). The fundamental setup of these models is quite different from the
one considered above in that one only introduces holonomy correction functions for the
background connection component but leaves classical expression for the perturbative in-
homogeneous extrinsic curvatures. Yet, one finds that a bounded version of background
curvature component to be a sufficient condition for signature change in these models.

Finally, there is a vast arena of models in LQG which have recently been examined to
show that singularity resolution cannot be divorced from signature change for real valued
connections [36, 37, 27]. In particular, a class of models shown to manifest signature
change would be all 2-dimensional dilaton models which includes the Callan-Giddings-
Harvey-Strominger (CGHS) black hole solution. Another example would be the (polarized)
Gowdy system with local rotational symmetry. We mention these models in particular
since the classical singularity in these models have been shown to be satisfactorily resolved
through loop quantization [23, 22]. It has been demonstrated that for all these models the
classical singularity is, in fact, replaced by a non-singular signature change and thus time
appears in all these models below some energy scale. Indeed, this work has been generalized
even further to a general midisuperspace model, with one direction of inhomogeneity and
no local physical degrees of freedom, to show that even for such a general model (which
includes all the above examples and even more class of models with not well-defined classical
analogs), holonomy corrections from LQG results in deformation of the structure function
in a way that leads to signature change. The robustness of these findings has also been
checked against different choices of canonical variables and for different choices of arbitrary
dilatonic potential terms. It appears that time is indeed an emergent parameter, at least
within the class of models for which one can have singularity resolution in LQG.

5 Discussion

Having shown that the same modification that resolves singularity in LQG is also respon-
sible for signature change, at least in all models in which classical singularities can be
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resolved in LQG, let us discuss some of the aspects of our findings.

5.1 Mathematical basis for emergence of time

Our essay shows novel features in the background space-time structure in quantum regimes
due to the modification of the classical structure functions appearing in the quantum-
corrected constraint algebra. However, it is natural to assume at first glance that one can
absorb the deformation factor β in the inverse of the spatial metric to get an ‘effective’
spatial metric q̃ab := βqab. However, such an effective metric from the relation

{H [M1] , H [M2]} = D
[
q̃ab (M1∇bM2 −M2∇bM1)

]
, (15)

cannot be part of a space-time metric to form a classical line element of the form ds2 =
−N2dt2+ q̃ab (dxa +Nadt)

(
dxb +N bdt

)
. It is because the modified gauge transformations

generated by the quantum corrected constraints for q̃ab do not match the coordinate trans-
formations of the infinitesimal dxa. This complication notwithstanding, one might venture
to find field redefinitions of the the lapse, shift, the original spatial metric and the extrinsic
curvature, or a combination thereof, to absorb β and recover the classical hypersurface
deformation algebra. In other words, one can try to define new field configurations as
combinations of the old ones which would then give rise to the same constraint algebra
structure as the classical case. Even if one is successful in finding such transformations, it
does not imply that the deformation we find is spurious: It would still affect the equations
of motion of particles on these deformed space-times. However, it would imply that the
background can be treated effectively as a Riemannian geometry. This does not mean that
the background space-time does not pick up quantum corrections, but rather that in spite
of such modifications they retain some notion of classical space-time structures in that they
can still be expressed as Riemannian manifolds. However, it is notoriously difficult to come
up with different canonical transformations to check whether β can be absorbed by one of
them and therefore still retain a Riemannian geometry. (Even if one cannot find one such
transformation for a given system, it does not rule out the possibility of one existing since
there are infinite number of transformations which can be applied to define new variables
from the old ones.)

Recently, this issue was addressed using a different approach [38]: using the well for-
mulated theory of Lie algebroids since the hypersurface deformation brackets provide an
example of one. Indeed, irrespective of the specific choice of the quantum gravity theory, it
was possible to classify different inequivalent space-time structures which cannot be related
by algebroid-morphisms. Since we do not want to obfuscate our central findings with more
mathematical structures than necessary, we do not reproduce the details of that proof in
this essay. However, we shall nevertheless state our main result, as follows. Although it
would seem that an arbitrary phase-space deformation function β would imply virtually
unrestricted quantum corrections, however, only sgn(β) remains the unique choice after
equivalence class of algebroids are taken into account. This has two main implications.
Firstly, as long as one has a deformation function that does not change sign, it is possible,
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in principle, to absorb this factor using some transformation and thus has an effective
Riemannian structure. However, once β changes sign, then one cannot absorb it globally
and a new version of quantum space-time is obtained. In such a case, one has distinct
Lorentzian and Euclidean patches, which form non-isomorphic Lie algebroids. This is the
mathematical reason behind the emergence of time in such theories. Keep in mind, that
this entire mathematical analysis has been done without reference to any specific quantum
gravity theory. Our only input from LQG is to provide a quantum modification function
which results in a sign changing β, which triggers signature change.

Let us finally make some speculative comments regarding the emergence of time in
these models of LQG. As has been throughout emphasized, for every symmetric model of
LQG where one can resolve the classical singularity, one can explicitly prove signature-
change. These are precisely systems which model real-world cosmology (such as FLRW
geometry with small inhomogeneities) or black holes (such as Schwarzschild or CGHS).
Let us focus on the cosmological example first. Since the space-time now changes sign, a
natural question to ask is how does the cosmological perturbations propagate on top of
such a quantum space-time. Firstly, in a strict sense, perturbations cannot ‘propagate’
in the Euclidean phase due to a lack of a sense of time in this phase. However, one
might identify one of the spatial directions as the one which undergoes this ‘physical’ Wick
rotation to emerge as a time parameter. In that case, the change (we purposefully avoid
using the word ‘evolution’) of the perturbations may still be calculated with respect to this
parameter. However, a better method to think about the cosmological setting may be the
following. For actual physical predictions, it might be sufficient to specify some initial value
for cosmological perturbations infinitesimally close to the signature-changing hypersurface
on the Lorentzian side and then evolve them on to the beginning of the inflationary phase.
This way the initial state for inflation can be specified accurately from the underlying
quantum gravity theory since there is no conceptual problem in evolving them throughout
in the Lorentzian phase. Furthermore, to obtain some intuitive understanding of the deep
quantum regime, one may even evolve them ‘backwards’ to evaluate their value on the
signature-changing hypersurface. This would then be matched onto the values of the these
perturbation modes on the boundary of the ‘fuzzy’ Euclidean phase.

The overall picture with black holes is somewhat less clear at present. However, if the
core of black holes display a Euclidean region, it implies that there is no deterministic
evolution through this high curvature region. While singularity in the form of diverging
curvature may be avoided, a challenging question persists in the sense of a space-time
incompletely determined by initial data. In order to extend space-time across the Euclidean
region, one requires additional data on the part of its boundary that borders on the future
Lorentzian space-time. This additional requirement is reminiscent of other proposals of
black-hole models, for instance stretched horizons’, introduced in the context of the black
hole complementarity principle. In any case, the detailed analysis of anomaly-free black
holes within LQG points towards a much subtler non-singular description of quantum
space-time than usually postulated in simplified bounce models. Just as an outside observer
finds the stretched horizon as a membrane, first storing and later releasing information in
the form of microphysical degrees of freedom, additional information is encountered once
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an observer moves into the future of a Euclidean region embedded in space-time. However,
it should be pointed out that in the case of black-hole models of LQG, there is as yet
no microscopic theory that would restrict or determine possible data around Euclidean
regions.

5.2 Necessity of deformed covariance

In their seminal work, Hojman, Kukař and Teitelboim [39, 40] had shown that starting from
the classical hypersurface deformation algebra, one can uniquely get the Einstein Hilbert
action (up to the cosmological constant), if one restricts to second order derivatives of
the field variables. This remarkable result shows the uniqueness of GR as a covariant
gravitational theory provided one does not consider higher derivative terms11. Thus to
get a quantum (or at least, quantum-corrected effective) theory which obeys some notion
of covariance and is yet different from GR one needs to have a some deformation in the
hypersurface deformation algebra. Since we assumed that the diffeomorphism constraint
remains unmodified, our only deformation could appear in the brackets between the Hamil-
tonian constraint and consequently, we do end up with a non-classical version of space-time
although our classical hypersurfaces retain their classical form. Hence, this is an additional
argument, which is consistent with our findings, that a deformed notion of covariance is
required also from the point of the uniqueness theorem due to Hojman et al.

It must be appreciated that modifying the constraints and yet attaining a closed algebra
can turn out to be an extremely ambitious task to accomplish. This has been demonstrated
recently in the works of [42], where the authors wished to generalize the constraints by
including non-canonical kinetic terms. Such higher derivative kinetic terms were shown
to be severely restrictive since the resulting algebra was shown to suffer from anomalies.
The underlying reason for this goes back to the idea that modifying gravity is rather
more difficult than what it seems like at first. Let us look at the problem from another
angle. In the Lagrangian formulation one might say that the quantum-corrected effective
(gravitational) action takes the form

S[g] =
1

16πG

∫
d4x
√
−g [R + · · ·] , (16)

where the dots signify corrections to the Einstein-Hilbert action coming from loop correc-
tions. Any such term must itself be covariant in the sense that it is built out of curvature
invariants and have their Lorentz indices contracted in a proper way. But these corrections,
local or nonlocal, still leads to the same Dirac algebra since the theory remains covariant
after including them. However, there can be one further correction possible in the above
context – one might find a redefinition of the measure ‘d4x

√
−g’. This would mean that the

notion of covariance in the theory is now changed. However, such changes must also follow
certain rules, which in the canonical theory is implemented by requiring that there are no

11Indeed, it is known that higher curvature theories also share the same classical hypersurface deforma-
tion algebra [41].
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anomalies in the theory. This is precisely what one finds in LQG: a new deformed notion
of covariance which renders the invariant line-element non-existent in the deep quantum
regime. However, if one finds that quantum corrections lead to the Dirac algebra giving
rise to anomalies, as is the case for [42], then such corrections must be discarded, at least
in their present form. In this context, one must remember that our holonomy-corrections
are well-defined local functions for extrinsic curvature compoenents, and not like higher
time-derivative kinetic terms as used in [42]. Hence, we are easily able to avoid their no-go
theorems.

5.3 What does quantum space-time consist of?

The most provoking question raised by our essay is regarding the explicit nature of the
fundamental space-time. We have shown that they cannot be described by conventional
classical Riemannian structures once holonomy modifications from LQG are taken into
account. Although we start from a metric, and then define triads in the classical theory, it
turns out that once these corrections are included, one cannot reverse the process to go back
to the metric picture. In lower curvature regimes one has access to effective Riemannian
space-times, and one gets back the usual constructions. However, in the deep quantum
regime, one can locally identify an Euclidean or a Lorentzian patch but there is no global
metric structure which can represent the full space-time.

We know what quantum space-time is not ; it is not the usual Riemannian manifolds
we have grown to get accustomed with. However, what remains to be investigated is the
explicit nature of the ‘atoms’ of space-time. Can there perhaps be a non-commutative,
or even fractal, geometry, replacing the Riemannian one, at the elemental quantum level?
One way to answer this question might be to assume that the space-time has a, say,
non-commutative character. Then one can evaluate the same Dirac algebra for such a
mathematical construction. If the resulting deformation has a similar nature to that of
LQG, it would imply that LQG hints towards such a more fundamental geometry. In
that case, we would have to come up with a suitable coarse-graining for such a quantum
theory which would be consistent with our understanding of smooth, continuous Rieman-
nian manifolds of classical gravity. There are reasons for suspecting such a relationship
between LQG and exotic geometries coming from other considerations. If the hypersurface
deformation algebra is deformed due to holonomy corrections as described above, it can
be shown that the flat Minkowski limit of it gives rise to a non-commutative κ-Poincaré
space-time [27, 43]. To make this relationship more robust, one needs to establish this
correspondence beyond the flat limit.

It is currently a matter of debate as to how should one think about signature-change
arising from LQG. Firstly, it needs to be emphasized that the main mathematical concept
arising out of holonomy corrections is the idea of ‘deformed covariance’, with signature-
change being the main physical effect of that. It seems that LQG provides a physical
‘Wick-rotation’ to be realized, as was envisioned in theories such as the Hartle-Hawking
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(HH) proposal [44]12. However, there are also crucial differences in the signature-change
emerging in LQG and the HH proposal. The quantum wave-function typically obeys a
difference equation in LQG, as opposed to a more-familiar differential equation in HH,
and is closer spirit to the proposal by Vilenkin [45]. There is another way to approach
the problem which relies on noticing the fractal-dimensional nature of the theory. One
can estimate the effective (spectral) dimension of space-time in quantum gravity theories
using methods involving diffusion of particles on a given space-time. These have led to the
evaluation of the UV dimension of theories such as Causal Dynamical Triangulations and
Asymptotic Safety. Including holonomy modification to the constraints in LQG, one can
calculate such UV dimension for the theory. But there is something unique in this case due
to signature-change. One gets a ‘physical’ cut-off for momentum when evaluating integrals
due to the fact that the deformation function changes sign. When this function goes to
zero, on the ‘signature-changing hypersurface’, it gives an equation for a upper (UV) limit
of the physical momentum which can be achieved in the Lorentzian phase. What we
obtain after that is a fuzzy Euclidean space. Preliminary calculations have shown that
the spectral dimension for LQG, including holonomy corrections, goes towards the magic
value of ‘2’. However, it does not flow smoothly from 2 to 4 in a linear manner, but rather
exhibits a rich multi-fractional character. Simply put, it means that, at different energies,
the dimension of space-time is different in the theory.

But why do we keep referring to the Euclidean phase as fuzzy? Well, for once it is not
known what is on the other side of this phase. There might have been a Lorentzian phase
before it, as is indicated by the cyclic, bouncing models of minisuperspace quantizations
of the background in LQG. However, it might just be that there was simply a quantum
Euclidean phase till our usual Lorentzian phase popped up. Remember, in the Euclidean
patch, one cannot ask temporal questions and hence it makes no sense to ask how ‘long’
did it last for. There is another reason to suspect that this phase is not just a simple
classical, Euclidean geometry. Although it can be seen from the deformed Dirac algebra
that the signature of the background is the same as that for Euclidean geometry, the
constraints themselves are not the ones arising from Euclidean GR. In some sense, this is
what is to be expected after all. The usual Riemannian structure is replaced by a quantum
space-time lacking classical analogues. We can, ‘effectively’, still understand some of its
features through the deformed algebra structure. However, if space-time is truly composed
of discrete packets which obey some exotic, non-commutative or fractal behaviour, it is
only natural that the resulting system cannot be fully understood by classical notions.
This forms another reason for the epithet ‘fuzzy’ to be assigned to this region – in the
anticipation that the quantum geometry may turn out to be non-commutative, and perhaps
some version of the fuzzy sphere. However, what is now well-understood for certain is that
there is a ‘fuzzy’ quantum region if we go to very high energies, which is non-singular and
is certainly not described by well-understood Riemannian structures.

12Let us illustrate this point with another well-understood analogy. Many interesting physical con-
sequences are known for coupling between long and short-wavelength cosmological modes in the early
universe. In a similar vein, it has been shown that LQG can lead to such couplings spelling out a physical
mechanism for it.
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Finally, once there is no more an invariant line-element, it is not possible to define
an action without the usual invariant measure for the integral. This makes working in
the Lagrangian picture impossible. However, the Hamiltonian picture remains well-defined
with rigorous definitions of gauge-invariant quantities which might be evaluated to calculate
observables. It seems that the Hamiltonian formulation, which is on the same footing as
the Lagrangian one in the classical setting, is now somehow more preferred in the quantum
theory. This is a surprising twist of turns in LQG which would be interesting to explore
further. This is, however, what was once prophesied by Dirac13 and it seems to be arising
from a quantum theory of gravity.

6 Summary

We have shown that non-classical structures can arise in quantum gravitational theories
with explicit examples of symmetry-reduced models in LQG. As outlined in this essay,
preliminary results suggest that emergent ‘time’ is a concept central to LQG and there-
fore, this has serious consequences for physical systems such as the big-bang cosmology
or black hole singularities. Non-singular signature-change replaces classical singularity in
a way much more intricate than what was previously predicted in strict minisuperspace
quantizations, through a quantum ‘bounce’. A fuzzy Euclidean region inside the core of
black holes has new possibilities for the resolution of the information loss paradox, espe-
cially in its partial similarity to the black hole complementarity paradigm [36], whereas
replacing the big-bang singularity with an ‘asymptotically silent’ phase is reminiscent of
the Hartle-Hawking wavefunction and similar results from Causal Dynamical Triangula-
tions [47]. Thus non-singular bounce from LQG seems to find common ground with other
quantum gravity theories, which has been a very tough proposition for these different ap-
proaches traditionally. The real question, however, remains whether such exotic constructs
are realized in nature. To further probe this question, one first needs to find a full theory
of canonical quantum gravity which retains this feature of ‘emergent time’, going beyond
simplified toy models.
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