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In sum, then, Chalmers’s attempt to argue against physicalism based 
on the conceivability of zombies misses the mark. His version of conceiv-
ability does indeed imply possibility, but at the cost of making it unclear
whether zombies are indeed conceivable.
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Monty Hall, Doomsday and confirmation

Darren Bradley & Branden Fitelson

Imagine you are on a game show. You are faced with three doors (1, 2 and
3), behind one of which is a prize and behind the other two is no prize. In
the first stage of the game, you tentatively select a door (this is your initial
guess as to where the prize is). To fix our ideas, let’s say you tentatively
choose door 3. Then the host, Monty Hall, who knows where the prize is,
opens one of the two remaining doors. Monty Hall can never open either
the door that has the prize or the door that you tentatively choose – he must
open one remaining door that does not contain the prize. Now you learn
that Monty Hall has opened door 1. The standard question asked about
this set-up is: should you now change your (tentative) choice from door 3
to door 2? This is typically seen as being equivalent to the following ques-
tion: is the posterior probability that the prize is behind door 2 greater than
the posterior probability that the prize is behind door 3? If various ‘lottery’
assumptions are made about the prior probabilities and the likelihoods in
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this game, then (perhaps somewhat surprisingly) the answer to this ques-
tion is ‘yes’. But, the ‘lottery’ assumptions required for this conclusion
about the posteriors are non-trivial, and they have been the source of great
controversy about this game and its proper probabilistic analysis (see vos
Savant 1995 for an entertaining discussion of the controversies involved).

In the present paper, we propose an alternative, confirmation-
theoretic analysis of the Monty Hall problem that leads to a much more
robust and less controversial argument. Here, we borrow from analogous
confirmation-theoretic analyses of the Doomsday Argument. In §1, we
begin with a discussion of the Doomsday Argument. We show that the
Doomsday Argument – when reconstructed confirmation-theoretically – is
quite robust, and does not require very strong ‘lottery’ assumptions about
either priors or likelihoods to get off the ground. Then, in §2, we show how
an analogous analysis of the Monty Hall problem leads to an even more
robust argument that requires no lottery assumptions whatsoever.

1. Confirmation-theoretic analysis of the Doomsday Argument

Imagine there are three possibilities for how many people there are, and
will ever be, in the entire universe. Either (H1) there will be one person –
called number 1, or (H2) there will be two people – number 1 and number
2, or (H3) there will be three people – number 1, number 2 and number 3.
These people are always created in order. That is, there cannot be number
2 without there first being number 1, and there cannot be number 3
without there first being both number 1 and number 2. Now, you learn
your birth rank (i.e. you learn that you were the ith person born in the uni-
verse: Ei). To fix our ideas, assume you discover that you are number 2 (E2).
At this point, one might ask: is the posterior probability that the total 
population of the universe is 2 greater than the posterior probability that
the total population of the universe is 3? In other words, is ‘doom sooner’
more probable a posteriori (i.e. conditional upon your birth-rank) than
‘doom later’? In order to answer this question precisely, we would need to 
make some rather strong assumptions about the priors Pr(Hj) and the like-
lihoods Pr(Ei | Hj). In ‘lottery’ versions of the Doomsday Argument (e.g.
Bartha & Hitchcock 1999: S342–5), it is typically assumed that the likeli-
hoods satisfy the following constraint: Pr(Ei | Hj) = 1/j, for all i £ j. But, 
in order to derive an inequality between the posteriors Pr(H2 | E2) and
Pr(H3 | E2), we would also need some strong assumptions about the priors
Pr(Hj). The most natural ‘lottery’ assumption would be to make the Hj
equiprobable, a priori. Given these two ‘lottery’ assumptions, Bayes’s
theorem shows that the answer to the comparative question about the pos-
teriors is ‘yes.’ We present the argument formally now. First, some notation
and terminology:
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Hj = The total population of the universe is j
Ei = Your birth rank is i
n = The largest possible population (assumed, for analogy with 

Monty Hall, to be 3 here)
Pr(Hj) = The prior probability of Hj
Pr(Hj | Ei) = The posterior probability of Hj, given Ei
Pr(Ei | Hj) = The likelihood of Hj (on Ei)

We now formally deduce that Pr(H2 | E2) > Pr(H3 | E2), given our two
‘lottery’ assumptions.1

(1) For all j, Pr(Hj) = 1/n = 1/3 (and the Hj are exclusive and exhaustive)
(2) For all i £ j, Pr(Ei | Hj) = 1/j

\(3)

\(4)

\(5)

\(6)

So, given our two ‘lottery’ assumptions, it is more probable a posteriori (i.e.
given that your birth rank is 2) that the total population of the universe is
2 than it is that the total population of the universe is 3. This argument is
fully general. That is, it will go through for any n. So long as n is finite, the
‘lottery’ assumptions (1) and (2) will suffice to show that ‘doom sooner’
has a greater posterior probability than ‘doom later’.2
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1 There are also some logical constraints imposed on the likelihoods by the formula-
tion of the Doomsday set-up (e.g. that Pr(Ei | Hj) = 0 if i > j). We take such logical
constraints for granted throughout, without comment.

2 That is, if i £ j < k £ n and n is finite, then the lottery assumptions (1) and (2) above
will suffice to ensure that Pr(Hj | Ei) > Pr(Hk | Ei). For simplicity, and for the purposes
of analogy with the Monty Hall problem, we have assumed that n is finite (and
known). This assumption can be relaxed in a confirmation-theoretic rendition of the
argument (see Bartha & Hitchcock 1999 for a confirmation-theoretic rendition that
allows n to be infinite). This is another advantage of thinking about Doomsday 
confirmation-theoretically rather than posterior-probabilistically.
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Interestingly, this is not how the Doomsday Argument is typically for-
mulated (see, for instance, Bartha & Hitchcock 1999; Bostrom 2002; Korb
& Oliver 1999; Leslie 1997; Sober 2002). The most sophisticated versions
of the argument begin with (something tantamount to) the following dif-
ferent question about the Doomsday set-up.

(Q) Does E2 confirm H2 more strongly than E2 confirms H3?

This is because satisfactorily answering the question about posteriors
requires some strong and controversial assumptions about the priors of the
Hj (like (1)). As it turns out, answering the confirmation-theoretic question
(Q) does not require such strong and controversial assumptions. The con-
firmation-theoretic treatment is much more robust (and less controversial)
than the posterior-probabilistic analysis, as we will now see.

Following many contemporary authors, including Horwich (1982),
Howson & Urbach (1994), Milne (1995, 1996), and Schlesinger (1991,
1995), we will assume that the degree to which E confirms H is properly
measured by the ratio Pr(H | E)/Pr(H) of the posterior to the prior pro-
bability of H. Given this assumption about how to measure degree of 
confirmation, our question (Q) becomes:

(Q*)

An application of Bayes’s theorem simplifies (Q*) to the following logically
equivalent question.3

(Q*)

What’s neat about (Q*) is that it can be answered in the affirmative without
assuming anything about the prior probabilities of H2 and H3.4 So, we can
answer (Q*) affirmatively without appeal to assumption (1) or any other
significant assumption about the priors of the Hj. Moreover, we don’t need
as strong an assumption as (2) concerning the likelihoods of the Hj to get
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3 It is often seen as a distinguishing virtue of the ratio measure of degree of confirma-
tion that whether E favours H1 over H2 depends only on the likelihoods of H1 and
H2, and not their priors. That is, the ratio measure is distinguished because it satis-
fies the Law of Likelihood (Hacking 1965). A wide variety of philosophers and sta-
tisticians (both Bayesian and non-Bayesian) have defended the Law of Likelihood
(see, for instance, Royall 1997 and Sober 1994). Other measures of confirmation that
have been proposed in the literature violate this principle of comparative support (see
Milne 1996 and Schlesinger 1991). For a recent reconstruction of the Doomsday
Argument based directly on the Law of Likelihood, see Sober 2002.

4 Except that Pr(H2) π 0. We will assume throughout that extreme probabilities are
only assigned in cases where logical constraints apply (i.e. we will assume that Pr is
strictly coherent in the sense of Shimony 1955).
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an affirmative answer to (Q*). All we need is the following weaker assump-
tion about the likelihoods of the Hj:

(7)

All (7) requires is that the likelihood Pr(Ei | Hj) is a strictly decreasing func-
tion of j, for all i £ j < k. This is weaker than the ‘lottery’ assumption (2),
which requires equi-likelihood. Assumption (7) also seems to us more plau-
sible than assumption (2) in the context of Doomsday. Here, (7) only
requires that (in the absence of any other information) the probability of
having a particular birth rank i in a universe of size j gets smaller as j gets
larger. This does not require us to accept any ‘principle of indifference (or
insufficient reason)’ concerning birth ranks and universe sizes.5 Thus, a
confirmation-theoretic rendition of the Doomsday Argument is bound to
be substantially more robust than a posterior-probabilistic one. Next, we
show how an analogous confirmation-theoretic treatment of the Monty
Hall problem leads to an even more robust argument.

2. Confirmation-theoretic analysis of the Monty Hall problem

We begin with a brief review of the standard probabilistic analysis of the
Monty Hall problem. Imagine you are on a game show. There are three
doors in front of you (1, 2 and 3). You know that behind just one of them
is a prize (let Hj be the hypothesis that the prize is behind door j). You get
to make an initial guess. Let’s say you guess door 3 (i.e. you guess H3). Then
the host, Monty Hall, who knows where the prize is, opens one of the two
other doors (let Ei be the observation that Monty opens door i). He must
open a remaining door that does not contain the prize. Say Monty Hall
opens door 1 (i.e. you observe E1). Typically, one is now asked the follow-
ing question: is the posterior probability that the prize is behind door 2,
Pr(H2 | E1), greater than the posterior probability that the prize is behind
door 3, Pr(H3 | E1)? As was the case with Doomsday, in order to answer
this question precisely, we need to make some rather strong assumptions
about the priors Pr(Hj) and the likelihoods Pr(Ei | Hj). In the standard treat-
ments, the following two ‘lottery’ assumptions are made about the Monty
Hall set-up.6

If then i j k E H E Hi j i k£ < ( ) > ( ), Pr Pr .

5 Even this weaker assumption is controversial. Elliott Sober (2002) argues that
assumption (7) – in the context of the Doomsday Argument – has implausible empir-
ical consequences.

6 The following two logical constraints on the likelihoods are also implicit in the 
formulation of the Monty Hall problem: (i) For all i and j, if i π j and j π 3, then 
Pr(Ei | Hj) = 1, and (ii) For all i and j, if i = j, then Pr(Ei | Hj) = 0. As in the Dooms-
day case, we take such logical constraints for granted throughout, without comment.
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(8) For all j, Pr(Hj) = 1/n = 1/3 (and the Hj are mutually exclusive
and exhaustive)

(9) For all i and j, if i π j and j = 3 then Pr(Ei | Hj) = 1/(n - 1) = 1/2

We present the argument formally now. First, some notation.7

Hj = The prize is behind door j
Ei = Monty Hall opens door i
n = The total number of doors (typically, n is 3) = the # of the door

you tentatively choose.

We now formally deduce that Pr(H2 | E1) > Pr(H3 | E1), given our two
‘lottery’ assumptions.8

\(10)

\(11)

\(12)

\(13)

So, given the standard ‘lottery’ assumptions, it is more probable a posteri-
ori (i.e. given that Monty Hall opens door 1) that the prize is behind door
2, and the player should revise the tentative choice of door 3 to a choice 
of door 2. A parallel argument can be made to show that a switch should
also be made if Monty Hall opens door 2. So, given the symmetries of the
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7 To make the analogy to the Doomsday Argument clear, the hypothesis that there is
just 1 person in the universe is like the first door containing the prize, the hypothesis
that there are 2 people is like the second door containing the prize and the hypothe-
sis that there are 3 people is like the third door containing the prize. The Hj’s are
strictly analogous between (n = 3) Doomsday and Monty Hall. Moreover, learning
that you are number 2 is analogous to Monty Hall opening door 1. In both cases, H1
is eliminated as a possibility. More generally, Ei in the Monty Hall problem corre-
sponds (roughly) to Ei+1 in the (n = 3) Doomsday Argument.

8 See Cross 2000 for a canonical layout of the argument behind the standard (n = 3)
Monty Hall problem. Chun (1999) shows how to generalize the argument (in various
ways) to n > 3 doors.
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problem, the player should always switch doors once Monty Hall opens a
door – no matter which door is tentatively chosen and no matter which
door is opened! Many people find this result counter-intuitive. It is often
thought that we should be indifferent between the two remaining doors
(and not be motivated to switch doors). There has been much written about
this issue (see, for instance, Chun 1999; Cross 2000; vos Savant 1995).

We will not rehearse the various debates surrounding Monty Hall here.
For our present purposes, it will suffice to point out that the conclusion
(13) of this standard argument depends on two substantive assumptions
about the agent’s degrees of belief. The first assumption is (8), that the Hj
should be equiprobable, a priori. The second assumption is (9), that the
likelihoods of the Hj should be split equally between the two remaining
possible door eliminations (provided these likelihoods are non-extreme).9

Next, we will show that a confirmation-theoretic analysis of the Monty
Hall problem obviates the need to make either of these two (potentially
controversial) assumptions about the Monty Hall agent’s degrees of belief.
(8) can be (effectively) disposed of, and (9) can be substantially weakened.

As was the case with the Doomsday Argument, we may ask the fol-
lowing (simplified, analogous) confirmation-theoretic question about the
Monty Hall problem:

(Q¢) Is it the case that Pr(E1 | H2) > Pr(E1 | H3)? (i.e. Does E1 favour
H2 over H3?)

And, as was the case with Doomsday, we may give an affirmative answer
to (Q¢) without making any assumption about the prior probabilities of 
the Hj (except that they are non-zero), and without making as strong an
assumption as (9) about the likelihoods Pr(Ei | Hj). All we need for an affir-
mative answer to (Q¢) is assumption (7), which is substantially weaker than
(9). In the Monty Hall case, (7) only requires that Pr(E1 | H3) < 1.10 But,
that is nearly trivial, since all it requires is that Monty Hall might not open
door 1 if the prize is behind door 3. So, even if you object to the standard
posterior-probabilistic analysis of the Monty Hall problem, it seems you
must agree (given the symmetries of the problem) that – no matter which

9 In other words, (9) says that the probabilities of Monty Hall eliminating doors 1 or
2 (conditional on the location of the prize) are the same (provided that these proba-
bilities are non-extreme).

10 There is an interesting corollary to this result. If one grants the uniform prior distri-
bution assumption (8), then (13) is guaranteed, unless one assigns Pr(E1 | H3) = 1.
This is another sense in which the Monty Hall argument is more robust than the
Doomsday Argument. Moreover, since there is no logical constraint imposed by H3
on E1 in the Monty Hall set-up, Pr(E1 | H3) < 1 follows from the mere strict coher-
ence (Shimony 1955) of Pr alone. As such, our confirmation-theoretic rendition of the
Monty Hall problem involves no lottery assumptions whatsoever.
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door Monty Hall opens and no matter which door you tentatively chose –
Monty Hall’s door-opening provides better evidence for the hypothesis that
the prize is behind the door you did not tentatively choose than it does for
the hypothesis that your tentative choice was correct.11
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Farewell to Grelling

Laurence Goldstein

Define ‘hek’ as a predicate that truly applies to any dog that is blind in one
eye, has had all its legs amputated and smells particularly badly in April.
This is a perfectly acceptable definition, and, since Mrs. Snaith’s terrier
Lucky satisfies the predicate, we can say that it has the property of hekness,
or that Lucky is a hek dog.

Define ‘hel’ as a predicate that truly applies to names of predicates 
that apply to dogs. This too is an acceptable definition, and we can say, 
for example, that ‘is an animal’ is hel.

Define ‘heo’ as a predicate that truly applies to any dog if and only if it
truly applies to that dog. Since this ‘definition’ does not fix a meaning for
‘heo’, does not allow us to determine whether Lucky (or any other dog) is
heo, it fails as a definition; no property of heoness has been identified.
Another way of putting the point is that we have no grounds for the appli-
cation of ‘heo’, whereas the application of ‘hek’ is grounded in, or founded
upon, examination of dogs, and the application of ‘hel’ is grounded in our
examination of the predicates that apply to dogs.

Define ‘hep’ as a predicate that truly applies to any dog if and only if it
does not truly apply to that dog. This attempted definition clearly fares no
better than the previous one. We have not fixed a meaning for ‘hep’ and
hence are in no position to raise the question of whether ‘Lucky is hep’ is
true or false. In fact, ‘Lucky is hep’ makes no more sense than ‘Lucky is
qep’.

Define ‘heq’ as a predicate that truly applies to the word ‘heq’ itself if
and only if it truly applies to that word. Like the above attempted defini-
tion of ‘heo’, this is a failed attempt.

Define ‘hes’ as a predicate that truly applies to itself if and only if it 
does not truly apply to itself. Again, a failed attempt at a definition – it
stands to the attempted definition of ‘heq’ as that of ‘hep’ stands to that of
‘heo’.
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