Skip to main content
Log in

Recursion Hypothesis Considered as a Research Program for Cognitive Science

  • Published:
Minds and Machines Aims and scope Submit manuscript

Abstract

Humans grasp discrete infinities within several cognitive domains, such as in language, thought, social cognition and tool-making. It is sometimes suggested that any such generative ability is based on a computational system processing hierarchical and recursive mental representations. One view concerning such generativity has been that each of the mind’s modules defining a cognitive domain implements its own recursive computational system. In this paper recent evidence to the contrary is reviewed and it is proposed that there is only one supramodal computational system with recursion in the human mind. A recursion thesis is defined, according to which the hominin cognitive evolution is constituted by a recent punctuated genetic mutation that installed the general, supramodal capacity for recursion into the human nervous system on top of the existing, evolutionarily older cognitive structures, and it is argued on the basis of empirical evidence and theoretical considerations that the recursion thesis constitutes a plausible research program for cognitive science.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. The conceptual leap from Descartes’ dualistic theory of creativity to the present day naturalism was made by Alan Turing, who designed a physically implementable model of an effective algorithmic process that could be implemented in entirely mechanical terms and which could, in principle, handle computational processes that are creative in Descartes’ sense. Turing’s work can be understood against the background of a larger mathematical effort to make mathematics more rigorous, but it was precisely the work of Turing and his colleagues involved in the same project that delivered us the rigorous understanding of what recursion is and how it works. Still today, the explanation of the origins and nature of human creativity is based on the resulting concept of recursion.

  2. In the first formulation of the generative grammar (Chomsky 1955), recursion was implemented by “generalized transformation” that combined linguistic phrase-structures together at special junctions. This device reincarnates in the more recent minimalist program, now called Merge (Chomsky 2006, pp. 3-4). Newell and Simon’s original attempts at modeling human problem solving were based on an idea that there exists a general problem solver, a recursive search algorithm that could apply to any conceptual material (Newell & Simon 1963).

References

  • Bickerton, D. (1990). Language & species. Chicago: University of Chicago Press.

    Google Scholar 

  • Bickerton, D. (1995). Language and human behavior. Seattle: Washington University Press.

    Google Scholar 

  • Bickerton, D. (2007). Language evolution: A brief guide for linguists. Lingua, 117, 510–526.

    Article  Google Scholar 

  • Boeckx, C. (2006). Linguistic minimalism: Origins, concepts, methods, and aims. Oxford: Oxford University Press.

    Google Scholar 

  • Boeckx, C. (2008). Bare syntax. Oxford: Oxford University Press.

    Google Scholar 

  • Brattico, P. (2005). Karteesiolaisen kieliteorian paluu kognitiotieteeseen. Kieli & Puhe, 25, 211–225.

    Google Scholar 

  • Brattico, P. (2009). A biolinguistic framework. Biolinguistica Fennica Working Papers, 1, 3–20.

  • Brattico, P., & Huhmarniemi, S. (2006). Finnish Negation, EPP-principle and the valuation theory of morphosyntax. Nordic Journal of Linguistics, 29(1), 5–44.

    Google Scholar 

  • Brattico, P., & Liikkanen, L. (2009). Rethinking cartesian theory of linguistic productivity. Philosophical Psychology, 22(3), 251–279.

    Google Scholar 

  • Bratto, A. M. (2001). Half a brain is enough: The story of Nico. Cambridge, UK: Cambridge University Press.

    Google Scholar 

  • Brown, S., Martinez, M. J., & Parsons, L. M. (2006). Music and language side by side in the brain: A PET study of the generation of melodies and sentences. European Journal of Neuroscience, 23(10), 2791–2803.

    Google Scholar 

  • Carroll, S. B. (2003). Genetics and the making of Homo sapiens. Nature, 422, 849–857.

    Article  Google Scholar 

  • Cheney, D. L., & Seyfarth, R. M. (1990). How monkeys see the world. Chicago: University of Chicago Press.

    Google Scholar 

  • Cheney, D. L., & Seyfarth, R. M. (2007). Baboom metaphysics: The evolution of a social mind. Chicago: Chicago University Press.

    Google Scholar 

  • Chimpanzee Sequencing Analysis Consortium. (2005). Initial sequence of the chimpanzee genome and comparison with the human genome. Nature, 437, 69–87.

    Article  Google Scholar 

  • Chomsky, N. (1955). Logical structure of linguistic theory, unpublished ms. Parts of revised 1956 version published in 1975 (Chicago: Plenum).

  • Chomsky, N. (1957). Syntactic structures. The Hague: Mouton.

  • Chomsky, N. (1965). Aspects of the theory of syntax. Cambridge, MA: MIT Press.

  • Chomsky, N. (1981). Lectures in government and binding: The Pisa lectures. Dordrecht: Foris.

  • Chomsky, N. (1988). Language and problems of knowledge. Cambridge, MA.: MIT Press.

  • Chomsky, N. (1993). Language and thought. London: Moyer Bell.

  • Chomsky, N. (1995). The minimalist program. Cambridge, MA: MIT Press.

    MATH  Google Scholar 

  • Chomsky, N. (2000). The architecture of language. Oxford: Oxford University Press.

    Google Scholar 

  • Chomsky, N. (2001). Derivation by phase. In M. Kenstowicz (Ed.), Ken Hale: A life in language. Cambridge, MA: MIT Press.

  • Chomsky, N. (2004). Beyond explanatory adequacy. In A. Belletti (Ed.), Structures and beyond. Oxford: Oxford University Press.

    Google Scholar 

  • Chomsky, N. (2005). Three factors in language design. Linguistic Inquiry, 36, 1–22.

    Google Scholar 

  • Chomsky, N. (2006). Approaching UG from below. Manuscript, MIT.

  • Chomsky, N. (2008). On phases. In R. Freidin, C. P. Otero, & M. L. Zubizarreta (Eds.), Foundational issues in linguistic theory. Essays in honor of Jean-Roger Vergnaud. Cambridge, MA: MIT Press.

    Google Scholar 

  • Corballis, M. (1991). The lopsided ape: Evolution of the generative mind. Oxford: Oxford University Press.

    Google Scholar 

  • Corballis, M. (2002). From hand to mouth: The origins of language. Princeton, NJ: Princeton University Press.

    Google Scholar 

  • Daltrozzo, J., & Schön, D. (2009). Conceptual processing in music as revealed by N400 effects on words and musical targets. Journal of Cognitive Neuroscience, 22(10), 1882–1892.

    Article  Google Scholar 

  • Darwin, C. (1879/2004). The descent of Man. London: Penguin Books.

    Google Scholar 

  • Davidson, E. H. (2006). The regulatory genome. Gene regulatory networks in development and evolution. Amsterdam: Academic Press.

    Google Scholar 

  • Dawkins, R. (1996). The blind watchmaker. Why the evidence of evolution reveals a universe without design. New York & London: Norton.

    Google Scholar 

  • Descartes, R. (1997). Descartes. Key philosophical writings (E. Haldane & G. R. T. Ross, Trans.). Hertfordshire: Wordsworth.

  • Diamond, J. (1992). The third chimpanzee. The evolution and future of the human animal. New York: HarperCollins.

    Google Scholar 

  • Dietrich, M. R. (2002). Richard Goldschmidt: hopeful monsters and other ‘heresies’. Nature Reviews: Genetics, 4, 68–74.

    Article  Google Scholar 

  • Enard, W., Przeworski, M., Fisher, S. E., Lai, C. S. L., Wiebe, V., Kitano, T., et al. (2002). Molecular evolution of FOXP2, a gene involved in speech and language. Nature, 418, 869–872.

    Article  Google Scholar 

  • Evans, P. D., Gilbert, S. L., & Mekel-Bobrov, N. (2005). Microcephalin, a gene regulating brain size, continues to evolve adaptively in humans. Science, 309, 1717–1720.

    Article  Google Scholar 

  • Fisher, S. E., & Marcus, G. F. (2006). The eloquent ape: Genes, brains and the evolution of language. Nature reviews: Genetics, 7, 9–20.

    Article  Google Scholar 

  • Fitch, W., & Hauser, H. (2004). Computational constraints on syntactic processing in a nonhuman primate. Science, 303, 377–380.

    Article  Google Scholar 

  • Fodor, J. (1975). The language of thought. Cambridge, MA: MIT Press.

    Google Scholar 

  • Fodor, J. (1983). The modularity of the mind. Cambridge, MA: MIT Press.

    Google Scholar 

  • Fodor, J. A. (2003). Hume variations. Oxford: Oxford University Press.

    Google Scholar 

  • Fodor, J., & Pylyshyn, Z. (1988). Connectionism and the cognitive architecture: A critical analysis. Cognition, 28, 3–71.

    Article  Google Scholar 

  • Friederici, A. (2003). Processing local transitions versus long-distance syntactic hierarchies. Trends in Cognitive Science, 8, 245–247.

    Article  Google Scholar 

  • Friederici, A. D., Bahlman, J., Heim, S., Schubotz, R. I., & Anwander, A. (2006). The brain differentiates human and non-human grammars: Functional localization and structural connectivity. PNAS, 103, 2458–2463.

    Article  Google Scholar 

  • Gazzaniga, M. S. (Ed.) (1999). The new cognitive neurosciences. Cambridge, MA: MIT Press.

    Google Scholar 

  • Gentner, T., Fenn, K. M., Margoliash, D., & Nusbaum, H. C. (2006). Recursive syntactic pattern learning by song birds. Nature, 440(27), 1204–1207.

    Article  Google Scholar 

  • Goldschmidt, R. (1940). The material basis of evolution. New Haven, CT: Yale University Press.

    Google Scholar 

  • Goodall, J. (1964). Tool-using and aimed throwing in a community of freeliving chimpanzees. Nature, 201, 1264–1266.

    Article  Google Scholar 

  • Goodall, J. (1986). The chimpanzees of Gombe: Patterns of behavior. Cambridge, MA: Belknap Press.

    Google Scholar 

  • Gould, S. J. (1977). The return of hopeful monster. Natural History, 86, 22–30.

    Google Scholar 

  • Gould, S. J. (2002). The structure of evolutionary theory. Cambridge, MA: Harvard University Press.

    Google Scholar 

  • Habgood, P. J., & Franklin, N. R. (2008). The revolution that didn’t arrive: A review of Pleistocene Sahul. Journal of Human Evolution, 55, 187–222.

    Article  Google Scholar 

  • Hauser, M. (1996). The evolution of communication. Cambridge, MA: MIT Press.

    Google Scholar 

  • Hauser, M. (2001). Wild minds: What animals really think. New York: Owl Books.

    Google Scholar 

  • Hauser, M. D. (2009). The possibility of impossible cultures. Nature, 460, 190–196.

    Article  Google Scholar 

  • Hauser, M. D., Barner, D., & O’Donnell, T. (2007). Evolutionary linguistics: A new look at an old landscape. Language Learning and Development, 3, 101–132.

    Google Scholar 

  • Hauser, M., Chomsky, N., & Fitch, W. T. (2002). The faculty of language: What is it, who has it, and how did it evolve? Science, 298, 1569–1579.

    Article  Google Scholar 

  • Hauser, M., & Fitch, W. T. (2003). Uniquely human components? In M. H. Christiansen & S. Kirby (Eds.), Language evolution. Oxford: Oxford University Press.

    Google Scholar 

  • Henshilwood, C., d’Errico, F., Marean, C. W., Milo, R. G., & Yates, R. (2001). An early bone tool industry from the middle stone age at Blombos Cave, South Africa: Implications for the origins of modern human behaviour, symbolism and language. Journal of Human Evolution, 41, 631–678.

    Article  Google Scholar 

  • Hinzen, W. (2006). Mind design and minimal syntax. Oxford: Oxford University Press.

    Book  Google Scholar 

  • Jackendoff, R. (2002). Foundations of language. Oxford: Oxford University Press.

    Book  Google Scholar 

  • Johanson, D., & Edgar, B. (1996). From lucy to language. UK: Weidenfeld & Nicolson.

    Google Scholar 

  • Kayne, R. (1994). The antisymmetry of syntax. Cambridge, MA: MIT Press.

    Google Scholar 

  • Klein, R. (1999). The human career: Human biological and cultural origins (2nd ed.). Chicago & London: The University of Chicago Press.

    Google Scholar 

  • Klein, R. (2005). Hominin dispersals in the old world. In C. Scarre (Ed.), The human past: World prehistory & the development of human societies. London: Thames & Hudson.

    Google Scholar 

  • Klein, R. G., & Edgar, B. (2002). The dawn of human culture. New York: Wiley.

    Google Scholar 

  • Koelsch, S., Kasper, E., Sammler, D., Schulze, K., Hunter, T., & Friederici, A. D. (2004). Music, language and meaning: Brain signatures of semantic processing. Nature Neuroscience, 7(3), 302–307.

    Article  Google Scholar 

  • Lai, C. S. L., Fisher, S. E., Hurst, J. A., Vargha-Khadem, F., & Monace, A. P. (2001). A forkhead-domain gene is mutated in a severe speech and language disorder. Nature, 413, 519–523.

    Article  Google Scholar 

  • Lebeaux, D. (2009). Where does binding theory apply? Cambridge, MA: MIT Press.

    Google Scholar 

  • Lerdahl, F., & Jackendoff, R. (1983). A generative theory of tonal music. Cambridge, MA: MIT Press.

    Google Scholar 

  • Lewis-Williams, J. D. (2004). The mind in the cave: Consciousness and the origins of art. London: Thames & Hudson.

    Google Scholar 

  • Macdonald, C., & Macdonald, G. (Eds.) (1995). Connectionism. Cambridge, MA: Blackwell.

    Google Scholar 

  • Maess, B., Koelsch, S., Gunter, T. C., & Friederici, A. D. (2001). Musical syntax is processed in Broca’s area: An MEG study. Nature Neuroscience, 4, 540–545.

    Google Scholar 

  • McBrearty, S., & Brooks, A. (2000). The revolution that wasn’t: A new interpretation of the origin of modern human behavior. Journal of Human Evolution, 39, 453–563.

    Article  Google Scholar 

  • Mekel-Bobrov, N., Gilbert, S. L., & Evans, P. D. ym. (2005). Ongoing adaptive evolution of ASPM, a brain size determinant in Homo sapiens. Science, 309, 1720–1722.

    Article  Google Scholar 

  • Moro, A. (2000). Dynamic antisymmetry. Cambridge, MA: MIT Press.

    Google Scholar 

  • Nunes, J. (2004). Linearization of chains and sideward movement. Cambridge, MA: MIT Press.

    Google Scholar 

  • Patel, A. D. (2003). Language, music, syntax and the brain. Nature Neuroscience, 6, 674–681.

    Article  Google Scholar 

  • Patel, A. D. (2008). Music, language, and the brain. Oxford: Oxford University Press.

    Google Scholar 

  • Peretz, I., & Coltheart, M. (2003). Modularity of music processing. Nature Neuroscience, 6, 688–691.

    Article  Google Scholar 

  • Pettitt, P. (2005). The rise of modern humans. In C. Scarre (Ed.), The human past: World prehistory & the development of human societies. London: Thames & Hudson.

    Google Scholar 

  • Pinker, S., & Jackendoff, R. (2005). The faculty of language: What’s special about it? Cognition, 95, 201–236.

    Article  Google Scholar 

  • Raffmann, D. (1993). Language, music, and mind. Cambridge, MA: MIT Press.

    Google Scholar 

  • Semenza, C., Delazer, M., Bertella, L., Grana, A., Mori, I., Conti, F. M., et al. (2006). Is math lateralised on the same side as language? Right hemisphere aphasia and mathematical abilities. Neuroscience Letters, 406(3), 285–288.

    Google Scholar 

  • Shea, J. J. (2008). The middle stone age archaeology of the lower Omo Valley Kibish formation: Excavations, lithic assemblages, and inferred patterns of early Homo sapiens behavior. Journal of Human Evolution, 55, 448–485.

    Article  Google Scholar 

  • Smolensky, P. (1987). The constituent structure of mental states: A reply to Fodor and Pylyshyn. Southern Journal of Philosophy, 26, 137–160.

    Article  Google Scholar 

  • Smolensky, P. (1988). On the proper treatment of connectionism. Behavioral and Brain Sciences, 11, 1–23.

    Article  Google Scholar 

  • Smolensky, P. (1990). Tensor product variable binding and the representation of structure in connectionist systems. Artificial Intelligence, 46, 159–216.

    Article  MATH  MathSciNet  Google Scholar 

  • Swain, J. (1997). Musical languages. New York: Norton.

    Google Scholar 

  • Tettamanti, M., & Weniger, D. (2006). Broca’s area: A supramodal hierarchical processor? Cortex, 42.4, 491–494.

    Article  Google Scholar 

  • Tillmann, B., Koelsch, S., Escoffier, N., Bigand, E., Lalitte, P., Friederici, A. D., et al. (2006). Cognitive priming in sung and instrumental music: Activation of inferior frontal cortex. Neuroimage, 31(4), 1771–1782.

    Google Scholar 

  • Ullman, M. T. (2001). A neurocognitive perspective on language: The declarative/procedural model. Nature Reviews: Neuroscience, 2, 717–721.

    Article  Google Scholar 

  • Ullman, M. T. (2004). Contributions of memory circuit to language: The declarative/procedural model. Cognition, 92, 231–270.

    Article  Google Scholar 

  • Ullman, M. T. (2006). Is broca’s area part of a basal ganglia thalamocortical circuit? Cortex, 42.4, 480–485.

    Article  Google Scholar 

  • Varley, R. A., Klessinger, N. J., Romanowski, C. A. J., & Siegal, M. (2005). Agrammatic but numerate. Proceedings of the National Academy of Sciences USA, 102, 3519–3524.

  • Wesson, R. (1993). Beyond natural selection. Cambridge, MA: MIT Press.

    Google Scholar 

  • Whiting, M. F., Bradler, S., & Maxwell, T. (2003). Loss and recovery of wings in stick insects. Nature, 421, 264–267.

    Article  Google Scholar 

  • Williams, E. (2003). Representational theory. Cambridge, MA: MIT Press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pauli Brattico.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brattico, P. Recursion Hypothesis Considered as a Research Program for Cognitive Science. Minds & Machines 20, 213–241 (2010). https://doi.org/10.1007/s11023-010-9189-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11023-010-9189-8

Keywords

Navigation