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Abstract

Providing a compositional interpretation procedure for discourses in which descriptions of com-
plex dependencies between interrelated objects are incrementally built is a key challenge for
formal theories of natural language interpretation. This paper examines several quantificational
phenomena and argues that we need richly structured contexts of interpretation that are passed
on between different parts of the same sentence and also across sentential boundaries to account
for these phenomena. The main contribution of the paper is showing how we can add structure
to contexts in an incremental way, starting with the basic notion of context in classical first-order
logic, i.e., interpretation contexts formalized as single total variable assignments.

1 Introduction: Quantification in Discourse

The basic goal of formal semantics is to provide a precise characterization of natural language
interpretation. The idea is to characterize the meaning of sentences and discourses like (1) and (2)
below as precisely as the meaning of equations like 2 + 3 = 5 in elementary arithmetic.

(1) Linus entered the room.

(2) Linus entered the room. He sat down.

In particular, we want to associate each word Linus, enter etc. — and even parts of words, e.g., the
past tense -ed — with a precisely defined meaning in much the same way that the symbols 2, +, 3,
= etc. are associated with precisely defined meanings. Given some familiarity with formal logic,
we can fairly easily see how to start developing the foundations of such a project. It is, however,
not obvious how to characterize the denotations of natural language quantifiers like every woman,
most rooms, no man etc.

For one thing, quantifiers do not refer to any individual or set of individuals. Consider, for
example, the quantifier no man in the sentence Bonadea saw no man. What kind of entity or set
of entities could no man possibly refer to? Similarly, what kind of entity or set of entities could
the adverb never possibly refer to in Bonadea never smoked or the modal verb cannot in Bonadea
cannot help Linus?

Moreover, besides characterizing the meaning of quantifiers by themselves, we also want to char-
acterize the interaction between multiple quantifiers and, also, their effects on adjectives like same
and different. These adjectives can have both a deictic / sentence-external reading, exemplified in
(3) and (4) below, and a sentence-internal reading, exemplified in (5).
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(3) a. Mary recited The Raven.

b. Linus recited a different poem.
(deictic / sentence-external: different from The Raven)

(4) a. Mary recited The Raven.

b. Then, every boy recited a different poem.
(deictic / sentence-external: different from The Raven)

(5) Every boy recited a different poem.
(sentence-internal: for any two boys a and b, a’s poem is different from b’s poem)

The interpretation of different in (3b)/(4b) is sentence external in the sense that it is anaphoric to
the variable introduced by the proper name The Raven in the previous sentence (3a)/(4a). Thus,
in (3)/(4), different relates two variables and requires their values, i.e., the actual entities, to be
distinct.

The sentence-internal reading in (5) seems to relate values of only one variable, introduced by
the narrow-scope indefinite a poem. These values, i.e., the recited poems, covary with the values of
the variable introduced by the universal quantifier every boy — and different requires the poems to
be distinct relative to distinct boys.

We want to capture the particular way in which the interpretation of different is dependent
on quantificational expressions — and, also, the fact that different is licensed by such expressions:
uttering (5) out of the blue is felicitous, but uttering (3b) is not. If (3b) is discourse-initial, it begs
the question: a poem different from what?

Formal semantics has made great progress with respect to the project of providing a mathe-
matically precise characterization of the denotations of natural language quantifiers by themselves.
Much less is known about how to relate multiple quantifiers and pronominal items in discourse and
also, how quantifiers interact with expressions like same and different.

The goal of this paper is to overview the kinds of strategies used in the semantic literature to
account for these and related phenomena and identify important decision points in the development
of such accounts. The main idea is that all these phenomena provide support for a notion of natural
language interpretation that involves richly structured contexts that are incrementally updated and
passed on between different parts of the same sentence and across sentential boundaries.

The main contribution of the paper is showing how we can add increasingly more complex
structure to interpretation contexts, starting with the basic notion of context in classical first-order
logic (FOL), i.e., a single total variable assignment.

2 Quantification in Classical First-Order Logic (FOL)

The essence of quantification in FOL is pointwise manipulation of variable assignments.

This observation is almost never emphasized in the usual introductions to formal semantics. One
reason is that such introductions focus on compositionality issues, i.e., on the recursive definition of
truth and satisfaction and the way in which semantic clauses for FOL closely track syntactic clauses.
Later, when formulas with multiple nested quantifiers are interpreted, pointwise manipulation of
variable assignments could come into proper focus, but it often does not.

What we usually do at that point is provide a fairly involved formula and examine in detail
how its interpretation involves multiple nested applications of the semantic clauses for universal
and existential quantifiers. The main take-home lesson is that the semantic clauses can be applied
recursively and some care needs to be exercised in the process, but that is all. The satisfaction of



a well-applied set of rules obscures the lack of conceptual understanding and armed with technical
knowledge of FOL, we proceed to pursue some of life’s worthier goals.

Interpreting formulas with multiple nested quantifiers in FOL is the simplest example in which
a crucial aspect of interpretation takes main stage: a higher quantifier creates the context relative
to which a lower quantifier is interpreted.

Thus, just like in everyday conversation, novels etc., an automatic side effect of interpreting an
expression (the mother telling the child how to arrange her toys, what the main character did in
chapter 2 etc.) is to create the context relative to which subsequent expressions are interpreted.

The formal tool that accomplishes this basic and crucial task in FOL is the notion of variable
assignment and the ways in which the recursive definition of truth and satisfaction instructs us to
manipulate variable assignments during interpretation.

Variable assignments are the interpretation ‘glue’ that is passed on between different parts of
a formula and that enables us to interpret them together as a whole, in much the same way that
properly sequenced pieces of conversation or text are interpreted together as a meaningful whole.

That is, variable assignments and the way in which FOL quantifiers manipulate them give us the
key to building a formally explicit theory of sentence and discourse interpretation. FOL provides the
simplest example in which interpretation contexts are manipulated in a syntactically local manner
but are passed on in a syntactically non-local manner. This enables us to compositionally interpret
a syntactically complex structure in such a way that distinct expressions — possibly separated by
sentential boundaries — end up incrementally contributing to the same, richly articulated description
of some part of the world.

We can see this in detail by examining the formula in (6) below, which is the FOL translation
of the English sentence in (7).

(6) Va(WOMAN(x) — Jy(MAN(y) A J2(MUSTACHE(2) A HAVE(y, z)) A SEE(z,Y)))

(7) Every” woman saw a¥ man who had a* mustache.

Based on the definition of FOL syntax in (8) below, the formula in (6) is assigned the tree-like
syntactic structure in Figure 1.

(8) FOL syntax

a. Basic expressions:

i. Terms: names (individual constants) MARY,JOHN,... and a denumerably infinite
set of variables over individuals V = {z,y, z,... }

ii. Predicates: 1-place predicates MAN, WOMAN, ..., 2-place predicates SEE, HAVE, ...,
3-place predicates GIVE, SEND, ... etc.

b. Atomic formulas:
i. If 7 is an n-place predicate and «q, . . ., a, are terms, then 7(ayq, . . ., ay,) is a formula.
ii. If @ and § are terms, then o = 3 is a formula.
c. Formulas (sentential connectives):
i. If ¢ is a formula, then (—¢) is a formula.
ii. If ¢ and % are formulas, then (¢ A 9) is a formula.
d. Formulas (quantifiers):
i. If ¢ is a formula and v is a variable, then (Ju¢) is a formula.

e. Abbreviations (parentheses are sometimes omitted to improve readability):

L (¢ ve)i=(=(=¢ A —1))



i (¢ — )= (=(p A —0))
iii. (Yog) := (—Fv(—¢))

Va(WOMAN(z) — Jy(MAN(y) A 3z(MUSTACHE(z) A HAVE(y, 2)) A SEE(x,¥)))

]

Vo WOMAN(x) — Jy(MAN(y) A 32(MUSTACHE(2) A HAVE(Y, z)) A SEE(z,Y))

. T

WOMAN(2) — Jy(MAN(y) A 32(MUSTACHE(z) A HAVE(y, 2)) A SEE(z,Y))
A
Jy MAN(y) A 32(MUSTACHE(2) A HAVE(Y, z)) A SEE(z,y)
M
MAN(y) A 32(MUSTACHE(z) A HAVE(y, 2)) A SEE(x,Y)
]
32(MUSTACHE(z) A HAVE(y, 2)) A SEE(x,y)
/\
Iz MUSTACHE(z) A HAVE(y, 2)
B
MUSTACHE(2) A HAVE(y, 2)

Figure 1: The syntactic structure of (6)

The definition of FOL semantics relies on the usual notions of model and variable assignment,
provided below. Informally, the model is the ‘dictionary’ that provides the meaning of the basic ex-
pressions. This is not the kind of dictionary that lexicographers compile, but the mental dictionary
that a child compiles as she goes about the world, understands and obeys her mother’s commands
etc.: this dictionary links basic expressions of the language and non-linguistic, actual entities in
the world.

In contrast, a variable assignment is a list of entities brought to salience in previous discourse.
During the interpretation of a formula or during a conversation, the model (i.e., the structure of
the world and the basic expressions of the language) does not change, while variable assignments
are updated as new entities are mentioned: the world and the language stay the same, but the
state of the conversation changes.

Variables are like pronouns, they refer to whatever entities are salient at that point in dis-
course: their meaning depends on the current context of interpretation, i.e., on the current variable
assignment.

(9) Models and assignments:

a. A model 91 for FOL is a pair <Dm, I sm>7 where D is the domain of individuals and I
is a function that assigns an individual in D to every name and a subset of D" to every
n-place predicate (the superscript ™ is omitted whenever contextually retrievable).

b. An 9M-assignment g, h,... is a total function from the set of variables V to the set of
individuals D. Thus, the set of all variable assignments G is the set of functions DY
from V to D.



Our formulation of FOL semantics is slightly non-standard: we rely on the abbreviation g[v]h in
(10) below that makes perspicuous the pointwise assignment manipulation component of first-order
quantification. The abbreviation g[v]h requires the variable assignments g and h to differ at most
with respect to the value they assign to v. The binary relation over variable assignments induced
by g[v]h (for any variable v) is an equivalence relation.

(10) g[v]h := g differs from h at most with respect to the value assigned to the variable v

That is, for any variable v/ # v, we necessarily have that g(v') = h(v') and we also
allow for the possibility that g(v) = h(v) (but this is not necessary).

Manipulating assignments in a pointwise, variablewise way by means of g[v]h is the only way in
which contexts of interpretation change / are updated in FOL.

The definition of the interpretation function [-[*™¢ — or [[-]¢ for short — is provided in (11)
below (T and F stand for true and false).

(11) FOL semantics
a. Basic expressions:
i. If o is a name and 7 is an n-place predicate, then [[a]|Y = I(a) and [7]9 = I(m).
ii. If v is a variable, then [v]}Y = g(v).
(we use the ‘dictionary’ to interpret the basic expressions of our language and the context
to interpret ‘pronouns’)
b. Atomic formulas:
i. If 7 is an n-place predicate and ay, ..., a, are terms, then [7(aq,...,ap)]]9 = T iff
Jorlfs - [oal®) € [
ii. If a and B are terms, then [[a = S]|9 = T iff [[«]9 = [B]?.
(basic claims about the world are true iff the entities mentioned in those claims are actually
related in the way we claim they are)
c. Formulas (sentential connectives):
i. [—o]¢ =T iff [¢]]¢ =F.
ii. [oA9]?="Tiff [¢]]Y =T and ]9 =T.
d. Formulas (quantifiers):

i. [[Ave]lY = T iff there is an assignment A such that (s.t.) g[v]h and [[¢]]* = T.

(existential quantification is simply bringing an entity to salience, then making a claim
about it)
e. Based on the abbreviations in (8e) above, we derive the following:
i [¢ovo]? =Tiff [¢]] =T or [v]]¢ =T.
ii. [ -9 =Tiffif [¢]]Y =T, then [[¢]f =T
iff [¢]]9 =F or [[¢]]Y =T.
iii. [Vug]lY = T iff any assignment h s.t. g[v]h is s.t. [¢]]" = T.
f. Truth:
i. A formula ¢ is true in model 901 iff [[qﬁ]]mg = T for any assignment g.
ii. A formula ¢ is false in model M iff [¢]|™9 = F for any assignment g.



(formulas with free variables in them are neither true nor false in a model simpliciter; a free
variable is like a pronoun that needs a context / an assignment in addition to the model to
be interpreted)

What is of primary interest to us is the definition of existential quantification in (11d-i) and the
definition of universal quantification in (1le-iii). These definitions indicate that first-order quan-
tification has two components.

(i) a component that is common to the existential and the universal quantifier: the pointwise
manipulation of variable assignments encoded by g[v]h;

7) a ‘counting quantifying’ componen at distinguishes between the two quantifiers: a

4 ‘ ting’ ‘ tifying’ t that disti ishes bet the t tifi
particular subset of the set of manipulated assignments (different for the existential vs. the
universal quantifier) needs to satisfy the formula ¢ in the scope of the quantifier.

Which particular subset has to satisfy the requirement in (i) is subject to variation. The existential
merely requires at least one of the assignments h that result after the pointwise manipulation g[v]h
to satisfy ¢. In contrast, the universal requires all such assignments h to satisfy ¢.

Thus, both quantifiers relate the two sets of assignments {h : g[v]h} (the assignments obtained
as a result of pointwise manipulation) and {h : [¢]]" = T} (the assignments that satisfy the formula
¢ in their scope). But the existential quantifier and the universal quantifier require these sets to
stand in different relations: non-empty intersection for the existential and inclusion for the universal.

This is shown in more detail below.

(12) [[Fvo])? =T iff:
e there is an assignment h s.t. g[v]h and [¢]]* = T, i.e.,
e there is an assignment % in both the set {h : g[v]h} and the set {h: [¢]" = T}, ie.,
e the intersection of these sets is non-empty: {h: g[v]h} n {h: [¢]" =T} # &

(13) [[Vue]]¢ =T iff:
e any assignment h s.t. g[v]h is s.t. [¢]] =T, i.e.,
e any assignment A in the set { : g[v]h} has to also be in the set {h: [¢]" = T}, i.e.,
e the first set is included in the second: {h: g[v]h} < {h: [¢]" = T}

We will now reformulate the semantics of FOL so that the above observations about first-order
quantification play a pivotal role.

We will take the denotations of FOL formulas to be sets of variable assignments, with truth
being the set G of all assignments and falsity being (.

That is, we define an interpretation function [-]™ from FOL formulas to p(G) (the powerset of
G) that is not parametrized by variable assignments, but only by the model 9t. And we reformulate
the definition of truth in (11) above: if a formula is true simpliciter (i.e., independently of context),
its denotation is the entire set of assignments G; if a formula is false simpliciter, its denotation is
the empty set of assignments (7.

A clear parallel between FOL semantics and the Kripke semantics for modal logic will emerge
(see Ben-Shalom 1996, van Benthem 1997 and Marx & Venema 1997 among others): just as a
formula in modal logic denotes a proposition / a sets of worlds, namely those worlds relative to
which the formula is true, a formula in FOL denotes a set of assignments / a set of contexts,
namely those contexts relative to which the formula is true. Moreover, existential quantification is



like the possibility operator ¢ and universal quantification is like the necessity operator [J; both of
them, the accessibility relation is the binary relation over variable assignments induced by pointwise
assignment manipulation, i.e., g[v]h.

This modal-like definition of the classical FOL interpretation function [-]™* — or [[.] for short — is
provided in (15) below. The clauses for existential and universal quantification (see (15c-i) and (15d-
iii)) clearly distinguish between the two components of first-order quantification identified above,
namely pointwise assignment manipulation on one hand and relations between sets of assignments
on the other.

g(a), if ais a variable.

(14) For any term « and any assignment g, let g/I (o) := o
I(a), if « is a name.

(15) FOL semantics — p(G) version
a. Atomic formulas:
i. If 7 is an n-place predicate and aq, ..., a, are terms, then
(e, an)ll = {g : <g/T (), ..., g/ (an)) € I(m)}.
ii. If @ and 8 are terms, then Ja = 8] = {9 : g/I(a) = g/I(B)}.
b. Formulas (sentential connectives):
L [—¢ll ={9:9¢ [}
=\l
i f[¢o ~9]l = l¢ll ¥
c. Formulas (quantifiers):
i. [Fue]l = {g : there is an h s.t. g[v]h and h € [¢]}
= {g: {h:glv]n} o] # &}
d. Based on the abbreviations in (8e) above, we derive the following:
i [lov ol =lol v vl
ii. [0 — vl =G\([ol\[¥])
= (G\[2]) v lI¥1
ili. [[Vuo]l = {g:any hs.t. g[v]hiss.t. he o]}
={g:{h:g[v]h} < 2]}
e. Truth:
i. A formula ¢ is true in model M iff [[¢]] = G.
ii. A formula ¢ is false in model M iff [[¢]] = .

The formula in (6) above is interpreted as shown in (16) and (17) below. Quantifiers are interpreted
as manipulating variable assignments in a pointwise / variablewise manner and passing the resulting
assignments to the subformulas in their scope. This dynamics of interpretation is common to both
the standard and the p(G)-style interpretations above.

(16) Standard version:
[Vx(woMAN(z) — Jy(MAN(y) A Iz(MUSTACHE(z) A HAVE(y, 2)) A SEE(z,y)))]]9 = T iff

e any hs.t. g[z]h and h(z) € I(WOMAN) is s.t.
there is an ¢ s.t. h[y]i and i(y) € I(MAN) and
there is a j s.t. i[z]j and j(2) € I (MUSTACHE) and {j(y),j(z)) € I(HAVE)
and (i(z),i(y)) € I(SEE)

e any woman a is s.t. there is a man b that she saw and that had a mustache ¢



(17)  p(G) version:
[Vx(woMAN(z) — Jy(MAN(y) A Iz(MUSTACHE(2) A HAVE(Y, z)) A SEE(z,9)))] =

e {g:any hs.t. glz]h and h(z) € I(WOMAN) is s.t.
there is an i s.t. hly]i and i(y) € I(MAN) and
there is a j s.t. i[z]j and j(z) € I(MUSTACHE) and {j(y),j(z)) € I(HAVE)
and (i(x),i(y)) € I(SEE)}
e {g:any woman a is s.t. there is a man b that she saw and that had a mustache ¢}

(this set of assignments is either G or ¢, depending on whether the model satisfies the
condition “any woman a is s.t. there is a man b that she saw and that had a mustache ¢”
or not)

The first quantifier is the universal every® woman, i.e., Yo(WOMAN(z) — ...). This quantifier
updates the discourse-initial context g by bringing to salience an individual z that is required to
be a woman. This is achieved by manipulating ¢ in a pointwise way: we consider any (this is the
universal component) context h that is like g except that it assigns a woman to z , i.e., any h is
s.t. g[z]h and h(x) € I(WOMAN).

The second quantifier is the existential o/ man that ..., i.e., Jy(MAN(y) A ...). This quantifier
takes narrow scope relative to the preceding universal quantifier, which means that it is interpreted
relative to the context h created by the universal. The existential further updates this context h by
bringing to salience an individual y that is required to be a man. Once again, this is achieved by
pointwise assignment manipulation: we consider some (this is the existential component) context i
that is like h except that it assigns a man to y, i.e., some i s.t. h[y]i and i(y) € I(MAN).

Importantly, context i preserves the manipulation contributed by the universal quantifier, i.e.,
i(z) = h(x). This follows immediately from the definition of the pointwise assignment manipulation
hlyli: i differs from h at most with respect to the value of y. Therefore, when we interpret the
final subformula SEE(z,y) (which we interpret relative to i), we add to the previous information
and require the woman x brought to salience by the universal quantifier to see the man y brought
to salience by the existential.

The interpretation of the third quantifier a* mustache, i.e., 32(MUSTACHE(2) A ...), does not
bring anything new per se. It takes narrow scope relative to the previous existential (hence also
relative to the universal), so it makes its contribution relative to context i: we bring to salience
an individual z that is required to be a mustache that the previously mentioned man y has, i.e.,
there is some j s.t. i[z]j and j(z) € I(MUSTACHE) and {j(y),j(z)) € I(HAVE). Again, bringing to
salience the mustache z preserves the previously introduced information about y: j(y) = i(y) since,
by the definition of i[z]j, ¢ differs from j at most with respect to the value of z.

What is different about the third quantifier a®* mustache is that its scope ends before the final
subformula SEE(x,y) is interpreted. Therefore, this subformula is not interpreted relative to the
‘final’” assignment j, but relative to the ‘intermediate’ assignment 4, which is the most local / recent
context before the assignment manipulation contributed by ¢® mustache.

This is a very important feature of classical FOL semantics: quantifiers erase the variable
assignment manipulation they contribute after the subformulas in their scope are interpreted and
the context of interpretation is reset to whatever it was before the quantifier was interpreted.

Thus, relative to a particular quantifier, the interpretation of formulas inside its scope is funda-
mentally different from the interpretation of formulas outside its scope: the former are interpreted
as expected, i.e., we take into account the information contributed by the quantifier, while the
latter are interpreted as if the quantifier has been ‘unsaid’. This feature of FOL and its ‘unsaying’
consequences make classical static semantics a less than adequate formalization of natural language
interpretation.



3 Problems with FOL Quantification: Anaphora across Conjuncts
and Donkey Anaphora

The fact that FOL quantifiers erase variable-assignment manipulations after the subformulas in
their scope are interpreted makes it impossible for us to define a translation procedure from English
into FOL that is compositional down to clausal level (which is the most we can expect from first-
order logic anyway).

3.1 Anaphora across (Clausal) Conjuncts

In particular, we cannot compositionally translate the variations on example (7) above provided
in (18) and (19) below. These examples contain an instance of anaphora between the indefinite a*
mustache and the pronoun it, that are located in two conjoined verb phrases (VPs) in (18) and in
two conjoined clauses in (19). Antecedents are superscripted with the variable they introduce and
anaphors are subscripted with the variable they retrieve.

(18) Every® woman saw a¥ man who had a* mustache and was twisting it.

(19) Every® woman saw a¥ man who had a* mustache and who was twisting it,.

Such relationships that cross conjoined VP or clausal boundaries are syntactically non-local and
are subject to the so-called Coordinate Structure Constraint. This constraint bans the asymmetric
syntactic displacement of an expression from only one of two conjuncts.

For example, based on the English sentence in (20) below, we cannot form the asymmetric
question in (21), but we can form a symmetric question like the one in (22). The symbol ‘*’
indicates infelicity, due to either ungrammaticality or the unavailability of a particular reading.

(20) Linus has a mustache and frequently twists it.
(21) *What does Linus have and frequently twist(s) it?
(22) What does Linus have and frequently twist?

This constraint on syntactic structures is important for the analysis of anaphora in examples like
(18) and (19) because it rules out certain syntactic structures, thereby making the task of compo-
sitionally deriving their truth conditions more difficult.

To see what the difficulty is, consider first the formula in (23) below. This formula does
not derive the intuitively correct truth conditions for (18) because the variable z in the conjunct
TWIST(y, z) is free and not bound by the preceding existential quantifier 3z.

(23) Vz(woMmaN(z) — Jy(MAN(y) A
32(MUSTACHE(z) A HAVE(y, 2)) A TWIST(y, 2) A
SEE(z,Y)))

Similarly, interpreting the pronoun it, in (18) as if it was a duplicate of the indefinite a* mustache,
i.e., in terms of an existential quantifier, also fails to derive the intuitively correct truth conditions:
the formula in (24) below is true in a situation in which the men under consideration twist someone
else’s mustache and not their own — while sentence (18) is false in such a situation.

(24) Va(WOMAN(z) — Jy(MAN(y) A
32(MUSTACHE(z) A HAVE(y, 2)) A 32(TWIST(y, 2)) A
SEE(z,Y)))



What we actually need is a formula like the one in (25) below, where the existential quantifier
contributed by the indefinite binds the variable contributed by the pronoun.

(25) Vaz(woMmaN(z) — Jy(MAN(y) A
Jz( MUSTACHE(z) A HAVE(y, z) A TWIST(y,2) ) A
SEE(z,Y)))

This formula, however, cannot be obtained by a compositional, clause-by-clause (or VP-by-VP)
translation from English into FOL because the existential quantification contributed by the indef-
inite a® mustache has scope only over the first VP or clausal conjunct in examples (18) and (19)
above.

Moreover, the indefinite cannot take scope over both clauses or VPs as a result of a covert
syntactic manipulation of the English sentence along the lines shown in (26) below.

(26) Every® woman saw a¥ man who A® MUSTACHE had ___, and was twisting it,.

Meant to be interpreted as:

every woman x saw a man ¥y s.t. there is a mustache z that y had and was twisting.

Such a covert syntactic manipulation would violate the Coordinate Structure Constraint mentioned
above, which bans the asymmetric displacement of an expression from only one of two conjuncts.

Another argument against the possibility of the indefinite a®* mustache covertly taking scope
over the two conjuncts in (18) or (19) above is provided by the example in (27) below. This example
shows that a universal quantifier in the first relative clause cannot bind a pronoun in the second
relative clause. But such binding should be possible if covert movement of the kind shown in (26)
above were possible.

(27) *Every® girl talked to a¥ boy who had bought every® ‘Harry Potter’ book and (who) had
read it, several times.
Meant to be interpreted as:

every girl x talked to a boy y s.t. for every ‘Harry Potter’ book z, y bought and
repeatedly read z.

3.2 Donkey Anaphora

The same observations apply to the donkey sentence in (28) below, based on an example in Geach
(1962).

(28) Every” farmer who owns a¥ donkey beats it,.

We do not obtain the intuitively correct truth conditions if we compositionally translate this sen-
tence into FOL and interpret the pronoun either as contributing a free variable or as somehow
duplicating the existential quantification contributed by the indefinite — as shown in (29) and (30)
below, respectively.

(29) Va(FARMER(z) A Jy(DONKEY(y) A OWN(z,y)) — BEAT(z,Y))
A3

(30) Vz(FARMER(z) A Jy(DONKEY(y) A OWN(z,y)) — Jy(BEAT(z,y)))

The correct FOL translation of sentence (28) is provided in (31). This translation, however, is
not compositionally obtained: there is no subformula in (31) that corresponds to the indefinite a¥
donkey in (28) or to the entire relative clause who owns a¥ donkey.

10



(31) VaVy( FARMER(z) A DONKEY(y) A OWN(z,y) — BEAT(z,y) )

Moreover, scoping out the indefinite a¥ donkey so that it can bind the pronoun it, involves a covert
syntactic manipulation that is not possible in English. To see this, consider the sentence in (32)
below. The universal quantifier every’ ‘Harry Potter’ book in this sentence is in the same syntactic
position as the indefinite a¥ donkey in sentence (28) above.

(32) *Every® boy who bought every” ‘Harry Potter’ book read it, several times.

Meant to be interpreted as:

every boy x who bought every ‘Harry Potter’ book y is s.t. he repeatedly read every
‘Harry Potter’ book y he bought.

However, it is not possible for the universal quantifier to scope out of its relative clause and bind
the pronoun it,: sentence (32) does not have a reading according to which every boy who bought
all the ‘Harry Potter’ books repeatedly read every one of them. Correspondingly, the indefinite a¥
donkey in sentence (28) cannot be syntactically scoped out so that it can bind the pronoun it,.

4 Dynamic Predicate Logic (DPL) and the Decomposition of FOL
Quantification

Dynamic Predicate Logic (DPL, Groenendijk & Stokhof 1991) couches Discourse Representation
Theory (DRT, Kamp 1981, Kamp & Reyle 1993) and File Change Semantics (FCS, Heim 1982)
in the familiar language of classical FOL and it enables us to provide a compositional translation
procedure for sentences (18) and (19) above, which exemplify cross-VP / cross-clausal anaphora,
and for sentence (28), which exemplifies donkey anaphora.

This is a consequence of the fact that the equivalences in (33) and (34) below hold in DPL
without the usual FOL restrictions, namely that z must not occur free in .

(33) (Fz¢) Atp < Jx(d A Y)
(34) (Fz¢) — ¢ & Va(¢ - ¢)

The symbol “<” requires identity of denotation: ¢ < 9 iff [[¢]] = [¢]]. This will apply to all the
different definitions of the interpretation function [[-]] discussed in the paper.

The equivalence in (33) ensures that the compositional translation of sentence (18) in (23) above
is equivalent to the truth-conditionally correct translation in (25). All these are repeated below for
convenience.

(35) Every” woman saw a¥ man who had a® mustache and was twisting it,.
(36) Va(WOMAN(z) — Jy(MAN(y) A
32(MUSTACHE(2) A HAVE(y, 2)) A TWIST(y, 2) A
SEE(z,9))) &
Vo (WOMAN(x) — Jy(MAN(y) A
Jz( MUSTACHE(z) A HAVE(y, z) A TWIST(y,2) ) A
SEE(z,Y)))

Similarly, the equivalence in (34) ensures that the compositional translation of sentence (28) given
in (29) above is equivalent to the truth-conditionally correct translation in (31).
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(37) Every” farmer who owns a’ donkey beats it,,.

(38) Va(FARMER(z) A Jy(DONKEY(y) A OWN(z,y)) — BEAT(z,Y)) &
VzVy( FARMER(z) A DONKEY(y) A OWN(x,y) — BEAT(x,y) )

The DPL semantics of quantification differs from the classical static FOL semantics in only one
respect. Just like in FOL, quantifiers are interpreted as manipulating variable assignments in a
pointwise (i.e., variablewise) manner and passing the resulting assignments to the subformulas in
their scope. But unlike FOL, DPL quantifiers do not erase the variable assignment manipulations
after the subformulas in their scope are interpreted.

Thus, the DPL interpretation function records not only the input variable assignment g relative
to which a formula is interpreted, but also the output variable assignment h that is the result of
the manipulations / updates contributed by the quantifiers in the interpreted formula.

This single modification in the definition of the interpretation function shifts our perspective
on natural language meaning in a couple of ways.

Static approaches (along FOL lines) equate the meaning of a sentence with its truth conditions,
i.e., the contexts in which a sentence is true or false. For example, the set-based semantics for
classical FOL in (15) above takes contexts to be variable assignments and the meaning of any
formula is the set of contexts, i.e., the set of variable assignments, relative to which the formula is
true. Switching from set talk to function talk, this gives us the familiar view (see Kaplan 1977/1989
among others) of sentence meaning as a function that takes in a context (or index) of evaluation g
and gives back a truth-value T or F.

In contrast, dynamic approaches (along DPL lines) have a finer-grained conception of meaning:
the meaning of a sentence is its context-change potential, i.e., the way in which the sentence
changes / updates a context. The fact that natural language interpretation is context dependent,
i.e., relativized to an input assignment g, is explicitly investigated in both kinds of approaches. But
only dynamic approaches systematically investigate how the interpretation of a natural language
expression, e.g., an indefinite, changes the context (i.e., it creates a new context out of the old one)
and therefore affects how subsequent expressions, e.g., a pronoun, are interpreted.

The meaning of a formula in DPL is not a set of variable assignments (or, equivalently, a function
from variable assignments to truth values), but a binary relation between assignments, i.e., a set
of pairs of assignments (g, h): ¢ is the input context relative to which the formula is interpreted
and h is the output context, the context that results after the input context ¢ is updated with the
formula.

Contexts of interpretation are now finer grained: they are not simply variable assignments, but
pairs of variable assignments. In function talk, the meaning of a formula is not a function from
assignments to truth values, but a function from pairs of assignments to truth values.

Furthermore, we can ‘Schonfinkelize’ or ‘Curry’ such functions, i.e., re-express binary relations
over assignments as functions from assignments to functions from assignments to truth values. In
this Schonfinkelized version, the meaning of a DPL formula ¢ is a function from an input assignment
g to the set of assignments h,h',h”,... that are the possible output assignments when the input
assignment ¢ is changed / updated with the formula ¢.

This is parallel to the way in which English transitive verbs like employ, kiss etc. are not inter-
preted as binary relations between individuals (e.g., employers and employees) in (neo)Montagovian
semantics. Instead, they are interpreted as functions from individuals to functions from individuals
to truth values, so that they match the syntax of English better. On the syntactic side, the verb
combines with the direct object first to form a VP and only afterwards with the subject to form a
sentence. On the semantic side, the denotation of the verb takes the denotation of the direct object
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as its first argument yielding a function from individuals to truth values; then, this function takes
the denotation of the subject as its argument yielding a truth value.

Schonfinkelized / Curried binary relations over assignments provide a better format for certain
purposes. But we will continue to use the notationally simpler set talk for the remainder of this
paper when we define the semantics of various logics. The reader should feel free to reformulate
everything in function talk if s/he finds it more intuitive; in fact, doing so might be a good way to
ensure a thorough understanding of the definitions.

The DPL definition of the interpretation function [-]] is provided in (41) below. As already
indicated, formulas are interpreted as binary relations between variable assignments, i.e., the space
of DPL denotations for formulas is p(G x G) and not simply ©(G) as FOL would have it.

That is, the denotation of a formula ¢ in FOL is a set S of assignments of the form {g,¢’,¢",...}.
This set S is a subset of the set of all assignments G: S € G. Equivalently, S is an element of the
powerset of G: S € p(G). In other words, p(G) is the space of all possible FOL denotations for
formulas.

In contrast, the denotation of a formula ¢ in DPL is a binary relation R between assignments
of the form {{g,h),{¢',h">,{g",h"),...}. This relation R is a subset of the Cartesian product
G x G over the set of all assignments: R € G x G. Equivalently, R is an element of the powerset of
this Cartesian product: R € (G x G). In other words, p(G x G) is the space of all possible DPL
denotations for formulas.

For any binary relation R over variable assignments, we will define its domain Dom(R) as the
set of all assignments that are first members of the pairs in R. Correspondingly, the range Ran(R)
is the set of all assignments that are second members of the pairs in R.

(39) Dom(R) := {g : there exists some h s.t. (g, h) € R}
(40) Ran(R) := {h : there exists some g s.t.{g,h) € R}

Given a formula ¢, its DPL denotation [[¢] is a binary relation over assignments. The domain of
this relation Dom([[¢]]) is the set of all assignments g that can be input assignments for ¢. That
is, Dom([[¢]]) is the set of all assignments g relative to which ¢ is true. The range of this relation
Ran([[¢]]) is the set of all assignments h that are output assignments after some input assignment
or other is updated with ¢. That is, Ran([[¢]]) is the set of all assignments that are the result of
the update contributed by ¢; subsequent formulas are interpreted relative to these assignments.

(41) DPL semantics — first p(G x G) version (Groenendijk & Stokhof 1991)
a. Atomic formulas:
i. If 7 is an n-place predicate and aq,...,q, are terms, then [[7(aq,...,a,)] =
(9,0 (g/T(e1), ., g/T(an)y € I(m)}.
ii. If o and f are terms, then [[a = 8] = {{g,9) : g/I () = g/I(B)}.
b. Formulas (sentential connectives):

i. [~ ¢l = {{g,9) : there is no h s.t. (g, h) € [[¢] }
= {{9,9) : g ¢ Dom([[¢])}

ii. [[¢; ] = {{g,h) : there is an i s.t.{g,i) € [[¢]] and (i, h) € [¢]}
= ol o ¥

c. Formulas (quantifiers):

i. [Fve]l = {{g,h) : there is an i s.t. g[v]i and (i, h) € [[¢]}
d. Based on the abbreviations in (8e) above, we derive the following:
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Lo flovel =1~ (~¢ ~¥)
= {{9,9) : 9 € Dom([[¢])) v Dom([[¢']))}
ii. [¢—4] =[~ (¢ ~v)]
= {{g,g) : for all h s.t.{g,h) € [¢]], there is an i s.t.{(h,i) € [¢]}
={{9,9) : {h: {g; ) € [¢]}} < Dom([[¢]))}
iii. [Voe] = [~ Ju(~ )]
= {{g,g) : for all h s.t. g[v]h, there is an i s.t. (h, i) € [¢] }
={{9,9) : {h : g[v]h} = Dom([[¢])}
e. Truth:

i. A formula ¢ is true in model 9t relative to an input assignment g iff there is an
output assignment h s.t. {g,h) €[], i.e., iff g € Dom([[¢])).

The finer-grained pair-based DPL denotations are otiose for atomic formulas and for dynamic
negation, symbolized as “~”. Their interpretation is basically the same as their static interpretation
in (15) above except that instead of saying that an assignment g satisfies these formulas, we say that
a pair (g, g) that has the same assignment as its first and second member satisfies these formulas.

Consider, for example, the atomic formula HUNGRY(z), which is the translation of an English
sentence like It, is hungry. And imagine I'm pointing to an already salient duck x while saying
this sentence.

The formula HUNGRY(z) takes in an input assignment g, but does not modify it in any way:
it does not bring to salience any new entities. It simply refers back to the already salient duck =z
and claims that the duck has the property of being hungry. The output context is therefore the
same as the input context, namely g, so the meaning of the formula HUNGRY(z) consists of pairs
of assignments (g, g) whose first and second members are identical.

This does not mean that the update contributed by HUNGRY(x) is vacuous. Consider the
classical FOL meaning of the formula HUNGRY(x): it is the set of assignments ¢ s.t. the entity g(z)
is hungry. If we have an assignment ¢’ s.t. ¢’(x) is not the hungry duck we were just talking about,
but my dog Linus that just snuck into the kitchen and ate 2 pounds of ground beef, this assignment
is not in the denotation of the formula HUNGRY(z) (assuming for the sake of the argument that
after eating 2 pounds of meat, Linus is not hungry anymore).

Thus, the formula HUNGRY(x) allows the assignment g (because g(z) is a hungry duck) but
rules out the assignment ¢’ (because ¢'(z) is an over-satiated dog). Ruling out such assignments is
the non-trivial update contributed by the formula HUNGRY(z).

In DPL terms, the pair (g, ¢) is in the set [HUNGRY(x)]], while the pair {¢’, ¢’) is not. Atomic
formulas are tests: they do not change input assignments, they simply test that an input assignment
satisfies a certain condition and if it does, they pass it on as is. If an input assignment does not
satisfy the condition, it is not a live candidate for the actual context of interpretation, so it is
rejected and will not be under consideration for any subsequent update.

Let us turn now to the clause for dynamic negation, namely [~ ¢]| = {{g,9) : ¢ ¢ Dom([[¢]])}.
By default, we expect negation to be interpreted as set complementation. This is exactly its classical
FOL interpretation provided in (15) above: [—¢]| = G\[[¢]]. That is, the denotation of the formula
—¢ is the complement of the denotation of the formula ¢, namely the set containing all the variable
assignments that are not in the set denoted by ¢.

DPL semantics is formulated in terms of sets of pairs of assignments instead of sets of assign-
ments, so the first possibility that comes to mind is that the DPL denotation of a negative formula
~ ¢ is the complement of the set of pairs denoted by ¢, i.e., {{g,h) : {g,h) & [¢]]} = (G x G\[¢]-
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However, this denotation does not make correct predictions with respect to the interpretation
of natural language negation. Take a sentence like (42) below, translated as shown in (43).

(42) It, is not hungry.
(43) ~ HUNGRY(x)

If negation was interpreted as complementation over sets of pairs of assignments, [~ HUNGRY(z)]|
would be the set of pairs {{g,h) : {g,h) ¢ [HUNGRY (z)]|}.
Now, [HUNGRY(z)] is the set of pairs:

{{g9,9) : g(x) € I(HUNGRY)} = {{g,h) : g = h and g(z) € I(HUNGRY)}
So [[~ HUNGRY (z)]| is the complement of this set, namely:
{(g,h): g # hor g(x) ¢ I(HUNGRY)}

But this means that any pair of assignments (g, h) is in the denotation of the negative formula
~ HUNGRY(z) as long as g and h are different.

For example, the output assignment i might differ from the input assignment g with respect to
some variable y and store in y a crying baby boy. We would therefore predict that we can refer back
to this crying boy and felicitously follow up the sentence in (42) above with a sentence like He,
misses his, mother, which is meant to be interpreted as: the crying baby boy misses his mother.

However, the negative sentence in (42) above simply makes a claim about the duck z. It does
not say anything about the referent of the variable y — or any other variable for that matter. It
does not bring any new individuals to salience.

Thus, we do not want to interpret negation as complementation relative to sets of pairs of as-
signments because we would incorrectly predict that negation licenses arbitrary anaphoric relations.

We can make sure that a negative formula ~ ¢ preserves the current discourse state / context
by interpreting it as complementation relative to the domain of the denotation of ¢ — which is the
DPL definition in (41b-i) above.

The domain of the binary relation [[¢] is the set of assignments that can be updated with ¢, i.e.,
the set of assignments that make ¢ true. The complement of this set contains all the assignments
that cannot be successfully updated with ¢, that is, the assignments that make ¢ false — and this
is precisely the truth-conditional contribution that sentential negation makes.

According to this definition, [~ HUNGRY(z)]] is the set of pairs:

{(9,9): g ¢ [HUNGRY (2)]I} = {(9, 9) : 9(2) ¢ T(HUNGRY)}

That is, we simply test that the entity g(x) stored by the input assignment g is not hungry and if
it isn’t, we pass the assignment g on. We get the truth conditions right and we do not spuriously
license anaphoric relations.

It might turn out that this definition of negation is too restrictive as far as licensing anaphoric
relations is concerned, but it is a good attempt to generalize the FOL definition of negation and
we will henceforth stick with it.

While the relational denotations are ultimately not crucial for atomic or negated formulas,
they are essential for the interpretation of dynamic conjunction, symbolized as “;”, and dynamic
existential quantification.

Dynamic conjunction is interpreted as relation composition o, so the second conjunct is inter-
preted relative to the assignment that is the output of the first conjunct. Given two binary relations
over assignments R and R/, their composition is defined as shown below.
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(44) RoR':={{g,h) : there exists some i s.t.(g,i) € R and (i, h) € R'}

Dynamic conjunction is the crucial dynamic sentential operator: it ensures the continuity of inter-
pretation in discourse, i.e., it encodes the fact that later utterances are interpreted relative to the
context provided by what has been said earlier.

Dynamic existential quantification preserves the variable assignment manipulation contributed
by the quantifier and stores it in the output assignment. Then, the formulas in the scope of
an existential quantifier are interpreted relative to this modified output assignment — as are the
formulas following the existential quantifier.

Existential quantifiers (i.e., indefinites) and subsequent anaphora to them provide the moti-
vation for the fact that DPL formulas denote relations between assignments and not functions.
That is, context update is non-deterministic: in general, multiple output contexts are compatible
with any given update and subsequent updates are used to further narrow down this set of output
contexts.

Consider the sentence in (45a) below. There are many output assignments h, h',h" ... after
we update a particular input assignment ¢ with this sentence, one output assignment for every
burger I had at Zachary’s: h(x) stores the burger I had in 2008 before Thanksgiving, h'(z) stores
the burger I had in 2009 that one Saturday I went to the beach, h”(z) stores the burger I had in
2010 right after I moved (again) etc.

(45) a. I had a” burger at Zachary’s once.
b. It, was the best burger I ever had.

The follow-up sentence in (45b) further elaborates on the burger and winnows down these output
contexts by selecting that one context h” storing the best burger ever, namely h”(z). This is possible
precisely because the update contributed by sentence (45a) is non-deterministic / relational and
not deterministic / functional: had it been a function, it could have yielded assignment h as its
sole output, in which case the update contributed by sentence (45b) wouldn’t have gone through
and we would incorrectly predict the two-sentence discourse in (45) as a whole to be infelicitous.

Dynamic conjunction “;” is associative, just like classical static conjunction “A”:

(46) (¢ ¥); x = ¢ (V5 x)

But unlike classical static conjunction, dynamic conjunction is not commutative or idempotent, as
shown by the examples below:

(47)  [(~ P(z)); 32P(x)] # [32P(z); (~ P(2))]

(48)  [(~ P(x)); IzP(2)] # [(~ P(z)); F2P(2); (~ P(z)); 2P (z)]
As a final example that brings together most of the above observations, let us analyze the simple
two-sentence discourse in (49) below. It is compositionally translated as shown in (50).

(49) a. A” squirrel ran by.

b. It, was hungry.

(50) 3Jx(SQUIRREL(x); RUN-BY(x)); HUNGRY ()
Suppose that our input context is an assignment g that assigns some arbitrary values to all variables.
The conjunction of formulas in (50) above updates this input context as shown in (51) below.

The update in (51) proceeds as follows (recall that the denotations of our formulas are binary
relations between sets of assignments, not functions). We first introduce = and assign it an entity
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that is a squirrel and that ran by. The result: many contexts / variable assignments that differ
from g at most with respect to the value of x. That is, we now have a graph with many paths — as
many paths as there are squirrels that ran by: squirrely, squirrels, squirrels etc.

Then, the test HUNGRY(z) eliminates some of the paths in the graph, namely all those paths
that end in a context / assignment where x is not assigned a hungry squirrel. In our case, squirrel;
is not hungry, so that particular assignment is eliminated.

xZ
| | squirrel; | |
(51) p 3z (SQUIRREL(x); RUN-BY(z)) | | squirrelz | | HUNGRY () | | squirrelz | |
|...|squir7"el3|...| |...|squi7"rel3|...|

This interpretation graph is in no way different from the way interpretation proceeds in classical
FOL, except for the fact that we do not erase variable assignment manipulations. Such graphs are
implicit in the recursive definitions of truth and satisfaction in classical FOL.

We can depict the sequence of updates in (51) more simply by choosing a single, typical path
through the graph:

Jx(SQUIRREL(x); RUN-BY(z)) ... x ... HUNGRY(z) ... x

|...|squir7"elg|...| |...|squir7‘elg|...|

(52)

We can fairly easily check that the DPL semantics for the language of first-order logic makes the
equivalences in (33) and (34) above true. This will ensure that we can give a compositional account
of cross-conjunct, cross-sentential and donkey anaphora.

The crucial question is: what particular aspects of DPL semantics make the existential and
universal quantifiers behave in such a way that the equivalences in (33) and (34) are true?

The answer is that DPL semantics fully decomposes first-order quantification along the lines
that we already suggested for classical FOL semantics.

That is, DPL clearly separates the pointwise assignment manipulation encoded by g[v]h, which
is common to the existential and the universal quantifier, from assignment ‘counting’, which dis-
tinguishes the two quantifiers.

We can see this clearly if we make pointwise assignment manipulation [v] a well-formed formula
in our first-order language. This formula is interpreted as shown in (53) below.

63) (vl = {<g,h : glv]h}

The formula [v] provides the part that is common to both existential and universal quantification.

Existential and universal quantification are distinguished by the way in which the formula [v]
is related to the formula ¢ that we quantify over, as shown by the equivalences in (54) and (55)
below. Existential quantification relates the two formulas by dynamic conjunction, which requires
non-empty intersection. Universal quantification relates the two formulas by dynamic implication,
which requires inclusion.

(54)  a. Jvop < [v]; @
Relative to any input assignment g, this requires that {h : g[v]h} "nDom([[¢]]) # &.
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b. The equivalence in (33) holds because:

(Fvg); v =
([v]; ¢); ¥ =
[v]; (65 ¥) <
Fu(e; )

(55) a. Yvp & [v] = ¢
Relative to any input assignment g, this requires that {h : g[v]h} < Dom([[¢]]).

b. The equivalence in (34) holds because:
(Fvg) — ¢ <
([v]; ) »¥ <
[v] > (6 =) <
Vu(¢ — )

Thus, the final definition of DPL semantics is provided in (56) below. This definition assumes
that pointwise assignment manipulation [v] is a well-formed formula and assigns it an independent
denotation. The definition is very brief: the only two basic sentential connectives are dynamic
negation and dynamic conjunction, defined in the same way as in (41) above. The only basic
“quantified” formula is pointwise assignment manipulation. The remaining sentential connectives
and the existential and universal quantifiers are abbreviations of complex formulas that make
use only of basic sentential connectives and pointwise assignment manipulation. Their ultimate
denotations are identical to the ones provided in (41) above.

(56) DPL semantics — final p(G x G) version
a. Atomic formulas:
i. If © is an n-place predicate and «q,...,q, are terms, then [7(aq,...,an)] =
{9, 9) : (g/I(n), ..., 9/I(an)) € I(m)}.
ii. If @ and f are terms, then o = 8] = {{g,9) : g/I(a)) = g/I(B)}.
b. Formulas (sentential connectives):
L [~ ¢l = {<g.9) : g ¢ Dom([[¢])}
i. [¢; ¢ = ol o []]
c. Formulas (random assignment):
i [[o]] = (. k) : glolh}
d. Abbreviations:
i [ov ol = [~ (~ & ~ )]
= {{9,9) : g € Dom([[¢])) v Dom([[']])}
i [[¢ =] =~ (¢ ~ )]
= {9, 9 : {h:{g,h) € [[¢]]} = Dom([[¢]})}
iii. [dve] = [[v]; ¢
= {{g,9) : {h : glv]h} " Dom([¢]) # &}
iv. [Vog] = [[[v] — ¢l
= {{9,9) : {h : g[v]h} < Dom([[¢])}
e. Truth:

i. A formula ¢ is true in model 9t relative to an input assignment g iff there is an
output assignment h s.t. {g,h) € [¢]], i.e., iff g € Dom([[¢]]).
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The above definitions of universal and existential quantification explicitly capture their two com-
ponents. The common component is the pointwise assignment manipulation formula [v]. The
component that differs is the ‘counting’ / ‘quantifying’ component, which relates the same two sets
of assignments {h : g[v]h} and Dom([[¢]) in different ways:

(i) existential quantification requires non-empty intersection, formalized by means of conjunction

(1%}
I

(i) universal quantification requires inclusion, formalized by means of implication “—”

As an example, let us consider the two-sentence discourse in (49) again. The translation we provided
above is repeated in (57a) below. However, according to our final version of DPL syntax and
semantics, this translation is just an abbreviation of the flat conjunction in (57b).

(57)  a. Jz(SQUIRREL(z); RUN-BY(x)); HUNGRY ()
b. [z]; SQUIRREL(z); RUN-BY(z); HUNGRY(Z)

Suppose once again that our input context is an assignment g that assigns some arbitrary values
to all variables. The conjunction of formulas in (57b) above updates this input context as shown
in (58) below.

The update in (58) proceeds as follows. We first introduce z, i.e., assign it a random value. The
result: many contexts / variable assignments that differ from g at most with respect to the value of
x and that assign each individual in ® to x. That is, we now have a graph with many paths. Then,
the test SQUIRREL(z) eliminates some of the paths in the graph, namely all those paths that end
in a context / assignment where z is not assigned a squirrel. Then, the test RUN-BY(z) eliminates
further paths in the graph, namely all those in which the squirrel assigned to = didn’t run by (so
squirrely is eliminated). Finally, the test HUNGRY(z) keeps only the contexts in which the squirrel
x that ran by was hungry (so squirrel; is eliminated).

|...|squi7"rel1|...| |...|squir7"ell|...|
|...|squir7‘elg|...| |...|squir7"elg|...|
|...|squir7‘elg|...| |...|squir7"elg|...|
(58) g[zr]> x ... e x
|...|squi7"rel4|...| |...|squir7"el4|...|
x
| | moviey | |
x
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X

| | squirrely | |
|...|squir7"elz|...| |...|squir7‘elg|...|
|...|squir7"elg|...| |...|squir7‘elg|...|
RUN-BY () HUNGRY ()
_ _

Just as before, we can depict updates by choosing a single, typical path through the graph:

[¢] ... T ... SQUIRREL(z) ... T
(59) g=>| | squirrely | | | | squirrely | |
RUN-BY(z) ... €T ... HUNGRY(z) ... x
|...|squi7‘7"612|...| |...|squir7‘elg|...|

Or even more briefly:

[x]; SQUIRREL(z); RUN-BY(x); HUNGRY (z) ... xT

| | squirrel, | |

(60)

In sum, the theoretical effort of properly understanding first-order quantification, which turns out to
be an effort of decomposing first-order quantification, converges with and is empirically motivated
by the need to account for anaphoric phenomena in natural language.

The resulting DPL semantics for first-order logic enables us to explicitly formalize the observa-
tion that the essence of first-order quantification is pointwise manipulation of variable assignments
and show how this observation can be used to compositionally account for cross-conjunct, cross-
sentential and donkey anaphora in natural language.

The decomposition of generalized quantification proposed in the remainder of this paper follows
the same pattern. We will decompose generalized quantifiers by separating the component that
manipulates variable assignments from the truth-conditional component that is the focus of the
received account of generalized quantification (see Barwise & Cooper 1981, Keenan & Stavi 1986),
namely generalized quantifiers understood as relations between sets of individuals. Just as in the
case of FOL and DPL, the decomposition of generalized quantification is empirically motivated and
driven by interactions between anaphora and quantification in natural language.

5 Adding Generalized Quantification to DPL (DPL4+GQ)

As proposed in Barwise & Cooper (1981) and Keenan & Stavi (1986) (see also Westerstahl 1989
and Peters & Westerstahl 2006 for two more recent and comprehensive discussions), we need to add
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generalized quantifiers to capture the meaning of a word like most in (61) and (62) below — since
the quantification expressed by most (in the sense of more than half) is not first-order expressible.

(61) Most” students left the party after 5 a.m.

(62) Most” farmers who own a¥ donkey beat it,.

Saying that most is not first-order expressible means that it cannot be expressed in terms of the
classical FOL existential and / or universal quantifiers. This is perfectly compabible with the fact
that most and other generalized quantifiers quantify over first-order variables, which are variables
over individuals. DPL+GQ (DPL with generalized quantifiers) is a first-order logic in the latter
sense, while being strictly more expressive than classical FOL or DPL: DPL+GQ only has first-
order variables; and, just like FOL or DPL, its semantics is formulated in terms of single total
variable assignments.

Generalized quantifiers are interpreted as binary relations between sets of entities (again, this
is compatible with the fact that they quantify over first-order variables only). For example, a
quantifier like MOST relates two sets of individuals X and X’ iff more than half of the X-entities
are X'-entities, as shown in (63) below.

(63)  [MOST(X, X")]| = T iff [[X]] ~ [X]| > [[XT\IX"T]

Consequently, the English sentence in (61) above is predicted to be true iff more than half of the
students left the party after 5 a.m. Or equivalently: the cardinality of the set of students that left
the party after 5 a.m., symbolized as |[X]| n [[X']ll, is strictly greater than the cardinality of the
set of students that did not leave the party after 5 a.m., symbolized |[X\[X']]-

The first argument of a generalized quantifier, i.e., X in (63) above, is referred to as its restrictor.
The second argument of a generalized quantifier, i.e., X’ in (63), is referred to as its nuclear scope.

In general, the entities related by generalized quantifiers do not have to be individuals. They
can also be variable assignments, i.e., sequences of individuals (and once again, this is compatible
with the fact that they quantify over first-order variables only). Arguably, this is what we need to
account for the donkey sentence in (62) above and, also, for the donkey conditional containing the
adverb of quantification usually in (64) below.

(64) Usually, if a® farmer owns a¥ donkey, he, beats it,.

The adverb usually is interpreted as the generalized quantifier MOST. But instead of two sets of
individuals X and X', the quantifier relates two sets of variable assignments G and G’ satisfying
the antecedent and the consequent of the conditional in (64).

5.1 Unselective Generalized Quantification

How do we identify the sets of assignments G and G’ related by the adverb wusually, i.e., by the
generalized quantifier MOST (G, G'), in (64) above?
The answer is implicit in the DPL definition of dynamic implication in (56d-ii) above:

G: relative to any input assignment g, the first set is the set of all output assignments that satisfy
the antecedent relative to g, i.e., {h : (g, h) € [¢]}, henceforth abbreviated as g[[¢]]

G': the second set is the set of assignments in the domain of the consequent, i.e., Dom([[¢]])
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We introduce two new abbreviations to make the formalism more readable. First, instead of saying
that the pair of assignments (g, h) is in the denotation of the formula ¢, i.e., (g, h) € [#]], we will
simply say that h is one of the output assignments after g is updated with ¢, symbolized as g[[¢]| .
This can be read informally as: we go from g to h by ¢.

(65) gllellh =g, ) € [¢]

The second abbreviation gives us a way to compactly indicate the set of all output assignments
that we can reach from ¢ by means of ¢.

(66) glloll := {h: gllollh}

The resulting definition of dynamic generalized quantifiers (based on Groenendijk & Stokhof 1991:
81-82) is provided in (67) below.

(67) [det(¢, )] = {<9,9) : DET(g[[¢], Dom([+]))}

A dynamic generalized quantifier det is defined in terms of the corresponding static generalized
quantifier DET. The static DET relates two sets of assignments:

e the restrictor set g[[¢]], which is the set of all assignments that we can reach from g by means
of the restrictor formula ¢

e the nuclear scope set Dom([[¢]), which is the set of all assignments that make the nuclear
scope formula ¢ true

This notion of dynamic generalized quantification is unselective in the sense of Lewis (1975): gen-
eralized quantifiers relate sets of variable assignments, i.e., sets of cases in Lewis’s terminology, and
not sets of individuals, as selective quantification would have it.

Dynamic implication as defined in (56d-ii) above is equivalent to the every-based instantiation
of this dynamic quantification schema. This is shown in (68) below.

(68) a. [every(¢, ¥)] ={(g.9): EVERY (g[[¢]. Dom([¢]))}
= {{9,9) : gllo]l = Dom([[¥]})}
={{9,9): {h: (g, 1) € [¢]} = Dom([[¢])}
=[¢ - ¢I
b. Unselective every is equivalent to dynamic implication:
every(o, 1) <
o=

We can now compositionally translate sentence (64) above as shown in (69) below. We translate
indefinites, i.e., existential quantification, following the Jv(¢; ) < [v]; ¢; ¥ recipe in (54) and
(57) above. Unselective most is interpreted as shown in (70).

(69) most([x]; FARMER(z); [y]; DONKEY(y); OWN(z,y),
BEAT(x,y))

(70)  [[most (o, ¥)] = {(g,9) : MOST(g[¢]], Dom([[¥])))}
= {9, 9 : l9lle] ~» Dom([v])] > [gl[¢]\Dom([[¥])[}
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This translation derives the intuitively correct truth conditions, namely: most { farmer, donkey)-
pairs s.t. the farmer owns the donkey are s.t. the farmer beats the donkey.

Importantly, this notion of dynamic generalized quantification — suitable for adverbs of quan-
tification — is completely separate and independent from the notion of variable-assignment manip-
ulation that is the essential component of quantification in FOL / DPL.

If we bring the two notions together, we can construct a schema for the translation of natural
language determiners like most, no, few, every etc. in addition to adverbs of quantification. This
is shown in (71) and (72) below.

(71)  dety (¢, ¢):=det([v]; ¢, )

(72)  [[det, (o, ¥)]| = [det([v]; ¢, V)]
= {(9:9) : DET(g[[[v]; ¢]l, Dom([[¥]))}

When we instantiate this schema for every, we obtain a formula that is equivalent to DPL universal
quantification as defined in (56d-iv) above.

(73)  a. [every, (¢, V)] = [every([v]; ¢, V)]
= {{9,9) : EVERY (g¢[[[v]; ¢], Dom([[¢']))}
= {9, 9 : g[[v]; ¢] < Dom([[¥])}

b. Unselective every,, is equivalent to DPL universal quantification:
every, (¢, 1)
every([v]; ¢, )
([vl; ¢) =¥
[v] = (¢ = ¥)

Vo (¢ — ¢)

$e e O

5.2 Problems with Unselective Quantification: Proportions and Weak / Strong
Donkey Readings

We instantiate the schema in (71) above for the determiner most as shown below.

(74)  [[most, (¢, )] = [most([v]; ¢, ¥)]
= {{9,9) : MOST(g[[v]; ¢]l, Dom([[+]))}
= {{9, 9 : |9[[[v]; ¢]l n Dom([[¢])] >
l9ll[v]; ol\Dom([[¥])[}

According to this translation for the English determiner most, the sentence in (62) above receives
the translation in (75) below, where (75b) unpacks the abbreviated formula in (75a).

(75)  a. most,(FARMER(2); [y]; DONKEY(y); OWN(z,y),
BEAT(z,Y))
b. most([z]; FARMER(x); [y]; DONKEY(y); OWN(z,y),
BEAT(z,Y))

This translation is in fact identical to the translation provided in (69) above for the conditional
sentence in (64). That is, we translate determiner-based sentences and conditional sentences with
adverbs of quantification in the same way.

As Kadmon (1987) and Heim (1990) observe (see also references therein), this makes our trans-
lation for natural language determiners empirically inadequate because the account of donkey
anaphora under the determiner most runs into a proportion problem.
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Consider again the translation in (75b) above. We quantify over most pairs (z,y) s.t. x is a
farmer that owns the donkey y; for most such pairs (z,y), the requirement in the nuclear scope,
i.e., x beats y, should be satisfied. While this is intuitively correct for donkey conditionals like (64),
it is not correct for relative-clause donkey sentences like (62): we can produce a scenario in which
the English sentence in (62) is intuitively false while the formula in (75) is true.

For example, imagine a village with ten farmers, nine of which own a single donkey and one of
which owns twenty donkeys. The one-donkey farmers never beat their donkeys, while the twenty-
donkey farmer beats all his donkeys. Sentence (62) is intuitively false in this scenario, since most
farmers (nine out of ten) are s.t. they don’t beat the donkeys they own. The formula in (75b),
however, is true: out of twenty-nine (x,y) pairs that satisfy the restrictor formula, twenty (hence,
most) pairs also satisfy the nuclear scope formula.

Another problem for the unselective analysis of generalized quantifiers is that it fails to account
for the fact that the same donkey sentence can exhibit two different readings, a strong one and a
weak one.

Consider again the classical donkey sentence in (28) above. The most salient reading of this
sentence is that every farmer behaves violently toward each and every one of his donkeys, i.e.,
the so-called strong reading. The every, operator correctly captures this reading, as shown in
(76) below: every { farmer, donkey)-pair that satisfies the restrictor has to also satisfy the nuclear
scope.

(76) a. every,(FARMER(x); [y]; DONKEY(y); OWN(z,y),
BEAT(z,Y))

b. every([z]; FARMER(z); [y]; DONKEY(y); OWN(z,y),
BEAT(z,Y))

However, sentence (28) can receive another, weak reading: every farmer beats some donkey that he
owns, but not necessarily each and every one of them. Chierchia (1995: 64) provides a context in
which the most salient reading is the weak one: imagine that the farmers under discussion are all
part of an anger management program and they are encouraged by the psychotherapist in charge
to channel their aggressiveness toward their donkeys (should they own any) rather than toward
each other. The farmers scrupulously follow the psychotherapist’s advice — in which case we can
truthfully assert (28) even if the donkey-owning farmers beat only some of their donkeys.
Furthermore, there are donkey sentences for which the weak reading is the most salient one:

(77) Every” person who has a¥ dime will put it, in the meter.
(Pelletier & Schubert 1989)

(78)  Yesterday, every” person who had a¥ credit card paid his, bill with it,.
(R. Cooper, apud Chierchia 1995: 63, (3a))

Thus, both readings are available but our unselective notion of dynamic generalized quantification
does not allow for both of them.

The proportion problem and the availability of weak donkey readings point to the fact that
the unselective notion of generalized quantification is empirically inadequate and it should be
supplemented with a notion of selective quantification that relates two sets of individuals and not
two sets of assignments. On one hand, relating sets of individuals solves the proportion problem.
On the other hand, we can extract the two sets of individuals based on the restrictor and nuclear
scope formulas in such a way that both weak and strong donkey readings are available.
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5.3 Selective Generalized Quantification

The notions of selective dynamic generalized quantification proposed in the literature fall into two
broad classes. The first class of notions employs a dynamic framework based on single variable
assignments (like DRT / FCS / DPL, see Kamp 1981, Heim 1982, Groenendijk & Stokhof 1991,
Kamp & Reyle 1993) and analyzes generalized quantification as internally dynamic and externally
static. The main idea is that the restrictor set of individuals is extracted based on the restrictor
update, while the nuclear scope set of individuals is extracted based on both the restrictor and the
nuclear scope update so that the anaphoric connections between them are captured.

The second class of notions employs a dynamic framework based on sets of variable assignments
(like van den Berg 1996) and analyzes generalized quantification as both internally and externally
dynamic. The main idea is that the restrictor set of individuals is extracted based on the restrictor
update and the nuclear scope set of individuals is the maximal structured subset of the restrictor
set of individuals that satisfies the nuclear scope update. This section discusses the first class of
notions; the second class will be discussed in the following section.

The most common way of extending classical DRT / FCS / DPL with selective generalized
quantification was first suggested by Béuerle & Egli (1985), Root (1986) and Rooth (1987) and was
first formulated in DPL-related terms by van Eijck & de Vries (1992) and Chierchia (1992, 1995).
The proposal is also adopted in Heim (1990) and Kamp & Reyle (1993).

We use the same notation as above to reproduce it here: selective dynamic generalized quan-
tification has the form det, (¢, ):

e 1z is the bound variable
e ¢ is the restrictor

e 1) is the nuclear scope

However, since det, (¢, 1) is now selective, it cannot be an abbreviation based on the unselective
quantifier det(¢, 1) anymore. We will therefore define it directly as shown in (80) below. To
make the definition more readable, we define the abbreviation {x : g[[¢]}, which can be informally
paraphrased as: the set of entities x that satisfy ¢ given the input assignment g.!

(79) Az = glloll} := {n(z) : glll=]; ¢1ln}

(80) a. [dety(¢, ¥)] :={{g,9): DET({z: g[l¢]l}. {z:g[l¢: vI})}
b. [det;"(¢, )] := {(g,9) : DET({z : g[0]}, {z:gl¢ - v]})}

The fact that det,(¢, 1) is defined in terms of sets of individuals and not sets of assignments
enables us to account for the proportion problem.

The weak / strong donkey variation is attributed to an ambiguity in the interpretation of
the selective generalized quantifier, following the proposals in Rooth (1987), Heim (1990) and
Kanazawa (1994). So for each generalized quantifier, we have a weak meaning det¥*(¢, ) and

!The abbreviation {x : g[[¢]} is really just static A-abstraction. The definition in (79) above says that {z : g[[¢] }

is the set of entities a s.t. [[qb]]‘s’m:iC = T, where [-]lstatic i the usual static interpretation function for higher-order
logic and gm/ “ is the variable assignment exactly like g except that it assigns a to x. This set of entities is precisely the
classical, static denotion of the term Az.¢ relative to assignment g, i.e., [Az.¢]%, ... The close connection between
DPL-style generalized quantification and static generalized quantification shows that the proposed notion of dynamic
quantification is just a refinement of the static notion, much like the DPL notion of quantification is a refinement of

the classical FOL notion.
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a strong meaning detS™" (¢, ). An English sentence containing a determiner det is ambiguous
between the two readings.

The only difference between the weak and the strong denotation in (80) above has to do with
how the nuclear scope set of individuals is obtained:

e by means of dynamic conjunction {z : g[[¢; ¥]]} in the weak case

e by means of dynamic implication {z : g[[¢ — 9]} in the strong case

Dynamic conjunction yields weak donkey readings because an existential quantifier in the restrictor
will still be an existential in the nuclear scope: every farmer that owns some donkey beats some
donkey he owns.

Dynamic implication yields strong donkey readings because DPL validates the equivalence
(Fxgp) — » < V(¢ — 1), so an indefinite in the restrictor ends up being universally quanti-
fied in the nuclear scope: every farmer that owns some donkey beats every donkey he owns.

The donkey sentences in (62) and (77) above are translated as shown in (81a) and (82a) below.
It is easily checked that we derive the intuitively correct truth conditions for the two sentences
based on the denotations of the two translations, provided in (81b) and (82b).

(81) a. mostS"(FARMER(z); [y]; DONKEY(y); OWN(z,y),
BEAT(x,7))
b. {{g,9): MOST({z : g[FARMER(2); [y]; DONKEY(y); OWN(z,y)]},
{x : g[FARMER(z); [y]; DONKEY(y); OWN(z,y) — BEAT(x,y)]|})}
(82) a. everyY (PERSON(z); [y]; DIME(y); HAVE(x,y),
PUT-IN(z,9))

b. {{g,9): EVERY ({z : g[[PERSON(z); [y]; DIME(y); HAVE(z,y)]},
{z : g[PERSON(2); [y]; DIME(y); HAVE(z, y); PUT-IN(z, y)[})}

We conclude this discussion with the observation that making judicious use of the operation of
anaphoric closure ! (i.e., double dynamic negation) enables us to define selective generalized quan-
tification in terms of unselective generalized quantification, as shown in (84) below.

(83) a. lop:=~(~0¢)
b. ['¢] = {<9,9) : g € Dom([[¢])}

(84) a. [dety (¢, )] :={(g,9) : DET(g[[[z]; '¢]. gl[z]; o5 ¥)])}
b. [dety" (¢, ¥)] :={(g,9) : DET(g[[[z]; '¢], gllz]; (¢ — )]}

6 Interpretation Contexts and Generalized Quantification

This section discusses several natural language phenomena that pose problems for the DPL-style
notion of generalized quantification introduced in the previous section. All these phenomena point
to the fact that we need to decompose generalized quantification in much the same way in which
DPL decomposes static first-order quantification. Most of the material in this section is taken from
Brasoveanu (2008, 2010a,b).

2The closure operator ! is vacuous in the case of the dynamic implication (¢ — 1), so it could be omitted in this
particular case.
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Just as DPL separates anaphora to individuals (encoded by means of the random assignment
formula [v]) from the existential or universal ‘counting’ of assignments (encoded by means of
dynamic conjunction or dynamic implication), our new decomposed notion of generalized quantifi-
cation will separate anaphora to quantificational dependencies, i.e., anaphora to n-ary relations,
which is common to all generalized quantifiers, from the particular way of ‘counting’ individuals
that is specific to each generalized quantifier.

The notion of selective generalized quantification in (80) above fails to make this separation.
Generalized quantifiers are packed together with the dynamics of anaphoric information and donkey
anaphora is captured by brute force: the restrictor update is duplicated to obtain the nuclear scope
set of individuals.

While this enables us to capture donkey anaphora, it does so in an ultimately non-dynamic
way. The quantificational dependency between farmers and donkeys — which is the crux of the
interpretation of donkey sentences and which is intuitively passed on from the restrictor to the
nuclear scope of the quantification — remains implicit because it is effectively encapsulated / built
into in the definition of dynamic generalized determiners.

The logic of generating such quantificational dependencies and passing them on across updates
seems to involve pointwise manipulation of sets of variable assignments rather than single variable
assignments, as van den Berg (1996) argues (see also Krifka 1996, Nouwen 2003, Wang et al. 2006,
Brasoveanu 2008, 2010a).

That is, unlike classical DRT / FCS / DPL, which follow Lewis (1975) and his notion of case
and define updates in terms of single assignments g, h, ..., we need to define updates in terms of
sets of assignments G, H, ....

These sets can be represented as matrices with assignments (sequences of individuals) as rows.

g | - a1 (= g1(x)) bi (=g1(2") [ - [ w (=g1(w)) | v1 (=g1(w'))
g2 || - az (= g2(z)) ba (= g2(2')) | .- | w2 (= ga(w)) | v2 (=g2(w'))
g3 || - a3 (= g3(z)) by (=g3(2) | .- | us (= gs(w)) | vs (=g3(w'))

Values (sets of individuals / worlds) are || Structure (relations between individuals and / or worlds)

stored columnwise: {ai, aa, as, ...}, || is stored rowwise: {{a1,b1), {az2,ba), <{as,bs), ...},
{b1, b2, b3, ...}, {ur, ua, ug, -}y {or, || {Car, b, wa, Caz, b2, uz), {as, bs, us), . .. }, {{ur, v1), Cuz, v2),
vg, V3, ...} ete. (us,v3), ...} ete.

A matrix / set of assignments is a two-dimensional database that stores two kinds of information:

(i) values, i.e., sets of objects, which are stored in the columns of the matrix

(it) structure, i.e., correlations / dependencies between these sets of objects, which is encoded in
the rows of the matrix

Formulas — and natural language sentences — denote programs incrementally updating such matri-
ces, i.e., they denote binary relations between an input and an output set of assignments and not
simply a binary relation between an input and an output assignment (as in DPL).

Indefinites like a kangaroo, modal verbs like might and conditional antecedents like if Oswald
hadn’t killed Kennedy are associated with variables over individuals z,2’,y,v,... and variables
over possible worlds w,w’,... (respectively) and they non-deterministically introduce both values
and structure. Pronouns, verbal moods and modal verbs are anaphoric to the sets of objects and
the relations between them that are associated with these variables.
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Consider, for example, the variable over individuals  and the variable over possible worlds w
in matrix G above. Relative to any two assignments g, ¢’ € G, they denote two (possibly different)
individuals g(x) and ¢'(z) and two (possibly different) possible worlds g(w) and ¢'(w). Moreover:

(i) each variable stores a set of values relative to matrix G, namely a set of individuals in column
z, i.e., {g(z) : g € G}, and a set of worlds / a proposition in column w, i.e., {g(w) : g € G}

(it) the correlation / dependency between these values is encoded by the rows in the matrix; this
dependency is the binary relation {(g(x),g(w)) : g € G}

The four-way correlation / dependency between z, z’, w and w’ stored in matrix G above can, for
example, represent the dependency introduced by the sentence in (85) below, namely: given the
current set of candidates for the actual world stored in w, w’ stores a newly introduced epistemic
possibility relative to w; this epistemically possible scenario features a student z and a book z’ that
the student bought.

(85) It might? be that a® student,s bought,s a® book,.

The set of assignments G encodes this four-way dependency as follows: for any variable assignment
/ row g € G, g(w) is the actual world for the purposes of that assignment, g(w’) is some world
that is epistemically accessible from the actual world and g(w’) features an individual g(z) that is
a student and an individual g(2') that is a book and that the student g(x) bought.

6.1 Quantificational Dependencies Cross-Sententially: Quantificational and Modal
Subordination

One of the main arguments for the decomposition of generalized quantification is provided by quan-
tificational subordination phenomena, exemplified in (86), (87) and (88) below. These discourses
show that quantifiers like every convention, most books etc. can introduce dependencies and cross-
sententially elaborate on previously introduced dependencies. Other quantificational expressions
of the same kind are modals like might in (85) above and adverbs like always and usually in (87b)
and (87c).

(86) a. Harvey” courts a¥ woman at every® convention.
b. She, is very pretty.
(Karttunen 1976)

(87) a. Harvey” courts a¥ woman at every® convention.
b. She, always, comes to the banquet, with him,.
c. The, girl is usuallyzl also very pretty.
(Karttunen 1976)

(88) a. Most” books contain a¥ table of contents.

b. In someZ, it, is at the end..
(Heim 1990)

But quantifiers are not the only kind of expressions that can introduce and / or elaborate on
dependencies. Pronouns, e.g., she in (86b/87b), which are referential / non-quantificational, and
indefinites, e.g., a woman in (86a/87a), which seem to have an ambivalent referential and quantifi-
cational nature, can also do this and interact with the dependencies introduced by quantificational
expressions.
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Consider, for example, the initial sentence (86a/87a) in the two discourses above. This sentence
is ambiguous between two quantifier scopings: Harvey courts the same woman at every convention
(the indefinite outscopes the universal: a¥ woman>>every® convention) vs. at every convention,
Harvey courts a (possibly) different woman (the universal outscopes the indefinites: every® conven-
tion>>a¥ woman). However, discourse (86) as a whole allows only for the “same woman” reading,
while discourse (87) allows for both readings.

Such examples of cross-sentential anaphora to quantificational dependencies suggest the decom-
position of the DPL-style notion of generalized quantification into at least two components:

(i) a static generalized quantifier component

(i1) one or more components operating over matrices that regulate the dynamics of dependencies

Decomposing quantification along these lines enables us to account for the contrast between the
interpretations of discourses (86) and (87). By using matrices, we can store and cross-sententially
pass on information about both quantifier domains / values and quantificational dependencies
/ structure. So we can let singular pronouns like she constrain the cardinality of the domain
of a quantifier introduced in a previous sentence, thereby affecting the scopal properties of that
quantifier.

In more detail, we derive the fact that discourse (86) allows for only one of the two quantifier
scopings as follows. First, sentence (86a) updates the discourse-initial context ¢ (which contains
no discourse information whatsoever) by introducing the variable y and storing in it the set of all
women that Harvey courts at some convention or other and, also, introducing the variable z and
storing in it all the conventions (for simplicity, I ignore the dynamic contribution made by the
proper name Harvey®). This update can happen in two ways, depending on whether the indefinite
scopes over the universal quantifier or vice versa, as shown in (89) and (90) below.

av woman (Harvey courts at every” convention)

(89) @
Yy z
womany | convy
womany | conva
womany | convs

womani is courted
at every convention

at every® convention (Harvey courts a’ woman)

(90) &

< Y
convy | womany womany is courted at conwvy
convy | womans womans is courted at convg
convs | womans womang is courted at convs

Irrespective of which quantifier scoping we choose for sentence (86a), the singular pronoun she, in
sentence (86b) constrains the set of y-women to be a singleton set. This is automatically satisfied
in (89), where the indefinite takes scope over the universal quantifier.

In the case of (90), however, the singleton requirement contributed by the singular number
morphology on the pronoun she, makes a non-trivial contribution: it requires all the cells in the
y-column to store one and the same entity, as shown in (91) below.

Hence, irrespective of which quantifier scoping we choose for (86a), the only available reading
for discourse (86) as a whole is the wide-scope indefinite reading.
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Z Y
convy | woman, | she, is very pretty

(91) convy | womans
convs | womans
z Y
convy | womany /3 {womany , womana, womang}
convg | womany /3 is a singleton set, i.e.:
convz | womany 3 | WOMaAN) = womang = wWomang

The fact that discourse (87) is also compatible with the narrow-scope indefinite reading is due to
the fact that the quantificational adverb always, in (87b) can take scope over the singular pronoun
she, and thereby neutralize the effect that singular number morphology has on the cardinality of
the previously introduced set of women.

This neutralization is a consequence of the discourse-level distributivity operator dist that
quantificational expressions contribute. This operator distributes over matrices in the sense that it
requires the update in its scope to be interpreted relative to singleton subsets of the input matrix, as
shown in (92) below. Consequently, the singleton requirement contributed by the singular pronoun
she, is interpreted relative to single assignments / rows and is trivially satisfied.

at every” convention (Harvey courts a” woman)

(92)

z Y
convy | woman,
convy | womans
convs | womans

always, dist.(she, comes to the banquet with him)

z

| convy | womany | {woman,} is a singleton set
{ z

| convy [ womany | {womans} is a singleton set
z

| convs | womans | {womans} is a singleton set

If we assume a quantificational analysis of modal verbs and attitude report verbs, we can generalize
this account of quantificational subordination to modal subordination.

In particular, the analysis of the modal subordination discourse in (93) below (based on Roberts
1989) is point-for-point parallel to the analysis of the quantificational subordination discourse in
(87) above. We are therefore able to capture the systematic anaphoric and quantificational parallels
between the individual and modal domains argued for in Frank (1996), van Rooy (1998), Stone
(1999), Bittner (2001) and Schlenker (2005) among others (building on Partee 1973, 1984).

(93) a. A” wolf might?’ come in.
b. It, would,, eat Harvey first.
(based on Roberts 1989)

(94) John® thinks® that he, will, catch a¥ fish and he, hopesgjlw, I will,,» grill it, tonight.
(Heim 1990)
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6.2 Generalized Quantification in Dynamic Plural Logic (DPIL) and Plural
Compositional DRT (PCDRT)

This subsection outlines a formal system within which we can compositionally account for the
quantificational and modal subordination discourses discussed above. The formal system is based
on the Plural Compositional DRT (PCDRT) of Brasoveanu (2008, 2010a), which is a simplified and
modified version of the Dynamic Plural Logic (DPIL) introduced in van den Berg (1996).

We generalize DPL and interpret sentences / formulas as binary relations over sets of assign-
ments, as shown in (96) below. For readability, we introduce the abbreviation G[¢]]H, which is
parallel to the abbreviation we introduced for DPL+GQ above.

(95) Gl¢llH := <G, H) e ¢l
(96) DPIL/PCDRT semantics — p(p(G) x p(G)) version
a. Atomic formulas:
i. If 7 is an n-place predicate and aq, ..., a, are terms, then
[7(ca,...,an)]] = {{G,G): G # & and for any g € G,
i), ..., g/I(an)) € I(m)}.
ii. If @ and § are terms, then
[a =53] = {(G,G) : G # & and for any g € G,
9/1(a) = g/I(B)}.
b. Formulas (sentential connectives):
i. [~ ¢l ={G,G): G # & and there is no H < G s.t.
H # & and H € Dom([¢])}

ii. [[¢; ¢]] = {(G, H) : there is an I s.t. G[[¢]|I and I[[¢]| H}
= el o ¥
c. Formulas (random assignment):
i. [[[v]ll = {(G, H) : for any g € G, there is an h € H s.t. g[v]h and
for any h € H, there is a g € G s.t. g[v]h}

d. Truth:

i. A formula ¢ is true in model 91 relative to an input set of assignments G iff there
is an output set of assignments H s.t. G[[¢]| H, i.e., iff G € Dom([¢]]).

The DPIL/PCDRT interpretation of atomic formulas is just the pointwise generalization of the DPL
interpretation. The interpretation of negation is also a generalization of the DPL interpretation:
we require the input set of assignments G — and, in addition, all its non-empty subsets — not to be
in Dom([[¢]]). Dynamic conjunction is still interpreted as relation composition and the definition
of truth is still existential closure over outputs.

The most important differences are to be found in the definition of random assignment. In-
formally, G[v]H means that each input assignment g has an [v]-successor output assignment h
and, vice-versa, each output assignment h has an [v]-predecessor input assignment g. This ensures
that we preserve the values and structure associated with any of the variables x,y,...,w,w',...
introduced before v.

The definition in (96¢-i) treats the structure and value components of a set of assignments in
parallel, since we non-deterministically introduce both of them, namely:

(i) some new (random) values for v
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(i1) some new (random) structure associating the [v]-values and the values of any other (previously
introduced) variables z,y,...,w,w’, ...

Just as in DPL, we can define existential quantification in terms of random assignment and dynamic
conjunction:

(97)  Jvé:=[v]; ¢

The definition of universal quantification is just a particular instance of the definition of dynamic
generalized quantification, to which we now turn.

The definition of dynamic generalized quantification has to satisfy four desiderata, the first three
of which are about anaphoric connections that can be established internally, within the generalized
quantification, i.e., between antecedents in the restrictor and anaphors in the nuclear scope, and
the last of which is about anaphora that can be established externally, i.e., between antecedents
introduced by / within the quantification and anaphors outside the quantification.

First, we want our definition to be able to account for the fact that anaphoric connections
between the restrictor and the nuclear scope of the quantification can in fact be established, i.e.,
we want to account for donkey anaphora.

Second, we want to account for such anaphoric connections while avoiding the proportion prob-
lem that unselective quantification runs into. That is, we need generalized determiners to relate
sets of individuals and not sets of assignments.

The third desideratum is that the definition of selective generalized quantification should be
compatible with both strong and weak donkey readings.

The fourth desideratum is concerned with quantification-external anaphora — and this brings us
to the quantificational subordination discourses in (86) and (87) above. These discourses indicate
that we need to make available for subsequent anaphora the restrictor and nuclear scope sets of indi-
viduals related by generalized determiners. Moreover, we also need to make available for anaphoric
take-up the quantificational dependencies between different quantifiers and / or indefinites.

In particular, generalized quantification supports anaphora to two sets:

(i) the maximal set of individuals satisfying the restrictor update, i.e., the restrictor set

(i) the maximal subset of the restrictor set that satisfies the nuclear scope update, i.e., the nuclear
scope set

The discourse in (98) below exemplifies anaphora to nuclear scope sets. Sentence (98b) is interpreted
as: the people that went to the beach are the students that left the party after 5 a.m. — which, in
addition, formed a majority of the students at the party.

(98) a. Most” students left the party after 5 a.m.
b. They, went directly to the beach.

The discourses in (99) and (100) exemplify anaphora to the restrictor sets contributed by the
downward monotonic quantifiers no® student and very few® people respectively. Consider (99)
first: any successful update with a no®-quantification ensures that the nuclear scope set is empty
(this is due to the fact that we need to build conservativity into our representation of generalized
quantification to capture donkey anaphora) and anaphora to it is therefore infelicitous. The only
possible anaphora in (99) is restrictor-set anaphora. Restrictor-set anaphora is the only possible
one in (100) too, because nuclear scope anaphora yields a contradictory interpretation for (100b):
most of the people with a rich uncle that inherit his fortune don’t inherit his fortune.
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(99) a. No” student left the party later than 10 p.m.

b. They, had classes early in the morning.

(100) a. Very few” people with a rich uncle inherit his fortune.
b. Most of them, don’t.

Thus, selective generalized determiners receive the translation in (101) below. This translation
achieves our goal of decomposing generalized quantification: the static notion of generalized quan-
tification, encoded by the final formula DET (z, ), is separated from the dynamics of quantifica-
tional dependencies, encoded by the two previous formulas max®((,y(¢)) and max® &% (5 ().

(101) det™="(p, 1) := max®((,5(¢)); max®=*(;,n(¥))); DET(z,z)

Dynamic generalized determiners det™”'=” relate a restrictor formula ¢ and a nuclear scope formula
1. A generalized determiner introduces two individual variables: x stores the restrictor set of
individuals and 2’ stores the nuclear scope set of individuals. These two variables and the two
updates ¢ and 1 are the basic building blocks of the three separate updates in (101).

The first update, namely max®((,(¢)), ensures that the restrictor set x is the maximal set
of individuals, i.e., max®(...), s.t., when we take each z-individual separately, i.e., ¢;y(...), this
individual satisfies the restrictor formula ¢.

The second update, namely malegx(<m/>(¢)), ensures that the nuclear scope set x’ is obtained
in much the same way as the restrictor set z, except for the requirement that z’ is the maximal
structured subset of z, i.e., max®=%(...).

Finally, the third update, namely DET(x,z'), is a test: we test that the restrictor set x and
the nuclear scope set z’ stand in the relation denoted by the corresponding static determiner DET.

To formally explicate this translation schema for dynamic generalized determiners, we need:

(i) two operators over sets of assignments, namely a selective maximization operator max™(...)
and a selective distributivity operator ¢,(...)

(i) anotion of structured inclusion 2’ = 2 that requires the subset to preserve the quantificational
dependencies, i.e., the structure, associated with the individuals in the superset

6.2.1 Structured Inclusion

Let us start with the notion of structured inclusion. Recall that sets of assignments store both
values (in the columns of the matrix) and structure (in the rows of the matrix). Requiring a
variable z to simply be a value-subset of another variable x relative to a set of assignments G is
defined as shown in (102) below. For example, the leftmost z column in matrix G below satisfies
the condition z € x because {g(z) : g € G} = {a1,a2,a3} < {g(x) : g € G} = {a1,a2,a3,a4}.

(102) [z € o] = {{G, G): {g(2) : g € G} < {g(x) : g € G}}

G|l = | y || 2 czz¢a) || 2 (z€x)
g1 ax by ay ai
g2 az bo as as
g3 as b3 ay *
94 a4 by as ay
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Condition (102) requires only wvalue inclusion and disregards structure completely. The correlation
between the z and y individuals, i.e., the relation {{ai,b1),{a2,b2),{as,b3),{as,bs)}, is lost in
going from the z-superset to the z-subset: as far as z and y are concerned, a; is still correlated
with by, but it is now also correlated with b3, as is now correlated with by (not by) and ag with by
(not b3).

If we use the notion of value-only subset in (102), we make incorrect empirical predictions.

Consider, for example, the discourse in (103) below, where x stores the set of conventions and y
stores the set of corresponding women (the restrictor and nuclear scope sets of a successful every-
quantification are identical with respect to both value and structure, so we can safely conflate them).
Assume that every® convention takes scope over a¥ woman and that the correlation between the
z-conventions and the courted y-women is the one represented in matrix GG above.

(103) a. Harvey courts a¥ woman at every® convention.

yASH

b. She, usually comes to the banquet with him.

Intuitively, the adverb usually in (103b) is anaphoric to the set of conventions introduced in (103a)
and sentence (103b) is interpreted as follows: at most conventions, the woman courted by Harvey
at that convention comes to the banquet with him. The leftmost variable z in the table above
stores most x-conventions (three out of four), but it does not preserve the correlation between
x-conventions and y-women established in (103a).

We obtain similarly incorrect results for donkey sentences like the one in (104) below (repeated
from (62)): the restrictor of the quantification introduces a dependency between all the donkey-
owning z-farmers and the y-donkeys that they own; the nuclear scope set z needs to contain most
z-farmers, but in such a way that the correlated y-donkeys remain the same. That is, the nuclear
scope set contains a most-subset of donkey-owning farmers that beat their respective donkey(s).
The notion of value-only inclusion in (102) is yet again inadequate.

(104) Most™*<* farmers who own a¥ donkey beat it,.

Thus, to capture the intra- and cross-sentential interaction between anaphora and quantification,
we need the notion of structured inclusion defined in (105) below where we go from a superset to a
subset by discarding rows in the matrix. We are therefore guaranteed that the subset will contain
only the dependencies associated with the superset (but not necessarily all dependencies — more
on this below).

(105) [z € z]] = {(G,G) :any g € G is s.t. g(z) = g(x) or g(z) = %)}

To formalize this, we introduce a dummy / exception individual % that is used as a tag for the cells
in the matrix that should be discarded in order to obtain a structured subset z of a superset x, as
shown by the rightmost z column in matrix G above. The dummy individual % is the universal
falsifier, i.e., it makes any n-place predicate 7 false. Formally, we ensure that any predicate m is
false whenever * is one of its arguments by requiring that I(7w) < (D\{*})".

Thus, we need to slightly revise our interpretation of atomic formulas, which should be inter-
preted distributively relative to the non-dummy sub-matrix of the input matrix G, as shown in
(107) below.

(106) Gartx,.omzx ={9€ G g/l(ar) # % A ... A g/(ay) # *}

(107)  [[7(a1,...,an)]l = (G, G) : Gayvxk,....anzk # & and for any g € Goy2x.,....an+%;
(g (cn),. .., 9/ (an)) € I(m)}
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The notion of structured inclusion € in (105) above ensures that the subset inherits only the
superset structure. But we also need it to inherit all the superset structure, which we achieve by
the final definition of structured inclusion = in (109) below.

(108) G(z) :={g(z) : g € Garx}
(109) [[2' = z] = {{(G,G) : G2’ € z]]G and for any g € G,
if g(x) € G(2'), then g(z) = g(2)}

The additional constraint on structured inclusion in (109) is needed (among other things) to account
for the donkey sentence in (104) above, which is most likely interpreted as talking about every
donkey owned by any given farmer. That is, the nuclear scope set z, which is a most-subset of the
restrictor set z, needs to inherit all the superset structure: each farmer in the nuclear scope set
needs to be associated with every donkey y that s/he owns.

6.2.2 Maximization and Distributivity

We turn now to the maximization and distributivity operators max”® and dist,, which enable us
to extract and store the restrictor and nuclear scope sets needed to define dynamic generalized
quantification.

Consider the definition of max® in (110) below first: the first conjunct G[[[x]; ¢]|H introduces
x as a new variable, i.e., [z], and makes sure that each individual in H(x) satisfies ¢, i.e., we store
only individuals that satisfy ¢. The second conjunct enforces the maximality requirement: any
other set I(z) obtained by a similar procedure, i.e., any other set of individuals that satisfies ¢, is
included in H(z); that is, H(z) stores all individuals that satisfy ¢.

(110) [max®()] = (G, H) : Gll[z]; ]I and
for any I s.t. G[[[z]; &I, I(x) < H(x)}
(111) max®=*(¢) := max® (z' C z; )
(112) Gpeq:={9€ G:g(x) = a}
(113) [ dist,(¢)]] = {{G,H) : Gu—x = Hy_4 and
G(z) = H(x) and
for any a € G(z), Gy—al[O| Hz=a}

Definition (113) states that updating a set of assignments G' with a formula ¢ distributively over a
variable x means:

(i) generating the z-partition of G, i.e., {Gy=q : a € G(x)}
(7) updating each cell G;—, in the partition with the formula ¢
(%) taking the union of the resulting output sets of assignments: H = | JH,—q

The requirement G(x) = H(z) is needed to ensure that there is a bijection between the partition
induced by the variable x over the input state G and the one induced over the output state H.
Without this requirement, we could introduce arbitrary new values for x in the output state H,
i.e., arbitrary new partition cells.?

The final conjunct (for any a € G(x), Gy—a|[¢]| Hz=a) is the one that actually defines the dis-
tributive update: the formula ¢ relates every partition cell in the input state G to the corresponding
partition cell in the output state H.

¥Nouwen (2003): 87 was the first to observe that we need to add this requirement to the original definition of
distributivity in van den Berg (1996): 145, (18).
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6.2.3 Generalized Determiners, Weak / Strong Indefinites and Singular Anaphora

The translations for generalized determiners and weak / strong indefinites are provided in (117),
(118) and (119) below (taken from Brasoveanu 2008, 2010a).

(114)  [«(9)] = {KG, H) : Go—x = Hy—x and
G(z) # & and
Gz x[[disty ()] Hurx}
(115) [[(m)(qb)]] = {<G’ H> :Gy—x = Hy—y and
G = H if G(z) = &, otherwise
Grzx[[disty ()] Hurn}
[DET(z, /)] = {{G,G) : DET(G(z), G(z'))}
det™"'="(¢, ¥) := max”(;y(¢)); max”=" (1 ()); DET(x, ')
2" (6, 1) = [als 2(5 v)
a™ (¢, ) := max”(;(¢; ¥))

The last component needed for the account of discourses (86) and (87) is the translation for singular
pronouns. Crucially, we need singular pronouns to contribute a singleton(z) requirement, so their
translation will have the form provided in (121) below. The requirement is contributed by singular
number morphology and requires uniqueness of the non-dummy value of the variable x relative to
the current context G.

—_
—_
N |

)
)
)
)

(120) [[singleton(z)] = {(G,G) : |G(x)| = 1}
(121) she,(¢) := singleton(z); ¢

6.2.4 The Analysis of Quantificational Subordination

We start with the two possible quantifier scopings for the discourse-initial sentence (86a/87a).

Note that we can safely identify the restrictor and nuclear scope variables z and z’ of any
everym’zlgw—quantiﬁcation: the definition in (117) above entails that, if H is an arbitrary output
state of a successful every®* =*-quantification, = and z’ have to be identical with respect to both
value and structure, i.e., for any h € H, h(z) = h(z').

We can therefore assume that every contributes only one variable, as shown in (122) below. I
will also assume that the restrictor set of the every®-quantification is non-empty, so we can safely
replace the distributivity operator (,y(...) with the simpler distributivity operator .(...).

(122)  every*(¢, ¢) := max*(:(¢)); -(v)
(123) @Y woman>>every® convention:
[y]; y(WOMAN(y); max*(CONVENTION(2)); COURT-AT(HARVEY,y, 2))

(124)  every® convention>>a¥ woman:
max®(CONVENTION(2)); »([y]; WOMAN(y); COURT-AT(HARVEY, Yy, 2))

(125)  shey is very pretty:  singleton(y); VERY-PRETTY(y)
The representations of the two quantifier scopings for sentence (86a/87a) are provided in (123)
and (124) above. Redundant distributivity operators are omitted. I assume that the indefinite a¥

woman is weak because the resulting DPIL/PCDRT formulas are somewhat simpler, but a strong
reading for the indefinite would also work for these examples. The dynamic contribution made by
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the proper name Harvey is similarly ignored so that we can focus exclusively on the quantificational
subordination issues.

We can now see how sentence (86b), translated in (125) above, forces the ‘wide-scope indefi-
nite’ reading: the singleton(y) requirement contributed by the singular pronoun she, effectively
conflates the two scopings by requiring the set of y-women obtained after updating with (123) or
(124) to be a singleton. This requirement leaves the truth conditions derived on the basis of (123)
untouched, but makes the truth conditions associated with (124) strictly stronger.

In contrast, sentence (87b) contains the adverb of quantification always,, which can take
scope above or below the singular pronoun she,. If the adverb takes scope over the pronoun,
the y-uniqueness requirement is weakened (i.e., in a sense, neutralized) by being relativized to
z-conventions.

As shown in (126) below, I take the translation of always, to be a universal quantification over an
anaphorically retrieved restrictor, i.e., over the nuclear scope set introduced by the quantifier every?
convention in the preceding sentence. Since always is basically interpreted as every (modulo the
anaphorically retrieved restrictor), its translation is parallel to the translation for every in (122)
above. The general format for the translation of quantificational expressions that anaphorically
retrieve their restrictor sets is provided in (127).

(126) always,(¢) := .(¢)
(127)  det? ="(¢) := max®=*(;,(¢)); DET(z, z')

For simplicity, I take sentence (87b) to contribute a ternary relation COME-TO-BANQUET-OF, ab-
breviated C-T-B-OF and relating the women, their partner Harvey and the conventions under con-
sideration. The two translations of sentence (87b) are provided in (128) and (129) below (once
again, redundant distributivity operators are omitted).

(128) she,>>always,: singleton(y); C-T-B-OF(y, HARVEY, 2)
(129) always,>>she,: .(singleton(y); C-T-B-OF(y, HARVEY, 2))

Thus, there are two possible translations for sentence (87a), given in (123) and (124), and two
possible translations for sentence (87b), given in (128) and (129). Out of the four combinations,
three end up effectively requiring the indefinite o woman to have wide scope relative to the
universal every® convention.

The fourth combination (124+129), provided in (130) below, encodes the ‘narrow-scope indefi-
nite’ reading that is intuitively available for discourse (87) but not for (86).

(130) max*(CONVENTION(z)); -(|y]; WOMAN(y); COURT-AT(HARVEY, Y, 2));
.(singleton(y); C-T-B-OF(y, HARVEY, 2))

In sum, decomposing generalized quantification along the lines of DPIL/PCDRT enables us to
formulate a compositional dynamic account of the intra- and cross-sentential interactions between
generalized quantifiers, anaphora and number morphology exhibited by the quantificational subor-
dination discourses in (86) and (87) above.

6.2.5 The Analysis of Modal Subordination

The analysis of modal subordination is point-for-point parallel to the analysis of quantificational
subordination. We will make use of a dummy / exception world »*, which is the universal falsifier
in the world-domain. We can take the dummy world to be one in which no individual whatsoever
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exists, hence all relations are false because a relation between certain individuals obtains at a
particular world only if those individuals exist in that world.

(131) [[7'('(10, Apyee 7an)]] = {<G7 G> : Gw#*ﬂl#*,...,an#* # & and
for any g € Guwzx,a1#%,....an#%:
A (w),g/I(0r),...,g/I(om)) € I(m)}
(132) [w' € w] = {{(G,G) :any g€ G is s.t. g(w') = g(w) or g(w') = %)}
(133) v’ =w] = {{G,G): Gw' € w]|G and for any g € G,
if g(w) € G(w'), then g(w) = g(w')}

The translation for modalized conditionals in (134) below is parallel to the translation for gen-
eralized determiners. Following Kratzer (1981), B and O are variables for a modal base and an
ordering source respectively (with contextually-supplied values) that parametrize the interpretation
of modal quantifiers.

(134) if"(¢) + modal%i%%(w) 1= max" (¢, (¢)); maxwlgw(<w/>(w)); MODALg 50w, w’)

Moreover, just as a pronoun anaphorically retrieves an individual variable, the indicative mood
anaphorically retrieves @, which is the designated variable for the actual world — as shown in (135)
below.

(135) indicativeq(¢) := singleton(Q); ¢

Finally, the modal quantifier would in (93b) is anaphoric to the nuclear scope set introduced by
might in (93a). The general format for the translation of anaphoric modal quantifiers is provided
in (136).

(136) modal;’;:é%@(gb) = maxwlgw(<w,>(¢)); MODALg 50w, w')

Brasoveanu (2010b) provides additional motivation for this account of modal subordination and an
extensive discussion of the technical details.

7 A Research Program: The Fine Structure of Interpretation
Contexts

We have seen that the interactions between quantification and anaphora in natural language support
the idea of decomposing first-order and generalized quantification in such a way that the ‘counting’
/ ‘quantifying’ component specific to each quantifier is separated from the general dynamics of
quantifier-dependency interpretation.

Let us briefly recapitulate the formal steps we have taken to explicitly encode the decomposition
of natural language quantification.

First, we identified the process of pointwise variable-assignment manipulation as the crucial
component that relates and ‘glues together’ quantifiers and anaphoric items. While there are
alternative (e.g., variable-free) ways to capture quantifier-anaphora interactions in natural language,
the Tarskian definition of truth and satisfaction for first-order logic is a particularly good first
attempt at formalizing them because storing and passing on quantifier-anaphora dependencies is
an automatic by-product of quantifier and anaphora interpretation.

The second step was to generalize the Tarskian idea of passing on dependencies via variable
assignments from quantifier-internal to quantifier-external contexts. This generalization from ex-
clusively quantifier-internal to quantifier-internal-and-external dynamics required us to explicitly
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acknowledge the relational nature of formula / sentence denotations. DPL semantics was a mini-
mal extension of classical FOL semantics that captured this relational nature — minimal because it
acknowledges the quantifier-external dynamics of interpretation for existential quantification only.

The third and final step was to acknowledge the essentially dynamic nature of quantifier inter-
pretation (both inside and outside the syntactic scope of quantification) for all generalized quan-
tifiers. The fact that generalized quantification is inherently relational over sets of individuals —
unlike existential quantification, where single witnesses are sufficient — emphasizes the essentially
relational nature of quantificational dependencies and requires us to generalize formula / sentence
denotations even further: they are binary relations between sets of assignments.

The resulting DPIL/PCDRT semantics preserves the appealing feature of Tarskian single-
assignment based semantics: storing and passing on quantifier-anaphora dependencies is an au-
tomatic by-product of quantifier and anaphora interpretation.

The trajectory we followed from FOL through DPL to DPIL/PCDRT incrementally added
structure to the quantifier-internal and quantifier-external contexts of interpretation. Thus, this
trajectory points to a broader research program focused on the fine structure of such quantificational
contexts of interpretation.

I will conclude the paper by mentioning two natural-language phenomena that this research
program promises to shed light on: (7) the interpretation of same / different inside and outside
quantificational contexts and (#7) the fact that indefinites can take exceptionally wide scope.

7.1 Quantificational Dependencies Intra-Sententially: Same / Different

Recall the two readings of the adjectives same and different (and their counterparts in many other
languages) that we introduced in (3)/(4) and (5) above.

The interpretation of different in (3b)/(4b) is sentence external in the sense that it is anaphoric
to the variable introduced by the proper name The Raven in the previous sentence (3a)/(4a). Thus,
in (3)/(4), different relates two variables and requires their values, i.e., the actual entities, to be
distinct.

The sentence-internal reading in (5) seems to relate values of only one variable, introduced by
the narrow-scope indefinite a poem. These values, i.e., the recited poems, covary with the values of
the variable introduced by the universal quantifier every boy and different requires the poems to
be distinct relative to distinct boys.

These two readings have been known to exist at least since Carlson (1987), but no unified
account has been proposed (see Barker 2007 for a recent discussion). Such a unified account can
be provided if quantifiers like every boy are taken to distribute over sets of assignments / matrices
in such a way that the very process of distributively evaluating their nuclear scope temporarily
constructs the kind of contexts that license anaphoric, sentence-external readings for same and
different. The basic idea would be that quantifier-internal contexts should be even more structured
than sets of assignments: they should involve something like sets of pairs of assignments and the
members of each pair should be simultaneously updated.

For example, the universal quantifier every boy in sentence (5) above would look at any pair
of two boys and simultaneously ‘construct’ two variable assignments, one for each boy, that would
store their corresponding poems. Relative to such richly structured quantifier-internal contexts,
same and different can be interpreted very much like they are interpreted in sentence-external
contexts.

The formal details of the analysis are not important here (see Brasoveanu 2011 for a detailed
presentation of the analysis). What is important is that the unified account of sentence-internal
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and sentence-external readings that we are after promises to fall into place if pursued as part of
the more general project of investigating the fine structure of quantifier-internal contexts.

7.2 Quantificational Dependencies Intra-Sententially: Exceptional Scope

A similar observation can be made with respect to the phenomenon of exceptional scope exhibited
by indefinites in natural language, first noticed in Farkas (1981) and Fodor & Sag (1982) and
exemplified by the widest and the intermediate scope readings of sentence (137) below.

(137) Every” student read every? poem that a* French poet wrote.

(138) Narrowest scope indefinite:
for every student «x,
for every poem y such that
> there is a French poet z that wrote g,
x read y.

(139) Intermediate scope indefinite:
for every student x,
> there is a French poet z such that,
for every poem y that z wrote,
x read y.

(140) Widest scope indefinite:
» there is a French poet z such that,
for every student =,
for every poem y that z wrote,
x read y.

The readings of sentence (137) differ with respect to whether the indefinite a® French poet covaries
with another quantifier or not. If it does, they differ depending on which one of the two every-
quantifiers the indefinite covaries with.

The intermediate and widest scope readings are instances of exceptional scope because quan-
tifiers cannot in general scope out of a relative clause like the indefinite a® French poet is able
to.

The (in)dependence-friendly logics of Hintikka (1973), Sandu (1993), Hintikka & Sandu (1996),
Hodges (1997), and Véaaninen (2007) seem particularly well-suited to express this kind of ‘selective’
covariation (a.k.a. imperfect information). But the connections between (in)dependence logics and
exceptional scope phenomena in natural language have not been systematically investigated despite
the fact that the exceptional scope of indefinites has been extensively discussed in the natural
language semantics literature — see Abusch (1994), Farkas (1997), Reinhart (1997), Winter (1997),
Kratzer (1998), Matthewson (1999), Chierchia (2001) among others.

Such an investigation promises to be particularly fruitful at this juncture, both on the logical
and on the linguistic side. On the logical side, Hodges (1997) and Vé&&nénen (2007) provide a
compositional semantics for (in)dependence logic that crucially relies on sets of variable assignments
to encode dependencies.

On the linguistic side, Brasoveanu & Farkas (2011) propose a novel account of exceptional scope
that crucially relies on sets of assignments and a mechanism of keeping track of the variables intro-
duced by higher / previous quantifiers that is very close to the slashed quantifiers of independence
logic. Thus, the account in Brasoveanu & Farkas (2011) follows the same general strategy of adding
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more structure to quantifier-internal contexts so that we can keep track of what quantifiers syntac-
tically scope over the indefinite while allowing the indefinite to choose (independence-logic style)
which ones of these quantifiers end up semantically scoping over the indefinite.

8 Conclusion

The paper introduced a variety of natural language semantics puzzles involving both intra-sentential
and cross-sentential quantificational dependencies and argued that they can receive a unified, com-
positional account if their analysis is seen as part of a more general research program of investigating
the fine structure of quantifier-internal and quantifier-external contexts of interpretation.

The examination of these puzzles indicated that the logic of quantificational dependencies in-
tegrates and unifies core intuitions and formal features of both dynamic logic and (in)dependence
logic. Thus, the paper is an argument for the pursuit of such a unified logic, which should help
us better understand and answer some of the open questions in the formal semantics of natural
language quantification and anaphora.
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