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ABSTRACT 

 The last few years have led to a series of discoveries that uncovered statistical 

properties, which are common to a variety of diverse real-world social, information, 

biological and technological networks. The goal of the present paper is to investigate, for 

the first time, the statistical properties of networks of people engaged in distributed 

problem solving and discuss their significance. We show that problem-solving networks 

have properties (sparseness, small world, scaling regimes) that are like those displayed by 

information, biological and technological networks. More importantly, we demonstrate a 

previously unreported difference between the distribution of incoming and outgoing links 

of directed networks. Specifically, the incoming link distributions have sharp cutoffs that 

are substantially lower than those of the outgoing link distributions (sometimes the 

outgoing cutoffs are not even present). This asymmetry can be explained by considering 

the dynamical interactions that take place in distributed problem solving, and may be 

related to differences between the actor's capacity to process information provided by 

others and the actor's capacity to transmit information over the network. We conjecture 

that the asymmetric link distribution is likely to hold for other human or non-human 

directed networks as well when nodes represent information processing/using elements.  
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I. INTRODUCTION 

 Distributed problem solving, which often involves an intricate network of 

interconnected tasks carried out by hundreds of designers, is fundamental to the creation 

of complex manmade systems [1]. The interdependence between the various tasks makes 

the system development (referred to as Product development, PD) fundamentally iterative 

[2]. This process is driven by the repetition (rework) of tasks due to the availability of 

new information (generated by other tasks) such as changes in input, updates of shared 

assumptions or the discovery of errors. In such an intricate network of interactions, 

iterations occur when some development tasks are attempted even though the complete 

predecessor information is not available or known with certainty [3]. As this missing or 

uncertain information becomes available, the tasks are repeated to either verify an initial 

estimate/guess or to come closer to the design specifications. This iterative process 

proceeds until convergence occurs [3-5].  

 Design iterations, which are the result of the PD network structure, might slow down 

the PD convergence or have a destabilizing effect on the system’s behavior. This will 

delay the time required for product development, and thus compromise the effectiveness 

and efficiency of the PD process. For example, it is estimated that iteration costs about 

one-third of the whole PD time [6] while lost profits result when new products are 

delayed in development and shipped late [7]. Characterizing the real-world structure, and 

eventually the dynamics of complex PD networks, may lead to the development of 

guidelines for coping with complexity. It would also suggest ways for improving the 

decision making process, and the search for innovative design solutions.  

 The last few years have witnessed substantial and dramatic new advances in 
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understanding the large-scale structural properties of many real-world complex networks 

[8-10]. The availability of large-scale empirical data on one hand and the advance in 

computing power have led to a series of discoveries that uncovered statistical properties, 

which are common to a variety of diverse real-world social, information, biological and 

technological networks including the world-wide web [11], the internet [12], power grids 

[13], metabolic and protein networks [14, 15], food webs [16], scientific collaboration 

networks [17-20], citation networks [21], electronic circuits [22], and software 

architecture [23]. These studies have shown that many complex networks exhibit the 

“small-world” property of short average path lengths between any two nodes despite 

being highly clustered. The second property states that complex networks are 

characterized by an inhomogeneous distribution of nodal degrees (the number of nodes a 

particular node is connected to) following a power law distribution (termed "scale free" 

networks in [29]). Scale-free networks have been shown to be robust to random failures 

of nodes, but vulnerable to unexpected failure of the highly connected nodes [24]. A 

variety of network growth processes that might occur on real networks, and that lead to 

scale-free and small-world networks have been proposed [9, 10].  

Planning techniques and analytical models that conceive the PD process as a network 

of interacting components have been proposed before [3, 25, 26]. However, others have 

not yet addressed the large-scale statistical properties of real-world PD task networks. In 

the research we report here, we study such networks. We show that task networks have 

properties (sparseness, small world, scaling regimes) that are like those of other 

biological, social and technological networks. We also demonstrate a previously 
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unreported observation involving an asymmetry between the distribution of incoming 

links and the probability of outgoing links.  

The paper is organized as follows: In Sec. II, we present evidence suggesting that PD 

task networks have the small-world property. We also demonstrate the distinct roles of 

incoming and outgoing information flows in distributed PD processes by analyzing the 

corresponding in-degree and out-degree link distributions. In Sec. III we provide our 

conclusions.   

II. RESULTS 

A. Small world properties 

 We analyzed distributed product development data of different large-scale 

organizations in the United States and England involved in vehicle development, 

operating software development, pharmaceutical facility development, and a sixteen story 

hospital facility development. A PD distributed network can be considered as a directed 

graph with N  nodes and L  arcs, where there is an arc from task iv  to task jv  if task iv  

feeds information to task jv . The information flow forming the directed links between 

the tasks has been based on structured interviews with experienced engineers, and design 

documentation data (design process models). In all cases, the repeated nature of the 

product development projects and the knowledgeable people involved in eliciting the 

information flow dependencies reduce the risk of error in the construction of the product 

development networks. More specifically, the vehicle development network was 

identified by directly questioning at least one engineer from each task “where do the 

inputs for the task come from (another task)?” and “where do the outputs generated by 

the task go to (another task)?” The answers to these questions are used to construct the 
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network of information flows [33]. The three other larger networks [34] have been 

constructed based on data flow and design-process model diagrams (see [35] for a 

detailed description). An example of a diagram from the sixteen-story hospital facility 

process model is shown in Figure 1.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIG. 1. Example of a diagram from a design process model used to construct the sixteen-

story hospital facility development (adapted from [35]). 
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 An example of one of these distributed PD networks (operating software 

development) is shown in Figure 2. Here we consider the undirected version of the 

network, where there is an edge between two tasks if they exchange information between 

them (not necessarily reciprocal). We see that this network is sparse 

( =− )1(2 NNL 0.0114911) with the average total degree of each node only 4.116, which is 

small compared to the number of possible edges 4651=−N . A clear deviation from a 

purely random graph is observed. We see that most of the nodes have low degree while a 

few nodes have a very large degree. This is in contrast to the nodal degree homogeneity 

of purely random graphs, where most of the nodal degrees are concentrated around the 

mean. The software development network also illustrates the ‘small-world’ property, 

which can be detected by measuring two basic statistical characteristics. The first 

characteristic is the average distance (geodesic) between two nodes, where the distance 

),( jid  between nodes iv  and jv  is defined as the number of edges along the shortest path 

connecting them. The characteristic path length L  is the average distance between any 

two vertices:  

 ∑
−

=
≠ ji

ijd
NN

L
)1(

1  (1) 

 The second characteristic measures the tendency of vertices to cluster in densely 

interconnected modules. The clustering coefficient iC  of a vertex iv  is defined as 

follows. Let vertex iv  be connected to ik  neighbors. The total number of edges between 

these neighbors is at most 2)1( −ii kk . If the actual number of edges between these ik  

neighbors is in , then the clustering coefficient iC  of the vertex iv  is the ratio  
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The clustering coefficient of the graph, which is a measure of the network’s potential 

modularity, is the average over all vertices, 

  ∑=
=

N

i
iC

N
C

1

1  (3) 

Small-world networks are a class of graphs that are highly clustered like regular graphs 

( realC » randomC ), but with small characteristic path length like a random graph 

( randomreal ll ≈ ). For the software development network, the network is highly clustered as 

measured by the clustering coefficient of the graph ( 0.327software =C ) compared to 

a random graph with the same number of nodes and edges ( 0.021random =C ) but with small 

characteristic path length like a random graph ( 3.4483.700 randomsoftware =≈= ll ).  

 

 

 

 

   

 

 

 

 

FIG. 2. Network of information flows between tasks of an operating system development 

process. This PD task network consists of 1245 directed information flows between 466 

development tasks. Each task is assigned to one or more actors (“design teams” or 

“engineers”) who are responsible for it. Nodes with the same degree are colored the 

same.   

 In Table 1, we present the characteristic path length and clustering coefficient for the 
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four distributed PD networks examined in this paper, and compare their values with 

random graphs with the same number of nodes and edges. In all cases, the empirical 

results display the small-world property ( realC » randomC  and randomreal ll ≈ ). 

 

TABLE 1 Empirical Statistics of the four large-scale PD Networks 

Network N  L  C  l  randomC  randoml  
Vehicle 120 417 0.205 2.878 0.070 2.698 
Operating 
Software* 

466 1245 0.327 3.700 0.021 3.448 
 

Pharmaceutical 
Facility 

582 4123 0.449 
 

2.628 0.023 
 

2.771 

Sixteen story 
Hospital 
Facility* 

889 8178 0.274 3.118 0.024 2.583 

* We restrict attention to the largest connected component of the graph, which includes ∼82% of all tasks 
for the Operating Software network, and ∼92% of all tasks for the Sixteen story Hospital Facility network. 
 

 Shorter development times, improved product quality, and lower development costs 

are the key factors for successful complex PD processes. The existence of cycles in the 

PD networks points to the seemingly undeniable truth that there is an inherent, iterative 

nature to the design process [2]. Each iteration results in changes that must propagate 

through the PD network requiring the rework of other reachable tasks. Consequently, late 

feedback and excessive rework should be minimized if shorter development time is 

required.  

 The functional significance of the small-world property can be attributed to the fast 

information transfer throughout the network, which results in immediate response to the 

rework created by other tasks in the network. The high clustering coefficient of PD 

networks suggests an inherently modular organization of PD processes; i.e., the 

organization of the PD process in clusters that contain most, if not all, of the interactions 
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internally and the interactions or links between separate clusters is eliminated or 

minimized [1-3]. The dynamic model developed in [5] shows that a speed up of the PD 

convergence to the design solution is obtained by reducing or ‘ignoring’ some of the task 

dependencies (i.e., eliminating some of the arcs in the corresponding PD network). A 

modular architecture of the PD process is aligned with this strategy. 

 

B. In-degree and out-degree distributions 

 We compared the cumulative probability distributions )(kPin  and )(kPout  that a task 

has more than k  incoming and outgoing links, respectively (see Figure 2)30. For all four 

networks, we find that the in-degree and out-degree distributions can be described by 

power-laws with cutoffs introduced at some characteristic scale *k ; )( *kkfk γ−  (typically 

the function f  corresponds to exponential or Gaussian distributions). More specifically, 

we find scaling regimes (i.e., straight-line regimes) for both )(kPin  and )(kPout ; however, 

the cutoff *k  occurs lower (by more than a factor of two) for )(kPin  than for )(kPout . 

 The presence of cutoffs in the in-degree and out-degree distributions is consistent 

with a conjecture by Amaral et al. [17] that physical costs of adding links and limited 

capacity of a node should lead to a power-law regime followed by a sharp cutoff (this 

conjecture has been tested for undirected networks). Our empirical results are also 

consistent with Mossa et al. [31] who suggest that making decisions on new Internet 

links, based on filtered information, leads to an exponential cutoff of the in-degree 

distribution for networks growing under conditions of preferential attachment. Both 

Amaral et al [17] and Mossa et al. [31] comment that, in the context of network growth, 

the presence of costly connections, limited capacity of a node, or limited information-
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processing capability of a node are not unlike the so-called “bounded rationality” concept 

of Simon [28]. Our findings suggest that although the cutoff may be attributed to 

constraints on the information-processing capacities of the actors carrying out the 

development process (in accordance with the “bounded rationality” concept) , there is an 

asymmetry between the distributions of incoming and outgoing information flows. The 

narrower power law regime for )(kPin  suggests that the costs of adding incoming links 

and limited in-degree capacity of a task are higher than their counterpart out-degree links.  

We note that this is consistent with the realization that bounded rationality applies to 

incoming information, and to outgoing information only when it is different for each 

recipient, not when it is duplicated. This naturally leads to a weaker restriction on the out-

degree distribution. 

 An additional functional significance of the asymmetric topology can be attributed to 

the distinct roles of incoming and outgoing links in distributed PD processes. The narrow 

scaling regime governing the information flowing into a task implies that tasks with large 

incoming connectivity are practically absent. This indicates that distributed PD networks 

strive to limit conflicts by reducing the multiplicity of interactions that affect a single 

task, as reflected in the incoming links. This characteristic reduces the amount and range 

of potential revisions that occur in the dynamic PD process, and thus increases the 

likelihood of converging to a successful solution. This empirical observation is found to 

be consistent with the dynamic PD model (using linear systems theory) developed in [5]. 

There it was shown that additional rework might slow down the PD convergence or have 

a destabilizing effect on the system’s behavior. As a general rule, the rate of problem 
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solving has to be measured and controlled such that the total number of design problems 

being created is smaller than the total number of design problems being solved.  

 The scale-free nature of the outgoing communication links means that some tasks 

communicate their outcomes to many more tasks than others do, and may play the role of 

coordinators (or product integrators see [5]). Unlike the case of large numbers of 

incoming links, this may improve the integration and consistency of the problem solving 

process; thus reducing the number of potential conflicts. Product integrators put the 

separate development tasks together to ensure fit and functionality. Since late changes in 

product design are highly expensive, product integrators continuously check unfinished 

component designs and provide feedback to a large number of tasks accordingly. 
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III. SUMMARY AND DISCUSSION 

Figure 2 Degree distributions for four distributed problem solving networks. The log-log plots of the cumulative

distributions of incoming and outgoing links show a power law regime (Pearson coefficient 98.0>R ,

001.0<p ) with or without a fast decaying tail in all cases. The in-degree distribution has a lower best-fit

cutoff *
ink  in each case. a, Vehicle development with 120 tasks and 417 arcs. The exponents of the

cumulative distributions are 1−in
vehicleγ  and 1−out

vehicleγ , where 91.2≈in
vehicleγ  and 97.2=out

vehicleγ

denote the exponents of the associated probability density functions. b, Software development with 466 tasks and

1245 arcs, where 97.1≈in
softwareγ  and 17.2≈out

softwareγ . c, Pharmaceutical facility development with 582 tasks

and 4123 arcs, where 8.1≈in
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III. CONCLUSIONS 

 The study of complex network topologies across many fields of science and 

technology has become a rapidly advancing area of research in the last few years [8-10]. 

One of the key areas of research is understanding the network properties that are 

optimized by specific network architectures [17, 23, 27, 31, 32]. Here we analyzed the 

statistical properties of real-world networks of people engaged in product development 

activities. We show that complex PD networks display similar statistical patterns to other 

real-world networks of different origins. In the context of product development, what is 

the meaning of these patterns? How do they come to be what they are? We propose 

several explanations for these patterns.  

 Successful PD processes in competitive environments are often characterized by short 

time-to-market, high product performance, and low development costs [7]. An important 

tradeoff exists in many high technology industries between minimizing time-to-market 

and development costs and maximizing the product performance. Considering the PD 

task network, accelerating the PD process can be achieved by “cutting out” some of the 

links between the tasks [5]. Although the elimination of some arcs should result in a 

speed up of the PD convergence, this might worsen the performance of the end system. 

Consequently, a tradeoff exists between the elimination of task dependencies (speeding 

up the process) and the desire to improve the system’s performance through the 

incorporation of additional task dependencies. PD networks appear to be highly 

optimized when both PD completion time and product performance are accounted for. 

Recent studies have shown that an evolutionary algorithm involving minimization of link 

density and average distance between any pair of nodes can lead to non-trivial types of 
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networks including truncated scale-free networks, i.e. )()( *kkfkkp γ−=  [23, 27]. This 

might suggest that an evolutionary process that incorporates similar generic optimization 

mechanisms (e.g., minimizing a weighted sum of development time and product quality 

losses) might lead to the formation of a PD network structure with the small-world and 

truncated scale-free properties.  

 Another explanation for the characteristic patterns of PD networks might be related to 

the close interplay between the design structure (product architecture) and the related 

organization of tasks involved in the design process. It has been observed that in many 

technical systems design tasks are commonly organized around the architecture of the 

product [25]. Consequently, there is a strong association between the information flows 

underlying the PD task network and the design network composed of the physical (or 

logical) components of the product and the interfaces between them. If the task network 

is a “mirror image” of the related design network, it is reasonable that their large-scale 

statistical properties might be similar. Evidence for this can be found in recent empirical 

studies that show some design networks (electronic circuits [22] and software 

architectures [23]) exhibit small-world and scaling properties. The scale-free structure of 

design networks, in turn, might reflect the strategy adopted by many firms of reusing 

existing modules together with newly developed modules in future product architectures 

[2]. Thus, the highly connected nodes of the scale-free design network tend to be the 

most reusable modules. Reusing modules at the product architecture level has also a 

direct effect on the task level of product development; it allows firms to reduce the 

complexity and scope of the product development project by exploiting the knowledge 

embedded in reused modules, and thus significantly reduce the product development 
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time. 

 We demonstrated a previously unreported difference between the distribution of 

incoming and outgoing links in a complex network. Specifically, we find that the 

distribution of outgoing communication links is scale-free (power law decay) with or 

without a cutoff. The distribution of incoming information flows always has a cutoff, and 

when both distributions have cutoffs the incoming distribution has a cutoff that is lower 

by more than a factor of two. From a product development viewpoint, the functional 

significance of this asymmetric topology has been explained by considering the 

dynamical interactions that take place in distributed problem solving. PD task networks 

are one example of directed social, communication or information networks composing a 

set of people or groups of people with some pattern of interactions between them [10]. 

Thus, the asymmetric link distribution is likely to hold for other directed networks as well 

when nodes represent information processing/using elements. This plausibility is based 

on a bounded-rationality argument originally put forward by Simon in the context of 

human interactions [28]. Accordingly, this asymmetry could be interpreted as indicating a 

limitation on the actor's capacity to process information provided by others rather than 

the ability to transmit information over the network. In the latter case, boundedness is less 

apparent since the capacity required to transmit information over a network is often less 

constrained, especially when it is replicated (e.g., many actors can cite a single article). In 

light of this observation, we expect a distinct cut-off distribution for in-degree as opposed 

to out-degree distributions when the network reflects communication of information 

between human beings as a natural and direct outcome of Simon's bounded rationality 
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argument. It would be interesting to see whether this property can be found more 

generally in other directed human or non-human networks.  
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