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Introduction  
Varieties of Information 

 
EVERYONE speaks of the age of information. Even though the first 
hype of the internet has gone, electronic mail and information retrieval 
have become part of our daily life. But what is information?  

In his famous popular scientific book A Brief History of Time, 
Stephen Hawking drops the following remark while discussing infor-
mation and its relation to the entropy of the universe: 

The progress of the human race in understanding the universe has estab-
lished a small corner of order in an increasingly disordered universe. If you 
remember every word in this book, your memory will have recorded about 
two million pieces of information: the order in your brain will have in-
creased by about two million units. (Hawking 1988, 152.) 

The quoted passage suggests that progress in understanding is corre-
lated with the amount of information received, that the amount of in-
formation received can objectively be measured (is the same for every 
reader), and – in particular – is a function of the number of words one 
does remember of the information received. That sounds as if a theory 
of information is just around the corner, we simply have to put all 
these quantities together, something Stephen Hawking presumably has 
done already, how else did he arrive at the numerical values?  

But unfortunately things are not that simple. Why should we think 
that the amount of information or understanding that a reader might 
gain from reading A Brief History of Time is a function of the number 
of words in it? Consider the speech of a politician or, better, a collec-
tion of them. For example, consider the fictive book Collected 
Speeches of George W. Bush. Let us assume that the number of words 
in it it is by coincidence the same as the number of words in A Brief 
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History of Time, we will assume that even the number of letters is ex-
actly the same. Besides the fact that it is not about the same topic and 
therefore does not have the same information in it, it is a fair assump-
tion that it will have less information in it on whatever topic it is. The 
reason is simply the familiar fact that some people might use more 
words than others to convey the same amount of information, politi-
cians (not only George W. Bush) are infamous for this.  

This means that even if the amount of information – for example – 
in a book is an objective property of the book, it is not clear why it 
should be a function of the actual number of words or letters in it. 
Maybe Stephen Hawking could have written an abridged version of 
the book that told us just as much about the universe and its history as 
the actual A Brief History of Time does. Hm, ...then maybe the amount 
of information gained by reading A Brief History of Time is not a func-
tion of the number of words that A Brief History of Time is actually 
composed of, but it rather is a function of the number of words the 
most abridged version of it would be composed of that still told us the 
same about the history of the universe. Well ...., not quite. Wouldn’t 
the language matter, the book is written in? Some languages allow for 
shorter words, phrases and sentences than others do, so it should be in 
the right language, too, shouldn’t it?  

Moreover, so far we did not discuss the issue of objectivity that is 
implied in the quoted passage. Assume that you are a physicist who is 
almost as smart and knowledgeable as Stephen Hawking is and you 
are asked to proofread A Brief History of Time before it goes into 
print. Since you might know all the facts about the history of the uni-
verse already that are covered in the book, is it plausible to assume 
that the order in your brain, even if it increased by about two million 
units, is correlated with an increased understanding of the universe? 
Probably it is not. It seems that information can also be said to have a 
subjective component. I learned quite a bit from reading A Brief His-
tory of Time, somebody with more background knowledge could even 
have learned more than I did, but somebody with as much background 
knowledge as Stephen Hawking himself has about the history of the 
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universe, might not learn anything from reading the book, for him it 
would not be of any informational value. 

Or imagine somebody not capable of understanding English, who 
learns A Brief History of Time by heart simply because his TV set 
broke down and he couldn’t think of anything better to do than that. 
He could remember every word of the book and the order in his brain 
would have increased by two million units, but he would not have 
gained any information about the universe. For him the whole book is 
mere gibberish. This is just like it must be for Stephen Hawking’s com-
puter that has the whole book stored on his harddrive. The computer’s 
understanding of the universe did not increase in any way when Hawk-
ing wrote the book into it. Is it correct to say that the computer has in-
formation about the universe when he is not capable of using it in any 
way? But then, why do biologists say that genes carry information? Do 
they only carry it for the biologists who can decode it and use it? Or 
does the DNA carry the information for the ribosome to put just the 
right amino acids together to form a particular protein? 

So far we have considered information and its relation to symbols, 
content, languages, background knowledge, and usage. But isn’t nfor-
mation also connected with truth?  

A Brief History of Time makes a number of claims about the history 
of the universe and future development of physics. Imagine that future 
reasearch would falsify most, if not all of these claims. Would we still 
regard A Brief History of Time as containing information if what is 
said in it were false? It seems that only true statements can inform you 
about anything, but that makes misinformation a contradiction in 
terms, at least if taken to be a species of information. 

The questions raised so far do suggest that ‘information’ is a word 
with a very broad meaning which is used to describe a variety of differ-
ent things.  

There is a syntactic sense, as we found in the quote by Stephen 
Hawking, in which information is measured via symbols. In this sense 
my computer receives 200 Mbit of information per second via my 
broadband internet connection at the moment, while in fact it is receiv-
ing only tons of spam emails that are not ‘informative’ at all. 
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There is a semantic sense, in which information is a matter of the 
content associated with the words or symbols the information is coded 
in. 

There is an epistemological sense, in which information is tied to 
knowledge and truth and plays an enormous role for organisms like us 
who can exploit it. How do all these different senses of ‘information’ 
belong together? 

We need a theory of information. A theory that tells us what infor-
mation is. A theory that tells us how it works that sentences, utter-
ances, signs are said to carry information. Does not the smoke carry 
the information that there is a fire nearby? A theory of information 
should tell us what informational content is and how we arrive at in-
formation or use information to get at more information. It should tell 
us how information flows from some piece of information we got to 
more information. – That is what this little book is all about. 

 This book is conceived as an introductory text into the theory of 
syntactic and semantic information, and information flow. Syntactic 
information theory is concerned with the information contained in the 
very fact that some signal has a non-random structure. Semantic in-
formation theory is concerned with the meaning or informational con-
tent of messages and the like. The theory of information flow is con-
cerned with deriving some piece of information from another. 

The book is in part historical. We will start with a comparison of the 
early syntactical theory of information and the early semantic ap-
proach. We present the basic ingredients of the theories so that the 
concepts of information and amount of information can be introduced. 
Explaining the virtues of these approaches we also keep an eye to their 
shortcomings if not in the theories themselves then maybe with respect 
to our pre-scientific understanding of what information is. The main 
part will take us to situation semantics as a foundation of modern ap-
proaches in information theory. We give a brief overview of the back-
ground theory and then explain the concepts of information, informa-
tion architecture and information flow from that perspective. This part 
of the book really presents ‘state of the art’ theories. Finally we shall 
discuss the applicability of modern information theory to some practi-
cal and philosophical problems. 
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Almost all chapters are centred on the basics of the respective theo-
ries. Our aim is to give you an overview with some but not too much 
technical details and a list of further reading material you might turn 
to. 

Information is a key concept in the cognitive sciences, information 
science, philosophy of language, and logic. Our intended reader is the 
undergraduate in one of these disciplines looking for a general account 
of information that is neither too informal nor too technical. 

We presuppose general knowledge (undergraduate level) of First 
Order Logic, highschool mathematics, and some general knowledge of 
analytic philosophy of language. 

We started this book project from our experience with graduate 
courses at the University of Düsseldorf and at the European Summer 
School in Logic, Language and Information 2002 in Trento, since we 
had the impression that people were looking out for some kind of in-
troductory text to the topic. 

Personal pronouns are haphazardly used with no preferences for ei-
ther sex. Feel free to be upset. We are from Old Europe. 

 
We would like to express our thanks to people who supported our pro-
ject and helped us to improve our several drafts. These people include: 
Stefan Bagusche, Marc Breuer, Axel Bühler, Filip Buekens, Luciano 
Floridi, Phillip Keller, Jochen Lechner, John Perry, Michael Preuss, 
Markus Werning, the students of our courses in Düsseldorf and 
Trento, and anonymous referees. 



 



 

The Syntactic Approach to  
Information 
Answering a Question by  
Decreasing Randomness 

 
TERRIBLY enough you get a scary letter every other day. You do not 
know who is sending them. Every letter contains the same message: 
‘1111111’. What does it mean? You have no idea, but every other day 
there is this letter. Now today something changed. You opened your 
daily letter and it read ‘1116111’. You still cannot say what this means, 
but one thing is for sure: something has changed. The occurrence of 
this other symbol (the ‘6’) may have some importance, otherwise why 
should there be the change? Is a threat becoming real? Are your days 
counted? 

In this example we have a letter with no words at all. We could even 
leave the numerals out and have their work done by some marks on 
the paper. So we left out conventional meaning. Our first perspective 
on information is not concerned with (conventional) meaning at all. 
Words or signs that have meaning obviously seem to carry some in-
formation. Does carrying information, however, start only with con-
ventions ruling symbols? Even if we leave out the proverbial black sky 
giving you information about the storm to come, and deal with written 
marks or symbols only, can symbols viewed from a merely syntactic 
perspective carry information? What kind of information would that 
be? We expect information to be about the world. How could a sign 
with no meaning carry information about something else? 

What is important in our story of meaningless signs is the change 
that occurs between ‘1111111’ and ‘1116111’.  

On the one hand the mere occurrence of change has an epistemic 
component: You expected your regular letter with only ‘1’s in it. This 
expectation was frustrated. An expectation being frustrated carries in-
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formation. You learn, at least, that the world does not follow the sim-
ple rules you thought of so far.  

On the other hand the sign itself has changed from one that can eas-
ily be described as ‘a row of seven ‘1’’s’ to one that needs a more com-
plex description, like ‘three ‘1’s followed by a ‘6’, followed by three 
‘1’s’. The second description is more complex. Needing a more com-
plex description the second string is more random. The less random-
ness we have the easier the rule to describe a string – here we have en-
tered a syntactic perspective on information. You might, further on, 
think of the programming needed to generate the string: The first 
string needs a single loop, the second needs more lines of code. 

Imagine a little expansion of our story: You are a secret agent and 
the letter comes from your informant. You and your informant have 
invented a system of codes corresponding to possible states of affairs 
of your target site. Given this scheme the sudden occurrence of the ‘6’ 
might very well carry a lot of information. It may code the delivery of 
the jewels you have been after the last seven years. Given some prede-
fined question a string of symbols having no conventional meaning (in 
the strict sense) can carry information about the world. From all the 
possible symbols that could have taken the place of the ‘6’ (say a ‘7’ for 
the presence of too much police, a ‘8’ for summoning you back to 
headquarters etc.) just the ‘6’ occurred. Something from a range of 
possible answers was singled out – that sounds very much like giving 
specific information! 



 

1|1 The Syntactic Approach 
to Information I 

The pre-history of Information theory 
This book tries to explore the history of the way information is treated 
in modern philosophy and semantics, especially in situation theory. 
One of the roots of the modern treatment is surprisingly unphilosophi-
cal. It dates back to the old days of the telephone and the engineering 
problems connected with this technology. But before we turn to the 
problems early communication engineers had to face, we will go even 
further back – into the history of thermodynamics. 

Entropy, Maxwell’s Demon, and Information 
Most books and papers on information theory refer to the concept of 
entropy in thermodynamics and either emphasize that the concept of 
entropy or information in information theory is relevantly connected 
with it, or that it most definitely has nothing to do with it: 

[...] The use of the entropy concept [in information theory] is a perfectly 
valid one. Boltzmann’s order-disorder notion is directly applicable to the 
process of communicating information. (Cherry 1952, 651) 

I find it utterly unacceptable that the concept of physical entropy, hence an 
empirical concept, should be identified with the concept of amount of se-
mantic information [...]. (Bar-Hillel 1964, 309) 

We will briefly discuss what the entropy concept refers to in thermody-
namics and how it came to be connected with the concept of informa-
tion within physics. We think that this is of some interest. It is also in-
teresting – from a philosophy of science point of view – to note that a 
certain mathematical calculus can equally well be at the heart of three 
(or more) theories with different domains of application.  
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Disorder 
As it was the received view from about the 18th century, the transition 
from order to disorder is an irreversible process that applies not only 
to my desk, but also to yours and the whole universe (which is com-
forting ... at least the part of the story which does not contain the 
phrase ‘terminal heat death’ and the like). The idea is that whenever 
work or kinetic energy is dissipated within a system (e.g. because of 
friction, deformation, electric resistance, etc.) the disorderly motions of 
molecules are increased. Equally, whenever substances are mixed, dis-
solved and diffused with one another, the spatial positions of the mole-
cules are in a less ordered arrangement. This transition from order to 
disorder that underlies all these kinds of processes, is expressed in 
thermodynamics by the second law, stating that the entropy of the uni-
verse increases. All these processes are irreversible, i.e. in these cases we 
are unable to change one form of energy back into another (like ther-
mal energy into mechanical energy), an increase of entropy means a 
decrease of available energy. The irreversibility of these processes is 
‘what gives time its arrow’. The fact that entropy of the universe in-
creases makes possible to tell whether a movie showing the develop-
ment of the universe is run backwards or forwards. 

In 1871 the Scottish mathematician and physicist James Maxwell de-
signed the following thought experiment to demonstrate the statistical 
nature of the second law of thermodynamics: 

One of the best established facts in thermodynamics is that it is impossible in 
a system enclosed in an envelope which permits neither change of volume 
nor passage of heat, and in which both the temperature and the pressure are 
everywhere the same, to produce an inequality of temperature or of pressure 
without the expenditure of work. This is the second law of thermodynamics, 
and it is undoubtedly true as long as we can deal with bodies only in mass, 
and have no power of perceiving or handling the separate molecules of 
which they are made up. But if we conceive a being whose faculties are so 
sharpened that he can follow every molecule in its course, such a being, 
whose attributes are still as essentially finite as our own, would be able to do 
what is at present impossible to us. For we have seen that the molecules in a 
vessel full of air at uniform temperature are moving with velocities by no 
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means uniform, though the mean velocity of any great number of them, ar-
bitrarily selected, is almost exactly uniform. Now let us suppose that such a 
vessel is divided into two portions, A and B, by a division in which there is a 
small hole, and that a being, who can see the individual molecules, opens 
and closes this hole, so as to allow only the swifter molecules to pass from A 
to B, and only slower ones to pass from B to A. He will thus, without ex-
penditure of work, raise the temperature of B and lower that of A, in con-
tradiction to the second law of thermodynamics. (Maxwell 1871) 

This thought experiment was intended by Maxwell to dramatize the 
fact that the second law is a statistical principle and that it is not cer-
tain that the entropy in any case increases. If Maxwell’s demon is not 
only conceivable but compatible with the rest of thermodynamics, the 
second law is not a strict law. A decrease of entropy were not physi-
cally impossible, but merely too unlikely to occur – a huge difference 
for the status of the second ‘law’ of thermodynamics. 

The discussion about whether or not the demon really is physically 
possible turned out to be a discussion about whether or not the in-
crease in entropy caused by the actions of the demon would outweigh 
the decrease in entropy that would result from his ordering of the 
molecules. In 1929 though, the discussion started to center around a 
new concept that found its way into physics, the concept of informa-
tion. 

Information and Negentropy 
In that year the Hungarian Physicist Leo Szilard directed the attention 
of his colleagues to the fact that in order to fulfill his task and separate 
the faster from the slower moving molecules, the demon had to gain 
and store information about the molecules’ speed and position. Ther-
modynamics would predict that the physical realization of this infor-
mation processing would increase the entropy sufficiently, but for an 
‘intelligent being’ this could not be proven. Szilard argued instead that 
an inanimate construction with the necessary abilities could increase 
the entropy sufficiently. Subsequent discussion like Brillouin’s in 1962 
and Rodd’s in 1963 suggested that the information processing of the 
demon would definitely outweigh the decrease in entropy the demon 
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could achieve by sorting the molecules and processing the information. 
Even if a demon existed, the entropy change of the universe would be 
positive and the second law could not be violated in any way.  

This result led to much confusion about the character of information 
theory. Amount of information was by Brillouin considered to be iden-
tical with negentropy (negative physical entropy) (Brillouin 1951), the 
genius mathematician and physicist Johann von Neumann seems to 
have identified logic, information theory and thermodynamics (Bar-
Hillel 1964, 12; but see also his remarks in Von Neumann 1955, 400), 
some have considered information theory to be a branch of thermody-
namics. Such identifications should of course be taken less seriously. It 
is one thing to show that the physical realization of the information 
processing Maxwell’s demon has to conduct will necessarily produce 
an amount of physical entropy in accordance with the second law, 
quite another to identify the amount of information generated with the 
thereby generated negentropy.  

The philosopher Rudolf Carnap tried to show that there are two 
quite different concepts of entropy involved, one which is the physical 
quantity Boltzmann was concerned with, the other a concept of en-
tropy used by Brillouin and others which is a logical or epistemological 
concept (Carnap 1977).  

Carnap did not publish this interesting essay during his lifetime, al-
though it might be the way to clarification in this area. His colleague 
Bar-Hillel formulated the main idea behind this distinction: 

As I see it, the entropy of a system is a determinate quantity. However, be-
ing fallible human beings, we are unable to determine this quantity, at least 
in general. If the outcome of some action of ours is a function of the entropy 
of a system, then we would like to act on our knowledge of the true value of 
this quantity. However, all we can do is to act on our estimate of this value. 
[...] Now, of course, estimates are relative to available evidence, hence in a 
sense to the state of knowledge of the estimator. Someone’s estimate of the 
entropy of a given system depends upon his state of knowledge. I would not 
urge not to formulate this situation by saying that the entropy of the system 
depends upon his state of knowledge. (Bar-Hillel 1964, 310) 
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Thus the concept of information and how it is measured plays a certain 
role in thermodynamics, namely in the discussion of the physical pos-
sibility of Maxwell’s demon. There is indeed an application where in-
formation theory is used to solve a physical puzzle, but this should not 
lead to the identification of the physical quantity of entropy with in-
formation theoretic entropies we will be dealing with in what follows. 

Nyquist, Hartley and the birth of MCT 
The first thing to note about one of the most important forefathers of 
information theory, is the awkward story why he has the name he has. 
In 1880, one year after he had married Katarina Eriksdotter, a certain 
Lars Johnsson and his brother Olof bought the farm ‘Där Sör’, 40 
kilometers North of Karlstad in Sweden. As it turned out, just hundred 
meters from their new home lived another Lars Johnsson, which 
automatically caused a huge problem with the mail delivery. An enve-
lope saying  

(Värmland is the name of the region in which ‘Där Sör’ was situated) 
couldn’t carry enough information for the mailman to know whether 
he should deliver the letter to Lars on ‘Där Sör’ or to the other Lars in 
the immediate neighborhood. The information the mailman received 
from such an envelope simply did not reduce the possible addressees to 
one, the intended addressee. But instead of demanding more specific 
information in the address, like 

 
To: 
Lars Johnsson 
Värmland 
Sweden 
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a different solution was chosen, which was not even rare in Sweden at 
that time: Lars at Där Sör changed his name, from ‘Johnsson’ into 
‘Nyquist’. In information theoretic terms that was even pretty efficient. 
The signal that had to be written on the envelop to carry enough in-
formation, viz. who the intended addressee is, did not need to increase 
(it still contained the same lines as before): 

But it now carried enough information for the mailman to know who 
the intended addressee was. Why this was a good way of dealing with 
the problem is something that the Swedes couldn’t know by that time, 
for one of the men who would provide the basic concepts for the ex-
planation of that was not yet born.  

This happened 9 years later. On February 7 1989 Harry Nyqusit, the 
fourth of eight of John Nyquist’s children was born. He is probably 
one of the most misspelled and mispronounced forefathers of informa-
tion theory, thanks to Lars Johnsson who lived in the neighborhood of 
Där Sör. 

Writing in 1924, Nyquist’s aim was to determine what factors are 
governing the maximum speed of data transmission in a given commu-
nication system. One basic factor determining the speed of transmis-

To: 
Lars Johnsson 
Värmland 
Där Sör 
Sweden 

 
To: 
Lars Nyquist 
Värmland 
Sweden 
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sion is of course the limit imposed on the telephone cable by such fac-
tors as power, noise, and the frequency of the signal. Nyquist ab-
stracted away from these limiting factors and considered an ideal cable 
that is distortionless, in order to inquire what factors are determining 
communication speed besides power, noise, and the frequency of the 
signal. Nyquist identified two factors which are determining the speed 
of transmission in such an idealized system: (i) the shape of the signal 
and (ii) the code that represents the message. Nyquist argued (i) that 
signals for the considered telegraph systems are most efficiently trans-
mitted if their carrying waves are rectangular rather than sine shaped. 
(ii), given the shape of the carrying wave, it is the ideal code which de-
termines the transmission speed. Nyquist was able to measure the 
amount of ‘intelligence’ that can be transmitted by the ideal code, by 
suggesting that the speed of transmission of intelligence is proportional 
to the logarithm of the number of current values which can be used to 
codify the message. The notion of an ‘ideal code’, Nyquist’s distinction 
between the characters of a message and the signal elements represent-
ing the characters, his suggestions concerning characters of non-
uniform duration, etc. were all of importance for the development of 
communication theory.  

But the even more interesting point of Nyquist’s work for us is how 
he arrived at his measure of information: He started from the assump-
tion that certain factors are relevant for determining the transmission 
speed and then abstracted away from them, in order to identify the 
other factors also involved. Thus Nyquist worked backwards, starting 
from the given transmission speed of a given communication system 
towards a general account how information can be ideally coded, 
which is only one step away from measuring the information produced 
by the source of the communication system. 
 
Another pioneer of Information Theory was Ralph Vinton Lyon Hart-
ley. Hartley was born in Spruce, Nevada on November 30 1888 and 
was thus just a couple of months older than Nyquist. After his gradua-
tion from Oxford he joined the Research Laboratory of the Western 
Electric Company and worked later (after W.W.I.) for the Bell labora-
tories.  
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In the 1928 edition of the Bell System Technical Journal, the very 
same journal in which Nyquist had published his ideas just four years 
earlier, Hartley published his famous paper ‘Transmission of Informa-
tion’, in which he – for the very first time – defined such key notions as 
‘precision of information’ and ‘amount of information’. It might well 
be that Hartley was aware of Nyquist’s earlier work, especially since 
some of Hartley’s ideas appear to be shaped by Nyquist’s way of deal-
ing with the problem of information, in particular by his explicit as-
sumption that all symbol sequences are of the same length or size. Al-
though this influence is likely, Hartley did not cite Nyquist’s work, nor 
anyone else’s work, for that matter. 

The topic of Hartley’s paper is to set up a quantitative measure 
whereby various different communications systems may be compared 
in terms of their capacities to transmit information. Thus Hartley’s ap-
proach, which is intended to cover telegraphy and telephony, picture 
transmission and television via wire and radio paths is definitely 
broader than Nyquist’s was, who was only concerned with telegraphy. 
As well as Nyquist’s, Hartley’s discussion is directed at an idealized 
model of a communication system, in order to achieve a general analy-
sis of the factors involved. Hartley is already well aware of the fact that 
‘information’ is a term with a rather broad meaning. Therefore he 
starts his discussion by considering what factors are involved in com-
munication. The model he gives is supposed to be general enough to 
cover communication conducted by wire, direct speech, writing, or 
‘any other method’.  

Hartley starts his considerations with some general remarks. E.g., he 
first formulates an abstract notion of a communication system. The 
elements of such a communication system are the following:  
 
(A) A set of physical symbols, such as words, dots or dashes, and the 
like, which are correlated with meanings by convention. Such a system 
may, for example, consist of the words ‘guitar’, ‘pepperoni’, and 
‘screen’ as three types of physical word tokens and will be related by 
convention with their respective meanings:  
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 Physical Symbols conventionally mean   Meanings  
 
‘guitar’         
 
 
‘pepperoni’         
 
 
‘screen’         

 
 
(B) A sender, who ‘mentally’ selects one of the physical symbols and 
uses his body to direct the attention of the receiver to the symbol se-
lected. Such bodily motion might be the raising of his voice by using 
his vocal mechanism: 
 
1. Sender selects a physical symbol: 

‘guitar’ 
 
‘pepperoni’ 

‘screen’ 
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2. Sender directs the attention of the receiver to the symbol 

(C) A receiver who has to reidentify the symbol chosen by the sender. 
The receiver’s attention will be directed to something by the actions of 

the sender, but the receiver has to identify the object of his attention as 
a sequence of physical symbols and as the very same sequence of 
physical symbols the sender has originally sent.  

It was already clear to Hartley that this is the crucial step in trans-
mitting information: the capacity of the communication system (A)-(C) 
will depend upon ‘the possibility of distinguishing at the receiving end 
between the results of the various selections made at the sending end.’ 
(Hartley 1928, 537). But let’s have a closer look how information is 
produced at the sending end by making selections among symbols.  

Pepperoni! 

"pe-p&-'rO-nE 

Paul said 
‘pepperoni'. 
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The Inverse Relationship of Information and Possibilities 
Each time the sender chooses one of the symbols, he eliminates all 
other symbols which might have been chosen instead. Consider the let-
ter that was sent to John Nyquist’s father, Lars Johnsson. If there had 
been no address at all on the envelope, no symbols would have been 
chosen by the sender and thus no information conveyed as to whom 
the letter is intended to be sent. There are billions of possible address-
ees; no clue who the one is this letter belongs to.  

Now consider that the sender had chosen the word ‘Sweden’ and 
had written it on the letter to direct the attention of the mailman to this 
symbol. That would have reduced the number of possible addressees 
quite a bit. Now the mailman knows that the addressee lives in Swe-
den. The number of possibilities is thus reduced from 6 billions (the 
number of people living on the planet) to approximately 8.8 millions 
(the number of people living in Sweden). Imagine that the sender also 
selects the symbol ‘Värmland’ and the symbol ‘Johnsson’ and the sym-
bol ‘Lars’ and writes it on the envelope. Each selection reduces the 
number of possibilities again. The last symbol reduces the number of 
possibilities to two. The information on the envelope is, as we know, 
still not precise enough for the mailman to know who the addressee is. 
If the sender also selects the symbol ‘Där Sör’ and writes it on the en-
velope, the information is precise. It seems that the more possibilities 
are excluded by the selections made by the sender, the more informa-
tion is produced. This inverse relationship between information and 
possibilities will accompany us throughout the whole book. This idea 
is clearly already part of Hartley’s paper: 

By successive selections a sequence of symbols is brought to the listener’s at-
tention. At each selection there are eliminated all of the other symbols which 
might have been chosen. As the selection proceeds more and more possible 
symbol sequences are eliminated, and we say that the information becomes 
more precice. (Hartley 1928, 536) 

It is not fully clear who first noted that there is such an inverse rela-
tionship between information and possibilities (here, possible selec-
tions of symbols). When we turn to the theory of semantic information 
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as developed by Yehoshua Bar-Hillel and Rudolph Carnap in the next 
chapter, we will learn that at the heart of their theory is also such an 
inverse relationship principle. Carnap and Bar-Hillel motivate it by re-
ferring to the ‘old philosophical principle omnis determinatio est nega-
tio’. But this trace leads back to Hegel and his ‘Science of Logic’ (Hegel 
1832, 101). Hegel himself claims to have the principle from Spinoza, 
who indeed wrote a similar sentence (‘determinatio negatio est’ in 
Spinoza 1674, 240). Neither in Spinoza, nor in Hegel it is terribly clear 
what this principle is supposed to mean. What is clear, though, is that 
both were neither concerned with information nor informational con-
tent nor with the preciseness of information, nor with possibilities and 
their exclusion. Thus it might be the case that Hartley is even among 
the first to formulate such an inverse relationship principle for infor-
mation. 

The ‘Physical’ ’ and the ‘Psychological’ ’ Aspects of Information 
Nevertheless, the most interesting idea in Hartley’s paper for the pre-
sent chapter is certainly the plan to establish a measure of information 
‘in terms of purely physical quantities’. This is why this chapter is 
called ‘The Syntactic Approach’: linguistic meaning, and hence ‘se-
mantical’ aspects of information are not considered by the approach 
developed by Nyquist, Hartley et al. Indeed, information as far as it 
might involve the interpretation of symbols by conscious agents is not 
of interest for the engineers at the Bell labs. ‘Psychological factors’ 
were to be eliminated in order to achieve a measure of information that 
could be applied to a communication system which is only physically 
specified. This measure was meant to be an objective feature of the 
communication system, independent of the knowledge and the skills of 
the person operating the system.  

Consider a receiver identifies the following sequence of symbols 
from a telegraph: 

(S) .- .-. ... -.-. .... --. . ... .. -.-. .... - 

In English (S) is a meaningless string of symbols, and a trained opera-
tor might notice that immediately. Not all sequences of symbols have 
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assigned meaning and (S) is one of them. Therefore, if we count the 
possible symbol sequences out of which the sender chooses the mes-
sage, the sequence above is not among the possible sequences if we 
take into account that the sender is an English speaker and that the se-
quence above is not a meaningful sequence in English.  

However, in a different language (S) might very well be meaningful 
and thus might be among the possible sequences the sender is choosing 
from. Thus relative to a given language, different sets of symbol se-
quences turn out to be the possible sequences. Therefore, if a commu-
nication system consists of a set of possible symbols, a receiver and a 
sender, and the set of possible symbols varies from context to context, 
the system will be different for any given language. But then we are not 
describing an objective feature of the physical system.  

This is why Hartley tries to ‘eliminate’ the psychological factors by 
ignoring the question of interpretation and regarding all symbol se-
quences as possible sequences. This leads him to distinguish primary 
and secondary symbols: Say the information transmitted via a tele-
phone is a string of English words. The English words are the secon-
dary symbols the message is made of. What the telephone transmits, 
though, is not a string of English words, but a sound wave which is the 
primary symbol. Secondary and primary symbols may stand in compli-
cated relations. In a uniform code, each primary symbol coding a sec-
ondary symbol is of the same length as every other primary symbol. In 
non-uniform code this does not have to be the case (as in certain codes 
for telegraphy). Thus a uniform code might code all letters of the al-
phabet by a string of primary symbols (dots and dashes) which is of 
equal length (3 primary symbols) for every letter among the secondary 
symbols. On the other hand, might a non-uniform code represent the 
more frequently used letters (like ‘e’) with – say – only one primary 
symbol, and the less frequently used letters, like ‘x’, with more sym-
bols. 

In addition, the amount of information a signal contributes to the 
total information of a sequence of signals does – more often than not – 
progressively decrease. This is the case because due to, e.g., grammati-
cal and semantical constraints not all sequences of symbols are possi-
ble. The sequence 
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Procrastination drinks bells 

or 

Green ideas sleep furiously 

are impossible sequences, although each symbol (word) is among the 
possible symbols.  

Therefore the amount of information contributed by a secondary 
symbol is again language dependent. To avoid these complications, 
Hartley chooses to measure the amount of information H transmitted 
by a sequence of symbols of length n as the logarithm of the number of 
possible symbol sequences sn, whereby s is the number of primary sym-
bols possible: 

H =  log sn 

 = n log s  

This is adequate only if all symbols chosen by the source are statisti-
cally independent. Hartley was thinking of a chance mechanism pro-
ducing the information, in order to avoid any dependence on non-
physical elements in his theory.  

We will not go much deeper into Hartley’s theory here. Most of his 
discoveries will return in a more precise form in the next chapter any-
way. What we wanted to direct your attention to were the following 
aspects of Hartley’s account: 
 

Hartley concentrated on the mere physical aspects of communi-
cation, leaving aside what he thought to be ‘psychological’. 

He considered information to result from a selection among a 
certain set of possible symbols. The more selections are made, the 
more possibilities are excluded, the more precise is the resulting 
information. 

A 

A 
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The quantity of information H carried by a signal of n symbols in 
a code of s symbols is in his theory defined as n log s.  

 
Neither in Hartley’s nor in Nyquist’s paper it is terribly clear why they 
define their measures of information (Hartley) or the speed at which 
‘intelligence’ can be transmitted over a telegraph (Nyquist) as a log 
function. Nyquist’s motivation seems to be a mere technical point:  

There is a difference, which is not of great significance from the standpoint 
of pure theory, but which is important from the standpoint of practical 
computation. [...] In fact, by expressing the characteristic in terms of a loga-
rithmic function [...] it is possible to reduce these operations to additions. 
(Nyquist 1924, 627) 

As we will see in the next chapter, there is even a motivation from pure 
theory to state information theory in terms of a logarithmic function. 

Further Reading 
For some background in thermodynamics and the story of Maxwell’s 
demon we suggest  
 
��Harvey S. Leff/Andrew F. Rex (eds.), Maxwell’s Demon. En-

tropy, Information, Computing,  Adam Hilger 1990. 
 
This is a well introduced collection of all important physics papers 
dealing with Maxwell’s demon. For students who are less interested in 
the physical details, but still want to know more about the history of 
thermodynamics and Maxwell’s demon in particular, we suggest the 
popular scientific book 
 
��Hans Christian von Baeyer, Warmth Disperses and Time Passes. 

The History of Heat. New York 1999. 
 
For more on the historical background of Communication Theory not 
covered here, see 
 

A 
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��E. Colin Cherry, ‘The Communication of Information (A His-
torical Review)’, The American Scientist 40, 640-664. 

 
and 
 
�� John R. Pierce, An Introduction to Information Theory. Symbols, 

Signals and Noise, New York 1980. 

 



 

1|2 The Syntactic Approach to Information II 

Claude E. Shannon 
The hero of this chapter is Claude Elwood Shannon, the son of an-
other Claude Elwood Shannon and Mabel Catherine Wolf. Claude 
was born in Petoskey, Michigan, on April 30, 1916. He graduated from 
the University of Michigan in 1936 with bachelor’s degrees in mathe-
matics and electrical engineering. In 1940 he earned both a master’s 
degree in electrical engineering and a Ph.D. in mathematics from the 
Massachusetts Institute of Technology (MIT).  

Shannon had an impressively broad range of interests. He wrote his 
MA thesis, A Symbolic Analysis of Relay and Switching Circuit, on the 
theoretical underpinnings of digital circuits, using Boolean Algebra. 
This work is one of the milestones for modern computer technology, it 
was here that Shannon discovered the similarity between Boolean Al-
gebra and telephone switching circuits. Nevertheless, the work he is 
most famous for is his 1948 paper ‘The Mathematical Theory of 
Communication’ which appeared in the Bell System Technical Journal. 

Mathematical Communication Theory 
At the beginning of Shannon’s theory of information lies the observa-
tion, which was made already by Hartley, that ‘the fundamental prob-
lem of communication is that of reproducing at one point either ex-
actly or approximately a message selected at another point’ (Shannon 
1948, 5). The two following sentences of Shannon’s 1948 paper also 
state fundamental points arrived at by Hartley and Nyquist already. 
One is that the ‘semantic aspects of communication are irrelevant to 
the engineering problem’, the other is that the communication system 
will be considered to be a device which at one end chooses from a set of 
possible messages and must be designed to operate for each possible 
message. 

The communication model of Shannon is more sophisticated than 
the one considered by Hartley. Its components are an information 
source, a transmitter, a communication channel, a noise source, a re-
ceiver, and a destination. Hartley’s ‘symbol’ is here analyzed into a 
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sent message, a signal, a received signal and a received message. Let’s 
see how these components work together.  

Consider the situation as depicted in figure 1|2–1: I'm freezing and 
want Manuel to close the window. I select a message for Manuel: 
‘Close the window, please.’ The speech area of my brain together with 
my vocal cords produce a soundwave of shape U. The soundwave 
moves through the room towards Manuel. Outside the room is a road 
construction team at work. It is noisy in the room and the soundwave 
that travels towards Manuel gets distorted from U to U*. U* eventu-
ally hits Manuel’s ear. His tympanum and his brain convert U* back 
into a message in Manuel’s language of mind: ‘Close the window, 
please.’ Fortunately the distortion of the soundwave was not too se-

‘Close the 
window, 
please.’ 

Daniel’s speech 
area and vocal 
chords trans-
form message 
in a soundwave  
of shape U. 

Soundwave U 
travels through 
the room 

The noise from 
the road construc-
tion team distorts 
the soundwave 
into U*

Soundwave U*  
travels through 
the room 

Tympanum and 
Manuel's  speech 
area transform 
U* back into a 
message.

Manuel receives 
message:  
 
‘Close the win-
dow, please.’ 

Figure 1|2–1 

Daniel  
selects  
message: 
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vere for Manuel to understand my message. He closes the window. Fi-
gure 1|2–2 gives a schematic representation of the communication 
situation described in our little story. It identifies the components of a 
communication system according to Shannon.  

Shannon developed a mathematical theory to investigate and to de-
scribe what goes on when information is transmitted via such a com-
munication system. The following questions are addressed by Shan-
non’s account: 

...message  
 
from a set 
of possible 
messages. 

Transmitter 

transforms 
message into a 
signal that can 
be sent over the 
channel. 

Signal sent 

 
Noise source 
 
distorts the signal 
in the channel. 

Signal received Receiver 

changes the 
transmitted signal 
back into a mes-
sage. 

Destination 

eventually re-
ceives the mes-
sage from the 
receiver. 

Figure 1|2–2 

Information
Source 
 
selects  the 
desired... 
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1.  How does one measure amount of information? 

2. How does one measure the capacity of an information channel 
independent of the other factors? 

3. Transmitting a message into a signal and back involves a coding 
process. When is such a process efficient? 

4. What is noise? How can noise be measured and how can its unde-
sirable effects be eliminated? 

5. What is the difference between a continuous and a discrete sym-
bol? 

For now, we will only highlight the main characteristics of his theory 
that you will need to understand the significance of MCT for the de-
velopment of semantical information theory. We will thus start with 
the most important aspect of Shannon’s theory for our purposes: what 
is information and how can it be measured? 

Information 
As we have noted quite often already, information is a term with a 
broad meaning. Mathematical Communication Theory (MCT) is not a 
theory that was developed to cover all aspects of ‘information’ as it is 
used in common language and pre-scientific talk. MCT was developed 
to deal with certain engineering problems. It was of interest for the en-
gineers at Bell to measure and improve the transmission rate of com-
munication devices such as telephones, telegraphs or TV sets. What 
was called for was a technical concept of information that could serve 
this purpose, that could be used to measure the capacities of physically 
described communication systems.  

Therefore the first requirement the concept of information had to 
meet was that information is quantitative: a message might be more or 
less informative, a symbol might carry more or less information, a 
channel might allow to transmit more or less information per units of 
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time. But how can information be measured? As we suggested already 
in the last chapter, there seems to be a certain inverse relationship be-
tween information and uncertainty.  

Consider for example an information source that always produces 
the same signal and is known to produce always the same signal. Such 
a source produces zero information. Imagine a red light that is 
mounted to an engine. Say it is lit if the temperature of the engine is 
equal or above 50°C and is also lit if the temperature is anywhere be-
low 50°C. If we don’t know anything else about the red light and re-
ceive the ‘information’ that it is lit, this doesn’t tell us anything. Of 
course it is lit, it always is. Such a source cannot produce any informa-
tion. 

Now, consider a system which is slightly more complex than our red 
light. Consider a binary device like a fair coin C, with its two 
equiprobable symbols {h, t}. If we are the receiver, know the source, 
and wait for a symbol, we are uncertain as to which symbol the source 
will produce. We are in a state of data deficit, the ‘uncertainty’ in 
Shannon’s terms. Once we receive a symbol, say ‘h’, our uncertainty 
decreases, and we remark that we have received some information. That 
is the inverse relationship between information and uncertainty. Now, 
how can information be measured? Since the likelihood of events is in-
volved, we will have to turn to probability theory. 

We shall call a complete system of events A1, A2, ..., An a system of 
events which is such that exactly one of the events must occur at each 
trial. As in the case of our fair coin C, either h or t and only one of 
them must occur after each time throwing the coin. In the case of C, 
where the number of possible events (n) is 2, we have a simple alterna-
tive pair of mutually exclusive events. In this case we have a finite 
scheme, we are given the possible events {h, t} and – because we know 
that it is a fair coin – know their respective probabilities (p(h) = p(t) = 
.5), which – since these are all the events to occur (it is a complete sys-
tem) – add up to one: 



36 ANSWERING A QUESTION BY DECREASING RANDOMNESS 

�

 

 Definition 1|2–1 (Finite Scheme) 

 If we are given the events A1, A2, ..., An of a complete system, to-

gether with their probabilities p1, p2, ..., pn (pi ³ 0, ∑
=

=
n

i
ip

1

1), then we 

say that we have a finite scheme 
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If we consider a ‘true’ die instead of a fair coin, and designate the ap-
pearance of a certain number (i) of points by Ai (1 £ i £ 6), then we 

have the following finite scheme: 


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
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1
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1

6
1

6
1
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654321 AAAAAA
A  

As we have said already, when we learn which number of points the die 
shows, our uncertainty is reduced, the uncertainty, which is described 
by such a finite scheme.  

In the case of the die, as in the case of the fair coin, we have sofar 
only considered events with equal probabilities. That is p(A1) = p(A2) = 
... p(An). Compare the following experiments E1 and E2, the outcomes 
of which are described by the two finite schemes: 

(E1) 





5.5.
21 AA

 

(E2)  






01.99.
21 AA  
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In the first case both outcomes are equally likely, in the second case, 
however, the outcome A2 is highly unlikely to occur. We would cer-
tainly not expect A2 to occur. It seems that in the second case the un-
certainty, which of the possible results is going to be the outcome of 
the experiment, should be different from the uncertainty in the first 
case, in particular the uncertainty should be less. 

But the difference in uncertainty seems to have influence on the 
amount of information generated. If we learn in E2, that A1 has oc-
cured, this is not that informative, for given the high probability of this 
event, we have expected it anyway.  

In contrast, learning that in E1, A1 has occured is more informative, 
A1 and A2 in E1 were equally likely to occur and we thus had no clue 
which of them would be the outcome of the experiment. Therefore, on 
average, in E2 it is likely to get a not very informative result, whereas in 
E1 you will get a quite informative result in any case.  

Shannon introduced the following formula to measure the amount 
of uncertainty associated with a given finite sheme. We will call this the 
entropy of a finite sheme. 

 

 Definition 1|2–2 (Entropy of a Finite Scheme) 

 For a givene finite sheme A: 





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We shall call 

( ) ∑
=

−=
n

k
kkn pppppH

1
21 log,...,,  

the entropy of A, taking the logarithms to an arbitrary but fixed 
base and pk log pk = 0 if pk = 0. 
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Why this formula can serve as a measure of uncertainty will be shown 
in a minute. But for the mathematically innocent reader we will briefly 
say some things about the use of log-functions that we have already 
introduced in the preceeding chapter (following the exposition in 
Schneider 2000). If you feel familiar with log functions you might want 
to skip the next section. 

Understanding Logarithms 
As we had seen in the previous chapter, log functions were already 
used by Nyquist and Hartley for technical reasons. Nyquist found it 
easier to do the computations with log expressions, but he did not 
think there was a theoretical reason to choose log functions. Here we 
can now add a theoretical reason, although it is a rather soft one. Mul-
tiplication turns into Addition when converted into log functions. That 
is rather unimportant from a mathematical point of view, but of inter-
est when we try to construct a theory that meshes with our pre-
theoretic intuitions. We want information to be additive when we con-
sider the information that is produced by two independent events. Log 
functions allow us to preserve this intuition in the calculations of our 
theory.  

We assume that you are familiar with the mathematical operation of 
addition and multiplication. You might also know that exponentiation 
is the extension of multiplication (as multiplication can be considered 
the extension of addition): 

2 × 2 × 2 = 23 = 8 

This is read ‘two raised to the third is eight’. Because exponentiation 
counts the number of multiplications, the exponents add:  

22 × 23 = 22+3 = 25 

The number ‘2’ is called the base of the exponentiation. If we raise the 
exponent to another exponent, the values multiply: 

(22)3 = 22 × 22 × 22 = 22+2+2 = 22×3 = 26 
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Now, consider that we have a number and we want to know how many 
2’s must be multiplied together to get 32? That is, we want to solve this 
equation: 

2B = 32 

Of course,  25 = 32, so B = 5. This function is called the logarithm: 

log2 32 = 5 

We read this as ‘the logarithm to the base 2 of 32 is 5’. It is the ‘inverse 
function’ for exponentiation. 

aa =2log2  and ( ) aa =2log2  

Now, consider this equation: 

2a + b = 2a × 2b 

Take the logarithm of both sides: 

log2 2
a + b = log2 (2

a × 2b) 

Since exponentiation and the logarithm are inverse operations, we can 
collapse the left side: 

a + b = log2 (2
a  × 2b) 

Now we substitute: log2 x = a and log2 y = b: 

log2x + log2y  = log2(2
log2x × 2log2y)  

Again, exponentiation and the logarithm are inverse operations, so we 
can collapse the two cases on the right side: 
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log2 x + log2 y = log2 (x × y) 

This is the additive property that allows us to turn multiplications into 
additions when we convert all values into their logarithms. To use the 
base 2 instead of any other base (e.g., the common or ‘Briggs’ loga-
rithm to the base 10) is not fully arbitrary either. It allows us to meas-
ure information in bits, binary units of information, which meshes 
nicely with the fact that we often use binary digits to encode informa-
tion nowadays (do not confuse these two notions of ‘bits’ we will ex-
plain their difference later in this chapter). 

Properties of Entropy 
Now we will return to the entropy of a finite scheme as defined in 
Definition 1|2–2. What are the properties of this function that make it 
a reasonable measure of entropy?  

You might have noticed already that H(p1, p2,..., pn) = 0 iff one of the 
probabilities in the finite scheme is 1 (and all the others zero). In this 
case we have a finite scheme that in fact consists of only one possible 
event. If the finite scheme describes the uncertainty of an experiment, 
we could predict with complete certainty the outcome of the experi-
ment. But if there is no uncertainty that could be reduced by the ex-
periment, there is no information gained by conducting it. In all other 
cases, however, the entropy of a finite scheme is positive. 

Moreover, for a fixed number of possible events n, the scheme with 
the highest uncertainty should be the one with equally likely outcomes. 
Remember our experiments E1 and E2 from above, the uncertainty as-
sociated with E1 was higher than the one intuitively associated with E2. 
In E2 we would predict A1 being the outcome of the experiment, 
whereas in the case of E1 we would refrain from making any predic-
tions. Now, what about H? Does the defined function for the entropy 
of a finite scheme assume its largest value for equally likely outcomes? 
(The answer is yes, and you might skip the following paragraph on a 
first reading). 
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Proof 1 
To prove this we first have to consider what it means to have equally 
likely outcomes in a finite scheme. Obviously, this means that pk = 1/n 
(k = 1, 2, ...,n). For the proof we may use the following inequality 
which is valid for any continuous convex function f(x): 
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where a1, a2, ..., an are any positive numbers. To apply this inequality to 
our case, we will set ak = pk and f(x) = x log x. Since finite schemes are 

complete, we know that ∑
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(By the way, we will use ‘�’ instead of ‘Q.E.D’ to mark the end of a 
proof.) 

Additivity of Independent and Dependent Schemes 
So far we have only considered an isolated finite scheme. But consider 
that instead of only learning what the outcome of one experiment was, 
say E1, you got to know the outcome of another experiment, say E2, 
too. If the two experiments are independent of each other, i.e. what is 
happening in E1 does not influence what happens at E2 and vice versa, 
the information about the outcome of the two events should be the 
sum of the information you had obtained from only a single event. 
Likewise, the uncertainty of both experiments taken together should be 



42 ANSWERING A QUESTION BY DECREASING RANDOMNESS 

�

the sum of the uncertainties associated with each single experiment. 
What about H in such cases? 

Consider two finite schemes: 
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and let them both be mutually independent, i.e., the probability πkl of 
the joint occurrence of the events Ak and Bl is the product pkql. The set 
of joint occurrences of events now forms another finite scheme, viz. the 
set of events AkBl (1 £ k £ n, 1 £ l £ m), with probabilities πkl, which we 

call the product of A and B, AB.  
Let H(A), H(B), and H(AB) be the entropies of the finite schemes A, 

B, and AB, then we find in fact that H is additive in the way considered 
above: 

H(AB) = H(A) + H(B) 

This can easily be seen from the fact that 
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So additivity is given, if we consider two independent events, or two 
independent sources. But what happens if two events are statistically 
dependent? Consider a source that produces only meaningful English 
sentences, we call it ‘Paula’. The set of English words is large, but for-
tunately finite. Each word of the English language might – given an 
appropriately chosen situation – have a particular probability to be the 
first word uttered by our source. Some words are more frequently used 
than others, especially given the fact that the word has the first posi-
tion in a new utterance.  
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Let us assume that the probability for the event that Paula utters 
‘Hi’ as the first word in a new utterance is p and the probability that 
she utters ‘Fish’ as the first word in a new utterance is q. Given the ap-
propriate circumstances p > q. Now she utters ‘Hi’: 
Does this influence the probabilities for the second word in this utter-

ance? Well, presumably it does. Consider how likely it is that Paula is 
going to say ‘Hi, how are you?’ and how comparatively unlikely it is 
that she is going to utter ‘Hi, off ...’. If you meet Paula in an appropri-
ate situation you therefore might expect her to say ‘how’ as the next 
word, rather than ‘off’, after she has uttered ‘hi’ already. Had Paula 
uttered some other word as the first word of the utterance, e.g. ‘Keep’, 
the probabilities for ‘off’ and ‘how’ would be qualitatively different. In 
this case the probability for ‘off’ would be higher. Therefore the infor-
mativeness of ‘hi, how’ cannot simply be the sum of the informative-
ness of ‘hi’ from the finite scheme FIRST WORD OF THE UTTER-
ANCE and of ‘how’ from the finite scheme SECOND WORD OF 
THE UTTERANCE. The schemes FIRST WORD OF THE UT-
TERANCE and SECOND WORD OF THE UTTERANCE are not 
independent. 

We denote qkl the probability that the event Bl of the scheme B oc-
curs, given that the event Ak of the scheme A occured, such that 

pkl = pkqkl (1 £ k £ n, 1 £ l £ m). 
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Then 

( )∑∑ =+=−
k l

klkklk qpqpABH loglog)(  

kl
k l k l

klkklkk qqpqpp∑ ∑ ∑ ∑+= loglog  

For any k, ∑ =
l

klq 1; and the conditional entropy Hk(B) of the scheme 

B, calculated on the assumption that the event Ak of the scheme A oc-
cured, is given by the sum ∑−

l
klkl qq log . 

With this, we obtain 
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Hk(B) being a random variable in the scheme A. The value of Hk(B) is 
completely determined by which event Ak of the scheme A actually oc-
cured. So we can consider the last term of the right side as the mathe-
matical expectation of the quantity H(B) in the scheme A and desig-
nate this by HA(B). For the most general case, we obtain 

H(AB) = H(A) + HA(B). 

If A and B are independent, the relation reduces to H(AB) = H(A) + 
H(B).  

This relation has the nice property that in all cases HA(B) £ H(B). 

What does this mean? Well, having received information, for example 
information about which event Ak of the scheme A actually occurred, 
should at best reduce your uncertainty about which event of the 
scheme B will now occur, but it certainly should not raise that uncer-
tainty above the uncertainty of the scheme B alone. Information about 
an event should not make you more ignorant than you were before. 
This is easily proven, but you might again skip the next paragraph on a 
first reading. 
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Proof 2 
We begin again with the observation that every continuous convex 
function ¦(x) obeys the following inequality 
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if lk ³ 0 and ∑ =
k

k 1λ . Now we again set ¦(x) = x log x, lk = pk, xk = qkl. 

We then find for arbitrary l: 
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left side of this inequality the quantity 

)()(log BHBHpqqp
k l k

Akkklklk∑ ∑ ∑ −=−=  

and finally arrive at 
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Taking a Breath 
We have now inspected some of the properties of entropy that make it 
a reasonable measure of information. To summarize, we found the fol-
lowing: 

The information produced by the source consists in removing the 
uncertainty which existed before the source made the selection of 
the message. 

The larger this uncertainty, the larger we consider to be the 
amount of information obtained by removing it. 

A 

A 
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The uncertainty associated with a finite scheme A is H(A), the en-
tropy of A. 

Consider two finite schemes A and B and their product AB. If the 
two schemes are independent, the information given by the reali-
zation of AB is the sum of the realization of the schemes A and B. 
H(AB) = H(A) + H(B) 

The amount of information given by the realization of two finite 
schemes A and B equals the amount of information given by the 
realization of scheme A, plus the mathematical expectation of the 
amount of additional information by the realization of scheme B 
after the realization of scheme A.  

The amount of information given by the realization of a scheme 
B can only decrease if another scheme A is realized beforehand. 

The Uniqueness Theorem for Entropy 
The entropy expression that we have introduced above and for which 
we have now discussed some of its interesting properties, is not merely 
some arbitrary function that has these properties, but actually the 
unique function that has such properties. This is a very interesting re-
sult and we will give the proof her (following the proof given by A. I. 
Khinchin, who also proved the propositions that we have considered 
so far).  

We have already convinced ourselves of the fact that the following 
two properties are properties we would intuitively expect from an in-
formation measure: 

1. For given n and for ∑
=

=
n

k
kp

1

1, the function H(p1, p2, ..., pn) takes 

its largest value for pk = 1/n (k = 1, 2, ..., n). 

2. H(AB) = H(A) + HA(B) 

A 

A 

A 

A 
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This much is already familiar. We shall now add a third property 
which seems reasonable to expect from our definition of entropy. Con-
sider the following two finite schemes A and B: 
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The only difference between A and B is that B also contains the impos-
sible event. It seems quite reasonable to assume the entropies H(A) and 
H(B) to be the same, since the difference between A and B is certainly 
not substantial. Therefore 

3. H(p1, p2, ..., pn, 0) = H(p1, p2, ..., pn). (Adding any number of im-
possible events to a scheme does not change its entropy.) 

Now we are sufficiently equipped to prove the following theorem: 
 

 Theorem 1|2–1 (Uniqueness Theorem) 

 Let H(p1, p2, ..., pn) be a function defined for any integer n and for all 

values p1, p2, ..., pn such that pk ³ 0 (k = 1, 2, ..., n), ∑
=

=
n

k
kp

1

1. If for any 

n this function is continuous with respect to all its arguments, and 
if it has the properties 1, 2, and 3, then  

( ) ∑
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k
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where l is a positive constant. 

Proof 3 
Since this might again be mathematically complicated (and is rather 
lengthy) you might want to jump on to the next paragraph on a first 
reading. 

As an abbreviation we set  
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we shall show that L(n) = l log n, where l is a positive constant. By 

properties 3 (impossible event) and 1 (highest entropy), we have 
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so that L(n) is a non-decreasing function of n. Consider m mutually in-
dependent finite schemes S1, S2, ..., Sm each of which contains r equally 
likely events (m and r being positive integers): 
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If we generalize property 2 (additivity) to the case of m schemes, we 
have – since all schemes Sk are mutually independent – 
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The product scheme out of all S1 to Sm, S1S2...Sm, obviously consists of 
rm equally likely events, so that the entropy is L(rm). Therefore we now 
have 

(4) L(rm) = mL(r) 

and also for any other pair of positive integers n and s 

(5) L(sn) = nL(s). 

We can choose the numbers r, s, and n arbitrarily but have the number 
m be determined by the following inequalities: 
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(6) rm £ sn £ rm+1 

so we get 

(7) m log r £ n log s <(m+1) log r, 

nn
m

r
s

n
m 1

log
log +<≤  

Given the inequalities that characterize m (6), it follows by the 
monotonicity of L(n) that 

L(rm) £ L(sn) £ L(rm+1) 

and therefore, by (4) and (5) 

mL(r) £ nL(s) £ (m+1)L(r), 

such that 

(8) 
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From (7) and (8) we get 
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Now the left side of this last inequality is independent of m, and since n 
can be chosen arbitrarily large in the right side, we get 

r
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since we have chosen r and s arbitrarily, this means that 
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L(n) = l log n 

where l is a constant. By the monotonicity of L(n), we know l ³ 0 and 

so we arrive at the result for the special case, pk = 1/n (1 £ k £ n). 

We will now consider the more general case and the pk (1, 2, ..., n) are 
any rational numbers. Let 

),...,2,1( nk
g
g
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k ==  

where all gk are positive integers and ∑
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k
k gg

1

. Let the finite scheme A 

consist of n events with the probabilities p1, p2, ..., pn. We now want to 
define the entropy for this scheme. To this end, we consider another 
scheme B, which is dependent on A and defined as follows: The scheme 
B contains g events B1, B2, ..., Bg, which we divide in n groups, contain-
ing g1, g2,..., gn events, respectively. If the event Ak occurred in scheme 
A, then in scheme B all the gk events of the k’th group have the same 
probability 1/gk, and all the events of the other groups have probability 
zero (are impossible events). Thus, given any outcome Ak of the scheme 
A, the scheme B reduces to a system gk of equally likely events, so that 
the conditional entropy 
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Let us now return to the product scheme AB, consisting of the events 
AkBl (1 £ k £ n, 1 £ l £ g). Such an event is among the possible events 

only if Bl belongs to the k’th group. Thus the number of possible events 
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AkBl for a given k is gk, and the total number of possible events in the 

scheme AB is ∑
=

=
n

k
k gg

1

. The probability of each possible event AkBl is 

then pk/gk = 1/g, which is the same for all events.Thus the scheme AB 
consists of g equally likely events, and therefore 

H(AB) = L(g) = l log g. 

If we use property 2 again, as well as equation (9), we get 
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Now, relation (10) which we proved for rational p1, p2, ..., pn must be 
valid for any values of its arguments because of the continuity of H(p1, 
p2, ..., pn) that we postulated in the beginning. � 

The Channel 
Remembering our diagram from figure 1|2–2, you might wonder how 
much we have learned so far about a communication system. Accord-
ing to Shannon, such a system consists of an information source, a 
transmitter, a channel, a receiver, and a destination, as well as a mes-
sage and a signal. Until now we have only talked about the informa-
tion source and the message. What we have learned is how to calculate 
the amount of information that is produced at a source on average, 
given that it selects messages from a finite set of possible messages with 
definite probabilities. Now we will send our message on its way 
through the channel and observe what we can learn from MCT about 
this. 



52 ANSWERING A QUESTION BY DECREASING RANDOMNESS 

�

As we have said already, the selected message is first accepted by a 
transmitter and there turned into a signal. In our example this was 
done by the vocal chords that turned the signal into a soundwave. If 
the example had involved an additional telephone connection, this 
would have involved the transmission of the audible voice signal into a 
varying electrical current in the telephone wire (at least when using 
analog technology), if it had involved telegraphy, the transmitter 
would have had to code the message first into a sequence of dots and 
dashes. This signal is then sent through the communication channel, a 
telephone wire, a room, etc.  

The capacity of channels was of special concern for the people work-
ing at the Bell labs. They were engineers and wanted to know what the 
technical limits of different channels are. Given the work done by 
Hartley and Shannon, this capacity can now be measured in terms of 
the amount of information a channel can transmit in a given unit of 
time rather than in terms of the number of symbols. 

Consider a source (a finite scheme) and an appropriate transmitter-
such that each signal corresponding to a possible message chosen 
represents s bits of information, the symbols being of the same dura-
tion and the channel being such that it can transmit n such symbols per 
second, the capacity C of the channel is defined to be n × s bits per sec-
ond. In the general case one has also to account for the varying lengths 
of the possible symbols and has to take into account that not all possi-
ble sequences of symbols may be allowed). In this case the channel ca-
pacity is given by 

T
TN

LimC
T

)(log
∞→

=  

N(T) being the number of allowed signals of duration T.  

The Transmitter and Receiver: Coding 
Given a channel with a certain capacity C and given an information 
source that produces a certain average amount of information H, in-
formation can flow at different speeds, if the coding is not done effi-
ciently.  
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Consider the product of a finite scheme AB. We can consider AB to 
be a system of two coins thrown, A and B are hence independent. Each 
symbol of the possible symbols of AB occurs with probability .25.  
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Now imagine that we want to code the results produced at AB. 
A simple way of encoding its symbols is to associate each of them 

with two digits: 
 
 Code1 

events  code 

áh, hñ  =  ‘00’ 

áh, tñ   =  ‘01’ 

át, hñ   =  ‘10’ 

át, tñ  =  ‘11’ 

In this Code1 a message conveys 2 bits of information, as expected. We 
must not confuse bits as bi-nary units of information (recall that we 
decided to use log2 only as a matter of convenience) with bits as bi-nary 
digits, which is what a 2-symbols system uses to encode a message.  

Suppose that a variant, the AB* system, is biased, and that the four 
symbols occur with the following probabilities: 
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If we calculate H(AB), chosing 2 as the base for log (as we will do from 
now on), we find that the entropy is 2 bits (binary units of information) 
per symbol. Using a two bit (binary digits) code, as we did above in 
Code1, is thus an efficient way of coding AB, for two bits of informa-
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tion we use two binary digits. We know, however, that H has its maxi-
mum in the case of equiprobable events, thus H(AB) > H(AB*), so by 
using Code1 we would be wasting resources in the case of H(AB*).  

A more efficient Code2 should take into account the symbols’ prob-
abilities, with the following outcomes: 
 
 Code2 

áh, hñ =  ‘0’  .5 × 1  binary digit  = .5 

áh, tñ  =  ‘10’  .25 × 2  binary digits  = .5 

át, hñ  =  ‘110’  .125 × 3  binary digits  = .375 

át, tñ  =  ‘111’  .125 × 3  binary digits  =  .375 

In Code2, known as Fano Code, a message conveys 1.75 bits of infor-
mation. How does one arrive at such a code? Consider the following 
example (from Pierce 1961): Suppose the symbols we start with are the 
eight words ‘the’, ‘man’, ‘to’, ‘runs’, ‘house’, ‘likes’, ‘horse’, ‘sells’. We 
shall assume that these words occurr independently with the probabili-
ties of appearance as given in figure 1|2–3.  

If we compute the entropy per word, using the entropy formula from 
above (and take 2 as the base), we arrive at an entropy of 2.21 bits per 
word. Therefore, using 3 binary digits to code for each of the eight 

Word Probability 

the .05 

man .15 

to .12 

runs .10 

house .04 

likes .04 

horse .03 

sells .02 

Figure 1|2–3 
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words (23 = 8) would be wasting ressources. 
In figure 1|2–4 we can see how to arrive at a more efficient binary code 
(the Huffman code). First we list all the words according to their re-
spective probabilities, starting at the bottom with the lowest. We then 
connect the two lowest probabilities by two converging lines from left 
to right and write the sum of them on the point where the two lines 
meet. In the first case, this is (.02 + .03 = .05), the probability of 
(‘horse’ or ‘sells’). Now we look for the next two lowest probabilities 
and connect them accordingly, taking the sums we get into account as 
well. We proceed in this way until we have paths running from each 
word to one common point on the right, which is marked ‘1.00’. Now 
we simply label each upper path going left from a point ‘1’ and each 
lower path ‘0’. The code for a word is then simply the sequence of bi-
nary digits encountered going left from the common point ‘1.00’ to the 
word in question. As can be seen from figure 1|2–5, the average num-
ber of digits per word is 2.26, which is still larger than the entropy per 

the (.05) 

man (.15) 

to (.12) 

runs (.10) 

house (.04) 

likes (.04) 

horse (.03) 

sells (.02) 

 

Figure 1|2–4 

1 

1 

1 

1 

1 

1 

1 

0 

0 

0 

0 

0 

0 

0 (.05) 

(.13) 

(.08) 

(.28) 
(.22) 

(.50) 

(1.00) 
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word, but better than 3 digits. If we consider sequences of words pro-
duced by the source, cut them into blocks, we can further approximate 
by this method the entropy, by making the blocks larger and larger. 

As you know now, the statistical nature of messages depends on the 
source alone and is represented by a finite scheme, the way we did in 
the preceeding sections. But the statistical character of the signal that is 
eventually sent through a channel is determined by what we attempt to 
send through the channel and the specific capabilities of the channel to 
handle different signals. Depending on the technology we use, this ca-
pability will vary. Channels are in general constrained; they do not give 
us complete signal freedom. For example we have to take care that the 
symbols we chose to send through a chanmel are such that they are still 
recognizable at the receiving end. 

However, for such a constrained channel there is a definte maximum 
of what can be achieved by the most efficient coding procedure.  

Word Probability Code

Number of 

Digits in 

Code, N

Np 

the (.05) 1 1 .50 

man (.15) 001 3 .45 

to (.12) 011 3 .36 

runs (.10) 010 3 .30 

house (.04) 00011 5 .20 

likes (.04) 00010 5 .20 

horse (.03) 00001 5 .15 

sells (.02) 00000 5 .10 

    2.26 

Figure 1|2–5 



THE SYNTACTIC APPROACH TO INFORMATION II  57 

 

 

 Theorem 1|2–2 (Noiseless Channel) 

 Let a source have entropy H (bits per symbol) and a channel have 
a capacity C (bits per second). Then it is possible to encode the 
output of the source in such a way as to transmit at the average 
rate of C/H – � symbols per second over the channel where � is ar-
bitrarily small. It is not possible to transmit at an average rate 
greater than C/H. 

 
In other words, if you devise a good code you can transmit symbols 
over a noiseless channel at an average rate as close to C/H as you like, 
but, no matter how clever the coding is, that average can never be 
made exceed C/H.  

Noise and Equivocation 
The communication system we have considered so far is still essentially 
incomplete, since we have not yet said anything about the reception of 
the messages. As you remember from the beginning of this chapter, the 
message may on its way be distorted by noise. Shannon’s second fun-
damental theorem tells us to what degree we can get rid of noise by ef-
ficient coding procedures. That we can get rid of noise by means of 
coding is obvious. When we are in a noisy place and want to get a mes-
sage through, we make it redundant, which can be done by adding ges-
tures or saying the same thing twice. Doing this is costly, of course. 
Saying something twice takes double as much time as saying it only 
one time. So it is interesting to ask what the cheapest, i.e. most efficient 
codes can achieve given the presence of noise.  

Let us begin with the entropy of a finite scheme, our source of m in-
dependent possible messages. We will call it ‘S’ for ‘source’. The en-
tropy is, as you might have guessed already, given by the standard 
formula (but we will change notation a bit to make things a bit more 
transparent. We will introduce p(r) as the probability for the messages 
possible in R, and p(s) for the probability of the particular messages in 
S): 
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At the other end of the channel we receive messages. Let us assume 
that here we also receive m possible messages. We will take the receiv-
ing end of the channel (we call it ‘R’) to be just another source with an 
entropy of its own 
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H(S) is clearly independent of H(R), but H(R) depends on H(S). If 
they were not so dependent, the situation would be hopeless. In such a 
case no information could come through. But H(R) does not only de-
pend on H(S), it also depends on the errors made in transmission.  

Knowing the statistics of the message source and the statistics of the 
noisy channel, we can add the entropies the way we have learned it al-
ready (‘p(s,r)’ being the probability of the joint occurrence) : 
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We have also learned to compute from here the conditional entropy 
for R, given that we know the message sent at S (‘ps( )’ being the condi-
tional probability on s, i.e. we know that s was sent) 
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In case that we know the messages received, we can give the condi-
tional entropy for the message source 
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We can discern the following quantities: H(S), being the entropy of the 
source, i.e. the uncertainty which message has been selected. H(R) is 
the entropy produced at the receiver, i.e. the uncertainty which mes-
sage will be received, given a source and a communication channel. 
H(SR) is the uncertainty which of the possible messages at R will be 
received when a particular message at S was selected. HS(R) is the un-
certainty of receiving r, when s was transmitted, it representes the av-
erage uncertainty of the sender as to what will be received, having sent 
the signal. HR(S) is the average uncertainty that s was sent, when r is 
received and represents the uncertainty of the receiver, having received 
the signal.  

We also know that these quantities have certain relations: 

H(SR) = H(S) + HS(R) 

This shows that the uncertainty of sending s and receiving r is the un-
certainty of s plus the uncertainty of receiving r when s is sent. We also 
know that the following holds: 

H(SR) = H(R) + HR(S) 

We see that when HS(R) is zero, HR(S) must also be zero and H(R) = 
H(S). This is the case with a noiseless channel. The quantity HR(S), 
which is the uncertainty what was transmitted given a received signal, 
measures the amount of information lost in the channel. This quantity 
is also called equivocation. 

Now, the rate of transmission of information over a channel is sim-
ply the entropy of the source minus the equivocation in bits per sec-
ond. If O is the transmission rate, we have the following: 

O = H(S) – HR(S) = 
 H(R) – HS(R) = 
 H(S) + H(R) – H(SR) 

Now, the capacity of a noisy channel C is given by making O as large 
as possible for a given channel.  
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If the channel gets gradually noisier, we can make our transmission 
rates gradually slower to keep information flowing. If we also take lar-
ger and larger blocks of sequences of messages to encode them, we can 
approximate an equivocation of H – C. This is stated in the second 
fundamental theorem. We will not give the proof here since it will not 
be of much concern in the rest of the book. However, the notion of 
noise and equivocation will return in chapter 3|1. 

 

 Theorem 1|2–3 (Discrete Channel with Noise) 

 Let a discrete channel have the capacity C and a discrete source 
the entropy per second H. If H £ C there exists a coding system 

such that the output of the source can be transmitted over the 
channel with an arbitrarily small frequency of errors (or an arbitrar-
ily small equivocation). If H > C it is possible to encode the source 
so that the equivocation is less than H – C + � where ��is arbitrarily 
small. There is no method of encoding which gives an equivoca-
tion less than H – C. 

Application to an example 
To learn how Information theory can help you in real-world situation, 
consider the following case you might have encountered frequently al-
ready: 

You have a balance and nine coins. Eight of the nine coins are of 
equal weight. The ninth, however, is of different weight (but it is unbe-
knownst to you whether it is lighter or heavier than the others.) 
 

Problem: 
Develop a strategy to figure out by weighing only three times which 
coin differs in weight from the others and whether it is lighter or 
heavier than the others are. 

 
It seems reasonable to put always an equal number of coins onto the 
scales. In this case there are three possibilities: 

1)  the left scale goes down 
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2)  the balance remains in equilibrium 

3)  the right scale goes down 

 
Hence, the highest amount of information you can receive by weighing 
once is log 3 = 1.58 bits (in this example we will choose the base 2 
throughout, as we do in the rest of the book). 

Now weighing three times can possibly create 4.74 bits of informa-
tion. Being in the dark about (i.) which is the deviant coin and (ii.) 
whether it is lighter or heavier, you are asked to choose one possibility 
from a set of 18 equiprobable ones. 

Maybe we should first check whether the problem is solvable at all. 
For this the information we can receive by weighing three times should 
be higher or equal to the information that corresponds to the 18 
equiprobable outcomes. Luckily this is the case: 

log 18 = 4.16 bit < 4.74 bit 

Unfortunately there is quite a number of ways how to put the coins 
onto the scales. Now we want to use information theory to develop a 
strategy.  

It seems clever to get always the maximal information out of every 
single weighting. How much information do we gain from one weight-
ing?  

Some definitions: 

Pl  =  Probability that the left scale goes down 
Pb  =  Probability that the scales remain in equilibrium 
Pr = Probability that the right scale goes down 

Now we can apply our formula and see that the information gained by 
weighing once is 

H = – (Pl log Pl + Pb log Pb + Pr log Pr) 
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We know, that H is at maximum if the probabilities are all equal. This 
strategy results in a simple rule: Weigh such that Pl = Pb = Pr for each 
single case. 

If we put n (1 £  n £ 4) coins onto the left scale and n onto the right, 9 

– 2n coins will remain unweighed. In probabilities: 

Pb = (9 – 2n)/9 
Pl = Pr = n/9 

If we want equiprobability, n has to be 3, so that Pl = Pb = Pr = 1/3. 
Now, we mark all coins from 1 to 9. In the first step we put 1, 2, 3 

onto the left scale and 4, 5, 6 onto the right. Now, either one of the 
scales goes down, or not. In case none goes down, we know that the 
weird coin is among 7, 8, and 9. Now we put 7, and 8 onto the scales 
and weigh a second time. It is easy to see that this leads to a solution. 

Assume that after the first weighting the scales were not in equilib-
rium. Now we’ll use only 4 of the 6 coins we used in the first weighting 
to keep the probabilities at 1/3 [6 – 2 × 2/6 = 1/3]. To achieve this we 
have to move the weird coin with probability 1/2 from one scale to the 
other. We can do this easily: 

Remove 1 and 4 from the scales. 
Interchange 2 and 5. 
Leave 3 and 6 where they are. 

Now, after the second weighting we will have three possible outcomes: 

1) The scales remain in equilibrium, hence coin 1 or 4 is the weirdo 
(and we simply weigh one of them with a normal coin). 

2) If the scales are not in equilibrium but the situation is now in-
verted (other scale now up), 2 or 5 is the weirdo (and we simply 
weigh one of them with a normal coin). 
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3) If the scales are not in equilibrium, but the situation remains the 
same (same scale is up), 3 or 6 is the weirdo (and we simply weigh 
one of them with a normal coin). 

The Relevance of MCT for a Semantic Theory 
With respect to Shannon’s theory, we can summarize the following: 

 The theory deals with the average amount of information pro-
duced by a source, not with the amount of information carried by 
a single signal (but it’s not so complicated to get there, as we shall 
see). 

 The theory connects the analysis of information with the reduc-
tion of uncertainty. 

 The theory does not, however, analyze the content of informa-
tion carriers. It deals solely with the engineering problem. 

Shannon, Weaver and others have nevertheless often talked as if parts 
of the theory would also apply to semantical problems. Most of this 
was certainly caused by the confusion of illustrating metaphors with 
the intended domain of application (similar to the confusion of ther-
modynamics with information theory as was discussed in the last chap-
ter). Bar-Hillel has written an instructive paper ‘An Examination of 
Information Theory’ (Bar-Hillel 1955) where he uncovers these confu-
sions. 

MCT was the first attempt to explicate an aspect of information in 
mathematical terms. Even nowadays some people claim that it is the 
only aspect that is mathematically explicated so far, as for example in 
this quote by Tom Schneider: 

Information and uncertainty are technical terms that describe any process 
that selects one or more objects from a set of objects. We won’t be dealing 
with the meaning or implications of the information since nobody knows 
how to do that mathematically. (Schneider 2003) 

A 

A 

A 
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That ‘nobody’ knows how to deal with meaning, implication and the 
like mathematically, is fortunately false. If you read the book to the 
end, you will be among the people who indeed know how to do that. 

Further Reading 
A good introduction to MCT is:  
 
�� John R. Pierce, An Introduction to Information Theory. Symbols, 

Signals and Noise, New York 1980. 
 
If you are interested in the mathematics covered, you will find quite a 
number of good introductions, most of which give the same proofs 
anyway, just visit your university library and pick one you like. We 
have followed the way Khinchin (1957) presents matters. 



 

1 3  Algorithmic Information Theory 

 
 
With the classical syntactic approach we have seen some ways to treat 
information and the flow of information syntactically. Claude Shan-
non’s approach was related to the technical matters of his day (i.e. the 
telephone net and communication channels). Syntax came into view 
since the question had to be thought about how signs considered as 
physical tokens could be transmitted efficiently.  

Today another syntactic approach is prominent: Gregory Chaitin’s 
Algorithmic Information Theory (‘AIT’ for short). 

It is related to matters of computer programming, i.e. it too is re-
lated to technical matters of its day. Syntax comes into view in this ap-
proach not because we consider signs as tokens, but because signs are 
considered as generated strings of signs/symbols. [We use ‘sign’, ‘sym-
bol’ interchangeably here.] The generating of symbol strings falls 
within syntax. A grammar of a language is a way to generate strings of 
symbols from a given set of symbols by rules of transformation. The 
strings become interpreted in semantics, but the mere building of them 
– whether in correspondence to semantical rules or not – falls within 
syntax. The same holds for computer or programming languages. Fur-
thermore we can consider programs which generate strings as their 
main task. We then consider a string as the syntactic output of a syn-
tactic procedure. 

Algorithmic Information Theory is a theory of informational con-
tent, not a theory of information flow. (It is not concerned with chan-
nels of transmission or the internet.) It deals with word strings. The ba-
sic measure is the same like in the original syntactic approach: bits. 
AIT, however, focuses not simply on the coding scheme of a given 
string, but on matters of generating that word string by a program. It 
is related to complexity theory (that is the theory of how much effort it 
takes to compute something). 
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Informational Content (Outline) 
A string has some measure in bits. Usually this is the measure of mem-
ory space needed to store it. The measure increases with the length of 
the string. We can say string s has length n bits. 

 

 Definition 1|3–1 

 The informational content of a string is the length of the shortest 
program (in bits) which is needed to generate this very string. 

 
The length of the shortest program for a string is also its complexity 
(the minimal effort we have to invest to get the string). 

[For practical purposes Chaitin uses a version of LISP to give a 
working model of AIT. We will not go into programming details here.] 

What is the theory behind Definition 1|3–1? Why should we look at 
a generating program and not at the string itself? Let us go into details 
then! A finite string of length n can be ‘programmed’ by having it sim-
ply printed. If k is the length in bits of the minimal program to print a 
string, then n+k is the length of a program to generate the string. The 

program is nothing else than having the print instruction applied to a 
representation of the string itself in the code of its generating program. 
So any string can be generated, but the length of the program is not 
shorter than the string itself. We have gained nothing (e.g., in saving 
storage space) by having this program as compared to the string itself.  

A further problem besides gaining nothing in case of finite strings is 
infinite strings. By the method of having a printing program we cannot 
generate them, since this would require a program of infinite size! You 
cannot have a program of infinite size stored, but it is logically possible 
to have a finite program running for an indefinite or even infinite time. 

What we are looking for are programs that generate strings such 
that the size of the generating program is (considerably) less than the 
size of the string generated. If there is such a program we measure the 
informational content of a string by a number (considerably) less than 
the length of the string in bits. As the generating program gets smaller 
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and smaller the string, by Definition 1|3–1, gets voider and voider of 
information. A string of 10 billion ‘1’s printed in a row has (taking a 
suitable binary representation) a length of 10 billion bits. The program 

����������	�
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� �� ���������	�

����������	��

�

has considerably less length. The string of 10 billion ‘1’s is obviously 
boring and not informative. The longer the program to generate a 
string is the more irreducible structure has to be in the string gener-
ated. The repetition of ‘1’s in the example string is a structure that can 
be reduced by a program very easily. If some part of a string cannot be 
reduced that easily the corresponding program has more lines to gen-
erate it. Therefore this string carries more information. The informa-
tion in the string blocks further simplification of the program. A string 
that cannot be reduced by these means at all, therefore, carries maxi-
mal information! 

 

 Definition 1|3–2 

 A string is random if the size of the shortest program for it, if there 
is any, is not shorter than the string itself. 

 
For a random string the shortest program to generate it, if there is any, 
is the print program mentioned in the last paragraph. The length of the 
print program is greater than the length of the string itself. The paren-
thesis ‘if there is any’ in definition 2 refers to strings of infinite lengths. 
Since there can be no print program for a string of infinite size, ran-
dom strings of infinite size have no program to generate them at all. 

Most strings are random, since there are far more strings than there 
are well-formed programs. Whatever your programming language may 
be it is defined what counts as a well formed line of code in that lan-
guage, and what counts as a well formed program (i.e. one that is able 
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to be executed). Say you use the language C. The vast majority of 
strings of symbols of our ordinary alphabet will not be a program in C. 
So given a length of a string n, most of the strings n long will not be 
programs in C. Since there is at most one string produced by each pro-
gram, there are not enough programs of that size or a smaller size 
around to produce all the strings. The more complex a class of pro-
grams is (i.e. the greater the measure k of their length) the more not 
well formed programs of that size are there (i.e. the ratio of working 
programs to strings of that size to be generated by some program of 
that size gets worse and worse). 

There are 2n strings of length n (in binary code). There are less than 
2n–k programs of length less than n – k. Thus the number of strings of 
length n and complexity less than n – k decreases exponentially as k in-
creases. So the great majority of strings of length n are of complexity 
(resp. informational content) very close to n.  

The mere fact that there are random strings is remarkable. Although 
every finite string can be generated by a program (so is computable) 
the effort of programming as compared to printing may not be worth 
it. We have just seen that this applies in fact to the majority of strings! 

Formal Presentation 
We can express these findings more generally. An abstract computer is 
an automaton that outputs some string given some input program. Let 
‘lg( )’ denote the function that measures the length of a string in bits. 

 

 Definition 1|3–3 

 A computer is a partial recursive function C(p). Its argument is a 
binary string. The value of C(p) is the binary string output by C 
given the program p. If C(p) is undefined the computation does 
not halt. 

 

 Definition 1|3–1’ 

 The informational content IC(s) of a binary string s is defined to be 
the length of the shortest program p that makes the computer C 
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output s, i.e.    

IC(s) = min lg(p) (for p with C(p)=s) 

 

 Definition 1|3–2’ 

 A random binary string s is a string having the property IC(s)≈lg(s). 
 

 
Given these definitions we can express what we said about the printing 
program as 

 

 Theorem 1|3–1 

 There is a constant c such that IC(s) ≤ lg(s)�c for all s. 

 
And what was said about the ratio of random strings to reducible 
strings can be expressed (very weakly) by 

 

 Theorem 1|3–2 

 There are less than 2n binary strings of complexity less than n. 

 
Theorem 1|3–2 just tells us that there are random strings. In fact most 
are, but by a further formal result it turns out hard to tell which strings 
are the random ones: 

Suppose you want to know whether a given string is random. Can 
you prove it to be so?  Say you want to find ‘the first string of length 
1000000000 that can be proven to be of complexity greater than 
1000000000’. There is always a program log(n+c) bits long that can 

calculate the first string that can be proven to be of complexity greater 
than n. This program works as a proof checker: It looks through the 
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list of strings with their corresponding generating programs, sees that 
the program really generates the string and by measuring the length of 
the program can deliver to us the program and the string of the length 
we look for (i.e. a program just one bit longer than the number we are 
looking for, with a corresponding string of just that complexity). Given 
some input number n the checking program is able to output a string 
of that length with a complexity greater than n. This checking pro-
gram, however large it may be, has a finite size c itself. Given this pro-
gram and very large n the test code’s length, log(n+c), will be less than 

n. So there would be a program (viz. the checking program) of length 
less than n that gives as the output that string which is said to have no 
program of length less than n! That is absurd – such a string cannot 
exist. This means that we cannot compute the first string of some com-
plexity measure, the first string with a specific amount of information 
(at least not for large n). For all sufficiently great values of n it cannot 
be proven that a particular string is of complexity greater than n, al-
though there have to be many strings with that property. Thinking of 
checking program-size complexity as a (total) computable function is 
impossible:  

 

 Theorem 1|3–3 

 Program-size complexity is uncomputable. 

 
Since program-size complexity is the measure of informational con-
tent, Theorem 1|3–3 says that for large n at least we cannot effectively 
specify a string with n bits of information.  

Given this result we arrive at a sort of incompleteness: We can think 
of the proof checker of length c as being applied to proofs starting 
from n bits of axioms. Theorem 1|3–3 then says that for such a system 
consisting of a set of axioms and a proof checker it is impossible to 
prove that a particular binary string is of complexity n+c. So there are 

truths (i.e. facts about complexity resp. informational content) which 
cannot be proven. For some formal systems with n bits of axioms it is 
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possible to determine each string of complexity less than n+c and the 

complexity of each of these strings. And it is possible to exhibit each 
string of complexity greater than n, without being able to know how 
much the complexity of each of these strings exceeds n. Giving the 
strings of complexity less or equal to n is done by just giving the axi-
oms so that one can start proving strings. Although the proofs might 
be very long, given the existence of a proof checker of length c the 
proof checker can check whether a given string was proved. If there is 
no proof from the axioms available the complexity of the input string 
must be greater than n. But we cannot say, by the means available in 
the system, how much the complexity exceeds that of n.  

A Second Complexity Measure 
Algorithmic Information Theory introduces a second complexity 
measure, i.e. a second measure of informational content. It concerns all 
the programs which compute a string s. 

Consider the probability that a program the binary code of which 
was produced by coin tossing (using ‘heads’ for a ‘1’, ‘tails’ for a ‘0’) 
generates string s. Of course this probability is very low, since most 
programs produced thus are mere gibberish. AIT defines that prob-
ability as: 

P(s) = ∑
=

−

spC

k

)(

2  

this means that each program of length k generating s adds 2 to the 
minus k to the algorithmic probability of s. 

Given this algorithmic probability further properties of it and of al-
gorithmic informational content can be investigated within AIT, for 
example: relative complexity of two strings, mutual complexity or al-
gorithmic independence. We will not go into the details here. 

The basic idea that you should remember is that of algorithmic 
informational content with its foundation in the idea of programs 
generating strings (i.e. Definitions 1|3–1, 1|3–1’). 

A 
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Further Reading 
Chaitin has written several books and lots of papers on AIT, most of 
which are available online (http://www.umcs.maine.edu/~chaitin/).  
See, for example: 
 
��The Unknowable, New York (Springer) 1999. [a popular over-

view] 
 

��Algorithmic Information Theory, Cambridge (CUP) 19973. 
 
�� Information, Randomness and Incompleteness. (World Scientific) 

19902. [a collection of his papers] 
 



 

The Semantic Approach to  
Information 
What Information is given by  
that Sentence? 

THERE was a bridge party at Mr. Shaitana’s elegant flat, with Dr. 
Roberts, Anne Meredith, Mrs. Lorrimer, and Major Despard partici-
pating; Shaitana was the host and only kibitzed. When the last rubber 
was finished and the guests were looking for Shaitana to take leave of 
him, they found him murdered, stabbed with a slender dagger. Every 
one of the four players had been the dummy at one time or another 
and had left the room for refreshments. Each one had, on the available 
evidence, an equal opportunity for murdering Shaitana, additionally 
all of them had a motive. 

A reward was promised to those who could forward information 
leading to the identification of the murderer. A day later, Colonel 
Race, came and produced evidence sufficient to prove that Dr. Roberts 
could not have been the murderer. The next day Superintendent Battle 
showed, to the district attorney’s satisfaction, that Anne Meredith was 
innocent. The following day, Mrs. Ariadne Oliver did the same for 
Mrs. Lorrimer. Whereupon Major Despard was duly convicted and 
imprisoned. 

The problem now for the district attorney was how the reward 
should be distributed; he obviously had to adopt some numerical dis-
tribution. Since all informants eventually helped to find the murderer, 
he considered an equal share for all of them. He was not 100% confi-
dent with his solution, though, and discussed the case with his friend 
Poirot, a hobby mathematician. Poirot suggested to distribute the re-
ward according to the information that each deposition contributed.  

But what is the amount of information that the depositions contrib-
uted? If Mrs. Ariadne Oliver had just stated ‘Major Despard is the 

 

2

 

 



74 WHAT INFORMATION IS GIVEN BY THAT SENTENCE? 

�

murderer.’ and Superintendent Battle had said ‘Major Despard or 
Mrs. Lorrimer is the murderer.’, Mrs. Ariadne Oliver’s statement had 
clearly carried more information than Superintendent Battle’s. And it 
seems that in some way something like this even happened, although 
both made statements that – taken in isolation – seem to carry the 
same amount of information (Superintendent Battle’s statement ‘Anne 
Meredith is innocent.’ and Mrs. Ariadne Oliver’s statement ‘Mrs. Lor-
rimer is innocent.’).  

It seems that the latter statement could carry more information for 
the attorney, than the former, because it came in later, after the attor-
ney knew already that the murderer was either Major Despard or Mrs. 
Lorrimer. But is the numerical amount of this information really 
greater than the numerical amount of ‘Anne Meredith is innocent.’? 
The attorney did not receive this information in isolation either, for he 
knew already that Dr. Roberts is innocent. How can the numerical 
amount of such information be measured and compared?  

The informants used sentences to give evidence. Somewhere in these 
sentences the expression ‘is the murderer’ occurred. It contributed to 
the information they provided by its meaning. The channel capacity of 
Mrs. Oliver – if you allow this way of talking about her – is not the 
point here, neither a prearranged coding scheme for this special case at 
hand provided by the superintendent Battle. In this story it is crucial 
that they convey information by sentences because of these sentence’s 
(conventional) meaning. 



 

2|1 Explicating Information by Possible Worlds 

Introduction 
Rudolf Carnap’s and Yehoshua Bar-Hillel’s contribution to the theory 
of information is usually neglected. The two prominent introductions 
to the philosophy of Carnap do not address Carnap’s work in this area 
at all (Mormann 2000, Krauth 1970, Krauth does not even mention 
Carnap’s work on semantic information in his list of Carnap’s works, 
nor in his bio-bibliographical overview). Carnap himself, in his intel-
lectual autobiography, is similarly reluctant (he sweeps over it in six 
sentences while discussing his work in inductive logic (Carnap 1963, 
76)). Nevertheless, Carnap’s contribution was quite influential and it 
started the topic this book is all about, the theoretical treatment of se-
mantic information. In this chapter we will characterize his main ideas 
and show how it connects with the mathematical theory of communi-
cation developed in the first chapter. 

Rudolf Carnap was born in 1891 in Ronsdorf, a small place close to 
Wuppertal and Cologne in Germany. After studying with the great 
mathematician and philosopher Gottlob Frege in Jena, and under the 
influence of the philosophy of Bertrand Russell, he became in 1926 a 
member of the so called Vienna Circle, a philosophical discussion 
group of (mainly natural) scientists lead by the Viennese philosophy 
professor Moritz Schlick. Carnap was one of the most prominent fig-
ures of the Vienna Circle. In general, when a history of philosophy 
textbook ascribes a certain view to ‘the logical positivists’ or ‘the Vi-
enna Circle’ it had better ascribed the view to Carnap.  

In 1935 the influence of Germany’s Nazi Regime on Middle Europe 
became so unpleasant that Carnap had to emmigrate to the United 
States. There he worked at Harvard and Chicago, Santa Fe, Illinois, 
Princeton and the UCLA. In the early 50’s, while being in Chicago and 
Princeton, he worked with Yehoshua Bar-Hillel at Harvard on seman-
tic information.  

Bar-Hillel, who originally came from Vienna, emmigrated to Pales-
tine already in 1933 and had studied at the Hebrew University of Jeru-
salem. In the early 50’s he was a research scholar at the M.I.T. Re-



76 WHAT INFORMATION IS GIVEN BY THAT SENTENCE? 

�

search Laboratory for Electronics. He is well known as a philosopher 
of science, logic and of language. When Bar-Hillel met Carnap in the 
winter 1950/51 in Chicago, Carnap directed his attention to Wiener’s 
Cybernetics (Wiener 1948) and Shannon/Weaver’s MCT.  

Based on the work Carnap had done already in inductive logic (Car-
nap 1950), they developed a first theory of semantic information, an 
outline of which will be the topic of this chapter. 

Sentences, not symbols 
The first thing to note about the theory of semantic information is that 
Carnap and Bar-Hillel try to analyze the content and the amount of in-
formation as it is carried by sentences (linguistic entities) or proposi-
tions (nonlinguistic entities, expressed by sentences), rather than the 
average amount of information produced by a source via choices be-
tween different symbols. 

Nevertheless, they hint already at a reduction to apply their analysis 
to the information carried by physical types or tokens: instead of talk-
ing about the information carried by a sound wave, one could instead 
talk about the information carried by the sentence: 

(S)  ‘The sound wave ... has been transmitted.’ 

From the beginning, Carnap and Bar-Hillel emphasize that their the-
ory should be understood as making certain simplifying assumptions. 
It is a theory of information that idealizes away from all pragmatic as-
pects and cognitive limitations: 

The semantic information carried by a sentence with respect to a certain 
class of sentences may well be regarded as the ‘ideal’ pragmatic information 
which the sentence would carry for an ‘ideal’ receiver whose only empirical 
knowledge is formulated in exactly this class of sentences. By an ‘ideal’ re-
ceiver we understand, for the purpose of this illustration a receiver with a 
perfect memory who ‘knows’ all of logic and mathematics together with any 
class of empirical sentences, all of their logical consequences. (Carnap/Bar-
Hillel 1952: 223-224) 
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A Specimen Language and Some Definitions 
For technical reasons, Carnap and Bar-Hillel (CBH, for short) develop 
their theory relative to restricted language systems of a certain type. 
The language systems they characterize are applied first-order lan-
guage-systems with identity. CBH are aware of the fact that these sys-
tems are too restricted to allow a generalization of their results to all 
sciences, since not all science could be adequately translated into lan-
guage systems with such a restricted expressive power. The main prob-
lem that comes to mind is the translation of scientific statements in-
volving quantities such as mass, temperature and the like. Such state-
ments need to be represented in a language containing functors, which 
the considered restricted systems lack.  

Let’s see how such systems are formally characterized. To make the 
presentation as easy to follow as possible we will be concerned with a 
very restricted specimen language only, the language L3

2. The vocabu-
lary of our specimen language consists of the following components: 

(i) the customary logical connectives: 

 º, É, Ø, Ù, Ú 

(ii) three names 

 a, b, c 

(iv) two primitive predicates 

 M, Y 

By definition we introduce the abbreviation for ‘ØM’, and ‘ØY’, ‘F’ 

and ‘O’. The interpretation for this language is given by the standard 
meaning for the logical connectives, namely equivalence, material im-
plication, negation, conjunction and disjunction, and the following lit-
tle story: Imagine a census is taken in a small village. In fact the village 
is so small that it contains only three inhabitants. Moreover, the census 
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is even very restricted in scope, the census taker is only interested in 
whether the inhabitants are male or female, young or old (defined, re-
spectively, as being younger than 35 years of age, and otherwise). Thus 
the three names of our specimen language, name the individuals living 
in the village in fixed order and the primitive predicates the properties 
Male and Young (by definition ‘F’ and ‘O’ name the properties Not-
Male and Not-Young). 

The basic statements/sentences of our language are built by a predi-
cate letter followed by a name. ‘Ma’ is an example for a basic state-
ment. All basic statements are expressions of our language. With the 
help of the logical connectives we can construct more statements: 

If ‘A’ is a statement of our language, then ‘ØA’ is also a statement of 

our language. If ‘A’ and ‘B’ are statements, so are ‘AÚB’, ‘AÙB’, 

‘AÉB’, ‘AºB’. Nothing else is a statement of our language. Thus with 

this language we can express that a is young and male, b male or c fe-
male, a young or old by ‘YaÙMa’, ‘MbÚFc’, ‘YaÚOa’. Thus far every-

thing should be familiar from a logic course. 
We will now introduce a notion that is of some importance for se-

mantic information theory, the notion of a state description: 
 

 Definition 2|1–1 

 State-description =df A conjunction of basic statements which con-
tains for every possible basic statement of the language either this 
statement or its negation, but not both, and no other statement. 

 
Such a state description in our language L3

2 is 

(S1) MaÙYaÙFbÙYbÙMcÙOc 

(S1) obviously gives a complete description of a possible state of the 
universe of individuals with respect to all properties and relations ex-
pressed by predicates of the system. This state-description describes 
our specimen universe completely. Any statement which logically im-
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plies and is stronger than a state-description is self-contradictory. A 
state description is the strongest synthetic statement in its language.  

Since our specimen language L3

2 is so weak, we can wonder how 
many state-descriptions can be build with the predicates and names at 

 MxÙYx MxÙOx FxÙYx FxÙOx  MxÙYx MxÙOx FxÙYx FxÙOx 

1. a, b, c - - - 33. b - - a, c 
2. - a, b, c - - 34. a - - b, c 
3. - - a, b, c  35. - c - a, b 
4. - - - a, b, c 36. - b - a, c 
5. a, b c - - 37. - a - b, c 
6. a, c b - - 38. - - c a, b 
7. b, c a - - 39. - - b a, c 
8. a, b - c - 40. - - a b, c 
9. a, c - b - 41. a b c - 
10. b, c - a - 42. a c b - 
11. a, b - - c 43. b a c - 
12. a, c - - b 44. b c a - 
13. b, c - - a 45. c a b - 
14. c a, b - - 46. c b a - 
15. b a, c - - 47. a b - c 
16. a b, c - - 48. a c - b 
17. - a, b c - 49. b a - c 
18. - a, c b - 50. b c - a 
19. - b, c a - 51. c a - b 
20. - a, b - c 52. c b - a 
21. - a, c - b 53. a - b c 
22. - b, c - a 54. a - c b 
23. c - a, b - 55. b - a c 
24. b - a, c - 56. b - c a 
25. a - b, c - 57. c - a b 
26. - c a, b - 58. c - b a 
27. - b a, c - 59. - a b c 
28. - a b, c - 60. - a c b 
29. - - a, b c 61. - b a c 
30. - - a, c b 62. - b c a 
31. - - b, c a 63. - c a b 
32. c - - a, b 64. - c b a 

Figure 2|1–1 
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our disposal. The answer is easy to compute for a language Ln
π; with n 

being the number of names and π being the number of primitive predi-
cates, there are 2πn state-descriptions. Thus in our language L3

2, there 
are 23×2 state-descriptions, consequently 64. A list of all of them is given 
in Figure 2|1–1.Knowing that a, b and c are living in the village, and 
knowing what census he is going to take (which predicates he uses), the 
census taker knows before he even comes to the village, that the village 
is in one of the 64 states. 

Another important notion we need to define is the notion ‘range of a 
sentence’. We will first state the definition and then explain the notion 
with an example. 
 

 Definition 2|1–2 

 A possible world =df the semantic closure of a state description 
[given the language]. 
 

 

 Definition 2|1–1 

 Range of B, R(B) =df For any sentence B of the system, the class of 
those possible worlds in which B holds. 
 

 
Consider the sentence  

(S2) MaÙYaÙFbÙYb 

(S2) says that a is male and young, and that b is female and young. 
What the sentence does not talk about is what is the case with c. (S2) is 
obviously true in a state-description, e.g. it is true in state-description 
9. But since (S2) leaves open whether c is young or old, male or female, 
(S2) is also true in 25, 42, and 53. Logically speaking, (S2) is implied by 
the state-descriptions 9, 25, 42, and 53. The class of these state-
descriptions is the range of (S2). The range of (S2) contains 4 state-
descriptions. As you can verify yourself, the range of 
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(S3) MaÚYaÚFbÚYbÚFcÚOc 

contains 63 state-descriptions. (One way to verify this is to note that 
(S3) is equivalent to ‘Ø(FaÙOaÙMbÙObÙMcÙYc)’ which is the nega-

tion of state-description 52). 

Analyzing Content 
Given these definitions we can begin to explicate what the content of a 
sentence is. What a sentence A says, is that the universe is not in one of 
those states which are described by the Z (class of state descriptions) in 
Vz – R(A), where Vz is the class of all Z. Thus (S3) says that the uni-
verse is not in state 52. In other words: A Lð

n-implies the negation of 
every Z in Vz – R(A). These negations are called the content-elements E 
of A and their class the content of A, Cont(A).  

 

 Definition 2|1–4 

 Content-element for any sentence A =df Negation of a Z (state de-
scription) in Vz – R(A), Vz being the class of all Z. 

 

  Definition 2|1–5 

 Cont(A) for any sentence A =df Class of all content-elements E of A. 

  
An analytic statement has minimum content, and a self-contradictory 
statement maximum content. In Bar-Hillel’s words: 

A self-contradictory statement tells too much, it excludes too much, and is 
incompatible with any state of the universe, whereas an analytic statement 
excludes nothing whatsoever and is compatible with everything. (Bar-Hillel 
1964, 301) 

According to the scholastic dictum, omnis determinatio est negatio, that 
we have encountered already, the content of a sentence is taken to be 
the class of those possible states of the universe (state-descriptions) 
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which are excluded by this sentence. In other words, the class of those 
states whose being the case is incompatible with the truth of the state-
ment/sentence. This again is an expression of the inverse relationship 
principle that we have discussed in the very first chapter (1|1) of this 
book. 

Quantifying Information 
Remembering the second chapter (1|2) of the book, the amount of in-
formation carried by a signal was the quantity Shannon was interested 
in. In the semantic theory we want to have something similar. The best 
we can say at the moment is that a certain statement has a larger con-
tent than another one, in the case in which the class of state-
descriptions excluded by the first statement includes the class of state-
descriptions excluded by the second one as a proper part. In our 
specimen language we would say that  

Cont(‘Ma’) > Cont(‘MaÚYb’), 

since the class of state-descriptions excluded by ‘Ma’ contains the class 
of state-descriptions excluded by ‘MaÚYb’. But if two contents are ex-

clusive like in the case of ‘Ma’ and ‘MbÚYb’, we still want to say that 

the one conveys more information than the other one does, although 
the set of state-descriptions excluded by the former sentence does not 
include the set of state-descriptions excluded by the latter sentence. 
The solution chosen by CBH is to define measure functions over the 
set of contents. 

Carnap could provide these from his explication of logical probabil-
ity. The basic intuition behind this use of measure functions is this: the 
greater the logical probability of a statement, the smaller its content 
measure. CBH go on to define measure functions over ranges, one of 
which, mp is supposed to be the logical probability on no evidence. The 
logical probability of a sentence A is 1 iff A is L-true and 0 iff A is L-
false. The content measure of A, cont(A), is by definition the logical 
probability of ØA, mp(ØA). The choice of this very function can easily 

be motivated: there is one clear adequacy criterion for a proper m-
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function, the greater the logical probability of a statement, the smaller 
its content measure. 

Now, the mathematically simplest relationship that fulfills this re-
quirement is obviously the complement to 1. Let mp(A) be the logical 
probability of A. Then 1 – mp(A) can be taken as the plausible measure 
for the content of A!  
  

  Definition 2|1–6 

 The content measure of a sentence A, cont(A) =df 1 – mp(A). 

 
But another intuition we have is that something like the following 
should hold for inductively independent statements A and B (remem-
ber our discussion of entropy in 1|2): 

cont(AÙB) = cont(A) + cont(B) 

Since cont is not additive under inductive independence (as we shall see 
in a minute), we need another explicatum for amount of information 
that will have this property. What the alternative is supposed to do is 
to assign to ‘MaÙYb’, for instance, an information measure that is 

equal to the sum of the information measures of ‘Ma’ and ‘Yb’, since 
these two statements are inductively independent. If, under a particular 
normalization, the information measure of each of these two state-
ments turns out to be one (bit), we would like the information measure 
of their conjunction to be 2. The additivity of cont cannot help us. 
Both statements ‘Ma’ and ‘Yb’, although inductively independent, are 
not content exclusive. And cont is additive only if the sentences are 
content exclusive, i.e. if no state-description is excluded by both sen-
tences. But both imply the statement ‘MaÚYb’, which excludes all 

state-descriptions in which ‘FaÙOb’ is the case. And such state descrip-

tions exist, 27 is one of them. Thus we need another measure for 
amount of information that gives us the additivity we want. 
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An Alternative Content Measure and Our Pre-explicatory Intuitions 
If we, for simplicity, assume the in-value of each incoming basic sen-
tence as being 1, we arrive at the following alternative formula for the 
amount of information, inf, for any sentence A: 
 

  Definition 2|1–7 

 inf(A) =df – log mp(A) 

 
Which is analogous to MCT (Mathematical Communication Theory) 
and the amount of information carried by a signal i. Now, inf allows 
for additivity in case of inductive independence, since it is logarithmic. 

Another intuition is that the amount of information of any two 
statements should always be at most equal to the sum of the amounts 
of these statements. But whereas  

cont(AÙB) £ cont(A) + cont(B) 

this does not hold for inf. ‘John is hungry’ carries different information 
when taken relative to the statement ‘John is hungry’, as evidence, i.e. 
when taken absolutely, as when taken relative to the statement ‘John is 
thirsty’. We can account for this by adding the following definitions: 
 

  Definition 2|1–8 

 inf(A|B) =df inf(AÙB) - inf(B)  

 
We model relative information here, and take conditional probability 
as a model. The amount of information of some statement A relative 
to some statement B should be the same function of the probability of 
A given B as the absolute amount of information of A of the absolute 
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probability of A. To fulfil this requirement means to have a log type of 
function. 
 

  Definition 2|1–9 

 inf(A|B) =df -log mp(A|B) 

 
in analogy to 

inf(A) = -log mp(A) 

where as it is not the case that 

cont(A|B) = 1 - mp(A|B) 

Another of our pre-explicatory intuitions is the following: Asked what 
we regard as the appropriate relation between the absolute amount of 
information of a given statement A and its amount of information 
relative to any B, we are normally very positive that no increase in the 
evidence should increase the amount of information, though it might 
not necessarily decrease it. Now, it can be shown that 

cont(A|B) £ cont(A) 

whereas the corresponding statement for inf does not hold. Intuitively, 
the difference is supposed to be this: Whereas cont might be viewed as 
a measure of the substantial information a statement carries, since this 
at most decreases, inf measures its surprise value, the prior unexpect-
edness of its truth, where the surprise value is dependent on further 
knowledge. 

Consider our census example again. When the census taker learns 
that ‘Ma’ is true, he learns that the universe is not in any of certain 32 
states out of 64 states it could possibly have been in. If it is the second 
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thing he learns, having learned first that ‘Fb’ is true, the substantial in-
crease about that universe is less.  

‘Ma’ tells him only that the universe is not in any of certain 16 states 
from a set of 32 states it still could have been in (and these 16 states are 
a proper subset of the 32 states when his first information was that 
‘Ma’ is true). On the other hand, although his knowledge now in-
creases less substantially, he should now be more surprised than he was 
in the first case. 

Knowing NOTHING, he expects a to be male as much as female, 
but having observed that b is female, he then expects a to be female 
rather than male and is therefore rightfully surprised when a turns out 
to be male after all. 

cont(‘Ma’|‘Fb’) < cont(‘Ma’) 

 

inf(‘Ma’|‘Fb’) > inf(‘Ma’) 

Consider that we are about to perform an experiment with n possible 
outcomes and that one and only outcome must occur. What is the 
amount of information which the outcome of this experiment can be 
expected to carry? If we want on these grounds to define the expecta-
tion of information in a given situation in which we have a number of 
mutually exclusive alternatives with the logical probabilities pi, we ar-
rive at the by now familiar entropy expression: 

i

n

i
i pp∑

=
−

1

log  

Let’s summarize the relationships between cont and inf: 

cont(AÙB) = cont(A) + cont(B) 

iff (AÚB) is logically true; 
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inf(AÙB) = inf(A) + inf(B) 

iff A and B are independent with respect to their logical probability. 

inf(A) = cont(A) = 0 

iff A is logically true. 
 
More interesting are their differences, though: 

cont(A|B) = cont(AÉB) 

inf(A|B) = -log mp(A|B) 

This is one reason for the preference given in MCT to the correlate of 
inf. To figure out that there are more than one explicata for our presci-
entific concept of the amount of information a message carries, is not 
too surprising or problematic. Explications are meant to uncover ex-
actly such prescientific confusions. Just as Carnap hit at two different 
concepts of probability in our prescientific notion of probability, he 
here revealed two notions of content measure behind our pre-scientific 
notion of that. 

Summary 
The theory of semantic information is the birth of epistemic and doxa-
stic logic within the possible worlds framework. Possible worlds be-
came later what are the state descriptions in Carnap’s and Bar-Hillel’s 
theory.  

Of course, this theory idealizes away from many factors that deter-
mine the subjective amount of information that a sentence carries in 
actual situations. Even if we restrict our language to the finite set of 
names there are and the predicates of L2

3, the basic statement ‘George 
W. Bush is female’ subjectively carries more information than the basic 
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statement ‘Arnold Schwarzenegger is male’ (in California, given politi-
cally correct first names, Carnap’s measure functions deliver correct 
results). These problems are partly due to the fact that Carnap’s meas-
ure for the amount of information a sentence carries is supposed to be 
determinable a priori. But we never get confronted with statements so 
isolated from any synthetic knowledge we have. Thus, usually, a 
statement carries a different amount of information, simply because we 
had some prior information already. Carnap tried to account for that 
by his relative measures (inf(A|B); cont(A|B)). In the next chapter we 
will discuss an alternative approach that could be considered a further 
development of Carnap’s ideas. 

Further Reading 
For a good overview one could read  
 
��Yehoshua Bar-Hillel. ‘Semantic Information and its Measures’, 

in: Transactions of the Tenth Conference on Cybernetics, New 
York 1952, 33-48. 

 
A critical discussion of the a priori assignment of measure functions 
and an extension of the CHB approach to the relational case is pre-
sented in 
 
�� Jaakko Hintikka. ‘On Semantic Information’, in: J. Hintikka / P. 

Suppes (eds.), Information and Inference, Dordrecht 1970, 3-27. 



 

2 2  Strong Semantic Information 

The semantic approach of Carnap and Bar-Hillel gives us an account 
of information of declarative sentences, distinguishing between infor-
mation (as modelled by a set of possible worlds) and a quantitative 
measure of informational content. The model, however, has serious 
side effects.  

 Firstly it assigns (by it’s a priori measures of probability) the 
same probability to all contingent basic sentences making them 
carry – contra-intuitively – all the same information. That is a 
consequence of taking the probabilities as logical probabilities. If 
they had been taken as just some probability the explication of 
amount of information would have been linked to an epistemic 
concept (since one probability distribution had been preferred – 
supposedly on epistemic grounds involving knowledge of the 
world). Without that all contingent statements of the same logi-
cal structure carry the same amount of information. In isolation 
from world knowledge and semantic postulates fixing distin-
guished ranges for some sentences there is no measure of the se-
mantic amount of information at all. 

Secondly it assigns all logically determined sentences (those sen-
tences being either tautological or contradictory) one of two con-
stant amounts of information (either 0 for a tautology or 1 in 
case of a contradiction); this means that logical truths carry no 
information and that contradictions carry maximal information. 
Once again this does not seem to be true. There seem to be quite 
different logical truths if you just look at different logical systems 
or just at the distinction between propositional and functional 
logic – why should all these truths carry no information at all? 
They do not seem to have the same meaning (see Chapter 2.3). 
And does a contradiction really give you maximal information? 
Contradictions are maximal given standard logic. Since ex con-
tradictione quodlibet  

A 

A 
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 (1) A Ù ØA É B 

holds in standard logic, given any contradiction any sentence 
whatsoever can be derived, so given any contradiction any in-
formation can be derived, so contradictions give you – logically 
speaking – all information you can possibly get. A contradiction 
excludes all state description so the measure on the set of possible 
worlds excluded by its truth (a measure of informational content) 
will be maximal. Accordingly the probability of the contradiction 
⊥ is 0, thus taking informational content cont to be the reverse of 
probability cont(⊥)=1. 

To overcome at least partially the second difficulty we take a look in 
this chapter on Lucinao Floridi’s theory of strong semantic informa-
tion. We will continue to discuss this problem in a wider context in the 
next chapter (Chapter 2|3). 

Floridi baptizes the fact that contradictions are assigned maximal 
amount of information ‘the Bar-Hillel/Carnap semantic paradox’. To 
dissolve the paradox information is linked to truth and truthlikeness. 
No measure of probability is involved.  

The informational content of a sentence A or its informativeness is 
defined extensionally as a function of its deviation from the truth in the 
matter A talks about. Each sentence A corresponds to a situation s 
that is the case if A is true (respectively A is true if s is the case). In 
terms of a support relation between situations and sentences (or other 
carriers of information or units to be evaluated) we can write (see 
Chapter 4|1):  

s ’ A. 

If s is the situation A describes, then A trivially is maximally informa-
tive with respect to s. The theory of strong semantic information now 
measures the informativeness of A by two factors:  

(i) the polarity of A (i.e. whether it is true or false) and  
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(ii) the degree of discrepancy between A and the given total state of 
the world  

where the situation referred to by A or some variant of that situation is 
part of the actual situation (the actual world). Consider the following 
three statements: 

(2) There are five people in the library. 

(3) There are seven people in the library. 

(4) There are seventeen people in the library. 

Now there are five people in the library. That makes statement (2) true 
and the other two of them false. With respect to polarity there is no 
difference between (3) and (4), since both are false. Nevertheless we 
would say that (3) is closer to the truth than (4) is. (3) might even be 
closer to the truth than 

(5) There is at least one person in the library. 

since (3) although being false provides us with more specific content 
(rather close to the actual situation) whereas (5) does not. (5) is true 
whether there are five or five hundred people in the library.  

The deviation of A from the truth is measured by a function ¦ from 

sentences to some real value in the interval [-1,1]. If ¦(A) = 0 then 

there is no discrepancy at all, i.e. A is true and appropriately specific. 
A metric on the set of sentences may be derived by comparing them 
with each other how far they deviate from the truth and from each 
other (arriving at some order of accuracy), and a consequent assigning 
of numerical values. A metric on a given set of sentences should fulfil 
the following conditions (for a sentence A referring to a specific set of 
situations s1): 

(M1) s1 ’ A ® ¦(A) = 0 
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(M2) ("s)s ’ A ® ¦(A) = 1 

(M3) Ø($s) s ’ A ® ¦(A) = -1 

(M4) s1 ’ A Ù ¬(s1 Í s2) Ù Obtains(s2) ® (0 > ¦(A) > -1) 

(M5) s1 ’ A Ù s2 Í s1 Ù s2 ’ A ® (0 < ¦(A) < 1) 

(Taking the support relation to take sets of situations as relatum differs 
from the approach in Chapter 4|1, but makes the presentation easier 
here.) 

Principle (M1) says that A is precise if it is supported by the situa-
tion being the case. A situation may support imprecise sentences – 
since we have, for example, sentences with existential quantification 
here. (M2) says that a sentence being true in all situations (i.e. a tau-
tology) carries maximal deviation or discrepancy. We can conclude 
nothing about the world from a tautology so it is as far from giving 
positive information about a situation as one can get. (M3) says that if 
there is no (possible) situation at all that fits A, then (A being a con-
tradictory statement) there is no information in A. The discrepancy of 
a contradiction is maximal since there is no other statement that could 
be further off the truth. A contradiction has the highest degree of se-
mantic inaccuracy. (M3) expresses the requirement that the ‘Bar-
Hillel/Carnap paradox’ should be avoided. (M4) says that in case the 
situation corresponding to a sentence does not obtain (i.e. it is not a 
part of the situation that is the case), then the sentence A has a nega-
tive discrepancy from the truth, since it is false, and it is not as deviant 
as a contradiction, since there is a possible situation that supports it. 
(M5) takes care of sentences like (5) which may be true but are very 
unspecific. The set of situations in which there are five people in the 
library is a subset of the set of situations in which there are any people 
in the library, so the information contained within that set is more spe-
cific, so a sentence like (5) that is still supported by a more specific set 
of sentences can only be a sentence exhibiting some imprecision that is 
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positively measured (i.e. is greater than 0 and smaller than the maximal 
positive deviance of a tautology). 

We can now define (semantical) equivalence of two sentences A and 
C as A and C having the same polarity and a comparable degree of 
semantic discrepancy with respect to the obtaining situation. A sen-
tence is the more (positively) vacuous the more situations support it. 
(Given the function ¦ the theory of strong semantic information can 

then introduce further concepts like the degree of semantic informa-
tiveness and the quantity of vacuity for each sentence A.) 

Notwithstanding the details what should be obvious is that this the-
ory allows for more fine grained distinctions between sentences of the 
same logical form than the Carnap/Bar-Hillel approach allows for. The 
measure of informativeness, however, is calculated with respect to the 
knowledge which situation does in fact obtain. The theory is, therefore, 
no theory of a priori semantic or informational content (for not logi-
cally determined statements). It is an epistemic theory of informational 
content in distinction to a real/pure semantic account of information, 
which is not relative to any world knowledge.   

Further Reading 
The exposition is based on Luciano Floridi’s paper  

 
�� ‘Outline of a Theory of Strongly Semantic Information’, Minds 

and Machines 14 (2004), 197-221. 



 

2 3 Do You Get Information in  
a Logic Course? 

This chapter deals with a special problem within the field of explicating 
the/a concept of information: the problem of the informational content 
of logical truths. This chapter also uses some situation semantics, 
which will be introduced in chapter 4 and refers to Dretske’s theory of 
information, which will be introduced in chapter 3 (however, you 
should be able to follow the discussion in this chapter already). 

In several departments logic courses are taught and students there 
get to know things they did not know before. They learn something. 
And every time a researcher hears a talk by a colleague about some 
new system of logic or some new theorem he learns something. When 
she devises a proof herself of a new theorem she discovers something. 
So getting to know some logical truth seems to involve acquiring some 
information. This applies especially to drawing consequences. In draw-
ing a consequence we get information about what was entailed or im-
plied by what we already believed. Getting to know a consequence re-
lation between some beliefs or sentences seems to be getting informa-
tion. 

Nevertheless the standard explications of informational content are 
not able to deal with the problem of assigning informational content to 
logical truths. We will highlight this problem in the different ap-
proaches. We then distinguish several strategies to deal with the prob-
lem, i.e. strategies to assign logical truth either informational content 
or some other quality accounting for the gain in knowledge upon ac-
quiring them. Hintikka’s solution will be presented, since he – although 
offering a solution that nobody took up and that has several shortcom-
ings – was the first who tried systematically to deal with the problem. 
Some ways to look for a solution to the problem are hinted at, but 
none has been fully developed so far. 

The Problem in the Syntactic Approach  
Rational students should engage only in courses where they can learn 
something. Now, unfortunately, it seems that you can learn nothing in 
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a logic course, if learning something means to acquire some informa-
tion, since the informational content of logical truths – seen in the light 
of the standard approaches to measuring or defining informational 
content – is: nothing! 

Let us consider the mathematical theory of communication as de-
veloped by Claude Shannon (see Chapter 1|2) first: 

The average information of a source is defined given some measure 
of the probability that some symbol out of a set of symbols occurs and 
the uncertainty with which that symbol occurs given the possible 
strings of symbols made out of the symbols in that set. Starting from 
some requirements on the notion of informational content (like infor-
mation being additive and that information decreases uncertainty) 
Shannon uses a logarithmic measure of the uncertainty of a symbol, 
and a probability measure to derive his famous formula for the infor-
mation carried by a message of n possible messages on average: 

(1) H = ∑
=

−
n

i
ii pp

1

log  

This refers to the source as a whole. Applied to a single signal we can 
say: 

(2) I(A) = log(1/p(A)) 

The amount of information in a single symbol A (whether letters in a 
word or sentences taken as the single units in talking) is the logarithm 
of the reverse of its probability. 

Logical truths are not random. They can be completely expected, 
there are no alternatives to them. Their probability is 1. This means in 
the syntactic approach, given the definition of informational content 
‘I(x)’, that we get for a logical truth A:    

(3) I(A)= log(1/p(A)) = log(1/1) = log 1 = 0  

That means: Logical truths carry no information at all. You learn 
nothing from them! 
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The Problem  in the Semantic Approach 
Carnap and Bar-Hillel (see Chapter 2|1) developed a semantic theory 
of informational content within the possible worlds framework. Their 
analysis from the very beginning concerns sentences not individual let-
ters or symbols. As usual one might identify what a sentence says with 
the set of possible worlds in which the sentence is true. The informa-
tional content of a sentence might be taken as the set of worlds ex-
cluded by this sentence being true, since so we keep the intuition that 
informational content is related to surprise that what a symbol says is 
the case. So Carnap and Bar-Hillel develop two explications of seman-
tic content. One starts with the idea just mentioned and gives a more 
semantic measure of informational content, since the range of worlds 
excluded by a sentence is statically associated with that sentence. It 
does not change with our knowledge which world is the actual world. 
A measure cont can be gained by counting the excluded worlds or by 
employing an a priori probability measure which assigns all worlds the 
same probability. Let m be such a measure. m(A) is the probability of a 
sentence A. Then we can define cont: 

(4) cont(A) = 1 - mp(A)  

Logical truths are true in all possible worlds. The set of the worlds ex-
cluded by their truth is Æ, i.e. given the explication ‘cont( )’ of informa-

tional content in the possible worlds approach:  

(5) cont(A) = ∅     (collecting the excluded worlds) or 

  cont(A) = 1 – mp(A) = 1 - 1 = 0 

Given a probability measure on worlds the informational content of a 
logical truth A is the number of (the sum of the probability of) the 
worlds in ∅, i.e. 0, or the reverse of the probability of A, i.e. once again 
0. Given cont, a logical truth carries no semantic information at all al-
though logical truths are, given Carnap’s semantic model, true because 
of their meaning! 
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Considering a different set of intuitions with respect to informa-
tional content, Carnap and Bar-Hillel provide a second explication of 
semantic content in terms of probability (given any probability distri-
bution on the set of possible worlds) and a logarithmic measure. This 
second measure is more epistemic than semantic, since the probability 
distribution we choose might reflect our world knowledge. With this 
measure they derive a semantic analog to Shannon’s formula: 

(6) inf(A) = - log(mp(A)) 

Repeating the calculation from the last paragraph we get: 

(7)  inf(A) = – log(mp(A)) = - log 1 = 0 

Once again you learn nothing from logical truths! 
Luciano Floridi (see Chapter 2|2) developed the semantic approach 

into a theory of ‘strong semantic information’. His starting point is one 
of the contra-intuitive consequences of the original semantic approach: 
that contradictions have the maximum information value. This holds 
in the Carnap/Bar-Hillel framework since contradictions exclude all 
possible worlds; their range being ∅ means that the reverse of their 
range is the totality of possible worlds. Their probability is zero. And 
the reverse of their probability is therefore maximal. If A is a contra-
diction: 

(8) cont(A) = 1 - mp(A) = 1 - 0 = 1 

(9) inf(A) =  log(1/mp(A)) = log (1/0) ≈ log ∞ = ∞ 

Floridi calls this ‘the Bar-Hillel/Carnap paradox’, since intuitively we 
would say that somebody who utters a contradiction has said nothing 
at all, has conveyed no information at all. He develops a theory in 
which we not only consider the truth value of a sentence but also the 
amount of its deviation (in degrees) from the actual world (like ‘there 
are eight dogs’ deviates more from a situation with two dogs than 
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‘there are six dogs’, although both sentences are false). Given his ac-
count of discrepancy of a sentence from the actual world he can derive 
that the discrepancy of contradictions is maximal, which means that 
their informational content is zero. So he can in fact solve the problem 
of the supposedly informative contradictions. As one condition in the 
development of the appropriate informational content function, how-
ever, he explicitly lays down the condition that if A is a tautology it is 
assigned the maximum degree of discrepancy. That makes it a part of 
his framework that logical truths carry no information. Thus even this 
elaborated semantic approach refuses to give us information from 
logical truths. 

The Problem in Dretske’s Approach 
Fred Dretske (see Chapter 3|1) developed an account of information 
that preserves the main ideas of the syntactic approach and tries to 
combine it with an externalist account of semantic informational con-
tent. It takes information as being out there in the world. Meanings 
might be partly in the head but information is not. Information flows 
because of the causal connections between some object a being F and 
another object b being G. Dretske does not consider average amounts 
of information associated with some symbol but an absolute content 
given a framework of natural laws and the circumstances of the situa-
tion. So a’s being F carries the information that b is G if the condi-
tional probability of b being G given a being F is 1. (A conditional 
probability of less than 1 will not do, because of some criteria on in-
formation flow like his famous ‘Xerox-Principle’.) Knowledge is de-
fined as the belief that a is F caused by the information that a is F, 
given some natural laws. The natural laws and so, of course, the laws 
of logic belong to the framework within which information flow is rec-
ognised. What belongs to the framework cannot carry information it-
self. Even natural laws, as given in all relevant contexts, ‘have an in-
formational measure of zero’ (Dretske 1981, 264). Logical truths do 
not cause anyway. So in Dretske’s externalistic approach to informa-
tion the problem of non-contingent (logical) truth is even more press-
ing. Since you have the framework already you can learn nothing from 
a logical truth. 
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How to Solve the Problem? 
There might be different types of solution: 

(i) logical truths carry no information in the sense explained, but are 
nevertheless of interest because of some other quality. 

This type of solution would leave information theory as it is but sup-
plements it with a theory of what happens in recognising logical truths 
besides information flow as explained by the standard accounts. 

(ii) information is analysed so as to be able to distinguish between 
some logical truths. 

A kind of syntactic approach can be of type (i), an ontological ap-
proach of type (ii). 

A Syntactic Solution 
Within a semantic approach some syntactic features can be given a 
role: 

The logical truths  

(10) p É p 

and    

(11) ("x)(x=x)  

differ syntactically. Carnap’s concept of intensional isomorphy (Carnap 
1955) introduces some syntactic features into an account of meaning. 
Two sentences are intensionally isomorphic if one can be transformed 
into the other substituting step by step expressions of the same syntac-
tic category for each other. Since (11) contains expression of the syn-
tactic type individual (variable) it cannot be transformed into (10). We 
can introduce a concept of meaning that not only requires logical 
equivalence but also requires that two logically true sentences can only 
have the same meaning if at their deepest level of logical form they 
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share one logical form (Bremer 1993, 295-96). So (10) and (11) differ in 
meaning!  We care about differences in meaning so that would be an 
account why we care about different logical truths. Each logical truth 
tells us that some individual sentence (i.e. a sentence with a meaning 
that distinguishes it from all other sentences) is a logical truth. In rec-
ognising a consequence relation we see a connection between meanings 
that we did not see before. 

Another version of such a syntactic solution could be developed 
within a computational theory of mind which refers to mental repre-
sentations (maybe some language of thought symbols). Within such a 
computational theory of mind mental representations have their se-
mantic features and their (psychological) role because of their syntactic 
features, since only these configurations enter into causal connections 
(cf. Fodor 1987, 1994). 

The (mental) representations ‘bachelor’ and ‘unmarried man’ have 
different functional roles because of their syntax (cf. Dretske 1981, 
214-19). We care about that! So an analytic truth like 

(13)  A bachelor is an unmarried man. 

although carrying no information given Dretske’s explanation of in-
formation is interesting since it connects two mental representations 
with a strong link which had not had that link before, if you did not 
know (13) before. A similar explanation applies to recognising conse-
quences. These ideas on logical truths commit themselves to the repre-
sentationalist/computationalist theory of mind and await further 
elaboration. 

An Ontological Solution 
Even given intensional isomorphy in a semantic approach incorporat-
ing syntactic features there are logical truths getting the same meaning 
although being distinct: 

(14) ("x)Raven(x) É ($x)Raven(x) 

and 
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(15) ("x)Dog(x) É ($x)Dog(x) 

would be an example. According to the first syntactic approach men-
tioned (14) and (15) would have the same meaning. That could be ac-
ceptable, since what you learn in terms of logic from (14) you can learn 
from (15) as well. If you want to make a distinction between even these 
sentences you need more than logical form. To solve such cases an on-
tological solution might be needed which refers to the constituents 
(resp. the referents of the constituents). Such an ontological solution 
would incorporate a more fine grained carving up of sentences or their 
referents. If you do not care about ontological plenty, you can distin-
guish (14) and (15) since the one contains the property of being a dog 
while the other contains the property being a raven. Situation seman-
tics (see Chapter 4) is such a fine grained approach. For example the 
infon áádog, fido, 1ññ (Fido is a dog) and the infon áádog, hasso, 1ññ 

(Hasso is a dog) are different infons, since the first involves the object 
Fido while the latter involves the object Hasso. An analysis of com-
pound infons and a consequence relation can then establish the differ-
ence between (14) and (15). This kind of solution would involve heavy 
ontological commitment. 

Hintikka’s Approach 
For mainly historical reasons let us take a look at Hintikka’s ap-
proach. He was one of the first to address the problem as a problem of 
the informational content of logical truths. He considered the problem 
in the light of epistemic modal logic, questioning the correctness of two 
principles of epistemic modal closure. Epistemic modal logics (i.e. epis-
temic logics of the early kind, modelled after alethic modal logic) better 
be normal modal logics if there should be any logic of the epistemic 
operators at all. 

Normal modal logics contain a rule of necessitation:  

(16) � A ® � ªA  

and the K-Axiom:  
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(17) � ª(A É B) É (ªA É ªB) 

i.e. the derived rule:  

(18) � (A É B) ® � (ªA É ªB).  

Without these there is not much of a logic of  ‘ª’. 

The counterparts in epistemic modal logic (with a knowledge opera-
tor ‘K’) then are: 

(19) � A ® � KA          [all logical truths are known] 

(20) � (A É B) ® � (KA É KB)   [all consequences are known] 

which are considered highly contra-intuitive. Imagine a little dialogue 

A: Why didn’t you show up in the exam? 
B: I need not, I know all logical truths. 
A: Wow! How that? 
B:  � A ® � KA, you know from modal logic class, don’t you? 

A: Then what about ‘©(A É B) Ù ªA É ©B’? From modal logic, right? 

B: Eerr?? 

Hintikka tries to avoid these contra-intuitive consequences by distin-
guishing kinds of information: surface vs. depth information. But he 
also restricts the closure principles. 

Hintikka believes there is a sense of information in which logical in-
ference can add to our information, i.e. our knowledge. His explication 
relates our problems in recognising a logical truth (i.e. in getting addi-
tional information) to the increasing depth of a procedure of checking 
quantificational consistency (in First Order Logic). 

Surface and depth information are defined relative to a nesting of 
quantifiers.  

Closure (under K) does hold only if A É B is a surface tautology at 

the depth of A (i.e. at the depth of what is already known). That is we 
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look at the depth of quantification in A and the depth of quantifica-
tion in B; if the depth of B does not exceed that of A, Hintikka sees no 
problem and closure under K should apply. If the depth of B is greater 
than that of A, closure under K cannot be applied automatically. 
When we learn A É B, we gain information (viz. the difference between 

surface and depth information). Increasing the depth and then detach-
ing (in a conditional) can add to our knowledge. But closure (under K) 
does not apply here! An account of epistemic closure, therefore, de-
pends on an account of logical depth information (in a first order pos-
sible worlds semantics). 

Although it is difficult to explain all details of Hintikka’s approach, 
we might get a feeling of his solution by looking at some details: 

Depths informally concerns the finite number of individuals we con-
sider at the same time respectively the number we need to define an-
other individual (given a language Li). We need some measure of sur-
face and depth information to compare them. A bound variable does 
not refer to any individual in particular, but we can ask whether the 
definition of the individual concerned refers (by nested quantifiers) to 
other individuals. The degree of a formula is obtained as the sum of 
the number of free singular terms and the maximal number of quanti-
fiers whose scopes have a common part in the formula (i.e. its depth). 
Quantifiers are pushed inwards. Depth depends on quantifier changes 
like ‘$x"y$w"v(…)’ (depth 4, say), since ‘$x$y’ could be simplified 

into a single quantifier (on a pair). We can count quantifiers and singu-
lar terms to recognise the depths and the degree (of the parts) of a for-
mula. 

Let a Q-predicate be the conjunction of all basic predicates of a lan-
guage Li or their negation as they apply to some individual. There are 
as many types of individuals as Q-predicates. We consider only types 
here. Given these predicates we describe a type of world by saying 
which Q-predicates are instantiated. These descriptions of types of 
worlds are constituents. They are consistent. If we also allow for basic 
relations, a Q’-predicate can be of more than depth 1. If we nest refer-
ences to other individuals, depth increases, as does the depth of con-
stituents. 
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These constituents now can be inconsistent, since they might refer to 
an individual which is said (in some other part of the constituent) not 
to exist in that world. So the negation of such a constituent is a logical 
truth. Looking for inconsistent constituents is of interest since if a con-
stituent is inconsistent that means the world cannot have the types of 
objects occurring in the constituent conjunctively (at the same time). 
That, however, means that the presence of some type of individual ex-
cludes some other type of individual. This can be expressed by a logical 
truth (a conditional). If the antecedent of this logical truth is of a depth 
smaller than that of the consequent we have discovered an information 
increasing logical truth.  

So at the level of basic predicates we have conjunctions like:  

(21) P1(x) Ù P2(x) Ù ØP3(x)...  

each giving us a Q-predicate Q1(x), Q2(x). 
At the level of constituents we have: 

(22) ($x)Q1(x) Ù Ø(Ø$x)Q2(x) 

Allowing for basic relations in Qi means that within a Q-predicate ‘"’ 

can occur (i.e. a nesting ‘$x"y’), since referring to another individual is 

done (at least in part) with definite descriptions 

(23) ($x)("y)( ...x...⊃ x=y) 

Checking for consistency is done depth by depth, looking for trivial 
inconsistency at the subordinate clauses’ depth (the subordinate 
clauses being the ones within the scope of another quantifier) by in-
stantiating the variables bound by ‘$’. Like constituents, logical truths 

get assigned a corresponding depth in the procedure. If you formulate 
these logical truths as conditionals you see which of them are informa-
tion increasing. 

This procedure is, of course (since First Order Logic is not decid-
able), not effective when applied to the non-finite case – which makes 
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so checking the applicability of closure under K non-effective. Given 
that we know A being a logical truth counting its quantificational 
depth is effective. So determining the logical truth of a formula should 
be distinguished from determining whether it has an information in-
creasing structure. 

What can we say about Hintikka’s approach then? There seem to be 
quite a few open questions: 

Is this a psychological theory? Where from? It seems nobody em-
ploys these procedures or the corresponding measures. So let us 
assume it is a model for some unspecified process going on in as-
sessing and recognising logical truths. The model may explain 
why information is gained by consequences, but it does not say 
which information we get if it were to be expressed in words. 

Why are just quantifiers the problem? Even though PC is decid-
able we might not be able to discover that some A is a tautology. 
So even closure within propositional epistemic logic is a problem. 

Why not simply say we do not know all the consequences of our 
beliefs, since this surpasses our capacities because of computa-
tional complexity (we have not enough time and storage) or – in 
some cases – undecidability? 

Although Hintikka employs the machinery of the semantic approach 
the procedure looks cumbersome and non-effective. 

That might be reasons to look for another approach (within situa-
tion semantics or some version of a syntactic approach). 

Algorithmic Information Theory to the Rescue? 
Algorithmic Information Theory (see Chapter 1|3) is a theory of in-
formational content, not of information flow. It deals with word 
strings. The basic measure is the same like in the original syntactic ap-
proach: bits. But Algorithmic Information Theory focuses not simply 
on the coding scheme but on matters of generating a word string by a 
program. A string has some measure in bits. The informational content 

?

?

?
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of a string is the length of the shortest program (in bits) which is 
needed to generate the string. The length of the shortest program for a 
string is also its complexity. A finite string of length n can be ‘pro-
grammed’ by having it simply printed, with length n+k, k being the 

length in bits of the minimal code to print it. (The real problem is infi-
nite strings, but since there are no infinite sentences this is no problem 
here.)  A string is random if the size of the shortest program for it, if 
there is any, is not shorter than the string itself. Most strings are ran-
dom, since there are more strings than well-formed programs. So the 
great majority of strings of length n are of complexity very close to n. 
So the basic definitions of interest here are (Definition 1|3–1 and Defi-
nition 1|3–2 from Chapter 1|3): The complexity IC(s) of a binary string s 
is defined to be the length of the shortest program p that makes the 
computer C output s, i.e. IC(s) = min [lg(p)| C(p)=s]; a random binary 
string s is one having the property that I(s)≈lg(s). The complexity IC(s) 
mentioned here defines also the informational content of a string. If 
you know its complexity you know the amount of information present 
in it. 

Algorithmic Information Theory could be a syntactic solution at 
least to the problem why different logical truths have different infor-
mational content. Logical truths – at least those which are theorems 
within a logical system – are not random one would expect, since by 
their very definition there are programs for them: one could assume 
that one program capable to generate a string that is a logical truth is 
its proof! So logical truth would have definite informational content, 
and different logical truths could have different ones. (Given that we 
single out that program.) And given that we have found the shortest 
proofs of them we have the length of the proof available, so that we 
can see whether much or not so much information is gained in a logic 
course. 

The problem with this approach is that we almost never have an ef-
fective procedure to find the shortest proof of a formula, even if we 
know that it is a logical truth. For that reason an approach like one 
based on intensional isomorphy may be favoured. 
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The Causal Approach to  
Information 
The Information You Have  
But Do Not Believe 

ON a warm and sunny day, somewhere in the middle of East Africa, a 
young hominide stares blinking up in the sky, using his hand as a sun-
shield. It is about Noon, some 5 million years ago, on a Wednesday. 
What caught the attention of our young friend is a couple of (what we 
would call) vultures who are flying in little circles above an area which 
is about 3 kilometers away.  

It is not the beauty of their elegant hovering in the air that is of in-
terest for the hominide, but whatever is the cause of their hovering 
over the savannah. It will be a wounded animal that could turn this 
lousy Wednesday into a Sunday. The hominide jumps up – albuminous 
nourishment – a good day to develop bipedalism...   

 
An old but still rather well-known creation myth starts with the phrase 
‘In the beginning there was the word’. Well, as we know today, words 
weren’t there from the beginning. In fact, it was only somewhere be-
tween 2 million and 100000 years ago that homo developed a phonetic 
language on Earth (alas we do not know of other planets where life 
and language might have evolved earlier, but definitely nowhere was it 
there ‘from the beginning’). But before that, the now extinct hominides 
in Africa have nevertheless been able to exploit a good that we nowa-
days see in a very intimate connection with words; they were able to 
exploit information.  

In the story above it is the information that a wounded animal is 
about 3 km away, pretty close to where the vultures are flying their lit-
tle circles. Their flights did carry this information. It was out there, 
ready for the hominide to pick it up and to exploit it for his purposes.  

 

3
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This is a view on information which is somewhat at odds with the 
philosophical tradition. How can information just be there? Even 
without a perceiver? Without a mind who categorizes the world and 
has interests relative to which and in virtue of which things can carry 
information.  

Of course, some traditional philosophers had even a hard time to ac-
cept that mountains, trees and the moon could exist independent of 
anyone watching them, so the worries of philosophers concerning mind 
independent information should maybe not bother us. But shouldn’t it 
then also be possible to have information but not believing it? And is 
not information intertwined with knowledge and knowledge with be-
lief? How can all that be systematized and still remain in the least plau-
sible?   



 

3|1 The Causal Theory of Information Flow 

Information [...] is an objective commodity, the sort of thing that can be de-
livered to, processed by, and transmitted from instruments, gauges, com-
puters, and neurons. It is something that can be in the optic array, on the 
printed page, carried by a temporal configuration of electrical pulses, and 
stored on a magnetic disk, and it exists there whether or not anyone appreci-
ates this fact or knows how to extract it. It is something that was in this world 
before we got here. It was, I submit, the raw material out of which minds 
were manufactured. (Dretske 1983, 223) 

Information is out there 
As becomes clear from this quote, Dretske understands information as 
a phenomenon of the world, which exists independently of its actual or 
potential use by any interpreter. The counterintuitiveness of this view 
to some is in Dretske’s words due to a ‘confusion of information with 
meaning’. Getting clear about the difference between meaning and in-
formation, will enable us to think about information as an objective 
commodity, something the generation, transmission, and reception of 
which does not require or in any way presuppose interpretive proc-
esses.   

Back to MCT 
Dretske bases his account on what was achieved by MCT already. As 
we’ve learned in chapter 1|2, MCT identifies the amount of informa-
tion associated with, or generated by, the occurrence of an event with 
the reduction of uncertainty, the elimination of possibilities, repre-
sented by that state of affairs. When an ensemble of possibilities is thus 
reduced, the amount of information associated with the result is a 
function of how many possibilities were eliminated in reaching that re-
sult. 

Amount vs. Content 
MCT gives us a general formula for computing the amount of infor-
mation generated by the reduction of n possibilities to 1. If s (the 
source) is some mechanism or process the result of which is the reduc-
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tion of n equally likely possibilities to 1, and we write ‘I(s)’ to denote 
the amount of information associated, or generated by, s, then 

I(s) = log n. 

This will give us the amount of information every signal informing us 
about s will carry. But it will not give us the informational content of 
any message, it doesn’t discriminate messages in this way. 

Average Amount 
How we can go on to find a formula for a source producing non-
equiprobable results, and how we can determine how much of the in-
formation generated at the source is received after transmission, should 
by now be clear, but we shall briefly recapitulate the most important 
points. (But will use Dretske’s notation. We think it will then be easier 
for you to find the things in Dretske’s book if you want to look things 
up one day. You will be familiar with everything anyway, if you note 
that H(A), the entropy of a finite scheme is here I(s), the average 
amount of information produced at a source, and I(sj) = 1/p(sj).) 

The formula for computing the average amount of information as-
sociated with a given source s, I(s) in short, is 
   

  Entropy of s 

 I(s) = Sp(sj) × I(sj) 

 
MCT, being concerned with engineering problems, deals with the aver-
age amount of information produced and transmitted. To set up a 
communication system it matters most that the system works for the 
things it is most likely to do. But this will not be of much importance 
to us, for we are now interested in the informational content carried by 
specific signals rather than with the amount of information produced 
and transmitted on average. 
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Noise and Equivocation  
We remember that noise can reduce the information received. I(s) is 
the amount of information generated at the source, I(r) the amount of 
information generated at the receiver, then Is(r) is the amount of in-
formation received about s at r: 

Is(r) = I(r) - noise 

Is(r) = I(s) - equivocation 

Whereas equivocation is the information lost in the communication 
process, and noise that information added to the transmitted message 
that is not about s. 

The equivocation a specific received signal carries, say r7, is com-
puted by selecting the various events that might occur at the receiver r, 
say r1...r8, and calculating their individual contributions to the average 
equivocation (we have done all that at the end of chapter 1|2, but re-
peat it here in Dretske’s notation, P(sj|r7) being the conditional probabil-
ity for sj given r7.): 
   

  Definition 3|1–1 

 E(r7) = -S P(sj|r7) × log P(sj|r7) 

 
The equivocation considers the likelihood that sj was sent/intended 
when r7 is received. The contribution of a certain state, s7, at the source 
s to the noise is calculated accordingly: 
 
  

  Definition 3|1–2 

 N(s7) = -S P(rj|s7) × log P(rj|s7) 
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The noise considers the likelihood that rj is received given that s7 is 
sent. These Definitions enable us to compute the equivocation and the 
noise associated with a specific instance of communication, rather than 
the noise and equivocation associated with a source and a receiver on 
average. 

Causation and Information 
If a theory of information treats information as an objective commod-
ity of our world, independent of minds and interpreting agents, a 
causal story seems to suggest itself. Smoke means fire, because fire 
causes smoke. It seems, as the transmission of information has been 
described, it is a process that depends on the causal interrelatedness of 
source and receiver. The way one gets a message from s to r is by initi-
ating a sequence of events at s that culminates in a corresponding se-
quence at r. In abstract terms, ‘the message is borne from s and r by a 
causal process which determines what happens at r in terms of what 
happens at s’ (Dretske 1981, 26). Thus information flow should cru-
cially reduce to something like this (the arrow indicating a causal con-
nection) 
 

s     r 
 
This view is correct insofar as the flow of information may and in most 
cases does depend on underlying causal processes, however, the infor-
mational relationships between s and r must be distinguished from the 
total system of causal relationships existing between these points. Cau-
sation is certainly not sufficient for information to flow, since different 
s-states can cause the same r-state. Consider the situations 2 and 3 
from figure 3|1–1: In both situations the solid arrow represents an ac-
tually obtaining causal connection between the source event s and the 
receiver event r. The dotted lines indicate counterfactual causal de-
pendencies that do not actually obtain. Thus, if in situation 1, s1 hap-
pened, r1 would be caused, etc. 

In situation 1 the different r events are causally connected with dis-
tinct s events. The equivocation of the signal r2 in situation 1 is zero, 
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since s2 is the only source event that causes r2. We can plug this into 
definition 1: 

E(r2) =   -[P(s2|r2) × log P(s2|r2) +  

  P(s1|r2) × log P(s1|r2) + 

  P(s3|r2) × log P(s3|r2) + 

  P(s4|r2) × log P(s4|r2)] 

The first term [P(s2|r2) × log P(s2|r2)] will be zero, since the probability 

Situation 1 
Sending Station     Receiving Station 
 
 s2       r2 
 
 s1       r1 
 
 s3       r3 
 
 s4       r4 
 
 

Situation 2 
Sending Station     Receiving Station 

 
 s2       r2 
 
 s1       r1 
 
 s3       r3 
 
 s4       r4 

Figure 3|1–1 
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for s2, given r2 is unity and the logarithm of 1 is 0. All other terms be-
neath will be zero for the conditional probability of si (with i ¹ 2) given 

r2 is zero. Assuming that the source events are all equally likely, a full 2 
bits of information from s gets through. 

Now, consider situation 2. Again s2 occurs at the source and brings 
about r2 at the receiver. Nevertheless, the amount of information 
transmitted is entirely different. Let’s calculate the equivocation of r2: 

E(r2) =  -[ P(s2|r2) × log P(s2|r2) +       -[ 1/3 ×  log 1|3 + 

  P(s1|r2) × log P(s1|r2) +  1/3  × log 1/3 + 

  P(s3|r2) × log P(s3|r2) +  1/3  × log 1/3 + 

  P(s4|r2) × log P(s4|r2) ]   0] ≈ 1.6 bits 

The logarithm of 1/3 is approximately -1.6, thus the equivocation of r2 

is approximately 1.6 bits. Therefore r2 carries only .4 bits of informa-
tion about s (2 bits of information were generated at s). In terms of 
what actually happens and which causal connections actually obtain, 
situation 1 and 2 cannot be distinguished. Thus the causal story alone 
(that s2 brought about r2) cannot tell us how much information is 
transmitted. The obtaining of a causal connection between source and 
receiver is obviously not a sufficient condition for information flow.  

From the second situation we can also learn a further lesson. If we 
concentrate on s4 in situation 2, we see that s4 at the source might bring 
about any of the remaining r-states. Let’s assume that by chance the 
obtaining of s4 will cause r1 to occur in 34 percent of the time, and r3 
and r4 in 33 percent of the time, respectively. Now, if s4 should occur in 
the communication system depicted in situation 2, any of the events at 
r (r1, r3, r4) will carry a full 2 bits of information about the source. In 
contrast to r2, the remaining r-states will tell us definitely what hap-
pened at s. Although these r-states are less predictable given what state 
s is in than r2, they carry more information. In short: the transmission 
of information between source and receiver does not depend on the 
presence of a deterministic process connecting them. Moreover, Dret-
ske argues that the obtaining of a causal connection between source 
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and receiver isn’t even necessary for information to flow. Consider 
situation 3 in Figure 3|1–2. 

A is causally connected with B and C, but there is no causal connec-
tion between B and C. Think of A as being the TV station in your vi-
cinity, B your TV set and C the TV set of Pavel Pippowicz, a Czech TV 
junky who lives on the other side of the planet with a TV set that re-
ceives only one channel (the one broadcasted by the TV station in your 
hometown). Form looking at your TV screen you learn what Pavel is 
looking at. There is an information channel between B and C, al-
though what happens on your TV screen is not caused by what hap-
pens at Pavel’s TV screen. There is a ‘ghost channel’ connecting the 
source and the receiver, but information gets through.  

We can put this even stronger. Assume that Pavel receives the pro-
gram of your hometown’s TV station with a delay of 30 second in rela-
tion to your TV due to the way the signal from A to C has to travel. 
Now you know what happens at Pavel’s TV already 30 seconds before 
it is going to happen. If we assume that there is no backwards causa-
tion, i.e. that a cause has always to precede (and might, at best, be si-
multaneous with) its effect in the temporal order of things, there can-
not be a causal relation between source (C) and receiver (B) in princi-

Situation 3 
 

Figure 3|1–2 

Time 

A 

C 

B 
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ple. Nevertheless, information flows. (We should add that some phi-
losophers think that there is backwards causation. See Phil Dowe’s 
work on causal loops, for example (Dowe manuscript). But the first 
argument would, of course, still hold.)  

Going Further 
MCT does not tell us what information is. It ignores, as we have seen 
already, all questions having to do with the content of signals, what 
specific information they carry, in order to describe how much infor-
mation they carry. But in doing so it is still interesting for our aim to 
understand what information is. Since by analyzing how much infor-
mation a signal carries, MCT imposes constraints on what information a 
signal can carry, constraints we can use to develop an account of how 
much information a signal does carry. Consider the following analogy 
from Dretske: we can clearly distinguish a signal from its content. Two 
short knocks is the signal, that the courier has arrived is the message. 
We can also distinguish a bucket from what it contains. This is why 
MCT does not tell us directly what information is. 

 Nevertheless, learning that a bucket can contain only 1 liter of any 
given liquid might inform us about what liquid the bucket carries, for 
it might be the case that the bucket will either carry one liter of beer or 
2 liters of lemonade. Given that we know of the one liter constraint, we 
prefer one of the hypotheses concerning the content. Accordingly: 
given the constraints set up by MCT we may prefer some fitting theory 
of informational content. This is the way in which MCT is still impor-
tant for a theory of information. 

Although Dretske goes on to analyze information as a semantic con-
cept, he warns us not to confuse information with meaning. Not every 
meaningful message carries information and even if it carries informa-
tion, this information doesn’t have to be identical with its meaning. 

‘I am drunk.’ is meaningful, independent of its truth. But this sen-
tence carries information only if what this sentence asserts is true.  

What information a signal carries is what it is capable of ‘telling’ us, telling 
us truly, about another state of affairs. Roughly speaking, information is 
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that commodity of yielding knowledge, and what information a signal car-
ries is what we can learn from it. (Dretske 1981, 44) 

‘False information’ or ‘misinformation’ are not kinds of information, 
according to this view. ‘Reliable Information’ is a redundant way of 
speaking. Additionally, ‘I am drunk’ means that the speaker is drunk, 
not that the speaker is drunk or lives on the moon. But the signal ‘I am 
drunk’ carries the information that the speaker is drunk or is on the 
moon, if it carries the information that the speaker is drunk.  

The information a signal carries might therefore well exceed its 
meaning. Consider the following case: You know that the only alcohol 
Simon possibly drinks (if ever) is Pilsener Urquell. Hearing him utter ‘I 
am drunk.’ you get the information that Simon must have been drink-
ing Pilsener Urquell (in fact, too much of it). That the signal, viz. 
Simon’s utterance, carries this information is not part of the meaning 
of his utterance. Even events with no conventional meaning at all 
might carry information; remember that smoke carries the information 
that there is fire. Therefore information is not meaning. The interesting 
question is not whether or not MCT is a theory of meaning or might 
support a theory of meaning; the question is whether it will help us 
with a theory of information. 

How we can exploit MCT 
As we have said already, MCT is interested in the average amount of 
information. The information produced by a particular event or the 
information carried by a particular signal about a source were not 
formulas of MCT, they were at best intermediate steps on the way to 
the formulas of MCT dealing with the average amounts. The formulas 
for the amount of information generated by a particular source (given 
non-equiprobable possibilities) and the formula for the information 
carried by a particular signal about some source, should by now be ob-
vious: 
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  Definition 3|1–3 

 The amount of information generated by a particular event sa =df 
I(sa) = log 1/p(sa) 

 
  

  Definition 3|1–4 

 The amount of information carried by a particular signal ra about sa 
=df Is(ra) = I(sa) – E(ra) 

 
whereas E(ra) is understood to be the equivocation associated with the 
particular signal ra.  

To apply definition 3|1–3 and 3|1–4 to concrete situations seems to 
involve an estimate of the alternative possibilities. But what are the al-
ternative possibilities to my ... cruising with my skateboard?, playing 
guitar?, eating lunch?, ... What are the associated probabilities of all 
these possibilities? What are the conditional possibilities of each of 
these given the configuration of photons reaching your visual receptors 
from a tv-screen showing me skateboarding? We should know all these 
if we want an absolute measure, a definite numerical figure for the 
amount of information generated by an event or carried by a signal.   

Although we cannot get such an absolute measure, we can use these 
formulas to make comparisons, in particular comparisons between the 
amount of information generated by the occurrence of an event and 
the amount of information a signal carries about that event.  

For informational content we want to know, not how much infor-
mation is generated by the occurrence of sa, not how much information 
ra carries about the occurrence of this event, but whether ra carries as 
much information about sa as is generated by its occurrence. In order 
to answer this question, one does not have to know the value of I(sa) or 
the value of Is(ra). Inspection of 

Is(ra) = I(sa) – E(ra) 
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shows that all one has to know is whether the equivocation is zero or 
not. In this case the signal carries as much information as is generated 
at the source.  

The Xerox Principle 
Given these considerations, we can formulate the famous Xerox-
Principle: 
  

  Definition 3|1–5 (Xerox Principle) 

 If A carries the information that B, and B carries the information that 
C, then A carries the information that C. 

 
This principle is indeed fundamental for any theory of information 
flow. For information to flow it presupposes that the equivocation will 
be zero. 

A Semantical Theory of Information 
Given these consideration we can now state two conditions, informa-
tion must satisfy: 
 
If a signal carries the information that s is F, it must be the case that 

(A) The signal carries as much information about s as would be gen-
erated by s’s being F. 

Furthermore, if a signal carries the information that s is F, it must be 
the case that 

(B)  s is F. 

(A) and (B) are both necessary but still not jointly sufficient. Suppose s 
is a red square. Suppose further that s’s being red generates 3 bits of 
information and so does s’s being square. Now a signal carrying the 
information that s is square carries as much information as is gener-
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ated by s’s being red and s is red, but the signal doesn’t carry this in-
formation. 

(C)  The quantity of information the signal carries about s is (or in-
cludes) that quantity generated by s’s being F (and not, say, by 
s’s being G). 

(A) is the communication condition, (B) and (C) are the semantic condi-
tions on information. 

Now we are in a position to formulate a definition of the informa-
tion contained in a signal that simultaneously satisfies these three con-
ditions. 
 

  Definition 3|1–6 (Informational Content) 

 A signal r carries the information that s is F = The conditional prob-
ability of s’s being F, given r (and k), is 1 (but given k alone, less than 
1). 

 
Whereas k stands for what the receiver already knows about the possi-
bilities that exist at the source. 

It makes little sense to speak of the informational content a signal 
carries. For if a signal carries the information that s is F, and s’s being 
F carries the information that s is G, then this same signal carries the 
information that s is G. 

In general, if there is a natural law to the effect that whenever s is F, 
t is G, then no signal can bear the message that s is F without also con-
veying the information that t is G. We can account for this nested in 
information by the following definition: 
 

  Definition 3|1–7 (Nested Information) 

 The information that t is G is nested in s’s being F = s’s being F car-
ries the information that t is G. 
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Such nesting can be analytical or nomical. This feature of information 
will help again to distinguish the concept of information sharply from 
meaning. ‘Joe is at home or at the office’ is not part of the meaning of 
‘Joe is at home’ but if a statement carries the information that Joe is at 
home, it thereby carries the information that Joe is either at home or at 
the office. 

Further Reading 
The entire chapter is based on  
 
��Fred Dretske, Knowledge and the Flow of Information, Cam-

bridge/Mass. (MIT Press) 1981. 
 
A brief summary is given in  

 
��Fred Dretske, ‘Précis of Knowledge and the Flow of Informa-

tion’, Behavioral and Brain Sciences 6 (1983), 55-63. 
 
For a critical discussion of Dretske’s view, as presented in Knowledge 
and the Flow of Information, you can find a lot in a Synthese volume 
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3|2 Information in Externalist Epistemology 

The JTB-theory of Knowledge 
Philosophers have for a long time thought that knowledge could be 
analyzed as being justified true belief. That is, if anyone or anything 
could be said to have the knowledge that p, the subject in question 
must have the belief that p, p must be the case and the subject should 
be justified in believing that p. Here is an example: 

Consider that I claim that somebody is standing  
outside the door. For my claim to knowledge to be true, I first of all 
have to believe that somebody is standing outside the door. For exam-
ple if I told a lie with my utterance ‘Somebody is standing outside the 
door’, I would not believe it myself that it is true what I say. This could 
not count as knowledge, even if it were in fact true by incidence that 
somebody is standing outside the door (thus even if I said, by inci-
dence, something true with my utterance).  

In addition to that, it must be true what I believe. If I believe that 
somebody is standing outside the door, but in fact there is no one, my 
belief does not count as knowledge. To believe a proposition is a neces-
sary condition for knowing the proposition, but not sufficient for 
knowing it. Thus for my belief to count as knowledge, somebody must 
really be standing outside the door; it must be true, what I believe.  

Now, imagine that I’m a nervous guy. I watched a horror movie at 
the cinemas and now back at home am still quite exhilarated. Lying in 
bed that evening, I can hardly sleep, believing all the time that some 
monster, murderer, or alien is standing behind the curtain, lying under 
my bed or hiding in the closet. In the course of this paranoia, I also 
come to believe (without having any evidence for it) that somebody is 
standing outside the door. By incidence, there is in fact somebody 
standing outside the door. It is Manuel, who came to visit me and chop 
me up because this chapter is way over deadline. Now I believe that 
somebody is standing outside the door and, in addition, this belief is 
true. But would that count as knowledge?  

Well, irrational people would probably say that my belief was 
knowledge. Because of my paranoia I acquired something like a sixth 
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sense which accounts for my knowledge that somebody was standing 
outside the door, I did mysteriously presage it, a case of clairvoyance. 
Although I erred about the alien under the bed, the monster in the 
closet and the murderer behind the curtain, I was right about the 
butcher behind the door, and that was knowledge. 

Most philosophers, on the other hand, do not share this intuition. 
For them my belief was just a guess, a hunch or inkling, but it was not 
knowledge. I had no reason to belief that somebody was standing out-
side the door, I had heard no noises and had no appointment made 
with Manuel so that I could assume him to be outside the door that 
time. Although I had a belief which was incidentally true, I could not 
know that Manuel was ambuscading me behind the door.  

Therefore most philosophers thought that knowledge must be more 
than mere true belief. In addition, the belief must be justified. I must 
have reasons for my belief that show that it isn’t a mere hunch what I 
believe. It’s only then that what I believe could count as knowledge. 
This is what is the standard account of knowledge (put forward al-
ready by Plato): 

 

  Definition 3|2–1 (JTB-Theory of Knowledge) 

 A subject s knows that p iff 
(i) s believes that p, 
(ii) p is true, 
(iii) s can justify his belief that 

 
What is expressed in Definition 3|2–1 is what we will call the justified-
belief-theory of knowledge, or the ‘JTB-theory of Knowledge’ for short. 

Is the JTB-theory of Knowledge False? 
In 1963 Paul Gettier attacked the JTB-theory of Knowledge with two 
counterexamples which spun off a number of attacks in the same vein. 
That is what gave the name for these kind of thought experiments, the 
so-called ‘Gettier-cases’. Gettier’s own counterexamples are not neces-
sarily convincing, which is why we will present a modified thought ex-
periment. 
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Imagine that Gerard visits for the first time his good friend Louis in 
his house in Versailles, France. Louis and Gerard both share an awk-
ward interest in the 17th century, which is why they both dress up like 
17th century French kings when they meet. Having arrived in Ver-
sailles, Gerard enters the house of his good friend Louis, let in by 
Louis’ manservant. As he enters the somewhat gloomy hall, he spots 
another person coming towards him, wearing a wig and an odd look-
ing garment just like him, and Gerard comes to believe that Louis is 
standing about 30ft. from him.  

Louis is in fact standing exactly 30ft. in front of Gerard but, unbe-
knownst to Gerard, Louis is standing behind a wall that Gerard is 
walking towards to. At Gerard’s side of the wall hangs a huge mirror 
reflecting Gerard’s own funny appearance back to himself, which is 
what he mistook for being the approaching Louis. (We can assume 
that on Louis’ side of the wall is a mirror as well and that Louis is 
brushing up his make-up again, if you wonder why Louis should be 
standing behind a wall.) 

This seems to be a case in which Gerard has a true belief, viz. that 
Louis is standing about 30ft. in front of him, which is, moreover, a jus-
tified belief: Gerard perceives the shape of a person which looks just 
like Louis quite often looks, Gerard is in Louis’ own house, and he has 
an appointment with Louis at that time, all pretty good reasons to be-
lieve that it is Louis who is standing 30ft. in front of him. But although 
this justifies Gerard’s belief, we would not say that Gerard knows that 
Louis is standing 30ft. in front of him. The perceiving which justifies 
his belief is in fact not informing him of the whereabouts of Louis. It is 
his own reflection that he mistakes for Louis.  

Being a justified, true belief thus seems not to be enough for knowl-
edge. Philosophers have then tried to find additional constraints, con-
straints for justification, which could rule out beliefs like Gerard’s as 
being justified. However, this enterprise isn’t that convincing to some, 
since if justification is something that you demand from the epistemic 
subject, then your demands should not overstrain the abilities of this 
subject. But what else could Gerard possibly have done more to justify 
his belief that Louis is standing 30ft. in front of him? 
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Dretske’s New Approach 
Dretske’s information-theoretic account of knowledge tries to do 
without notions like justification, evidence, or certainty altogether. 
Since Dretske is convinced that the Gettier cases have made obvious 
the shortcomings of the JTB-theory, an epistemology must be devel-
oped which does not rely on these concepts.  

To develop such a ‘naturalized’ epistemology is certainly an ambi-
tious project. The idea is, in Dretske’s words, ‘to bake a mental cake 
using only physical yeast and flour’ (Dretske 1981, xi). Thus it is par-
donable that Dretske limits his project to only one sort of knowledge, 
so-called ‘de re perceptual knowledge’. This is the knowledge involved 
if a epistemic subject perceptually knows of some a that it is F.   

To clarify this notion somewhat, imagine that you are walking down 
Beverly Hills on a shopping tour and in front of you walks Edward 
Van Halen. You do not recognize him as being Eddie Van Halen, but 
notice by looking at the person walking in front of you that this guy 
has quite long dark hair. You thereby come perceptually to know of 
Eddie Van Halen that he has long dark hair.  

But, nevertheless, you might not de dicto know that Eddie Van 
Halen has dark hair. You might have failed to notice that you were 
walking behind Eddie Van Halen and might have been raised without 
being exposed to MTV. Thus if somebody asks you of which color the 
hair of Eddie Van Halen is you might not be able to answer correctly. 
Nevertheless you know de re of Eddie Van Halen that he has dark hair, 
for it was Eddie Van Halen who walked down Beverly Hills in front of 
you and you know from seeing it that the person in front of you has 
dark hair.  

The limitation to perceptual knowledge is simply the limitation to 
knowledge we can achieve by looking at things, touching, smelling, or 
hearing them. There might be other ways of coming to know of some-
thing, for example ways of coming to know of abstract objects and 
their properties which might not be reducible to perception, but this we 
also will blend out, following Dretske. 

Now, Dretske argues for an analysis of knowledge which is based on 
the information theory he developed subsequent to Shannon and 
Weaver. The basic analysis is the following equation: 
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  Definition 3|2–2  

 An epistemic subject s knows that a is F = s’s belief that a is F is 
caused (or causally sustained) by the information that a is F. 

 
From the preceding chapter we remember what conditions must hold 
for a signal to carry the information that a is F: 
 

(A) The signal carries as much information about a as would be gen-
erated by a’s being F. 

(B) a is F. 

(C) The quantity of information the signal carries about a is (or in-
cludes) that quantity generated by a’s being F (and not, say, by 
a’s being G). 

We halve also learned that Dretske takes the following Definition of 
informational content to satisfy these conditions: 
 

 
  

Definition 3|2–3  

 Informational content: A signal r carries the information that a is F = 
The conditional probability of a’s being F, given r (and k), is 1 (but 
given k alone, less than 1). 

 
We remember that k was the abbreviation for the background knowl-
edge the epistemic subject already has about the source. One could 
wonder if this doesn’t render Dretske’s analysis viciously circular. If 
knowledge is analyzed on the right hand side of Definition 3|2–2 with 
recourse to the information that caused a belief, and information is 
analyzed in Definition 3|2–3 with recourse to what the epistemic sub-
ject already knows about the source, one could worry that this covert 
reference to knowledge in the right hand side of Definition 3|2–2 keeps 
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the definition from telling us what knowledge is. We have to know al-
ready what knowledge is to even apply the definition. 

Dretske argues that this is only an apparent vicious circularity. In 
fact his definition is intended to have a recursive character, which saves 
the definition from becoming viciously circular.  

Note that whether an epistemic subject learns that a is F may depend 
on what else he knows about the source, but it is not said to depend on 
his already knowing that a is F. Thus the definition is at least not bla-
tantly circular in that it would simply translate into 
 

 
  

Definition 3|2–4  

 s knows that a is F = s knows that a is F. 

 
But still Definition 3|2–2 is circular, for the right hand side makes cov-
ert reference to the definiendum, viz. to knowledge. But not every cir-
cularity is a vicious one. Definitions which are recursive might be cir-
cular, but are not viciously so, if the recursive application of the defini-
tion will in all cases terminate. To get clear on this rather important 
point, we shall look at an example: 

Consider a three-cards monte game. Exactly one ace of shades is 
known to be among the three cards on the table. You have already in-
vestigated the leftmost of the cards and found it not to be the ace of 
shades. Given what you know, there are only two possibilities left. 
When you turn the middle card over and find that it, as well, isn’t the 
ace of shades, this observation carries the information that the ace of 
shades is the rightmost card. The observation carries this information, 
because of what you already know about the cards. If we are interested 
in whether you really know that the leftmost card isn’t the ace of 
shades, we can simply reapply our definition to this different piece of 
knowledge. When you turned over the leftmost card and observed the 
front of the card, did this observation really carry the information that 
the leftmost card isn’t the ace of shades? If the observation did carry 
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the information that the leftmost card isn’t the ace of shade and if this 
information caused or causally sustained your belief that the leftmost 
card isn’t the ace of shades, then you know that the leftmost card isn’t 
the ace of shades. If this piece of information did, again, depend on 
any background knowledge about the source, we can continue reapply-
ing our formula to this collateral knowledge. This recursive application 
terminates when we eventually reach the point where the information 
you received does not depend on any prior knowledge about the 
source. The fact that the recursive application will eventually terminate 
enables Dretske’s definition to avoid circularity.  

What Beliefs are and How They Can be Caused by Information 
But how does something as abstract as information cause anything – 
and beliefs in particular? Let’s first see how information could cause 
anything.  

Suppose that a spy is waiting for a courier to arrive and they agreed 
on the secret sign that the courier will knock three times quickly at the 
door, followed by a pause and another three quick knocks. This se-
quence of knocks then carries the information that the courier has ar-
rived. The signal r (the sequence of knocks) carries the information 
that s is F (that the courier has arrived) in virtue of r’s being F’ (the se-
quence of knocks having a certain temporal pattern, but not in virtue 
of having a certain pitch or in virtue of occurring at a certain time of 
the day).  

When a signal r (the sequence of knocks) carries the information 
that s is F (that the courier arrived) in virtue of having the property F’ 
(this temporal pattern), then and only then does the information that s 
is F (that the courier arrived) cause simply whatever the signal’s being 
F’ causes. 

Beliefs, on the other hand, are tokens of representational types, to-
kens of structures that can represent or misrepresent how things stand. 
In a way, beliefs are what Dretske calls tokens of ‘semantic structures’, 
they are interpretations of the incoming and information-bearing sig-
nals of the system. These tokens can be triggered by signals that carry 
information. Beliefs can also be triggered by other beliefs in the inter-
nal proceedings of some informational system. If a signal that carries 
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the information that a is F causes by virtue of being F’ a token of the 
structure which is selectively sensitive to the F-ness of things to occur, 
information will produce knowledge. 

Counterexamples to Dretske’s Analysis of Knowledge 
As nothing remains undisputed in philosophy, some philosophers have 
developed thought experiments to falsify Dretske’s theory of knowl-
edge. We shall discuss three of them in turn, to see how Dretske’s the-
ory works. As it turns out all of them seem to fail for very similar rea-
sons, which will help us to understand Dretske’s theory a little better as 
well. Let’s first look at the three little stories: 

(i) A machine is equipped with a red indicator light which shines iff the ma-
chine becomes too hot. K walks by the machine and observes that the red 
light shines, but doesn’t know what that means. He asks H, who is usually 
reliable and whom K trusts. H doesn’t know either what the red light is 
good for, but announces with the voice of authority that the red light means 
that the machine is too hot. K comes to believe that the machine is too hot. 
Is this knowledge? Intuition says no. 

(ii) S visits a marvelous planetarium which is in fact so good that one thinks 
one would directly look at the evening sky. In parts of the ceiling of the 
planetarium are windows through which one can actually see the evening 
sky and it is difficult to tell the difference of whether one is looking at the 
ceiling or looking through one of the windows at the actual sky. S falls 
asleep in the planetarium, wakes up after a while without recollection of 
where he is. He sees a star through one of the windows and forms the belief 
that he’s looking at a star. Is this knowledge? Intuition says no. 

(iii) Again, eight employees must be reduced to one. H is the one selected. 
The employees have chosen to inform the boss not via the written word, but 
via the color of the envelope passed to the boss. Each employee was assigned 
a color before the selection process, H was assigned pink. Thus a pink enve-
lope is passed to the boss. Holding the envelope in his hands, the boss forms 
the belief that H is the one selected, not because the boss would know of the 
convention adopted by his employees, this he doesn’t know, but because of 
the fact that the pink color of the envelope reminds him of H’s hideous pink 
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ties (which, on the other hand played absolutely no role in the assignment of 
colors among the employees).  Is this knowledge? Intuition says no. 

Of course, all purported counterexamples assume that Dretske’s theory 
would in all cases have to say that it was knowledge and thus be in 
conflict with our intuitions. In fact Dretske’s theory does not say that. 

Consider case (i). K comes to believe that the machine is too hot. 
This belief is obviously true, but is it knowledge? Well, K’s believe is 
caused by listening to H’s explanation and the observation of the red 
light. Was it information about the source that caused the belief that 
the machine is too hot? The only signal that could have carried the in-
formation that the machine is too hot is the red light. Did K’s observa-
tion of the red light carry the information that the machine is too hot?  

Alone it obviously didn’t. The observation of the red light did not 
reduce the conditional probability of the machine being too hot to 1, 
given what else K knew about the machine. He didn’t know what the 
red light indicated, that’s why he asked H for help. What H said didn’t 
carry the information that the machine is too hot either. In fact it did-
n’t carry any information (for H made it all up and only got it right by 
incident). Thus the belief of K, that the red light indicates that the ma-
chine is too hot, which was caused by what H said, was not caused by 
information and thus doesn’t count as knowledge. Therefore, K does-
n’t know that the machine is too hot. 

Consider case (ii). This one is related, but a bit trickier. There are 
relevant alternatives that S overlooks when he comes to believe that he 
is looking at a star, viz. the relevant alternative that he is in fact mis-
taking a simulated point of light from the planetarium projector for a 
star. S overlooks this relevant alternative, because he has forgotten 
that he actually is in a planetarium. That he is not looking at an on-
coming train in a tunnel or a simulated point of light at the ceiling of a 
marvelous planetarium is his background belief that was probably 
caused by his observation that the surrounding area he is looking at is 
dark and somehow above him and resembles the night sky. However, 
these background beliefs of S which excluded possibilities for him as 
apparently irrelevant do not count as knowledge. They are not caused 
or sustained by the information that what S is looking at is the plain 
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night sky, for S is not looking at the plain night sky. S is looking 
through a window of a marvelous planetarium which he mistakes to be 
the night sky. Thus the possibilities S excluded were not excluded by 
knowledge. Therefore the observation that he makes of the star does 
not carry the information for S that it is a star S is looking at. Again, 
the signal doesn’t raise the conditional probability of a’s being F, given 
r (and k), to 1, the signal doesn’t have the informational content 
needed to produce knowledge. 

Consider case (iii). This one seems to be the trickiest. Above we said 
that when a signal r carries the information that s is F in virtue of hav-
ing the property F’, then and only then does the information that s is F 
cause simply whatever the signal’s being F’ causes. The boss believes 
that the employee who was selected is H. This belief is caused by the 
pinkness of the envelope. Now, when a signal r (the envelope) carries 
the information that s is F (that H was selected) in virtue of having the 
property F’ (being pink), then and only then does the information that 
s is F (that H was selected) cause simply whatever the signal’s being F’ 
causes. The signal’s being F’ is what causes the belief of the boss, thus 
it should be knowledge, shouldn’t it? 

Again, this objection overlooks that if the receiver has to rely on 
background beliefs to get at the information carried by r, it is of crucial 
importance to see whether or not these beliefs qualify as knowledge. 
This is constitutive for the informational content the signal has. To find 
out whether the boss’ background beliefs were knowledge is done by 
reapplying Definition 3|2–2, that’s the recursive character of Dretske’s 
theory of knowledge. The signal in our example doesn’t have the in-
formational content that a is F (that H was selected) alone since the 
signal as such doesn’t raise the conditional probability for a’s being F 
given r and k to 1. In fact, the informational content of r, given k, is 
1/8. Whatever the background beliefs are which cause together with the 
pinkness of the envelope the belief of the boss, these beliefs are not 
knowledge, as is clear from the way we presented the story.  

But – one might object – didn’t Dretske say that whatever is caused 
by r’s being F’ is caused by the information r’s being F’ carries? Thus, 
does it really matter whether or not the boss’ belief was caused in con-
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nection with any background beliefs (and thus irrelevant whether or 
not they count as knowledge)?  

There certainly is a sloppiness in the formulation of externalism that 
makes people think so. Externalism does not mean that it is independ-
ent of the receiver what informational content a signal has. In fact, the 
knowledge of the receiver about the source is part of the definition of 
what the informational content of a signal is. In Dretske’s own words: 
‘What one learns or can learn, from a signal (event, condition, or state 
of affairs), and hence the information carried by that signal, depends in 
part on what one already knows about the alternative possibilities’ 
(Dretske 1981, 43). To overlook this is to overemphasize externalism 
beyond reasonableness. If this as well as the recursive character of 
Definition 3|2–2 is recognized, cases (i)-(iii) are not necessarily a threat 
to Dretske’s theory.  

Further Reading 
There is quite a number of critical studies of Dretske’s account of 
knowlede, most of which argue that Dretske will need to introduce 
some notion of justification into the account. Examples for this are 
 
�� J. Christopher Maloney, ‘Dretske on Knowledge and Informa-

tion’, Analysis 43 (1983), 25-28.  
 

and 
 

��William Edward Morris, ‘Knowledge and the Regularity Theory 
of Information’, Synthese 82 (1990), 375-398. 

 
A defense of Dretske’s theory against some of his critics (including a 
more detailed discussion of the purported counterexamples we dis-
cussed in this chapter) is provided by 
 
��Anthony Doyle, ‘Is Knowledge Information-Produced Belief? A 

Defense of Dretske Against some Critics’, The Southern Journal 
of Philosophy XXIII (1985), 33-46. 



 

3|3 Perception, Belief, and the  
Problem of Misrepresentation 

Perception 
A loud noise is coming from the sky. Manuel, my cat, and I all look up 
to see where it’s coming from. All three of us see a Boeing 747 over our 
heads, ready to land on the nearby airport. Although we all see the 
Boeing 747, only Manuel knows from the information we got from see-
ing it, that it was a Boeing 747. My cat knows from seeing it that it was 
a white, noisy, annoying thing, I, however, form the belief that it was 
an Airbus. My belief seems to be a misrepresentation of what I saw. 
We have already discussed what Dretske’s story behind all this is, but 
will have a closer look at it now. We will learn that the phenomenon of 
misrepresentation is not yet well understood in informational seman-
tics. 

Telling the little story above, I said that my cat and Manuel both 
saw the Boeing 747 over our heads. Perception is often understood as a 
form of cognitve activity that recognizes, classifies and distinguishes 
things. Certainly the cat did not classify the Boeing that it saw as a 
Boeing 747, only Manuel did. Dretske distinguishes two ways of 
decsribing our perceptions (Dretske 1969, 1989), one is extensional, the 
other intensional.  

Extensionally speaking (or non-epistemically speaking), we take no-
tice of the experiences we have when we see, hear or taste things. At 
this stage of our processing of sensory information, the internal state 
Manuel, the cat, and I are in is relevantly similar. It does code informa-
tion, viz. information about the source of the noise coming from 
above, but it codes it in analog form. In this stage none of us knows yet 
that it is a Boeing 747, intensionally speaking. 

In the extensional mode we describe what objects we are getting in-
formation about – this was more or less the same for Manuel, the cat , 
and me. The difference comes in when we describe what information 
(about the plane) each of us has succeeded in cognitively processing 
(that it was a Boeing 747).  
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Our experience of the world is rich in information in a way that our conse-
quent beliefs (if any) are not. A normal child of two can see as well as I can 
(probably better): The child’s experience of the world is (I rashly conjecture) 
as rich and variegated as that of the most knowledgeable adult. What is 
lacking is a capacity to explot these experiences in the generation of reliable 
beliefs (knowledge) about what the child sees. I, my daughter, and my dog 
can all see the daisy. I see it as a daisy. My daughter sees it simply as a 
flower. And who knows about my dog? (Dretske 1983, 231) 

Of course, what makes all the difference between Manuel, my cat, and 
me is not the sensory representation, which is, arguably, relevantly 
similar, but what we do with it. Cognitive processing of this informa-
tion means throwing information away. Perception gives us the rich 
sensory representation, yet unstructered, in analog form. Now, when 
Manuel isolates one component of this information, that it is a Boeing 
747, he digitalizes the analog information he has. He takes one piece of 
information away from the richer matrix of the sensory representation 
and features it to the exclusion of all these. We have to delete informa-
tion in order to arrive at knowledge or recognition. Acquiring concepts 
is learning what information has to be thrown away and what has to 
be extracted from the sensory representations. “Until that happens, we 
can see but we do not believe” (Dretske 1983, 233). 

Belief 
As we have said already in the preceeding chapter, beliefs are struc-
tures with a content. Structures with content are something that we are 
also already familar with, namely information-bearing structures with 
an informational content. However, beliefs and information-bearing 
structures are quite different things. 

First of all, the informational content of an information-bearing 
structure is too unspecific to qualify as the content of a belief. We have 
already seen that the information a structure carries includes every-
thing which is nomically or analytically nested in whatever information 
it carries. Thus a structure that carries the information that there is wa-
ter in the glass, also carries the information that there is H2O in the 
glass, but the belief that there is water in the glass does not automati-
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cally have as its content that there is H2O in the glass. I can believe that 
there is water in the glass without also believeing that there is H2O in 
the glass, e.g. if I am ignorant of the fact that water is H2O.  

Secondly, informational content is factive. Nothing can have the in-
formational content that s is F unless s is F. Unfortunately, beliefs are 
not like that. Beliefs can misrepresent things. This can be seen in the 
story considered above. I misclassified the object I saw as an Airbus, 
when in fact it was a Boeing 747. 

Semantic Content 
To solve the first problem, Dretske distinguishes between two ways of 
representing facts in the manner we have mentioned above already: 
analog and digital representation.  

 

 
  

Definition 3|3–1  

 S carries the information that t is F in digital form iff 

(i) S carries the information that t is F, 

and 

(ii) there is no other piece of information, t is K, which is such 
that the information that t is F is nested in t’s being K, but not 
vice versa. 

 
This gives us the most specific information that a structure carries 
about t.  

As we have seen, carrying information is occupying an intentional 
state. Dretske’s idea is to distinguish different orders of intentionality 
and different corresponding kinds of content and then to specify beliefs 
as these structures which have a high order of intentionality. The dif-
ferent orders of intentionality are defined as being closed to different 
degrees under nesting: 
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Definition 3|3–2  

 A signal S has informational content (content exhibiting the first 
order of intentionality) iff it is consistent to assume that it has the 
content that t is F, that all F’s are G’s and that S does not have the 
content that t is G. 

 

 
  

Definition 3|3–3  

 A signal S has content exhibiting the second order of intentionality 
iff it is consistent to assume that it has the content that t is F, that it 
is a natural law that all F’s are G’s and that S does not have the con-
tent that t is G. 

 

 
  

Definition 3|3–4  

 A signal S has semantic content (exhibiting the third order of inten-
tionality) iff it is consistent to assume that it has the content that t is 
F, that it is analytically necessary that all F’s are G’s and that S does 
not have the content that t is G. 

 
The semantic content of a signal t is then identified with the informa-
tion t carries in digital form (Dretske 1981, 177.): 

 

 
  

Definition 3|3–5  

 A structure S has the fact that t is F as its semantic content =df 

(a) S carries the information that t is F and 

(b) S carries no other piece of information, r is G, which is such 
that the information that t is F is nested (nomically or analyti-



PERCEPTION, BELIEF, AND THE PROBLEM OF MISREPRESENTATION 139 

 

cally) in r’s being F. 

 
But if semantic structures are so defined, there is clearly no room for 
error. If the semantic content that s is F requires s to be F, no belief can 
have semantic content unless it is true.  

Misrepresentation 
But, unfortunately, some of our beliefs are false, so belief can’t be se-
mantic structures. Although false beliefs have a determinate content 
(e.g. that there is a cow in front of me), they misrepresent how things 
stand (it’s a horse, in fact). But how can we explain this in informa-
tional semantics? Informational semantics holds that – as we have seen 
– representation is a kind of causation or correlation, at least in case of 
perceptual beliefs. But how can a representation be caused by or be 
correlated with a state of affairs that does not obtain, i.e. can there be 
belief without knowledge?  

In the preceeding chapter we hinted already at one way towards a 
solution. If we can make a type/token distinction, it seems possible to 
explain how a sign can have a certain determinate content and yet be 
false. What we have to assure is that it is representation types which 
are responsible for a sign’s content independent of the environmental 
facts that determine the truth or falsity of the token sign. Because the 
representation is of such and such type it represents that a cow is in 
front of me, because of how things are in my surroundings it is false. 
Unfortunately things are not that easy. 

The Disjunction Problem 
Consider state type S. S is a state I can be in. What we aim to say is 
that S is correlated with the external state that c is B, which is short-
hand for the external state that there is a cow in front of me. Now, for 
some reason (bad lighting conditions, forgot glasses, too much Pilsener 
Urquell, etc.) a token of S is caused by c’s being D (say, a horse which 
is in front of me, a small brown one with a cow-like attitude towards 
grass and its surroundings). What we hope to say is that S is a misrep-
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resentation now, because S as a type represents that c is B (that there is 
a cow).  

But how can we say that? If the fact that c is D (the horse) can cause 
an S-token what reasons did we have in the first place to isolate tokens 
of the type c is B (cow) as privileged causal influences on my state S?  

The most reliable correlation does not seem to obtain between c’s 
being B and S nor between c’s being D and S, but between S and (c is B 
Ú c is D). But, and this is the problem, if the latter is the most reliable 

correlation, this should rather be the privileged one we should isolate 
as being the content of S! Now, S as a type represents that c is B or c is 
D. A token of S caused by c’s being D is not an error anymore; we 
failed to explain how misrepresentations can occur.  

It is difficult to solve this problem and some have argued that it is 
even unsolvable in principle for informational semantics. We will 
briefly review some of the possible options. 

Situation One = Learning Period 
One way philosophers have searched for a solution is to make a dis-
tinction between a learning period in which an organism is learning a 
concept and the period afterwards. This solution belongs to a class of 
solutions that try to distinguish two types of situations, viz. those 
situations (Situation One) in which the signal type gets its content 
(where the reliable correlation must be situated) and the situations 
(Situation Two) in which misrepresentation can occurr. The particular 
solution we are looking at now identifies the Situation One with the 
learning period. 

During the learning period a representation type S acquires its con-
tent (by being caused by c’s being B, say), but after the learning period 
is over, tokens of the type which are perhaps differently caused (by c’s 
being D, say) do not contribute anymore to the content of the type. A 
token of type S which is then caused by c’s being D is a misrepresenta-
tion, due to the correlation that obtained in the learning period be-
tween S and c’s being B. This is Dretske’s original approach, but it is 
doubtfull whether it really can solve the problem.  
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For the approach to work, Dretske has to enforce a strict distinction 
between what happens in and what happens after the learning period. 
The correlations that the learning period establishes determine what S 
represents, a teacher or reinforcement mechanism will have to ensure 
that the correlation so established is the right one, i.e. the tokens of S 
must be correlated with cs’ being B. But not only do the actually ob-
taining correlations determine this, also the possibly obtaining correla-
tions will matter (all cows shall fall under ‘cow’ not only the ones met 
during the learning period).  

As Jerry Fodor has argued it is first of all unclear whether the strict 
distinction between learning period and the time after is principled in 
any way, it seems certainly not as principled as the distinction between 
truth and falsity. But, and that is more damaging to Dretske’s account, 
the fix doesn’t even seem to work. Consider my acquisition of R tokens 
in S circumstances during the training period. The concept I try to ac-
quire is COW and during the learning period all works very well, 
‘cow’-tokenings are all and only elicited by cows. Now the learning pe-
riod comes to an official end (I receive a document saying ‘Daniel has 
successfully acquired the concept COW. Congratulations! Yours, the 
reinforcement mechanism.’).  

Now I am free to run around and misapply the concept. The first 
thing I meet after heavy celebration of my fresh acquired concept (pre-
sumably being a bit tipsy from too much Pilsener Urquell), is a horse (a 
token of T, we will say) which is in front of me, a small brown one with 
a cow-like attitude towards grass and its surroundings. I produce a 
‘cow’-token in causal consequence. If all would work well, this horse-
elicited ‘cow’-token should now be wild and have the false content that 
there is a cow in front of me. But it is not clear how it could have this, 
Dretske’s solution seems to ignore relevant counterfactuals. 

What if a T-token had occurred during the training period? Well, 
presumably it would have elicited a tokening of R, just as it did that 
evening after the period was over. But then, of course, this is a counter-
factual relevant for the learning period. If T is a situation that, if it had 
occurred during training, would have been sufficient for R, the correla-
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tion established is not one between R and S, but really between R and 
the disjunction (T Ú S).  

But then we have the old disjunction problem again. If the training 
really established a correlation between (T Ú S), the content of R really 

is (T Ú S). So the tokening of ‘cow’ caused by the little horse is no wild 

tokening after all, and therefore it is not false. A token with the con-
tent (COW Ú SMALL HORSE) is true when there is a small horse.  

A possible reply for Dretske could be to accuse Fodor of having 
overlooked relevant counterfactuals himself, viz. that my teacher 
would have disapproved of T-elicited R-responses if they had occurred 
during the learning period. But such a reply might undermine the 
whole enterprise to explain the content of a symbol or a structure in 
terms of correlations between these structures and the world, rather 
than between structures and the intentions of teachers. We will not 
pursue the matter here, but turn to an alternative way to solution from 
the same class of solutions.  

Situation One = Normal Conditions 
The basic intuition behind this class of solutions is that if misrepresen-
tation occurs, something must have gone wrong. In normal situations 
‘cow’ would be triggered by cows, not by small horses. It is the abnor-
mality of the situation (it is dark, etc.) that is responsible for my mis-
take. If we can tell the normal situations apart from the abnormal 
ones, we could get the correlation problem fixed. If the correlation oc-
currs in normal situations, then the correlation establishes semantic 
content, if not, then the tokenings elicited in the situation are free to be 
false. OK, but what is a normal situation? Doesn’t this talk bring back 
the intentionality that naturalism tries to avoid?  

The basic form of teleological versions of informational semantics is as fol-
lows: some causal chains resulting in tokens of a representation type are 
normal, and some are wild. Only normal causal chains contribute to the con-
tent of the representation type. What makes a causal chain wild is either the 
breakdown of the proper functioning of the organism’s perceptual and psy-
chological mechanisms, or else some environmental abnormality. A cow 
does not cause you to think ‘horse’ without something going wrong some-
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where, and when something goes wrong somewhere, that causal chain is ir-
relevant to the representation type’s content. (Godfrey-Smith 1989, 541.) 

Of course, the talk of ‘proper functions’ and ‘teleology’ is assumed to 
be naturalized by reference to evolutionary theory. The proper func-
tion of a mechanism of some organism is what the mechanism was se-
lected for (the mechanism’s contribution to the (still) being there of the 
organism). It should be noted, however, that the proper functions in 
question are functions of the belief forming mechanisms rather than 
the beliefs themselves, who do not seem to have proper functions. 
Anyway, the idea is this (following the exposition given by Fodor 1990, 
70): 

If a frog sticks out his tongue at a fly, there is a state S of the frog’s 
nervous system such that 

(i) S is reliably caused by flies in normal circumstances; 

(ii) S is the normal cause of an ecologically appropriate, fly-directed 
response; 

(iii) evolution bestowed S on frogs because (i) and (ii) are true of it. 

The state S normally resonates to flies, and it is because of that, that 
the frog has this device, viz. a mechanism that brings about S states (it 
is the proper function of the mechanism producing S). Finally, that S 
means FLY in normal as well as in abnormal circumstances (in which 
it is not flies but something else to which the S-tokens are resonating) 
is only because of all that. 

There are some doubts, however, that this proposal is going to help 
out. One reason is that Mother Nature doesn’t really care whether the 
frog has FLY or (FLY Ú FAKE FLY PUT INTO MY VISUAL 

FIELD BY ANNOYING BIOLOGIST) represented as long as, nor-
mally, enough flies are eaten. Moreover, Mother Nature does not dis-
criminate between reliably equivalent contents. ‘Darwin cares how 
many flies you eat but not what description you eat them under.’ (Fo-
dor 1990, 73.). If so, it might be doubted that evolutionary teleology 
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can reconstruct the intentionality of mentals states (intensional con-
texts, in particular). 

Another problem is the problem of frequent false alarm. Frequent 
false alarm can be a good thing for a beast. Rats – for example – tend 
to generalize hastily when it comes to poisonous food, scorpions strike 
for mechanical waves in the sand for prey. In all these cases it is nor-
mal that the sign is poorly correlated with its truth condition (normally 
there is no prey in the sand, normally donuts are not poisonous for rats 
although the one yesterday was followed by a bad stomach right after, 
etc.): 

[Teleological approaches] would be troubled if there were cases where we 
aim to take a representation to indicate a certain environmental state, when 
it is not just unlikely now that the state obtains, given the presence of the 
sign, but when it is ecologically normal that the state is unlikely to obtain, 
given the presence of the sign. There is trouble if it can be normal that a sign 
is poorly correlated with its truth condition. (Godfrey-Smith 1989, 547.) 

We will not go into this. Nevertheless, we shall briefly look at one 
more option before we close the chapter. 

Asymmetric Dependence 
Jerry Fodor has developed a treatement of error in informational se-
mantics which involves no appeal to teleology. As the teleosemantic 
account and Dretske’s own approach, Fodor regards some possible 
tokens of a representation type as wild or abnormal. Such tokens are 
not contributing to the content of the type and therefore are misrepre-
sentations. Now, it seems that the little horse caused the ‘cow’-
tokening in me, because ‘cow’-tokenings are caused by cows and the 
little horse looked pretty much like a cow at that moment. If there had 
not been any cows ever, there had been no ‘cow’-token the horse could 
have caused. That horses can cause me to say ‘cow’ depends on the fact 
that cows cause me to say ‘cow’, but not on the fact that horses do. 
This seems to be an asymmetrical dependence between the normal and 
the abnormal causes of the tokenings. What makes the dependence 
asymmetrical is, of course, causality. The ‘cow’-state was shaped by 
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cows, not by little horse, and therefore means COW. We will not dis-
cuss Fodor’s theory here (you can find a discussion in the paper by 
Godfrey-Smith in the Further Reading-section). But what is empha-
sized by Fodor, and maybe of some interest for the very last chapter of 
the book, is that although a lot of information is around in the world, 
there does not have to be that much meaning around as well. Informa-
tion needs causal covariance, meaning seems to involve something 
more, namely asymmetric dependence. 

Further Reading 
This chapter is again based on Dretske’s Knowledge and the Flow of In-
formation. For the problem of misrepresentation in informational se-
mantics we refer the interested reader to 
 
�� Peter Godfrey-Smith, ‘Misinformation’, in: Canadian Journal of 

Philosophy 19 (1989), 533-550. 
 
�� Jerry Fodor, A Theory of Content and Other Essays, Cam-

bridge./Mass. (MIT Press) 1992. 
 
For teleosemantics (‘proper function’, ‘normal situation’) in particular, 
we suggest 
 
��Ruth Millikan, Language, Thought, and Other Biological Catego-

ries. New Foundations for Realism, Cambridge/Mass. (MIT Press) 
1984.  

 
��David Papineau, Philosophical Naturalism, Oxford (Blackwell) 

1993. 



 



 

Situation Theory and Information 
Bringing Ontology back into  
Information Theory 

ONE of the main ideas in the last chapter was that information is out 
there in the world. Being investigative does not mean creating facts, 
but exploring what the world (reality) is like. Information is not gener-
ated then, but found. The circumstances investigated already contain 
the information that is to be brought to light, or, in as much as it is just 
there in the clear sun light, is to be broadcasted to some audience. 

If information is out there in the world (reality) this cannot mean 
that some symbols or sentences are lying around in the sun. We use 
symbols and sentences to extract information. We use symbols and 
sentences to express information. Information, however, precedes the 
formulation of sentences.  

What then does it mean that information is there somewhere? Are 
there some strange (ethereal) pellets to be collected by the information 
scientists? Are these the pieces of information you were told to collect? 
As a hard nosed, tough minded reader of logic books you certainly do 
not believe in that story. Now, where then in particular is the informa-
tion? You might say that it is where the objects are that the piece of in-
formation is about. Nice try, but this brings us directly to – ontology. 

Ontology (or if you like to call it metaphysics) had a bad press in the 
days of Logical Positivism (where the semantic approach originated). 
Metaphysical question were considered not to be real questions, but 
related to a choice of language. Given some language and its logical 
framework (especially its quantificational variables) ontological mat-
ters of the broadest category were considered to be dealt with conclu-
sively. Within some language the ‘only’ questions that remained were 
which kinds of objects you allow to quantify over, these you introduce 
into your theory’s ontology (a usage of ‘ontology’ in a narrow sense 

 

4
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related to competing theories like corpuscle physics or phlogiston the-
ory). Philosophy – unfortunately – has its fashions as well, and ontol-
ogy is on the rise again. 

We have already seen in Chapter 2|3 that working within a fine 
grained ontological framework might have something to it. We might 
be able to solve the problem of the informational content of logical 
truths. 

Situation semantics was introduced in the early 1980s to ‘bring on-
tology back to semantics’. This was considered to be a fruitful research 
program supposedly more apt to treat or even solve long standing 
problems in the philosophy of language and the semantics of proposi-
tional attitudes (like ascriptions of beliefs and desires). 

Here we will consider bringing ontology back to information theory. 
This will be an ontology of the units of information, so called infons. 
To set out the theory of infons and their fine grained logical structure 
one needs an ontology of the world (reality) that corresponds to the 
structures we find in infons. That is the link to old fashioned ontology, 
concerned with the ultimate or penultimate building blocks of reality. 
These building blocks may not only include the objects and properties 
we have in First Order Logic, but also locations, times, polarities and 
more eccentric types of entities to be introduced by some abstraction 
principles.  

The ontology outlined here, therefore, comes as a package consisting 
on the one hand of a theory of situations (as real pieces of the world) 
and on the other hand of a theory of infons (as real pieces of informa-
tion). 



 

4 1  The Framework of Situation Semantics 

Situation semantics was introduced in the early 80s by Jon Barwise and 
John Perry. It was originally motivated (Barwise 1981) as a realistic 
approach to a semantics of naked infinitive perceptual reports like  

(1) Austin saw a man get shaved in Oxford.  

The semantics of such perceptual reports pose a problem for the classi-
cal approach. The classical, Fregean, doctrine is that the referent of a 
sentence (and also of an embedded naked infinitive) is a truth value. 
But the embedded infinitives do not seem to refer to truth values but 
rather to situations or scenes (perceptually registered situations). In 
contrast to an embedded that-clause, like  

(2) Austin saw that a man got shaved in Oxford.   

(1) does not demand from Austin any command of concepts or other 
knowledge (Austin could be the man’s dog, for example, waiting in 
front of the barber shop). (1) is veridical and extensional whereas (2) is 
not. Moreover, naked infinitives behave differently than the corre-
sponding that-clauses with respect to negation. All this convinced 
Barwise and Perry that there must be something wrong with the Fre-
gean picture. 

Keith Devlin developed situation semantics into a theory of infor-
mation (units). Since we are concerned with information here we fol-
low Devlin’s way of exposition. Later on situation semantics was de-
veloped into a formal model of information flow by Jon Barwise and 
Jerry Seligman. Chapter 5 will deal with their models. 

What does ‘Bringing Ontology Back into Information Theory’ 
mean? The theories considered so far were syntactic, semantic or were 
concerned with epistemic properties of information. Situation seman-
tics’ slogan was ‘bringing ontology back to semantics’: definitions and 
explanations are based on a plethora of ontological categories. This 
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applies to an analysis of information in terms of situation semantics as 
well. 

Basic Ontology  
The basic ontology includes: 

 

 
  

Basic Ontology  

 individuals, denoted by a, b, c… 
relations, denoted by P, Q, R… 
spatial locations, denoted by l, l’, l''… 
temporal locations, denoted by t, t’, t'' 
situations, denoted by s, s’, s''… 
truth values: 1 (true) and 0 (false) [also called polarities] 
 
Space (time) regions have basic relations: 
l ° l’    i.e. l overlaps l’  (in space) 
l ~ l’   i.e. l precedes l’  (respectively t ~ t') 
t @ t’  i.e. t overlaps t’  (in time) 

 
Situations are of course central to situation semantics – but what is a 
situation? Are situations abstract or concrete entities? 

The most important feature of situations is: they are partial (not to-
tal, as possible worlds are). Situations tell us about some objects and 
some properties we could talk about, say that Fido is a dog. A situa-
tion – in distinction to a possible world – need not tell us about all 
predicates whether or not they apply to Fido (whether Fido is brown, 
sleeping, running etc.). If some situation does not tell us that Clara is a 
cat, we cannot conclude that the world is such that Clara is not a cat, 
all we know that it is not part of that situation we are looking at at the 
moment that Clara is a cat. This limitation of our model to a partial 
representation of knowledge is one of the main virtues of situation se-
mantics. 

Situation semanticists speak of ‘situations’, ‘abstract situations’, 
‘situation types’, ‘facts’, ‘propositions’ and ‘infons’. Sometimes they 



THE FRAMEWORK OF SITUATION SEMANTICS 151 

 

have changed their terminology! So what should ‘situation’ refer to? 
Situations are parts of reality (the universe). Here we take (following 
Devlin in some of his remarks) situations as concrete entities. An ex-
ample for a situation is: 

Peter Kaputnik’s clock is white in Trento, 8/5/2002 at 8 a.m. 

If you take a part of the universe you have a situation s (involving 
some individuals, relations, and a location), s being partial. So what 
really is telling us something about a part of the world is not the situa-
tion itself – as we loosely said two paragraphs before – but a descrip-
tion of that situation. The situation is part of the world, the description 
of the situation is part of the world description. ‘Abstract situation’ 
etc. are constructed to classify situations (as concrete entities) with re-
spect to their possible descriptions. For the moment think of an ab-
stract situation as, for example, someone’s clock being white in Trento. 
There will be several situations that fall in that category determined by 
the abstract situation (one taking place on 8/5/2002 at 8 a.m. involving 
Peter Kaputnik, another one, say, on 9/8/2002 at 7.45 p.m. involving 
Luciano Parti). 

Types and Parameters 
To introduce more complex entities we need some more basic catego-
ries: 

 

 
  

Types and Parameters  

 For each object of the theory there is at least one type which it is an 
object of. Basic types are: 
 TIM: the type of temporal locations  (respectively LOC) 
 IND: the type of an individual 
 SIT: the type of a situation 
 RELn: the type of an n-place relation 
 
For each basic type there is an infinite collection of basic parame-
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ters. 
 a* is a parameter for individuals 
 s* is a parameter for situations 
 t* is a parameter for a time region, etc. 
 
We write ‘x:T’ to say that x is of type T.  
 

 
We explain infons in a minute, but to show what parameters are good 
for, just think of infons as containing some information about some 
situation. We say that a situation supports some infon, if the situation 
is as the infon says. We write ‘s = φ’ for this. (It is, of course, an anal-
ogy to the relation of a sentence being made true by a model/world.)  

Now, given parameters we can introduce more types by type abstrac-
tion:  

[x* s ’ I]  

This type is the type of those x for which situation s supports the in-
fons in the set of infons I (in which infons contain a parameter x*). For 
example: 

[x* s1  ’ áádog, x*, Trento, 8/5/2002 7 a.m., 1ññ] 

This is the type of objects which are dogs in Trento on May, 8th, 2002 
at 7 in the morning, given some situation s1 (supposedly in Trento). 
(We explain the notation after the ‘’’ in a minute.) 

Parameters work like variables: they can be anchored to objects of 
their type. An anchor for a set A of basic parameters is a function ¦ de-

fined on A which assigns to each parameter Tn in A an object of Type 
T. 

Taking our primitive categories we introduce infons (by giving a 
schematic example): 
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ááR, a1, …, an, li, tj, 1ññ 

A simple infon says that some objects stand in some relation or that 
they do not. It contains places for the relation or property in question, 
for the objects which stand in that relation or which have that prop-
erty, for the time and the location, and a polarity (i.e. a truth value in-
dicating whether the instantiation of the property or relation does take 
place or not). So in the scheme given, the place of the ‘1’ could be 
taken by a ‘0’.  

Given some infon we can introduce the abstract situation defining 
the type of situations that support that infon, for example: 

[s* s* ’ φ] 

We abstract here on the situation parameter within a support relation. 
A situation is of that type if it supports the infon φ (i.e. is such that φ 
obtains). 

If φ’ contains parameters (i.e. is a parametric, not a complete infon) 
then the type T = [s* s* ’ φ’] is a parametric type and φ’ the condition-

ing infon of that type T [cond(T) = φ’]. φ’ has to be anchored to yield a 
factor complete infon. If ¦ is an anchor defined on all parameters of φ’, 

we can have s ’ φ’[¦], the situation s supports φ’ as anchored by this 

specific anchor ¦. 

Given infons we can also introduce propositions:  

s ’ φ 

A proposition says that some infon is factual. An infon φ ‘is made fac-
tual’ by a situation s if s is a real situation which is as infon φ says it is. 
s supports φ. So information is always about a situation. 

We can say that infon σ is a fact iff the world is as σ says:  
For a real s, s ’ σ. 
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So we have situations, situation types (giving abstract situations by 
abstracting on the situation parameter), propositions, infons, facts – 
and they are all different from each other. 

An infon cannot only have objects as its arguments. It can also con-
tain parameters. This gives us a parametric infon like 

áádog, x*, Trento, 8/5/2002 7 a.m., 1ññ 

We can now say what an anchor does: If γ is a infon and ¦ an anchor 

for some parameter in γ, γ[¦] denotes the infon resulting from replacing 

each parameter a* in dom(¦) by ¦(a*). (Compare interpreting variables 

in a formula.)  For example áádog, Fido, Trento, 8/5/2002 7 a.m., 1ññ is 

the anchoring of the parametric infon achieved by anchoring ‘x*’ to 
Fido (i.e. ¦(x*) = Fido). Given a condition ϕ, a*|ϕ is a restricted pa-

rameter, open only to be anchored to objects that fulfil the condition 
ϕ. (A condition being a conjunction of infons.) 

We can go one step further. We said situations are concrete entities, 
so situations can be contained in infons, e.g. 

 áásee, David, s’, l’, t’, 1ññ 

According to this (schematic) infon David sees situation s’ (say a foot-
ball match) at time t’ in location l’. 

(Since situations support infons this embedding of situations in in-
fons might lead to semantic paradoxes, but we will not care about this 
here.)  

Infon Logic 
Compound infons are defined by closing infons under conjunction, dis-
junction, and bounded quantification (over parameters): 

ϕ Ù σ, for example, is a compound infon. We can state semantic 

rules for evaluating compound infons with respect to some situation 
(i.e. give supporting conditions in analogy to truth conditions for com-
plex sentences). 
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For any s: s ’ ϕ Ù σ iff  s ’ ϕ and s ’ σ. 

For any s: s ’ ϕ Ú σ iff  s ’ ϕ  or  s ’ σ 

Note: Infons are not closed under negation! So we have no rule like 

(*) For any s:  s – ááP, a, 1ññ  ®  s ’ ááP, a, 0ññ 

Situations supporting infons (giving propositions) are not negation 
complete. Situation semantics argues that it is sufficient and fruitful to 
start with partial descriptions or partial information. Therefore the po-
larities in the infons have to do the work of negation, but s ’ áácat, c, 

1ññ does not imply s ’ áácat, c, 0ññ. 

If  ϕ  is an infon that contains the parameter x* and A is some set of 
objects, then  

($x* Î A) ϕ   

is a compound infon. So for a situation s that contains the members of 
A:  

s ’ ($x* Î A) ϕ iff there is an anchor ¦ of x* to an element of A,  

such that s ’ ϕ[¦].  

Accordingly for ("x* Î A). 

Infons were introduced into situation semantics by Keith Devlin. 
They correspond to what Barwise and Perry – most of the time – call 
‘situations’. Note that infons are something like ordered tuples, which 
means that an infon really contains the entities which make it up. We 
are not talking about linguistic, but about ontological constructions. 
The ‘dog’ in the example above is not the predicate of some language, 
but the property of being a dog; ‘Fido’ is not the name, but the dog 
himself. Infons are no linguistic entities. Only the limits of putting 
some representation on a page makes them look like sentences of a 
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formal language. Sometimes some expressions are mentioned in an in-
fon, but only just like objects are parts of infons (mentioned expres-
sions are objects, namely the signs usually used to say something). The 
theory of information presented is therefore independent of language 
and a specific coding scheme! This is just the opposite in the syntactic 
and possible worlds approach; they are both relative to some Li. We 
like infons, since we are after information and information flow. 

Fine Grained Information 
The ontological approach of situation semantics allows for more fine 
grained informational content than in other approaches. 

The syntactic approach only very indirectly (by the definition of the 
coding scheme) talks about semantic content at all. The possible 
worlds approach gives the same informational content to all contin-
gent statements (in case of an a priori measure)! 

Given an approach that bases information on the structure of in-
formation bearing entities you can make finer distinctions. The infon i1  

(i1) ááhappy, Peter, t’, l’, 1ññ  

has another informational content than i2  

(i2) ááhappy, Helga, t’, l’, 1ññ 

because i1 involves Peter and i2 involves Helga. 

Abstract situations 
Let us once again look at abstract situations. They could also be intro-
duced as sets of infons like:  

{σ | s ’ σ} 

An abstract situation is then defined as the set of infons that are made 
real by a situation of that kind. Not all abstract situations are instanti-
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ated (e.g., some might be inconsistent due to the combination of infons 
they include). 

Situation types like:  

[s* | s* ’ σ]  

have the same purpose. For example:  

[s* | s* ’ áárunning, a*, l’, t’, 1ññ 

is the type of situation where some individual is running in l’ at t’. 
The relation of support can be applied to abstract situations: Let s 

be an abstract situation, now we have:  

s ’ σ iff  σ Î s. 

(which might remind you of a basic fact, Lindenbaum’s Lemma, about 
linguistic possible worlds). 

Abstract situations, however, have other functions as well. Relative 
to abstract situations we can now explain what it means that one real 
situation is part of another real situation: Let s1a, s2a be the abstract 
situations that contain all infons supported by the situations s1 and s2,  

s1 is part of s2 iff s1a Í s2a. 

If some real situation is part of another real situation, then the larger 
one (the one it is a part of) contains all the entities and relations of the 
first situation. So the larger one supports at least as many infons as 
does the situation which is a part of it. So the set of infons supported 
by the situation being the part has to be a subset of the set of infons 
supported by the larger situation. (The support relation is monotonic: 
extending a situation to a larger situation does not cancel the support 
for some infon. Monotonicity would not hold in this case if situations 
were negation complete.) 
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A course of events is a partial function from the product of space and 
time regions into situation types with space and time parameters. It 
tells a partial history of the universe. (A minimal one changes one 
situation into another.) Like situations, courses of events are not total 
(they are not negation complete world histories like in some modal lo-
gics). 

Getting Information 

To model information flow we need a cognitive system. A cognitive 
system is an object that is capable of having knowledge: 

The system is able to extract digital information from analogue 
representations of its environment (cf. Chapter 3|3 on Dretske). 

The system then can use its initial information to derive more in-
formation by some mechanisms (here called constraints). 

Constraints link situations. Constraints are used in situation semantics 
to model (natural) laws, conventions, and other kinds of regularities. 

Constraints are relations between types of situations. For example:  

Smoke means fire. 

That is: If S1 is the type of situations where smoke is present, and S2 is 
the type of situations where there is fire, these situations are linked by 
a (natural) constraint. An agent can pick up information (that there is 
a situation of type S2) by observing that there is a situation of type S1 if 
the agent is aware of or attuned to the constraint. 

Constraints can be written: 

S’ ⇒ S’’ 

where S’ and S’’ are situation types. 
Constraints are involved in meaning relations as well; for example: 

‘fire’ means fire. This is a constraint linking an utterance situation type 
to a type of situation where fire is present. Attuned agents with respect 

A 

A 
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to this constraint understand the expression ‘fire’. The situation se-
mantics account of meaning, therefore, is based on constraints. The 
constraints give information what other kind of situation is involved 
here. 

Let us look at the example in more detail: The situation types men-
tioned can be modelled: 

S = [s*| s* ’ áásmokey, t*,1ññ] 

S’= [s*| s* ’ ááfiery, t*, 1ññ] 

S’’ = [s*’| s*’ ’ (ááspeaking, a*, t*, 1ññ Ù ááutters, a*, ‘fire’, t*,1ññ)] 

with the two constraints  

(C1) S ⇒ S’  

and  

(C2) S’’ ⇒ S’ 

Any instance where a constraint is utilised making an inference about 
an object x* involves specific situations by anchoring. 

We are not concerned with the analysis of meaning here, but to give 
an example of using the notion of constraint to explain sentential 
meaning: Let σ be the sentence ‘I am eating now.’ The meaning of σ 
(||σ||) is the constraint linking the following situation types: 

[s’* | s’* ’ {ááspeak, a*, t*, 1ññ, áásay,  a*,  σ,  t*, 1ññ}] 

[s’’* | s’’* ’ ááeat, a*, t*, 1ññ] 

In the first type (in distinction to S’’ above note the curly brackets) we 
have a set of infons supported by a situation. In one of these infons 
(like in S’’) an expression as mentioned is present as an argument. The 
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constraint linking these two situation types tells us: If individual a ut-
ters σ at time t that individual is eating at that time. 

Information Flow (the Idea) 
We look closer at information flow in the next chapter, but having 
available the concept of constraint we can understand the idea of in-
formation flow within situation semantics. Consider the constraints 
and situation types we just have given, say  

(C1) S ⇒ S’ 

S = [s*| s* ’ áásmokey, t*, 1ññ],   

S’= [s*| s* ’ ááfiery, t*, 1ññ] 

Suppose s1:S (i.e., situation s1 is of type S). Being aware of the con-
straint (C1) we have the information that there is a situation s2 (maybe 
s2 = s1) with s2:S’ such that s1 and s2 are co-temporal, i.e. t* has to be 
anchored to the same time interval. We get information about some 
situation given that we know that a given situation is of some type and 
that type is linked by a constraint to some other type (of situation). 
The actual linking of situations is done by parameters (where a pa-
rameter which is present in the two situation types is anchored to an 
object present in the two situations linked). 

To see that some infons are supported by some situation s’ given 
what we know about some other situation s and being aware of or be-
ing attuned to constraints C, C’… is to acquire knowledge (in an ex-
ternalist epistemology). You can acquire knowledge without being 
aware of it or the acquiring process. Knowledge is independent of its 
mode of representation (see chapter 3|2). 
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Information 
Then what, according to situation semantics, is information after all?  

The information an agent a has about a situation s is the closure 
of a’s representations of s under infon logic given the constraints 
that a is aware of or attuned to. 

The information present in a situation s is the closure of the set of 
infons supported by s under infon logic given all constraints. 

Information is present in the world. So we should expect a theory that 
speaks mainly about the (ontological) structures of the world.  

Situation semantics is mainly an ontologically new theory: linguistic 
phenomena are treated equally well in other approaches closer to tradi-
tional possible worlds semantics, e.g. in Categorical Grammar (‘Mon-
tague-Grammar’, cf. Montague 1974, Cann 1993). Critics have claimed 
situation semantics should not be considered psychologically real; with 
respect to human cognitive mechanisms it is said to be naïve and unin-
formed (cf. Jackendoff 1985, 1997). Taking situations seriously we 
considered them as concrete entities. But not all infons are actual. If 
you consider a situation type [s | s ’ σ] where σ is not realized in the 

actual world/the universe, what does the ‘s’ refer to? It cannot refer to 
actual situations, since the infon is not factual. So it seems to refer to 
possible, but not actual situations that support an infon that is not fac-
tual, but could be. Since we take situations to be concrete entities this 
commits us to possible concrete entities: possibilia in the full sense of it. 
Situation semantics becomes a version of genuine modal realism in the 
fashion of Lewis (Lewis 1986)! If one does not restrict the forming of 
abstract situations the ontological plenty of situation semantics is not 
only one of categories (situations, individuals, properties...) but one of 
modalities. 

Nevertheless: Situation semantics might model one aspect of situ-
ational information flow. Information flow can be represented at such 
an abstract level of logical (or conceptual) analysis. That is where we 
are. 

A 

A 
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Further Reading 
A readable introduction with an eye to the concept of information is: 

 
��Keith Devlin, Logic and Information, Cambridge/Mass. 1991. 

 

The classic is: 
 
�� Jon Barwise/John Perry, Situations and Attitudes, Cam-

bridge/Mass. 1983. 

 
although it contains some different terminology and notation. For a 
discussion of Barwise’s and Perry’s early work, see volume 8 of Lin-
guistics and Philosophy (1985), 1-161, which is dedicated to Situations 
and Attitudes. See also 

 
�� Sten Lindström, ‘Critical study of Jon Barwise and John Perry, 

Situations and Attitudes’ Noûs XXV, 743-770. 
 

You can find the broader context and some applications of situation 
semantics in a collection of papers by Jon Barwise: 

 
�� Jon Barwise, The Situation in Logic. Stanford 1988. 

 

����������	�
	��
���	���

 
��Robin Cooper/Kuniaki Mukai/John Perry (eds.), Situation The-

ory and Its Applications, 2 Volumes, Stanford 1990. 

 
(There you can find, for example, an account of Infon Logic by Jon 
Barwise and John Etchemendy, ‘Information, Infons, and Inference’.) 



 

4|2 Information Architecture 
and Constraints 

Introduction 
Based on the ideas contained in situation theory, John Perry and 
David Israel further developed an account of information and infor-
mational content. Since the principles they discuss are also the back-
ground of the more technical developments discussed in the rest of this 
book we will repeat them here and briefly explicate the ideas behind 
them. We hope this will help to tie together what you have learned un-
til now about situation semantics and externalism with the information 
flow framework of the next chapter. 

Intuitive Principles of Information 
We will explain information flow in terms of situation semantics with 
the help of some rather simple examples taken from Perry and Israel’s 
papers on the matter. We will begin with some terminology. Have a 
look at the following sentences: 

(1) The x-ray indicates that Jackie has a broken leg. 

(2) The fact that the x-ray has such and such a pattern indicates that 
Jackie has a broken leg. 

These are two examples of what we will call information reports. The 
information verb (here ‘indicates’, other examples are ‘shows’ or ‘car-
ries the information’) and the preceding noun phrase are information 
contexts. The propositions referred to by the that-clauses are the in-
formational contents reported, the object designated by the noun 
phrase in (1) is the carrier of information, the object designated by the 
noun phrase in (2) the indicating fact. Information reports in this sense 
are factive, i.e. when something indicates or shows or carries the in-
formation that A, then A. If an information report is true, then the in-
formational content is true too.  
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Looking closer at the examples, we can notice that both are about 
Jackie and an x-ray. The x-ray is the carrier of information and it is a 
carrier because of a certain indicating fact, the fact that it has such and 
such a pattern. Thus it is facts that carry information. Facts are taken 
as some kind of infon. Let us generalize both observations: 

(A) Facts carry information. 

(B) The informational content of a fact is a true proposition. 

In the last chapter we explained already what constraints in situation 
semantics are. Constraints are contingent matters of fact, that one 
situation involves another. If situations with smoke involve situations 
with fire, then smoke carries the information that there is fire. Facts 
thus carry information relative to constraints: 

(C) The information a fact carries is relative to a constraint. 

If the constraints are contingent matters of fact and could be different 
than they actually are, then the information a fact carries also could be 
different, given these other constraints: 

(D) The information a fact carries is not an intrinsic property of it. 

If we consider our examples again, we can also add that facts might 
carry information about remote things and remote situations. Archae-
ologists study facts of our days to get information about situations 
some thousand years ago. Facts about cosmic microwave background 
radiation that hits the earth tomorrow might carry information about 
situations in very remote areas of our universe a rather very long time 
ago: 

(E) The informational content of a fact can concern remote things 
and situations. 
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It is rather obvious that the constraints alone can’t be the whole story. 
The x-ray carries the information that Jackie has a broken leg. This is 
because the x-ray has such and such a pattern and there is a constraint 
that dogs have broken legs whose x-rays have such and such a pattern. 
But that constraint is too general to carry information about Jackie. 
That the x-ray carries the information it does is not only due to its hav-
ing a certain pattern, but also due to being taken of Jackie. This fact 
connects the pure information that the dog this x-ray is of had a broken 
leg when the x-ray was taken of Jackie. This is what we will call the 
connecting fact. These facts come into play when facts carry informa-
tion about objects which are not part of the indicating fact. Such in-
formation is what we will call incremental information, this is the in-
formation carried by a signal relative to connecting facts. 

(F) Informational content can be specific; the propositions that are 
informational contents can be about objects that are not part of 
the indicating fact. 

(G) Indicating facts contain such information only relative to con-
necting facts; the information is incremental, given those facts. 

What we are after is a theory of information flow. Information flow 
typically involves a variety of carriers, sound waves, electrical signals, 
lights, and vibrations that manage to bring a piece of information from 
the source to a receiver. That all these carriers can do so is because 
they are part of a communication channel that is constituted by a set of 
constraints, binding them all together. 

(H) Many different facts, involving variations in objects, properties, 
relations and spatiotemporal locations, can indicate one and the 
same informational content – relative to the same or different 
constraints. 

(I) Information can be stored and transmitted in a variety of forms. 
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Thus far we have considered information as an extrinsic fact about an 
agent, a device or a signal. Given different facts and constraints the in-
formation an agent has or a signal carries might be different from the 
way it actually is. But there is one thing that does not depend on re-
mote contingencies, that is the good information does for the creatures 
using it: 

(J) Having information is good; creatures whose behavior is guided 
or controlled by information (by their information carrying 
states) are more likely to succeed than those which are not so 
guided. 

Information in Situation Semantics 
Now we can construct a theory of information within the framework 
of situation semantics. We have said that the x-ray having such and 
such pattern carries pure information relative to a constraint and in-
cremental information relative to a connecting fact. Let us first expli-
cate pure information in situation theoretic terms: 
 

 
  

Definition 4|2–1  

 Let C be some constraint, cond(T) a conditioning infon of T. The fact 
σ carries the pure information that P relative to C iff 
 
1. C = ááInvolves, T, T’, 1ññ. 

 

2. For any anchor ¦ such that σ = cond(T)[¦], P = the proposition 

that $s’ (s’ ’ $a1,...an(cond(T’)[¦])). 

 

 
The first clause states that for every situation of Type T there is one of 
type T’. Together with the second it states for our example that the x-
ray’s having such and such a pattern indicates that there is a dog of 
which this is an x-ray, and that dog has a broken leg. 
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From the pure information we want to get to the incremental infor-
mation now. What we need is a notion of relative involvement, such 
that if T involves T’ relative to T’’, then, for any pair of situations of 
the first and third types, there is a situation of the second type. Rela-
tive involvement is a ternary relation, the third type being the connect-
ing type, the type of the connecting situation that we need to bring the 
pure information together with Jackie. 
 

 
  

Definition 4|2–2  

 Let C be some relative constraint, cond(T) and cond(T’’) conditioning 
infons of T and T’, respectively, then the fact σ carries the incre-

mental information that P relative to C and the fact σ’ iff 
 
1. C = ááInvolvesR, T, T’, T’’, 1ññ. 

 

2. For any anchor ¦ such that σ = cond(T)[¦], Ù σ’ = cond(T’’)[¦], P = 

the proposition that $s’ (s’ ’ $a1,...an(cond(T’)[¦])). 

 
In our example the connecting fact was that the x-ray is of Jackie. It is 
in virtue of this fact that Jackie, as the constituent of this fact is also a 
constituent of the proposition indicated, namely the proposition that it 
is Jackie’s leg that is broken. 

Details 
To see in some detail how this theory deals with the case of Jackie, the 
x-ray and the broken leg, we will apply everything now formally. (As 
the above, the following follows closely Perry and Israel 1990.) 

Let’s first consider the x-ray case as a case of pure information. 
Then we have the following constraint: whenever there is a state of af-
fairs consisting of some x-ray’s having such and such a pattern at some 
time t, then there is a state of affairs involving a dog’s leg having been 
the object of that x-ray and that leg’s being broken at t.  
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So the indicated proposition is that there is a dog of which this is the 
x-ray, and it has a broken leg. The pure information is about the x-ray, 
but not about Jackie, or her leg. 

T = [s| s ’ ááX-ray, x, t; 1ññ Ù ááHas-pattern-F, x, t; 1ññ] 

T’ = [s| s ’ ááIs-xray-of, x, y, t; 1ññ Ù ááHas-broken-leg, y, t; 1ññ] 

C = ááInvolves, T, T’; 1ññ 

This gives us the constraint. Now we need the indicating situation, to 
satisfy T. The indicating situation, σ, is 

ááX-ray, a, t’; 1ññ Ù ááHas-pattern-F, a, t’; 1ññ 

where a is the x-ray and t’ the time. We assume that σ is factual, that is 
that $s(s ’ σ). Let f be any anchor defined on x and t (at least) such 

that  

σ = cond(T)[¦] = ááX-ray, x, t, 1ññ Ù ááHas-pattern-F, x, t; 1ññ[¦] 

(Thus, ¦(x) = a and ¦(t) = t’.) Then P = the proposition that $s’(s’ ’ $y 

(ááIs-xray-of, x, y, t; 1ññ Ù ááHas-broken-leg, y, t; 1ññ)[¦]). 

P is the proposition that the state of affairs which consists of some 
dog being the object of a, the x-ray in question (at t’, the time in ques-
tion) and that dog’s having a broken leg (at the time in question) is fac-
tual.  

Now that we have seen how to get at the pure information, we want 
to get at the incremental information that Jackie has a broken leg. We 
know already that we need the connecting fact that the x-ray was of 
Jackie. When we consider the incremental information our constraint 
is simply this: if an x-ray is of this type, and it is the x-ray of a dog, 
then that dog had a broken leg at the time the x-ray was taken. 

The relative constraint is: 
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C’ = ááInvolvesR, T, T’, T’’; 1ññ 

where T, the indicating type is as before. T’, the indicated type is 

[s| s ’ ááHas-broken-leg, y, t; 1ññ] 

and T’’, the connecting type is: 

[s| s ’ ááIs-xray-of, x, y, t; 1ññ] 

As before, σ is: 

ááX-ray, a, t’; 1ññ Ù ááHas-pattern-F, a, t’; 1ññ 

We assume that σ is factual. Further, we assume that the connecting 
state of affairs, σ’, is factual. Where b is Jackie, σ’ is ááIs-xray-of, a, b, 

t’; 1ññ. 

Any anchor ¦, such that σ = cond(T)[¦] and σ’ = cond(T’), must be 

defined on the parameter y of the connecting type, in particular, it 
must anchor y to Jackie.  

Thus, for any such anchor ¦, the proposition carried incrementally 

by σ relative to C and σ’ is the proposition that  

∃s’’(s’’ ’ ááHas-broken-leg, b, t’; 1ññ). 

Architectural Constraints 
As we have seen, sometimes specific information needs incremental in-
formation, relative to constraints and connecting facts. There are other 
ways that can bring about specific information without also involving 
connecting facts, either via reflexive information or via ‘architectural’ 
connecting facts. We will briefly look at some of these ways. 
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Example 1  
In a physician’s office thermometers are always shaken down after they 
are used and stored in a cool place until their next use. One such ther-
mometer (t) is in Elwood’s mouth, its mercury is above 98.6. 
 
Given the connecting fact that the thermometer is in Elwood’s mouth 
and the constraint that thermometers indicate that if they are in the 
mouth of a person and have their mercury above 98.6 that person has 
a fever, the fact that t has its mercury above 98.6 carries the informa-
tion that Elwood has a fever. This is the type of incremental informa-
tion we are familiar with. 

Given the constraint that if the mercury in a thermometer goes 
above 98.6, there is a person whose mouth it has been in and that per-
son has a fever, the signal also carries the reflexive information that 
there is a person whose mouth t was in and that person has a fever, in-
dependent of the connecting fact. That the carrier is itself part of the 
informational content is why we shall call such information reflexive.  

Example 2 
Consider the apparatus doctors use to check height and weight simul-
taneously. Elwood is standing on the platform, the weight bars are at 
100 and 80, the height bar is at 5ft. 
 
Given the connecting fact that Elwood is the person on the platform, 
the height bar carries information about Elwood’s height, the weight 
bar about Elwood’s weight. Leaving the connecting fact to one side, 
however, the height bar carries reflexive information about the person 
whose head it is in contact with and the weight bar about the weight of 
the person who is affecting it. Given the architectural connecting fact 
that height bar and weight bar are mounted to the same system, and 
the architectural constraint that if a weight bar and a height bar are 
connected in that way, the person whose head contacts the height bar 
is the person who is affecting the weight bar, the height bar also carries 
the architectural information that the person affecting the weight bar is 
5ft. tall.  
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In this example we have a case of coincident architectures. The 
weight bar carries information about the person whose head is in con-
tact with the height bar because a certain architectural constraint is in 
force. However, the original constraints that were sufficient for the re-
flexive information are independent of the architectural constraint. 
That the subject matter of the two signal structures (the height bar and 
the weight bar) is the same, is induced by the architecture, not merely 
reflected by it.  

In contrast, combinative architecture reflect, rather than induce the 
relations among contents. Let’s have a look at two examples: 

Example 3 
On the physician’s desk are two x-rays, one exhibits property �, which 
clearly shows that the person x-rayed had a cracked rib, the other 
shows a recently mended rib. Both are taken of Elwood at different 
times. There is nothing in the fact that they are both on the physicians 
desk that indicates that they are both of the same person. By careful 
examination, though, the doctor can tell that the mended rib on the 
one x-ray is the one that is broken on the other. 

Example 4 
Again two x-rays, both are in a file labelled ‘Elwood Fritchey’. Only 
data about the persons the labels refers to are stored in the files in the 
doctor’s office. 

 
In example 3 we have a type of mere convergence. That both x-rays 
carry information about the same person is due to an internal indica-
tion of an external identity but not architectural. That is different in 
example 4. Here we have a combinative information system, a labelled 
file. The architectural constraint is that if a file folder f is labelled a, 
there is a patient to which a refers, and all of the signals provided by 
the carriers in f have that patient as subject matter.  

Coincident and combinative architectures yield architecturally co-
ordinated information. To have the complete picture we will briefly 
look at architecturally mediated information. Information flow, the 
way we will be interested in, involves such information. In architectur-
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ally mediated information signals contain information about a certain 
subject matter in virtue of carrying information about other signals to 
which they are architecturally connected. This is an example from 
Dretske: 

The accoustic waves emanating from a radio speaker carry information 
about what is happening in the broadcasting studio because they carry accu-
rate information about what is happening in the audio circuit of the receiver; 
these events in turn carry information about the modulation of the electro-
magnetic signal arriving at the antenna; and the latter carries information 
about the manner in which the microphone diaphragm (in the broadcasting 
studio) is vibrating. The microphone’s behavior, in turn, carries information 
about what the announcer is saying. This whole chain of events constitutes a 
communication system, a system whose output carries information about its 
input, because of iterated applications of the xerox principle. (Dretske 1981, 
58) 

In this story are a lot of signals moving around. There is the sound 
wave produced by the announcer, the pattern of vibration on the mi-
crophone’s diaphragm, the electromagnetic signal sent to the antenna, 
etc. There are constraints and connecting facts for the sound wave to 
carry the information that the announcer said a certain English sen-
tence. There are architectural constraints and connecting facts that the 
signal at the antenna can carry the same information, because it addi-
tionally carries certain architectural information and certain reflexive 
information. Each signal in the chain thus carries the information that 
was produced by the original source, which is why the information 
goes through. This is the Xerox principle, which we now shall reformu-
late in the terminology of situation theory: 

 

 
  

Definition 4|2–3 (Xerox Principle II)  

 If s carries the information that b is F, and the fact that b is F carries 
the information that Q, then s carries the information that Q. 
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Or more precicely: 

  

 
  

Definition 4|2–4 (Xerox Principle III)  

 If (i) there are architectural constraints C and architectural connec-
tions c such that s carries the architectural information that b is F, 
relative to C given c, and (ii) there are constraints C’ and connecting 
facts c’ such that the fact that b is F carries the information that Q 
relative to C’ and c’, then there are constraints C’’ and connecting 
facts c’’ such that s carries the information that Q relative to C’’ 
given c’’. 

 
Thus equipped we will now turn to the logic of information flow in the 
next chapter. 

Further Reading 
This chapter is based on  

 
�� John Perry/David Israel, ‘What is information?’, in: Philip Han-

son (ed.), Information, Language and Cognition, Vancouver (Uni-
versity of British Columbia Press) 1990, 1-19. 

and 
 

�� John Perry/David Israel, ‘Information and Architecture’, in: J. 
Barwise et al. (eds.), Situation Theory and Its Applications, vol. 2, 
Stanford University (CSLI) 1991. 



 



 

Information Flow in Distributed  
Systems 
Renaming Your ‘Evening Star’ Yields  
New Information 

MCCLEVE put on his wise guy face and confronted Higgins: ‘Only 
the one responsible for the keys of the gardening tools had access to 
the scythe. And only someone used to gardening could have chopped 
off the head in a single blow. When I met the old cleaning lady of Pan-
cake Castle she told me that as long as the gardening was done by 
some of the house’s servants instead of outsiders it had been the lower 
floor butler doing the gardening. As the last one responsible for gar-
dening and mowing you not only had the key but also the knowledge 
how to use the scythe!’ 

What does a detective do? Sometimes he looks for persons con-
nected to a crime. Sometimes he already has a list of suspects, and his 
task is to find out who did it. In a way he already knows the culprit, but 
he does not know her as the culprit.  

An old fashioned detective (not the one chasing cars and beating it 
out of people) solves a case by arriving at conclusions that contain the 
name of the culprit. Conclusions are either linguistic entities if we con-
sider them as the sentences derived, or conclusions may be considered 
as infons specified by their ontological constituents. But even in the 
latter case we have access to these conclusions primarily or exclusively 
by some rendering in language. That makes conclusions relative to a 
description. The same goes seemingly for the information given by pre-
senting these conclusions. At least arriving at this information requires 
some reasoning that is done by using language and reasoning along 
given regularities of a field in question and statements of facts or cir-
cumstances.  

 

5
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McCleve knows Higgins. So he knows the culprit, even at the very 
beginning of his investigations. Knowing her only as Higgins, however, 
blocks the derivation of the crucial conclusion. Higgins has to be de-
scribed/classified as the person having the keys to the tools and learned 
with the scythe. Even after gaining access to the regularity that the ser-
vant responsible for the gardening has always been the lower floor but-
ler nothing is gained as long as we not add the further statement that 
Higgins was the lower floor butler of Pancake Castle at a time when 
the gardening was still done by some house servant. In deriving at his 
solution of the case of the gruesome murder in Pancake Castle 
McCleve had to re-describe the persons involved several times. Renam-
ing/re-describing a person made information/regularities applicable to 
that person that could not be applied before. Re-description yielded 
new information, at least in as much as the information could be ac-
cessed by McCleve and the authorities taking Higgins away. 

Having read the last chapter you surely understood the regularities 
mentioned as constraints linking types of situations. That is correct. 
And these constraints apply to situation types (respectively sets of in-
fons supported by these situations) and correspondingly to sentences 
referring to these situations (or the respective infons). The second in-
gredient we need to be as clever as McCleve are classification schemes. 
A classification scheme provides objects with names and properties. 
Seeing connections between classification schemes and their properties 
gives you information. 



 

5 1 Information Flow Within the Situation Frame-
work 

Information flow requires a logic of distributed systems. If information 
is said to flow there has to be a system within which it flows. This sys-
tem has to consist of parts which are separated one way or the other; 
otherwise there would be no need for information to flow from one 
part to the other. A system consisting of parts which are separated al-
though constituting a unified whole can be called a ‘distributed sys-
tem’. This chapter deals with one or two simple examples of distributed 
systems and information flow within them. Jon Barwise and Jerry 
Seligman developed a formal framework to model information flow. 
Their book Information Flow appeared in 1997. They call the logic in-
volved here the ‘Logic of Distributed Systems’. The formal model in-
volves something like constraints, but the formal tools are more ab-
stract than situation theory it is said to have started from. To start 
with: There are no situations in it! 

A Note on Our Presentation:  Although all topics are simplified to 
their core in this course, this applies in the extreme to Barwise and 
Seligman’s theory of information flow. Most details, refinements, some 
of their ideas on logic and all metalogical properties are left out! The 
aim of this chapter is to give you an idea of their methods and basic 
proposals. 

Let us begin with some methodological starting points:  The analysis 
should be a conceptual analysis or a formal construction of some im-
portant conceptual features of information flow (or some concept 
thereof). We are not looking at what people usually think about in-
formation flow or how the mail system is working. We start with some 
general intuitions about the flow of information and some general 
principles and tools stemming from analyses of information we have 
considered so far. The approach is based on principles deemed to be 
correct. The set of them might be incomplete, but we have to start with 
some of them to be supplemented in the development of the theory. 
Examples (like the mail system, printing newspapers, TV, raising the 
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flag etc.) show that modelling real information flow requires many dis-
ciplines (logic, cognitive sciences, sociology…). A model of informa-
tion flow in its own terms tries to arrive at (abstract) laws of informa-
tion flow. These laws rather reside on a conceptual level. The model in 
its generality covers both physical systems and mathematical proofs!  

Information flow is the missing link between justified belief and 
knowledge. The theory of information flow is related to epistemology, 
therefore. The theory of information flow follows Dretske in his exter-
nalist epistemology: Information flow is a factual concept, not depend-
ing on us knowing some conditions being met. Information just flows. 
Information flow complies, e.g., with the Xerox-Principle. 

Remember: It is not an analysis and reconstruction of all our present 
day intuitions. 

Distributed Systems 
Information flow depends on relationships in a distributed system 
(e.g., a telephone connection). How the system is carved up is part of 
the model of the information flow to be explained. What might be a 
part in one situation/model (e.g., the telephone machine) might be a 
distributed system of its own in another situation/model. The parts of a 
distributed system are related to each other by the system as a whole.  
Regularities ensure the uniform behaviour of the system. What kind of 
regularities are these? Has the system to be deterministic for informa-
tion to flow? Deterministic regularities might be the best guarantee for 
undisturbed information flow – on the other hand most systems, at 
their usual level of analysis, say an ordinary instruction lesson, are not 
deterministic systems. 

You can see a flashlight as a distributed system in which the parts 
are connected by being parts of the same system (like in figure 5|1–1). 

This diagram tells us nothing about information flow, so far. (We 
will keep on using the relationships within the parts of a flashlight con-
sidered as a distributed system.) 
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If you look at examples: the more random a system is the less informa-
tion will flow. The more random a system is, the more you cannot pre-
dict what will happen next in some other part of it. Information flow 
depends on non-accidental connections, a ‘spurious regularity’ is not 
enough. Information flow depends on a reliable process. This is a nec-
essary condition of information flow. ‘Reliable’, however, should not 
only mean deterministic if the model is to fit ordinary distributed sys-
tem not described in physicalistic language. 

Information flow is required to be reliable. That does not mean that 
it – as might be reliability – can be analysed using the concept of cau-
sality. The direction of information flow is not necessarily aligned with 
the direction of causation (you can derive information about the cause 
from the effect). Informational dependence, therefore, is not causal. In 
case of loose connections a causal connection might be not sufficient 
for information flow. So a causal connection is neither necessary for 
information flow (arriving at information from the effect to its cause) 
nor sufficient (a loose probable causal connection between two events 
might not be reliable enough to get information about the second event 
from information about the first). 

Note the connection between information flow and non-randomness 
(somewhat contrary to the Shannon approach). 

bulb     switch 

 
flashlight 

 

 battery    case 

Figure 5|1–1 
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Carrying Information 
A lot of things are said to carry information: 

(1) The rifle shot carried the information that the king was dead to 
the whole city. [The rifle has the property being fired] 

(2) The e-mail message bore the information that Albert would be 
late for dinner. [The message has the property containing the 
words…] 

A common denominator is that in all cases some object having some 
property matters: 

a’s being F carries the information that b is G. 

We can exploit this observation for a basic idea how to describe dis-
tributed systems: Parts of distributed systems are particulars with 
properties, they are of some type. (Remember the talk about types 
from Chapter 4|1 on situation semantics’ ontology.) Types are con-
nected by constraints. (Remember the definition of constraints in 
Chapter 4|1.) This is the more obvious if you think of the particulars as 
situations, although they can as well be any other object you like, and 
think of the types as infons that are supported by the situations. When 
the types are connected by some constraint, so are the situa-
tions/objects that are of these types respectively. The regularities of a 
distributed system are represented by the constraints of the complete 
model of that system as a whole. Information flows along these con-
straints at the system level (using some local logic, to be explained 
later). 

As a first informal formulation of information flow we get: For a 
cognitive system x with prior knowledge K a part a of a distributed sys-
tem being F carries the information that another part b of that system 
is G if x could legitimately infer from the constraints of the distributed 
system, given some local logic, that b is G from a is F together with x’s 
prior knowledge K (but not from K alone). 
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So the cognitive system reasons along the constraints and, given par-
tial knowledge of one end of the system, derives knowl-
edge/information about another part of the system. This reasoning 
uses a representation not only of the system as a whole but also of the 
system’s parts and their properties. Let us make this more precise. 

Classifications 
We describe and classify distributed systems and their parts by classifi-
cations: 

 

 
  

Definition 5|1–1 

 A classification is a structure A = áU,ΣA, ’Añ where U is the set of ob-

jects to be classified (the tokens of A), ΣA the set of objects used to 
classify the tokens (the types of A), and ’A is a binary relation be-

tween U and ΣA determining which tokens are of which type. 

a ’A F  

says that object a is of the type F given the classification A. 

 
You can think of a as a situation and F as an infon supported by a. Or 
a may be any kind of object and F a corresponding property. (‘Hey, ...’ 
– you might interrupt – ‘...why then not say ‘F(a)’ and use First Order 
Logic?’ Good Question. Since we are ultimately interested to use the 
model also for the support relation between situations and infons or 
between sets of sentences and derivable consequence we take the more 
abstract approach of classifications.) 

For the purpose of later diagrams we illustrate a classification rela-
tion: The classification applies the types in ΣA to the elements of U, 
which therefore stand in the relation ’A to the types. 
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Sequents 
Constraints relate types. We first introduce a more general logical rela-
tion: 

 

 
  

Definition 5|1–2 

 Given a classification A a sequent is a pair áΓ, Λñ of sets of types of A. 

A token a satisfies the sequent áΓ, Λñ if  

("B Î Γ)(a ’A B) ⇒ ($C Î Λ)(a ’A C). 

 

 
  

Definition 5|1–3 

 Γ entails Λ in A: Γ ’A  Λ 

if every token of A satisfies áΓ, Λñ.  

 
Now we can say what we take a constraint to be.  

 

 
  

Definition 5|1–4 

 If Γ ’A Λ then the pair áΓ, Λñ is a constraint supported by the classifi-

cation A. 

ΣA 
 
 

 ’A  

 

U 
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The constraints of a classification are the sequents that are valid for all 
the tokens of the classification. Note: In general a constraint is satisfied 
by a token if the token is of at least one of the types in Λ (Λ is taken 
disjunctively). 

 

 
  

Definition 5|1–5 

 The set of all constraints supported by A is the complete theory of A, 
Th(A). 

 

Note the following special cases: 

Γ, Λ being singletons: ‘Γ ’A Λ’ means that Γ logically entails Λ in 

A. 

‘Γ ’A’ with right side being empty means in A no token is of type 

Γ. 

‘Γ, Λ ’A’ means, accordingly, that Γ and Λ are mutually exclu-

sive. 

‘’A Λ, Γ’ means that every token of A is of least of one of the 

types in Λ or Γ. 

Infomorphisms 
In the first paragraph of this chapter we said that information flows in 
a distributed system. The system can be considered an information 
channel. We also said that information flow involves the reliable regu-
larities/constraints that connect parts of the system with each other via 
the system. This requires mappings from parts to the system as a 
whole, called ‘infomorphisms’. Infomorphism connect classifications. 
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We are interested in infomorphism that map classifications of parts of 
a distributed system to the classification of the distributed system itself.  

 

 
  

Definition 5|1–6 

 Let A = áU, ΣA, ’Añ and C = áV, ΣC, ’Cñ be two classifications. An info-

morphism between A and C is a pair ¦ = á¦Ù, ¦Úñ of functions, such 

that for all tokens c of C and all types A of A the following (defining 
statement for infomorphisms) is true: 
 ¦Ú(c) ’A A iff c ’C ¦Ù(A) 

 
What does the defining statement tell us? 

We call ¦Ú ‘¦-down’ and ¦Ù ‘¦-up’. The two functions operate in op-

posite directions: ¦: A ←
→  C. ¦-down maps tokens from the ‘right-hand’ 

classification to tokens of the other. ¦-up maps types the other way. 

Look again at the defining statement of an infomorphism. Two for-
mulas might express the relations: 

(1) Iff the target token (in A) is of some type the token (in C) is of 
the target type.  

(2) The type of the picture is the pictured type of the object. 

This might be easier to understand if you look at the following dia-
gram: 

                                        ¦Ù    

  ΣA    ΣC 

 

       ’A        ’C 

 

  U    V 
                                 ¦Ú 
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¦-down maps the tokens from V to tokens from U, while ¦-up maps 

the types from ΣA to types in ΣC. What is preserved – and that is ex-
pressed by the defining statement of the infomorphism – is the sup-
porting relationship ’ in the respective classifications. If there is an in-

fomorphism between two classifications we know that ¦-down maps a 

token from V to a token in U that falls under a type in ΣA if and only if 
that very type is mapped by ¦-up to a type in ΣC that classifies the to-

ken we started with in V. 
Let us look at an infomorphism example. We are considering our 

flashlight gain. We are mainly interested in infomorphism that map 
parts (e.g. a switch) to the whole system (e.g., a flashlight containing a 
circuit with a bulb). 

The classification concerning switches has a set of switches as objects 
and types that apply to switches. The classification of the whole dis-
tributed system contains switches build into a circuit and types of these. 

If in our theory of (isolated) switches we have a constraint saying ‘a 
pressed switch shows red top’. In our theory of (working) flashlights, 
which, of course, have switches, we have a constraint saying ‘a flash-
light with a pressed switch shows red top’. Consider now a switch build 
into a flashlight. We can map a flashlight (the distributed system) to 
one of its parts (the switch). Let A be the switch classification and C be 
the flashlight classification. The flashlight c is mapped by ¦-down to its 

switch. And the switch-type shows-red-top is mapped by ¦-up to the 

flashlight type has-red-top-shown. We arrive at a real infomorphism. 
Expressed with the fundamental property: 

 

  the switch       shows red top  º  the flashlight      has red top shown 

       ¦Ú(c)       ’A           A                            c               ’C             ¦Ù(A)  

 
Infomorphisms can be added up to make the following diagram com-
mute: 
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A+B is the sum of the classifications A and B, ρA being the projection 

from A onto A+B, so that ρA

Ù

 (A) = AA (the A-copy of A), and on to-

kens ρA

Ú

 ((a, b)) = a. (Accordingly for ρB.) ¦ is the composed infomor-

phism. ¦ does the same work as the two infomorphism ¦1 and ¦2 do. 

While these map isolated parts to a distributed system, ¦ maps pairs 

(or tuples in case of further addition). This will be of interest, since we 
want to map all the parts of the system to the system. For this we have 
to add up all the infomorphisms between the part classifications and 
the classification of the distributed system. Why do we want to do 
that? Ultimately we are interested to get information about some distal 
part of the system from information about some proximal part of the 
system. The link is established by the distributed system itself via the 
cumulative infomorphism to the parts. 

Regularities at System Level 
In classifications of parts constraints give us the theory of the (isolated) 
parts (e.g. bulbs). If parts are built in a distributed system we not only 
have the sum of the theories of the parts, but regularities that govern 
the distributed system as a whole (e.g., a pressed switch lights the bulb). 
Such regularities occur only at the system level. These regularities give 
us information flow. For a system, its classification C and the corre-
sponding theory Th(C) (consisting of the constraints for the system as 
a whole) model them. 

        C  

 
         ¦1        ¦       ¦2 

        ρA               ρB  
 

  

  A  A+B    B  
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The classification of switches A1 contains a type Pressed, the classifi-
cation of bulbs A2 contains a type On, but they are not related. On the 
system level there are types corresponding to Pressed (say Pressedf) and 
to On (say Onf) which at the system level C are connected by con-
straints like:  

Pressedf �C Onf 

If, for example, a flashlight with pressed button has a bulb that is on. 
Now we can say what an information channel is: 

 

 
  

Definition 5|1–7 

 An information channel consists of an indexed family  

C = {¦i: Ai ←
→  C }iÎI  

of infomorphisms with a common co-domain C, the core of the 
channel. 
 

 
The intuition is: the Ai are the (classifications of the) parts of the dis-
tributed system C, and it is by virtue of being part of C that tokens of 
the Ai carry information about one another. Two parts (i.e. tokens of 
constituent classifications) are connected, if the same token of the co-
domain is mapped onto them, i.e. two parts are connected if they are 
mapped to the same instance of the distributed system. 

 
Example:  
A switch s is connected to a bulb b if the infomorphism between the 
switch classification and the system classification, respectively the co-
domain (i.e. the domain of flashlights) maps some flashlight token c to 
the switch s and the infomorphism between the bulb classification and 
the system classification maps the very same flashlight c to the bulb b. s 
and b, therefore, are the switch and bulb of the same flashlight.  
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Information only flows in the context of a particular token of the co-
domain 

Information Flow (Outline) 
Now we have all ingredients to talk about information flow in a precise 
way. Suppose, A and B are constituent/part classifications in an infor-
mation channel with core C. A token a of type A in A carries the in-
formation that a token b is of type D in B relative to the channel C if a 
and b are connected in C and the translation of A entails the transla-
tion of D in Th(C). 

Once again let us make this clear by looking at our flashlight exam-
ple. Leaving aside some details – for later –, it may look like this:  

B is a bulb classification (with tokens b…), S is a switch classifica-
tion, C is our classification of working flashlights with tokens c… The 
infomorphism ¦1 maps flashlights to bulbs. ¦1

Ú(c) = b for c∈W (the do-

main of flashlights). Infomorphism ¦2 maps flashlights to switches. 

¦2

Ú(c) = s. (That means b and s are connected in a flashlight c.) ¦1

Ù(On) 

= Onf (Onf  being a type of flashlights), and ¦2

Ù(Press) = Pressf  with the 

constraint holding  

Pressf  �C Onf 

and this means nothing else but 

¦2

Ù(Press) �C  ¦1

Ù(On) 

Press(s) carries the information On(b), since the corresponding types 
are connected at the system level. We have the information that the 
bulb b is on because the switch s is pressed, linking two types unlinked 
before by translating back a constraint valid at the system level (hold-
ing for c). 

To get information about some part of a system, having information 
about another part, we have to reason at a distance. This means: We 
employ our knowledge about the distributed system and its regulari-
ties. 
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In Detail: We see the part we know about as part of a system, apply 
some known regularities of the system to this representation of it, de-
rive a system representation of the other part we are looking for, and, 
finally, translate this back into some simple information about that 
distant part. 

Look at this diagram for reasoning at a distance: Let C be the sys-
tem, S and B be two constituent classifications with infomorphisms ¦1 

and ¦2: 

We have to reason – somehow – from S to C and then from C to B, 
along infomorphisms. To do this, we need some rules of reasoning. 
These rules allow us to follow or to reverse the work of some infomor-
phism. 

¦-Intro and ¦-Elim 

The rules concern mappings of types. Consider an infomorphism be-
tween A and C, we reason using these two rules: 

¦-Intro:  Γ-¦ �A ∆-¦     resp.  Γ �A ∆  

   Γ �C  ∆    Γ¦ �C ∆¦ 

Γƒ is the set of translations of  Γ, Γ-ƒ the set whose translations are in Γ. 
Remember that ¦-up maps types from one classification to another. So 

if there is a infomorphism ¦ we know that the constraints that hold for 

types which are mapped by ¦ have still to hold for the types they are 

mapped on. This is what the right side of the rule ¦-Intro says. The left 

side says the same; we only see the types in classification A now as the 

       C 
     ¦1  ¦2 

 
                  S      B 
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types we get translating back from types we have in classification C. ¦-

Intro says we can take a valid A-sequent into a valid C-sequent (so 
map the types).  

¦-Intro preserves validity: If c were a counterexample to Γ �C ∆,  ¦ 

(c)=a would be a counterexample to Γ-¦ �A ∆-¦ . 

Example:  
If it is valid in A that pressed switches show a red top, it is valid in C 
that flashlights with their switches pressed have a red top of their 
switch shown. 
 
¦-Intro does not preserve non-validity, since some constraints start 

with the system level. What is not true for isolated parts may be true 
for connected parts! 

¦-Elim:  Γ¦ �C ∆¦ 

   Γ �A ∆  

¦-Elim says we can take a valid C-sequent into a valid A-sequent (so 

map the types), but ¦-Elim does not preserve validity: There can be a 

valid constraint Γ¦ �C ∆¦ but Γ �A ∆ has a counterexample, although 

¦(c) cannot be a counter- example for any c. 

Example: 
Flashlights c with pressed switches make light, but some switches a – 
those not build into flashlights – do not (but they are not connected 
either. Important for us are the parts that are connected in some sys-
tem token, so with respect to them we can trust ¦-Elim). ¦-Elim pre-

serves non-validity. 
We can now use the rules ¦-Intro and ¦-Elim for reasoning at a dis-

tance. The validity preserving nature of the ¦-Intro rule tells us that 

any constraint that holds for a constituent of a system translates to a 
constraint that holds for the system. And using ¦-Elim we have that 
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any constraint about the whole system yields a constraint about the 
components (i.e. those components that are part of a system token). 

Let us look back at our example. Consider again the diagram: 

Given the properties of the two rules, we are allowed to reason along 
the infomorphisms, since validity of constraints concerning connected 
tokens cannot be lost. So if flashlights with pressed switches make 
light, we know from the switch being pressed that the bulb is on. ¦-

Intro maps the switch type to a type in a relevant system constraint, 
the right hand side of which is mapped by ¦–Elim to a bulb type. 

Local Logics (Outline) 
To make this reasoning precise we need the concept of a local logic, the 
idea is given by 

 

 
  

Definition 5|1–8 

 A local logic L = áA, �L, NLñ consists of a classification A, a set of se-

quents, the constraints of L, �L (satisfying some structural rules 

[Identity, Weakening, Global Cut]) involving the types of A, and a 
subset NL Í U (U being the domain of A), the normal tokens of L, 

which satisfy �L. 

 
We will not go into the details of the structural rules here. The normal 
tokens are the connected parts with their distributed system. A local 
logic L is sound if every token is normal. It is complete if every sequent 
that holds of all normal tokens is in the consequence relation �L.  A 

       C 
     ¦1  ¦2 

 
                  S      B 
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sound and complete local logic is a classification with a regular theory 
(i.e. a theory with the mentioned structural properties). 

Reasoning at a distance involves ‘moving around’ local logics. The 
inverse of a complete local logic is complete itself.  

Given an infomorphism between A and C and a logic L on one of 
these classifications, we obtain a natural logic on the other. If L is a 
logic on A, ¦[L] is the logic on C obtained from L by ¦-Intro, ¦-1[L] is 

the logic on A obtained from a logic L on C by ¦-Elim. (‘LogC(A)’ ab-

breviates such an induced logic.) 
Reasoning at a distance in our diagram amounts to: 

LogC(B)= ¦-1[¦[Log(A)]] 

How Information Really Flows 
Without going into the meta-logical details of local logics we can say 
what they are used for: Pushing around local logics means that the 
sound theory which holds for the distributed systems can be pushed – 
so to speak – one level down to talk about the parts. Moving around 
logics is mediated by the channel. (Remember here: infomorphism can 
be added up, so we need to consider only one classification for all the 
part classifications, namely the sum of all these part classifications.)  

Let A be the sum of the constituent classifications, so we have C 

←
→  

A.  
Given a logic L on the core we use ¦-Elim to obtain a local logic 

¦-1[L] on A. This logic contains all types of constituents. 

Usually, L being scientific, ¦-1[L] captures information flow from a 

user’s perspective. One could say: The local logic is the ‘what’ of in-
formation flow (what information we are able to derive), the channel is 
the ‘why’. 

For the last time let us make this clear in our flashlight example. Let 
C be again our flashlight classification, B and S be the bulb and switch 
classifications. We build – remember the diagram for adding infomor-
phism – a classification B+S and an infomorphism ¦ = ¦1+¦2, so that 
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for a flashlight token c ¦Ú(c)=( ¦1

Ú(c), ¦Ú

2(c )) is the pair of the bulb and 

the switch of c. Given a type φ of C ¦-1(φ) is the disjoint union of ¦1

-1(φ) 

and ¦2

-1(φ). (Different types of the part classifications can be mapped to 

the same system type.) If B supports the constraint Lit �B Live, this will 

be a constraint of B+S, since adding the classification preserves their 

constraints. Then by ¦-Intro we have a constraint  on the system level 

¦(Lit) �F ¦(Live), F being the local logic of the distributed system. Now 

F on C supports Illum �F Elec (emitting photons entails carrying cur-

rent). We might have as mappings:  

Illum = ¦(Live) = ¦1(Live), and Elec = ¦(Press)= ¦2(Press).  

With ¦-Elim we get:   

Lit �B+S Press.  

Lit is translated back into the part type, since at the system level there 
is a constraint that continues on ¦(Lit) �F ¦(Live). The resulting right 

hand side Elec is translated back into the party type which now is con-
nected by some translation induced constraint to the other part type 
Lit. That is: We know that the switch is pressed, since the bulb is lit – 
what only holds for pairs that are connected by the same flashlight, 
these being the normal tokens of the logic obtained by applying ¦-Elim, 

i.e. LogC(B+S) = ¦-1[F] for the local logic F on C. So what we have 

done is deriving some ‘new’ constraints on the sum of the part classifi-
cations by translating back constraints of the system level (its local 
logic). Thereby we have translated talk about parts inasmuch as they 
are built into the distributed system into talk about the parts. Exploit-
ing the local logic of the distributed system which contains Illum and 
Elec we reasoned from the fact that the bulb is lit to the fact that we 
switched the button. Or we could say: The information that the switch 
is pressed flows (now) from the fact that the bulb is lit. 
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We have come a long way. Of course a flashlight is a very simple sys-
tem, but we hope you have got an idea how we might be able to exploit 
the constraints governing distributed systems. This is the core of in-
formation flow. 

Further Reading 
The theory of information flow is developed in formal detail in: 

 
�� Jon Barwise/ Jerry Seligman, Information Flow. The Logic of Dis-

tributed  Systems, Cambridge (CUP) 1997. 
 
The article 

 
�� Jerry Seligman, ‘Perspectives in Situation Theory’, in: Robin 

Cooper/Kuniaki Mukai/John Perry (eds.), Situation Theory and 
Its Applications, Stanford 1990, 147-91. 

 
can be considered a precursor containing links to Dretske’s theory and 
to situation semantics, although information flow in perspectives does 
not involve concluding to properties of other tokens, but rather in-
volves a redescription of tokens (namely situations) one already has. 



 

5 2 Information Flow and Paraconsistency 

Standard propositional logic contains valid formulas that, intuitively 
speaking, are hard to accept, for example: 

(1) A true statement is implied by any statement whatsoever. 

(2) A contradiction implies any statement whatsoever. 

Or with the conditional junctor ‘É’: 

(3) p É (q É p) 

(4) p Ù ¬p É q 

The formulas (3) and (4) have been called ‘paradoxes of implication’, 
since although they are valid in propositional logic, they run against 
our pre-theoretic understanding of a conditional. If your cat is on the 
mat that does not imply – it seems – that Bayern Munich winning their 
quarter finals against Cologne implies that your cat is on the mat. 
Whatever the habits of your cat are they are not connected to far re-
mote soccer results. If you happen to hear that Bayern Munich won 
their quarter final 8:0 and believe – for some mistaken reason – that 
Cologne also reached the semi-finals you have an inconsistent belief 
set. Although you do not notice at the moment – say, despite having 
talked about it only yesterday you do not remember that one of the 
quarter finals was Bayern Munich against Cologne – de facto your be-
lief set is inconsistent. Nevertheless, at that very time you have an in-
consistent belief set, you do not deduce any statement whatsoever (e.g. 
that you can fly right out of your window). Being inconsistent with re-
spect to some facts is not per se connected to whatever belief you might 
have. 
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There are several varieties of logics which avoid these formulas like 
(3) and (4) by changing the underlying logic, especially the understand-
ing of the conditional junctor.  

Relevant logics are logics that avoid theorems like (3) and (4) by re-
quiring some connection between the antecedent and the consequent of 
a conditional. A simple truth is not implied by anything, since it does 
not share content with everything. No true statement shares its content 
– so it seems – with a contradictory antecedent. One way of requiring 
the sharing of content is to require that the antecedent and the conse-
quent of a conditional share at least one propositional letter (in the 
case of a propositional logic – adding quantifiers adds nothing to the 
problem of the paradoxes of implication). Since the conditional junctor 
is supposed to capture relations in content (not just truth values) the 
semantics of conditionals is usually intensional (a possible worlds se-
mantics). 

Paraconsistent logics in general are logics that allow for the occur-
rence of some contradiction within a set of formulae without this set 
(or its set of consequences) becoming trivial, i.e. from the occurrence of 
some contradiction not any formula can be derived. Deriving for any p 
both p and Øp makes a system trivial. Paraconsistent logics accept in-

consistency by avoiding triviality. The classical theorem (4) and theo-
rems related to it – for example at least one of those used in the deriva-
tion of (4) – have to go. There are several approaches within the field 
of paraconsistent logic. On the one hand there is a distinction between 
those who see contradictions as an accident to be avoided, but com-
mon enough to have a logic able to deal with them, and those who be-
lieve that there really are some true contradictions (i.e. contradictions 
which will not go away and which can even be proved, say in a system 
strong enough to express naïve semantics containing its own truth 
predicate). On the other hand there are distinctions in the formal appa-
ratus or proof theory employed to deal with contradictions. Some sys-
tems contain non-standard conjunction, some use constructive implica-
tions and some are versions of relevant logics. 

Relevant logics come in different systems, there is an American and 
an Australian tradition. The problem of some relevant logics is not 
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that they do not work from a formal point of view. The problem from 
a philosophical point of view is that the semantics which is used to 
show that some systems work and are adequate contains some peculiar 
truth conditions for negation and implication. If one can avoid the 
paradoxes of implication only by introducing similarly strange seman-
tic principles or truth conditions, nothing seems to be gained. 

What we want to introduce you to in this section is the way in which 
our picture of information flow from the first section (especially the 
notion of a channel and a distributed system) might help to dispel 
some of the doubts one might have concerning the so called Routley 
semantics of relevant logics (named after the pioneer of relevant logics 
Richard Routley). An interpretation of relevant semantics in the light 
of information flow might strengthen the relevant approach in logic 
and support the relevant family of paraconsistent logics. Questions 
arising from relevant semantics, on the other hand, might lead to re-
finements in our understanding of information flow. 

We give a brief overview of relevant logic and semantics in the Rout-
ley tradition with a focus on the truth conditions for conditionals and 
negation. Information flow enters the picture in reflecting on these 
conditions.  (In our exposition we follow the work of Edwin Mares and 
Greg Restall. We use ‘a’, ‘b’ as variables for possible worlds, ‘A’, ‘B’ as 
schematic letters for any well formed formula and ‘⇒’ as implication in 
the meta-language.) 

Routley Semantics 
The requirement that antecedent and consequent share some proposi-
tional letter deals with some irrelevant formulas, but (3) will still be 
around! Furthermore the variable sharing constraint, as it is called, 
does not explain why it holds. Routley’s semantics for relevant logics is 
a version of possible worlds semantics. We have a set of worlds W and 
within that the normal worlds N. Let ‘I(A,c)’ mean that for (some) in-
terpretation I the formula A is true at world c. A formula is valid in a 
frame iff it is true on all normal worlds on all interpretations. There is 
an accessibility relation between worlds also, but the crucial difference 
to standard Kripke semantics is that this accessibility is a ternary rela-
tion. Different alethic modal systems put different conditions on the 
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accessibility relation R (like reflexivity, symmetry and so on). Here we 
start with no condition to hold for R. It does not enter the picture by 
accounting for ‘ª’ (as in most alethic modal logics), but by accounting 

for the relevant conditional ‘→’.  
So a relevant conditional is taken to be true at some world a if for 

two other worlds b and c that stand in the accessibility relation to a it is 
the case that the truth of the antecedent in b brings with it the truth of 
the consequent in c. Compare the usual truth condition for a modal 
conditional equivalent to ‘ª(A É B)’: In these cases the evaluation of 

antecedent and consequent is not spread across different worlds; ‘ª(A 

É B)’ is true at some world a iff at all accessible worlds b if the antece-

dent is true at b the consequent is true at b.  
Since we are free to interpret atomic formula at worlds and the truth 

condition for the conditional ‘®’ refers to two worlds of evaluation we 

can have I(B,b) = true and I(B,c) = false thus making even 

(5) A ® (B ® B)  

or – with a similar distribution – 

(3’) A ® (B ® A) 

false!  
What has this truth condition to do with implication or entailment 

as we understand it? Is there any interpretation that makes the ternary 
accessibility relation intelligible? Merely having some truth condition 
for a conditional junctor that makes some theorems one wants to dis-
card false is in itself no big feat. The semantics given is only a more 
appropriate semantics for implication or entailment if we can argue 
that the truth condition introduced is either more natural than the 
standard one or can at least be given some reading which makes it in-
telligible and maybe – in connection with the meta-logical results hold-
ing for the system – more acceptable.  
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Before we look at an interpretation from the point of view of infor-
mation flow, let us first show that by some further conditions on acces-
sibility in frames ‘®’ can be tied to our informal notion of entailment. 

We can define 

 

 
  

Definition 5|2–1 

 A entails B iff ("w Î W)(I(A, w)=true ⇒ I(B, w)=true). 

 
Entailment in this sense means ‘implies in all possible worlds’. Note 
that the evaluation of antecedent and consequent is done at the same 
world (as one should expect). To capture entailment, a reflexive and 
transitive relation ≤ on the worlds is introduced: 

 

 
  

Definition 5|2–2 

 ("a, b Î W)(a £ b ⇔ ($n Î N)R(n, a, b)) 

 
Two worlds stand in the relation ≤ iff there is a normal world which 
connects the two in its ternary accessibility. (This again has no obvious 
intuitive reading.) Further on one requires a heredity fact  

(6) ("a,b Î W)(I(A,a)=true Ù a £ b ⇒ I(A,b)=true) 

So truths are inherited from a world a to all £-related worlds b. Given 

our truth condition for ‘®’ we can define normal implication: 
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Definition 5|2–3 

 A normally implies B ⇔ ("n Î N)(I(A®B,n) = true). 

 
This is just relevant implication in the normal worlds. Interestingly 
enough now one can prove an important meta-logical theorem: 

 

 
  

Theorem 5|2–1 

 A entails B ⇔ A normally implies B 

 
Theorem 5|2–1 tells us that in the normal worlds our intuitively accept-
able notion of entailment is mirrored by relevant implication. This is a 
big step towards justifying the intuitive soundness of the relevant con-
ditional ‘®’ and its ternary accessibility relation. The right to left di-

rection tells us that we do not introduce new implications by our ter-
nary accessibility. Since R gives us more possibilities to falsify formulas 
this may be no big surprise. The left to right direction of Theorem 5|2–
1 tells us that the normal worlds are complete with respect to entail-
ments. (Note that ‘A’ does not entail ‘B®B’ either, since the latter does 

not hold at all worlds, as we have seen above.) Normal worlds are – at 
least in some of the system of relevant logic – those worlds which sat-
isfy the principle of excluded middle and which are consistent. Since 
relevant logic is paraconsistent there are plenty of worlds which do not 
meet these conditions. 

We still do not know, however, how we should understand the ter-
nary relation. That is where the perspective of information flow comes 
into the picture (in the next subsection). 
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Before we look at that we have to look at the semantics of negation, 
the second major deviation from standard logic, and the second major 
stumbling block for anyone trying to understand relevant semantics. 

Negation gets its non-standard treatment by the (in)famous Routley 
star ‘*’. For any world w there is postulated a witness world w*. 

 

 
  

Truth Condition Ø 

 I(ØA, a) = true iff I(A, a*) = false  

 
Once again the evaluation is spread across two worlds. Note that the 
truth condition only requires that ‘ØA’ is true at a world a iff A is false 

at a*; nothing is said whether the behaviour of ‘A’ at a depends on 
what is the case at a*. So we can have I(A,a) = true, I(A,a*) = I(B,a) = 
false, giving us that 

(4') A Ù ØA ® B 

turns out false. a in this case is a world where A and ØA both are true 

(showing that this semantics is paraconsistent).   
Given its truth condition, however, ‘Ø’ seems to be something com-

pletely different from standard negation. What is a witness world, 
anyway? A couple of logicians accustomed to the construction of for-
mal semantics have complained that this goes to far, that one gets no 
idea what this truth conditions is supposed to tell us (e.g., van Ben-
tham 1979). 

The Information Flow Perspective 
As we saw in Chapter 5|1, information flows in a distributed system, 
which can be considered the channel along which we reason. Talking 
in situation semantics language we can say that information about one 
situation is derived from another situation by some channel. Situations 
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were introduced as parts of reality. The channel is also a part of reality 
(trivially so if we see the distributed system as a channel). Therefore 
there is a situation that comprises exactly the channel. The infons 
made factual by that situation are the infons that describe the structure 
of the channel. The important thing is: The channel as well as the parts 
(be it two or more) are situations and can be relata of a ternary rela-
tion connecting entities of some type. The channel and two sites con-
nected by a channel can be seen as the relata of the ternary accessibility 
relation R. Look again at the truth condition of ‘®’: The relation that 

is said to hold between b and c is established or observed from a. Let a 
be the channel and b and c be the sites connected by the channel. We 
can say that the channel establishes the connection between the sites, 
and from the perspective of the distributed system the sites are relata of 
information flow. ‘A ® B’ receives the following interpretation: ‘A ® 

B’ is true at a if all the sites/situations b and c connected by that chan-
nel are such that if the information A is available at the one end b, the 
information B is available in situation c. The more constraints hold for 
a distributed system the less situations can be derived from it, since the 
derived situations have to meet all the constraints. Having more con-
straints operative in a channel means zooming in on a very specific 
part/situation.  

This amounts to an interpretation of a ternary accessibility relation 
in terms of information flow. And it allows us to introduce a second 
reading of ‘®’. (The first reading of ‘®’ – expressed by Theorem 5|2–1  

– was ‘entailment in the normal worlds’.) The second reading of ‘®’ 

says:  
 

 
  

® Reading 2 

 ‘A ® B’ is true with respect to a channel c iff ‘{A} �C {B}’ is a constraint 

for that channel c. 
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To spell this reading out there should be infomorphisms mapping what 
is said in ‘A’ and ‘B’ at the system level to statements/infons of the part 
classifications (cf. Chapter 5|1). An interpretation also has to be devel-
oped for the equivalent of the occurrence of nested arrows ‘®’. It 

seems that one has to allow constraints that constrain lower level con-
straints. 

Edwin Mares gives a further interpretation of ‘®’ in terms of situa-

tions and information flow exploiting the fact that an infon (made true 
by some situation) can contain information about situations (i.e. can 
contain parameters or constants for situations). An infon can contain 
information about relations between infons and situations. Infons of 
this kind are informational links. They tell us that some infon being fac-
tual involves a second infon being factual (see Chapter 4|2 on informa-
tion architecture). An informational link has the form: ááinvolves, Φ, Ψ, 

1ññ where Φ and Ψ are situation types. These types are introduced by 

abstraction on situations supporting infons (see Chapter 4|1). Say we 
have the following two type definitions using a situation parameter 
‘s*’: 

Φ = [s* s* ’ φ] 

Ψ = [s* s* ’ ϕ] 

that is ϕ and φ are the infons the support of which defines the type. 
They give the informational content associated with the types. One can 
take the ternary accessibility relation R to represent these informa-
tional links. If some informational link is said to hold in situation a 
saying that an infon φ carries the information that the infon ϕ also has 
to hold (somewhere), then if R(a, b, c) and b contains/supports the in-
fon φ, then c contains/supports the infon ϕ. The ternary relation mod-
els an informational link of one situation/infon constraining another. 
We arrive at: 
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® Reading 3 

 ‘A ® B’ is true with respect to situations a, b, c such that R(a,b,c) if it 

is true that if a ’ ááinvolves, Φ, Ψ, 1ññ and b ’ φ , then c ’ ϕ. 

 

 
This reading is substantially the same as reading 2: Whereas the latter 
models the truth condition of ‘®’ by the formalization of constraints 

and the theory of a distributed system this reading treats constraints by 
the involves relation that is part of the informational architecture. If we 
take R to be about or related to informational links some features of 
information linkage should be mirrored by the relation R. Every situa-
tion is closed under informational linkage, since information is factual: 
given that some piece of information is present in a situation and is 
linked to some other piece of information the second piece is already 
there, just as information is out there in the world. The involved in-
formation needs not to be linked to the situation by a special act or 
discovery, it is simply there. This means for relation R that one should 
require it to be reflexive: 

(7) R(a,a,a) 

If a contains an information link, (7) guarantees the closure of it with 
respect to a. The set of statements made true by a is then closed under 
modus ponens. Note that (7) does not make obvious sense, however, in 
the second reading of ‘®’: Not every channel carries information from 

itself to itself! On the other hand (7) seems vacuously true on the sec-
ond reading, since the information present in the system is present in 
the system (as its own improper part) if it is present in the system (as its 
own improper part).  
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What about negation? 
If the situation framework could deal with the ‘*’-operator as well, it 
might well become the preferred reading of relevant truth conditions. 

A piece of information can be incompatible with another piece of in-
formation. This may be due to the polarities within the infons sup-
ported by the situation or due to constraints yielding implied informa-
tion of the one infon incompatible with the other. Suppose we had 
made this intuition more precise and given a formal account of com-
patibility, say by using infon logic or by considering metalogical prop-
erties of the theories of distributed systems (i.e. their set of supported 
constraints). We could then introduce a relation C(a, b) of compatibil-
ity between situations or the sets of infons supported by these situa-
tions. The statement ØA is true at a, then, if the truth of A is incom-

patible with the other information contained in a related situation b. 
The closure of a situation can be taken as what the situation says. The 
set of compatible situations can be taken as that which is not excluded 
by what the situation says. If the negation of some state of affairs A is 
a fact in all a compatible situations, the state of affairs is not compati-
ble with a, so presumably its negation is contained within what a says. 
a* (the witness world referred to in the explanation of the Routley star) 
can be taken as the maximal situation such that the information given 
in a is compatible with it.  
We arrive at a 

 

 
  

Ø Reading 

 I(ØA, a) = true iff for all b such that C(a, b), I(A, b)=false. 

 

 
That is, a negation is true in a situation a if in all other situations com-
patible with the information given in a the statement under considera-
tion is false. a* just is the most informative (since most comprehensive) 
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of these situations. Not every situation is compatible with itself, since 
we assumed that there are inconsistent situations. 

These kinds of truth conditions of ‘®’ and ‘Ø’ refer the evaluation 

of some formula from some situation at which it is to be evaluated to 
another situation. Especially the truth condition for relevant implica-
tion does not require that the information linked to the information 
given in situation a is completely present in a itself. This is as it should 
be in situation semantics, since we are interested in partiality. Infon 
logic requires a few conditions of minimal logical closure of infons 
supported by some situation. Closure under modus ponens (i.e. a corre-
sponding principle for infons, not statements) may be part of (an) in-
fon logic. We would, however, give away the whole idea of partiality if 
all information that is somehow linked has to be present in that very 
situation. Requiring this would take us back to worlds (if there are no 
informationally isolated parts of worlds). 

A Relevant Logic 
We will not go into the details of the various relevant logical systems 
and their distinctions here, but for the curious we present just one sys-
tem of relevant logic that is sound and complete with respect to a read-
ing from the information flow perspective.  

The system E is a basic system of relevant logic, considered to cap-
ture the notion of entailment (therefore the name ‘E’): 

1 A ® A 

2 (A Ù B) → A 

3 (A Ù B) ®B 

4 ((A → B) Ù (A ®C)) ® (A → (B Ù C)) 

5 ((A ®C) Ù (B → C)) → ((A Ú B) ®C) 
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6 A → (A ÚB) 

7 B ® (A Ú B) 

8 (A Ù (B Ú C)) ® ((A Ù B) Ú (A Ù C)) 

9 ¬¬A → A 

10 (A ® B) → ((B ® C) → (A ® C)) 

11 (A → (A ® B)) → (A ® B) 

12 (A → ØB) → (B ® ØA) 

13 (A → ØA) → ØA 

14 (((A ® A) Ù (B → B)) ® C) ® C 

As rules E contains: 

(i) � A ® B, � A ⇒ � B 

(ii) � A, � B ⇒ � (A Ù B) 

We give only the propositional part, since that is the level where the 
considerations of relevance come in (just as in paraconsistent logics), 
one may add standard modal quantification theory. Interestingly 
enough it can be proved that even the propositional part of a relevant 
logic like E is not decidable! Greg Restall develops a semantics of 
situation frame structures in the vain of the second reading of ‘®’ 

which invalidates some the theorems of E, but is decidable. 
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Further Reading 
The whole section is based on work of Edwin Mares and Greg Restall, 
see: 

 
��Edwin Mares, ‘Relevant Logic and the Theory of Information’, 

Synthese 109 (1996), 345-60. 
 
��Edwin Mares/Robert Meyer, ‘Relevant Logics’, in: Lou Goble 

(ed.), Philosophical Logic, Oxford 2001, 280-308. 
 
��Greg Restall, ‘Information Flow and Relevant Logics’, in: Jerry 

Seligmann/Dag Westerstahl, (eds.), Logic, Language and Compu-
tation, Stanford 1996, 463-77. 

 
You can find the different systems of relevant logics and their meta-
theory in the textbooks 

 
��Richard Routley et. al., Relevant Logics and Their Rivals, Atas-

cadero 1982. 
 
�� Steven Read, Relevant Logic, Oxford 1988. 

 
A textbook length introduction to the philosophical questions and 
formal systems of paraconsistent logics – unfortunately in German – is: 

 
��Manuel Bremer, Wahre Widersprüche. Einführung in die parakon-

sistente  Logik, Sankt Augustin 1998. 

 
An earlier, similar overview is given by the introductions written by 
Richard Routley and Graham Priest in the volume: 

 
��Graham Priest/Richard Routley/Jean Norman (eds.), Paraconsis-

tent Logic. Essays on the Inconsistent, Munich 1989. 
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see also for an overview focussing on relevant varieties: 

 
��Graham Priest, ‘Paraconsistent Logic’, in: D. Gabbay/F. 

Günthner (eds.), Handbook of Philosophical Logic, 2nd Edition, 
Dordrecht 2000. 



 

5|3 Get Yourself Involved into Impossible Situa-
tions 

Sometimes people say things like ‘You put me in an impossible situa-
tion.’ or ‘That put me in an impossible situation.’ What they usually 
mean by that is not that they are or were in circumstances which falsi-
fied the laws of logic, but rather that the situation they are or were in 
was pretty unpleasant. Anyway, in this chapter we shall look at situa-
tions in the way we have introduced it as a technical term and consider 
the incentives to say about some of them that they are impossible, lit-
erally speaking, but nevertheless are.  

At first sight, this doesn’t seem to raise a substantial problem, does 
it? You might wonder why anybody should bother whether or not 
there should be impossible situations. At least there clearly seem to be 
possible situations, for all actual situations are clearly possible situa-
tions. So why shouldn’t we also assume that besides the actual situa-
tions, there are the possible situation (some of which are mere possible 
situation, viz. those which are not actual) and finally the impossible 
situations. If it makes sense to say that some situations are possible, it 
should also make sense to say that some situations are impossible. 
Sounds like some existential commitment being involved, so why not 
assume that there are impossible situations? 

Well, one way to argue against this line of thought could be that it 
parallels Meinong’s reasoning for the being of non-existing objects (or 
what Quine called the ‘platonic riddle of nonbeing’). Some things don’t 
exist. Prime examples for this are Santa Clause, unicorns, elves. But 
what is it of which we truly claim that it does not exist? If there are 
things that don’t exist, then they are. Thus besides the existing things 
there are also the non-existing things. These are the things we can truly 
say of that they don’t exist. Just as most philosophers do not like this 
reasoning to much, for it overcrowds the ontology with all sorts of 
dumb things, philosophers with taste for desert landscapes, do not like 
impossible situations much. It’s already weird enough to assume that 
there are more situations than the actual ones, it would be better to 
avoid situations which are not only not located in space and time, but 
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moreover not even representable by a coherent description (as the pos-
sible situations presumably are).  

In this chapter we will discuss arguments why possible situations and 
even impossible situations are a welcome enrichment for the theory of 
information flow we discussed throughout the book. Moreover, we will 
learn how information theory can be exploited to explicate the notion 
of possibility and necessity. To get started, we shall first try to get a lit-
tle bit clearer on what possible situations are and then consider impos-
sible ones. 

From Possible Worlds to Possible Situations 
As we have seen from the very beginning of the book, information was 
always said to be analyzable, at least in part, in terms of excluded pos-
sibilities. Since Carnap’s and Bar-Hillel’s theory of semantic informa-
tion we tried to express this intuition more rigidly in a theory which 
quantified over possible worlds. When we discussed possible worlds in 
that chapter, we followed Carnap’s notion of a possible world, or ‘state 
description’, which was defined as a certain class of sentences: 

A class of sentences [in a language-system], which contains for every atomic 
sentence either this sentence or its negation, but not both, and no other sen-
tences, is called a state-description [in the language system], because it obvi-
ously gives a complete description of a possible state of the universe of indi-
viduals with respect to all properties and relations expressed by predicates of 
the system. (Carnap 1947, 9) 

Thus we have dealt with possible worlds as being linguistic construc-
tions. There are reasons to favor another notion of possible worlds, 
reasons which are somewhat related with the kind of realism which is 
typical for situation semantics. To get there, we shall first explore an 
extreme form of realism. 

David Lewis is famous for defending what we will call ‘modal real-
ism’ (Lewis 1986), according to which the possible worlds we quantify 
over in the theory of probability or in formal semantics are all pretty 
much like our world. In fact our world is just one world among many, 
which are spatiotemporally isolated from each other and which don’t 
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bear causal relations. What happens in these possible worlds is inde-
pendent from our language. There might be more possible properties 
than we have predicates and more possible individuals than we have 
names for, or that exist in our world. All these possible worlds are con-
crete; they exist in the way our world exists, with the minor difference 
that our world is actual, whereas the others are not. Since these worlds 
are pretty much like our world, each of them is wholly determinate. 
There might, for example, be numerous possible worlds in which I am 
walking down the beach in St. Andrews right now but which all differ 
in some other respect, for example with respect to who is the current 
vice-president of the first pigeon breeding society of the village of 
Düsseldorf-Rath.  

To assume such a manifold of possible worlds is for a number of 
reasons too much to swallow for some philosophers. One reason is that 
it seems to overcrowd our ontology with the weirdest objects, possible 
worlds, all as real as the one we happen to inhabit, but wholly isolated 
from us and all kinds of possible individuals living there. Another rea-
son is that although extreme modal realism provides a straightforward 
solution for the semantical analysis of our modal talk (it is straight-
forward, since we can take the paraphrases of modal logic at face 
value), it nevertheless betrays epistemology. We know that some things 
are possible, some things are necessary and some are neither, but if we 
have no causal contact with the facts that make our modal believes 
true, it seems mysterious how we ever could have acquired such knowl-
edge. Such a tension between the solution for the semantics of a certain 
domain and the epistemology of that domain (mathematics and ethics 
are two other such domains), is generally called a Benacerraf-problem, 
named after Paul Benacerraf who formulated it for mathematics. This 
is how O’Leary-Hawthorne has put it for modalities: 

Assume that our modal talk and thought is not really committed to the exis-
tence of possibilia, possible worlds, ways things might have been. A puzzle 
naturally arises. How are we now to explain away the apparent reference to 
such modal entities in our everyday talk about the space of possibility [...]? 
Assume instead that our modal talk and thought is genuinely committed to 
the existence of possibilia. Now an epistemological problem looms large. 
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How do we know that the entities we purport to refer to exist and how do 
we know what they are like? As we make the epistemological problem trac-
table we face an apparently intractable semantic problem. As we make the 
semantic problem tractable, we face an apparently intractable epistemologi-
cal problem. (O'Leary-Hawthorne 1996, 183) 

If such tension seems to be dragging us to unattractive extremes, it 
might be best to steer middle course.  

Like Lewis, Barwise will assume that there are ways things might 
have been. But what is the actual complement to the way things might 
have been? It is not ‘I and my surroundings’ as Lewis suggests, such 
that other mere possible worlds are just like that, but rather the way 
things are, a property or state of the world, not the world itself. We will 
take these ways things might have been as real, but although they are 
real, they are neither concrete nor isolated from the actual world. Just 
as everything that exists at all, these ways the world might have been 
are elements of the actual world, they are abstract objects, abstracted 
from the activities of rational agents and – in this sense – they depend 
on these activities. Robert Stalnaker, who suggested this view of possi-
bilities, calls it ‘moderate modal realism’.  

One might wonder how much of a realism this in fact is. If the de-
pendence of the ways things might have been is ontological depend-
ence, such that the way things might have been exist only as the con-
tents of considerings of rational agents (as Stalnaker seems to suggest), 
their existence is clearly mind-dependent. For epistemic contexts this 
might be enough realism. And since we are dealing with information, 
which is an epistemic notion, one might argue that this is all we need as 
an account of possibilities for our purposes, but let’s see.  

The abstractions, moderate modal realism considers, diverge in sev-
eral respects from the possible worlds Lewis is talking about. It is cru-
cial to get clear of this difference to understand how we will be able to 
model informational contexts with their help. To mark the difference 
between possible worlds and the abstractions we consider, we shall call 
ours possible states. This is – as we will see in a minute – anyway more 
appropriate. Now, in what respects do they differ from hardcore pos-



214 RENAMING YOUR 'EVENING STAR' YIELDS NEW INFORMATION 

�

sible worlds? We will try to explain it a little with an analogy we bor-
row from Barwise. 

Consider a fairly simple card game. Two players, we will call them 
Max and Claire, each get one card from a deck of cards of denomina-
tions, K (king), Q (queen), and J (jack). The relative ranking of the 
cards is K > Q > J, and the player who was given the higher card wins 

(if they should be given cards of the same denomination, the play re-
sults in a draw). Let’s suppose first that the two players play the game 
sufficiently often, say 10,000 times, and destroy the deck after these 
10,000 hands.  

If we interpret instead each hand as a possibility in the extreme mo-
dal realist’s sense, Max and Claire play the game in a number of possi-
ble worlds, of which there are 10,000. Although Max and Clare might 
have identical cards in their hands in quite a number of these possible 
worlds, all these hands (or possible worlds) differ, for they are taking 
place at different times and different places. Each present hand is the 
actual hand, and all 9,999 past or future hands are the other possible 
hands. (Thus we draw a temporal analogy to possibilia. What is pre-
sent, is actual.) 

If, on the other hand, we take a moderate perspective on the matter, 
there are nine possible relevant states these hands can be in, namely: 

áK, Kñ, áK, Qñ, áK, Jñ, áQ, Kñ, áQ, Qñ, áQ, Jñ, áJ, Kñ, áJ, Qñ, áJ, Jñ 

A given hand is thus an ordered pair, such that a hand h is in state áK, 

Jñ if in h Max has a K and Claire has a J.  

Now consider the proposition which is expressed by 

(1) Claire has a Q. 

If we adopt the perspective of extreme modal realism, this proposition 
will be modeled by the set p of all possible worlds (of all hands), in 
which Claire happens to have a Q. It will be true for some specific 
hand h iff h Î p. If Claire has a Q in all 10,000 hands, the proposition 
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expressed by (1) will be deemed necessary, if she never has a Q (and p is 
empty), it will be deemed impossible and otherwise contingent.  

If, on the other hand, we take the perspective of the moderate ap-
proach, the proposition expressed by (1) is modeled by the following 
set p*: 

{áK, Qñ, áQ, Qñ, áJ, Qñ} 

The modal status of the proposition is then determined by the possibil-
ity of the nine states we started with. If, e.g., all these states are possi-
ble states, then the proposition expressed by (1) will be contingent, for 
p* contains some but not all of the possible states.  

That we model the proposition expressed by (1) with p* rather than 
with p introduces a certain relativity or certain form of pragmatism 
into our analysis. The ‘right set of all possibilities’ is on the extreme 
view a brute modal fact, it is simply an issue of how many possible 
worlds there are in which Max and Claire play the game. On the mod-
erate view, we selected only those states which were relevant for deter-
mining the winner of the game, according to its rules. The nine possible 
states we consider don’t keep track of different suits of the cards or 
what Claire and Max had for breakfast at the day of the play. These 
questions are not at issue in the game, thus we didn’t keep track of 
them. Possible states are, just the way we introduced situation in the 
very beginning, not complete universes in which everything is settled 
one way or other, but rather equivalence classes of such worlds in 
which what is settled depends on what is at issue.  

In fact, pragmatism enters our moderate view at two stages. One 
pragmatic factor is the question of what is at issue, or – if we frame it 
in epistemic terms – : 

(i) What issues are relevant to the given enquiry? 

(i) is determined by what one wants to know or to find out. In the sim-
ple card game, what was at issue was only the denomination of the 
card; does it have a Q, a K, or a J on it? Let’s make the case a little 
more complicated and assume that not only the denomination matters, 
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but also the suit of the card, and that instead of the jack, we play the 
game with the joker (it’s still called J, and we will treat it just like the 
jack in our ranking). For simplicity, we shall assume that there are 
only two suits, ♠ and ♣. ♠ > ♣, which is introduced as a rule of the 

game, e.g., for the case in which the game results in a draw. Given 
what is relevant to determine the winner of each hand, we get the fol-
lowing states (we use obvious abbreviations here): 

áK♣, K♠ñ, áK♣, K♣ñ, áK♠, K♣ñ, áK♠, K♠ñ, áK, Qñ, áK, Jñ, áQ, Kñ, 

áQ♣, Q♠ñ, áQ♣, Q♣ñ, áQ♠, Q♣ñ, áQ♠, Q♠ñ, áQ, Jñ, áJ, Kñ, áJ, Qñ, 

áJ♣, J♠ñ, áJ♣, J♣ñ, áJ♠, J♣ñ, áJ♠, J♠ñ 

Again, pragmatically, we didn’t consider the states irrelevant according 
to the rules of the game. Now, consider the proposition expressed by 
(2): 

(2) Max has a higher card than Claire, and both have a J. 

According to the rules of the game and our moderate view, this propo-
sition is modeled by the following singleton set p**: 

(p**) {áJ♠, J♣ñ} 

p** is a way to solve all the issues which are relevant for determining 
that Max is the winner and that both have a J. But is this way of re-
solving all the issues a possible state? We might deem it to be a possible 
state, for we might be ignorant of the fact that jokers don’t have a suit. 
If this information is revealed to us, the state in p** is revealed not to 
be a possible state. It is information about the relevant states which 
makes some of them possible and some of them not. (2) expresses an 
impossible proposition. Thus, the second pragmatic aspect of our view 
enters through the following question: 

(ii) What information is currently available concerning these issues? 
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It often depends on the context what states are considered possible and 
what states are not considered possible. Have a look at the following 
arguments: 
 
A1  The morning star is the brightest heavenly body in the 

morning sky. 
 

∴  The evening star is the brightest heavenly body in the morn-
ing sky. 

 
 
A2  This apple is green all over. 
   
 ∴ This apple is not red all over 
 
 
A3  All men are mortal and Socrates is a man. 
 
 ∴ Socrates is mortal. 
 
 
A4  Justin is a human being. 
 
 ∴ Justin isn’t taller than 9 ft. 
 
If we are to judge the validity of A1-4, we will usually turn to some 
logical system, give a regimentation of the premise and the conclusion 
and either try to find a proof of the conclusion from the premise or a 
counterexample. A counterexample, quite generally, is an instantiation 
of the same argument pattern, for which the premises are clearly true 
and the conclusion clearly false. If we can accomplish this task, and 
find such an instantiation into the argument pattern, we can conclude 
that the argument is not valid (and thus not sound). Why is that so? 

The idea is that the validity of an argument depends on the holding 
of the logical consequence relation between the premises and the con-
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clusion. Logical consequence holds if it is not possible that the premises 
are true, but the conclusion is false. A counterexample, on the other 
hand, shows that this modal connection does in fact not hold – it is 
possible that the premises are true, although the conclusion is false. 

Those of you that have taken a course in First Order Logic already 
might be familiar with argument A3. If we regiment the inference pat-
tern in FOL, we get the following valid argument: 
 
A3*  ∀x (Man(x) → Mortal(x)) Ù Man(socrates)  

 
 ∴ Mortal(socrates) 
 
In FOL we can give a proof that this argument is valid, and there is no 
way to find an instantiation of the argument pattern 
 
A3**  ∀x (F(x) → G(x)) ∧ F(a)  
 
 ∴ G(a) 
 
such that the premise is true, but the conclusion is false. For all other 
arguments given above things are less clear. In fact you might think 
that A3 is actually the only valid argument. But if you check back with 
the notion of validity we used, and the definition of logical conse-
quence we gave, all of these arguments should turn out valid. It is for 
none of them the case that the premise could be true, but the conclu-
sion false. It is just not possible that this could be the case. Men are 
never taller than 9 ft. (the tallest man was Bob Pershing Wadlow from 
Alton, Illinois, who was excatly 8ft. 11 in. when measured for the last 
time in 1940), nothing which is in one color all over could be in some 
other color all over the same time, and Venus could not possibly be 
distinct from itself. 

Some of you might want to object ‘But wait, there are several differ-
ent notions of possibility conflated here. The definition of logical con-
sequence meant logical possibility, whereas the modalities we are 
speaking of, e.g., in A4 are natural at best.’  
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True, if the context in which you have to evaluate the validity of A1-
A4 is a logic course, the context determines that you should better be 
concerned with logical possibilities. Evaluating it impossible that one 
object could be green all over and red all over the same time, and thus 
judging A2 to be valid will be a mistake if the context is First Order 
Logic. Only if more information is made available, e.g., if a broader 
sense of logical consequence is the subject under scrutiny and meaning 
postulates are added to the information that counts as available, it will 
be impossible that such an object could exist.  

The same holds for Justin’s height. Even with meaning postulates it 
is still possible that Justin could be taller than 9 ft., thus the conclusion 
of A4 is certainly not logically entailed in the premise. In the context of 
a logic class, or a metaphysical discussion, people over 9ft. tall might 
count as a relevant possibility, but if the context is the construction of 
door frames for a house in which Justin is supposed to live in, other 
modalities begin to matter, and it ceases to be possible that Justin is 
taller than 9 ft. 

The different contexts here are the different contexts in which A1-4 
are considered valid arguments even by individuals who have the same 
information at their disposal. You probably know that men cannot be 
taller than 9 ft., but you should better not consider this to be available 
information when at the end of Baby Logic the exam question is to tell 
whether or not A4 is a valid argument.  

When you were still a small kid, without much knowledge about the 
average height of people, being yourself so small that almost every-
body looked like being more than 9ft. tall to you anyway, the informa-
tion that is at your disposal nowadays, was not at your disposal back 
then. This is another way how context determines what a relevant pos-
sibility is and what is not. It is determined by what information is de 
facto available to an agent. This is what we call epistemic availability.  

A variant of epistemic availability is doxastic availability. Here we 
consider not what an agent knows, but what an agent believes. An 
agent might deem states impossible (because of having false beliefs) 
which may in fact be impossible. It is mainly for matters of epistemic 
and doxastic availability that we are interested in impossible states. To 
this we shall now turn. 
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Impossible States and the Granularity Problem 
One of the questions repeatedly raised throughout the book was the 
question of how to get at the informational content of logical truths. 
We have considered various alternative solutions to it, which we all 
found wanting so far. Let’s remind ourselves what the problem was.  

Jon Barwise has a nice example of somebody who gets dressed to go 
out and is faced with tying his shoes. Which shoe shall he tie first? 
What he obviously can’t do is to tie each shoe first. It doesn’t seem to 
be possible to do two distinct things and each before the other. Now if 
we look at the proposition which is said to be impossible, viz. that 
somebody can tie each of his shoes before the other, and ask ourselves 
how it would adequately be modeled in the possible worlds framework, 
we remember from the chapters before that we would have to model it 
with the empty set of possible worlds. Since the proposition is an im-
possibility, there are no worlds compatible with it.  

Now, as we noted already, this is the same as the set which models 
the proposition that 2+2 = 5, the set in which Fermat’s last theorem is 

false. Given the possible worlds framework very different claims are 
modeled as expressing the same proposition. This seems clearly false, 
since then doubting or believing or claiming one of these should be the 
same as doubting or believing or claiming one of the others, which it 
isn’t. This is what is called ‘the granularity problem’. The trouble is 
that the possible worlds framework alone is not able to represent 
propositions fine-grained enough to catch crucial differences.  

Informationalism now tries to model these crucial differences with 
the help of logically impossible states. We will have a look at one ex-
ample that models a logical ‘inquiry’, to see where the logical impossi-
bilities enter. The example is, again, from Barwise. 

Let us suppose that the relevant issues of an inquiry include whether 
some domain M satisfies the first-order sentence θ as well as first-order 
sentences ϕ1, ..., ϕN, and that it is already established that each ϕi is not 
the case. In other words, each M ’ ¬ϕi is included in the available in-

formation. Let us further suppose that the sentence 

(S) θ  Ú ϕ1 Ú ... Ú ϕN 
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is a theorem of first-order logic. The fact that M satisfies S may not be 
included in the available information, and even if it is there is no rea-
son to suppose that M ’ θ is included in the available information, 

even though it is a logical consequence of the available information. 
For example if we are dealing with epistemic possibility and N is very 
large, the agent may not realize that the set {ϕi | i = 1 ... N} exhausts 
the remaining disjuncts of (S). Checking that this is so is a step that 
must be gone through before M ’ θ becomes available. Until this, our 

(epistemically) possible states include the (logically impossible) states 
where M ’ Øθ is the case alongside each of M ’ Øϕi. This is a state 

that could not be modeled with the help of the standard possible 
worlds framework, because this state is not a logically possible state. 
But, although this state is logically impossible, it is epistemically possi-
ble and thus a state we want to keep track of. Here are some of the 
core features of this pragmatic theory of possibility as developed by 
Barwise (given in the form of partial explications rather than defini-
tions): 
 
 Issues  
 The set of all states of a given inquiry depends on the system un-

der investigation and on the issues regarding the system relevant 
to the inquiry. 

 
States  
A state is a way of resolving all the relevant issues. 
 
Impossibilities  
The set of possible states at a given point in the inquiry depends 
on the information concerning the issues currently available. The 
impossible states are those incompatible with the currently avail-
able information; the others are possible. 
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Available Information  
What information is available at any given point in an inquiry is a 
context-sensitive matter, depending on the kind of possibility one 
is considering and on the progress of the inquiry up to that point.  
 
Increases in information 
The correct elimination of any nonempty set of possibilities corre-
sponds to a strict increase in the information available at the next 
stage in the investigation. 
 
Decrease in possibilities 
Conversely, the acquisition of any new information corresponds to 
a strict decrease in the states that are possible. 

 
Given this pragmatic theory of possibility, especially the fact that in-
formationally relevant states are added to the mere logically possible 
states, knowledge of necessities does not anymore collapse into belief in 
necessities (a problem we had in Dretske’s original account). 

Given that you know that Paul is bald, seeing Paul being bald does 
not add anything to your knowledge, although it does to mine, being 
previously ignorant of Paul’s tragic fate. Receiving a signal stating that 
(S) is a theorem of first-order logic might, again, not add anything to 
your knowledge and thus might not be of informational value for you, 
but it might contain information for me, because  

(S’) Ø(θ Ú ϕ1 Ú ... Ú ϕN) 

might be an epistemic possibility among the states that model my logi-
cal ignorance. As you can see, the receiver plays a much bigger role 
here in determining what a signal can inform him about than in our 
previous models.  

But this change in the theory seems to be quite natural. Consider 
Dretske’s original approach again. Everything which was nomically 
and/or analytically nested into the information of a signal was also 
part of the information of that signal. In a fully deterministic world, 
every signal would then convey no information at all, since there was 
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no alternative to the signal occurring the way it occurred (just like no 
logical truth and no natural law was considered having informational 
content). But even if our world were deterministic (which we shouldn’t 
exclude on the basis of a theory of information alone), signals still 
would carry information for us, since we are largely ignorant of the 
nomical, analytical, and natural nesting relations that obtain between 
the headline of this morning’s Washington Post and everything else 
that ever happened or will happen in the universe. 

The approach is pragmatic in the sense that it puts no limits on the 
ignorance of a subject. It models what some ignorant person may learn 
by gaining information (i.e. by explicitly excluding worlds, even impos-
sible ones). This cannot model non-circularly the amount of informa-
tion in logical truths though, since we needed a speaker independent 
modeling that has no recourse in its definition of normality (of worlds) 
to the logical truths themselves. Thus we can say that the approach 
models subjective possibilities and subjective information gain. 

Further Developing Information Flow 
In their review of Barwise/Seligman’s 1997 book on information flow, 
David Israel and Johan van Benthem characterize the state of informa-
tion theory in the following way. With the 70s two different traditions 
in the field of information theory began to develop, one arising from 
Paul Grice’s logic of conversation with Stalnaker as the key conceptu-
alizer. This tradition was mainly interested in the information-transfer 
aspects of communication and the dynamics involved. The other tradi-
tion, Humean in spirit and having Dretske as their key conceptualizer, 
was more interested in the link of information with knowledge and the 
way in which one part of the world could carry information about an-
other part of the world, thus less interested and quiet about the dy-
namics of information gathering.  

The theory of information that we have followed so far in this book 
belongs mainly to the second camp and even Barwise/Seligman 1997 
belongs clearly here. Nevertheless, Barwise’s attempt to model the dy-
namics of epistemic possibilities in the information flow framework 
can be seen as a way to meet the conceptual challenge described by Is-
rael and van Benthem.  
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Further Reading 
The moderate modal realism we discussed is developed in  
 
��Robert Stalnaker, Inquiry, Cambridge 1981. 
 
The pragmatic theory of possibility is developed in an information 
flow framework in  
 
�� Jon Barwise, ‘Information and Impossibilities’, Notre Dame 

Journal of Formal Logic 38 (1997), 488-515. 
 
Although Barwise’s idea seems quite attractive, there are few discus-
sioin of it yet. You can find a rather detailed discussion that covers a 
very similar ground as we do in: 

 
�� Philipp Keller, Information Flow, Logics for the (r)age of infor-

mation,  
 http://www.unige.ch/lettres/philo/enseignants/philipp/research/ 
 info.pdf. 
 



 

5 4 Genetic Information? 

One area in which we usually talk of ‘information’ is genetics. We talk 
about the genetic code as containing genetic information. What is that 
supposed to mean? Is it only a metaphor, or is there more to it? In this 
chapter we introduce you to a kind of information theoretic perspec-
tive on genetics and cellular development. We follow closely some 
ideas of Douglas Hofstadter. This description is empirically inadequate 
as an account of replication of genes and carriage of information. The 
mechanisms of heredity turned out to be more complicated than they 
were considered in the early 80s. Even by missing the true story, how-
ever, we hope to develop a perspective that could be developed into a 
more complicated, more appropriate information theoretic model of 
genetic information.  

To model genetic information and to highlight the appropriateness 
of talking of a genetic code Hofstadter invents the game of Typogenet-
ics. We start with four letters: A, C, G, T. Arbitrary sequences of them 
are called ‘strands’. These strands play the role of DNA pieces. The let-
ters ‘A’, ‘C’, ‘G’, ‘T’ model the bases which we find in DNA molecules. 
Each strand consists of places or units. For example the strand 

(1) ACGGTTA 

consists of seven units, the second of which is occupied by a ‘C’. 
Strands are to be operated upon. We could, for example, lengthen the 
strand given by attaching further units. A strand can also be copied or 
cut in two. Operations to be performed on a strand come in a package 
(like a program to be executed on some input). The little ‘machines’ 
that realize these operations by moving along the string are the typo-
graphical enzymes. They realize the operations by working on one unit 
at a time, like a Turing machine reading one input under its head. For 
that moment their operation is bound to that unit. Typographical en-
zymes are not universal in that each of them starts out at a specific 
unit, i.e. a particular letter. Given our four letters we have, therefore, 
four types of enzymes. 
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Example 
Say an enzyme is bound to an ‘A’. Its program consists of the follow-
ing operations:  

(i) delete the unit bound to and move one to the right 

(ii) insert a ‘C’ to the right of this unit 

(iii) move one to the right and bind there. 

Given the input ‘ATTAC’ this enzyme will produce the strand 
‘TCTAC’. If any enzyme moves off the end of the strand it quits its 
work. 

‘A’ and ‘G’ form a group called ‘purines’, ‘C’ and ‘T’ a group called 
‘pyrimidines’. This grouping allows for more general instructions like 

(2) Replace the nearest purine by a pyrimidine 

(3) Cut the strand after the second purine! 

Instruction (2) could transform ‘ATTAC’ into either ‘CTTAC’ or 
‘TTTAC’. Typographical enzymes are non-deterministic machines. 
The instructions are taken here as context free (having the same mean-
ing in all program contexts). 

Copying is not done by making another ‘ATTAC’ from ‘ATTAC’ 
like on a Xerox-machine. The enzyme copies ‘A’ into ‘T’ (and vice 
versa), and ‘C’ into ‘G’ (and vice versa). So one of the purines is copied 
into one of the pyrimidines, and vice versa. This is complementary base 
pairing. The strand ‘ATTAC’ would be copied into ‘TAATG’. The en-
zyme produces a complementary strand from a given strand. The new 
strand is attached to the original strand (here, we simply write it above 
it). The copy mode of the enzyme is On as long as it is not turned off or 
the enzyme has walked off the strand. 
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Example 
Suppose an enzyme attaching to an A has the following program: 

(i) Search for the nearest pyrimidine to the right of this unit! 

(ii) Start Copying! 

(iii) If you hit on a purine, cut the strand here (i.e. to the right of the 
last pyrimidine). 

If this enzyme operates on the following strand 

(4) ACTAGATTCTCCCTTCATGA 

it could attach to each of the ‘A’s. Suppose it starts working at the sec-
ond ‘A’. It goes to the right (crossing the ‘G’) until it finds a ‘T’ or a 
‘C’; starting with the second ‘T’ in the strand it goes into copy mode 
until it hits on the third ‘A’; here it cuts the strand, so we get: 

 AAGAGGGAAG 

(5) ACTAGATTCTCCCTTC   � ATGA 

Separating the attached copied part we arrive at three new strands. 
There are fifteen commands available: 

cut  cut strand(s) [i.e. either the input or the copy as well] 
del  delete from the strand (at position) 
swi  switch enzyme to the other strand (i.e. the copy) 
mvr move one unit to the right 
mvl move one unit to the left 
cop - turn on Copy mode 
off  turn off Copy mode 
ina  insert ‘A’ (to the right) 
inc  insert ‘C’ 
ing  insert ‘G’ 
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int  insert ‘T’ 
rpy - search for nearest pyrimidine to the right 
rpu - search for nearest purine to the right 
lpy  search for nearest pyrimidine to the left 
lpu  search for nearest purine to the left 

Each instruction has a three letter abbreviation. They are called ‘amino 
acids’. Thus every enzyme is made up of a sequence of amino acids, 
like a program consists of lines of code. Now the interesting point in 
genetics is that we do not start with given enzymes, but we can trans-
late a strand of purines and pyrimidines into enzymes. That is: The 
strands code for enzymes. Since we considered the strands as inputs for 
programs (the enzymes), we see that we store the programs in the same 
place where we store the strands – as it is in a von Neumann digital 
universal computer. In Typogenetics the data (i.e. the DNA-strands as 
modelled here) dictate the way they are to be processed. And by this 
they dictate which strands are produced from them! This, of course, 
involves a coding of the operations in the strands. Pairs of units, called 
‘duplets’, code some amino acid. Given 4 bases we have 42 = 16 dup-
lets. The code is given by the following grid: 

 

first/second 
base 

A C G T 

A  cut s del s swi r 

C mvr s mvl s cop r off l 

G ina s inc r ing r int l 

T rpy r rpu l lpy l  lpu l 

 
Note that an ‘AA’ codes for nothing. In fact it works as a punctuation 
mark. If an ‘AA’ occurs within a strand with the first ‘A’ on an odd 
position what is left to this ‘AA’ codes for one enzyme and if there 
comes something to the right of it, it codes for another enzyme (do not 
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confuse the punctuation in ‘AGCTAAGTCC’ with the mere occur-
rence of an AA in ‘AGCAAT').  

A gene is a part of a DNA strand that codes for an enzyme. A gene 
is a specification of a program. Since there is a punctuation mark, a 
single DNA strand can consists of several genes. A DNA strand can be 
considered to be a batch of programs. Note also that a strand that con-
sists of an odd number of bases contains a last base that codes for 
nothing. With respect to information theoretic talk about genetics we 
have, thereby, justified the talk of genetic code. (The actual coding of 
amino acids by bases is, of course, more complicated than the grid 
given.)  In information theory one could even use a more abstract no-
tion of a gene: Since a piece of DNA strand might code for more than 
one gene (by having enzymes attached to different starting points of it) 
and some phenotype might be yielded by more than one strand, an ab-
stract gene might be the genetic information that codes for some fea-
ture of the phenotype, where this information might be realized in dif-
ferent substrata (i.e. different strands of duplets). What is preserved 
even in minor mutation is this abstract genetic information. 

The additional letters ‘s’, ‘r’, ‘l’ in the grid determine the enzyme’s 
binding preference (which letter they stick to) by determining how the 
enzyme folds up in space. ‘s’ codes for straight lining, ‘r’ for a right 
turn and ‘l’ for a left turn. The turns in the enzyme can be pictured by 
arrows: ⇑ ⇒ ⇓ ⇐. 

Example 
The strand   

(6) TAGATCCAGTCCACATCGA 

can be parsed into   

(7) TA GA TC CA GT CC AC AT CG A 

with the last A coding for nothing. The translation is: 

(8) rpy r – ina s – rpu l – mvr s – int l – mvl s – cut s – swi r – cop r 
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the spatial structure of the enzyme enfolds like this: 

 
 cop 
 ⇑ 
 swi ⇐ cut ⇐ mvl ⇐ int 
       ⇑ 
       mvr  
       ⇑ 
   rpy ⇒ ina ⇒ rpu 

 
If we look at the direction of the first and the last segment we can code 
the binding preference of this enzyme by another grid: 

 

First Segment Last Segment Binding-letter 

⇒ ⇒ A 

⇒ ⇑ C 

⇒ ⇐ G 

⇒ ⇐ T 

 
(Once again, the actual derivation of the spatial structure from the ge-
netic code is much more complicated.) 

For all this to work we need a mechanism extracting the information 
from the gene and building the corresponding enzyme. The machine 
that does that is a ribosome. Strands translate by the work of ri-
bosomes into enzymes, which by typographical engineering produce 
new strands. In fact the ribosome is the focal point of information flow 
in the whole picture: An enzyme being a translation of a strand con-
tains the same information as the strand (only in the form of amino ac-
ids, not in the form of bases). The Xerox-principle (see Chapter 3|1) 
applies in full force: If a DNA strand codes for an enzyme (i.e. con-
tains that information) and the enzyme’s code produces a new DNA 
strand (i.e. contains – by the structure of its program, given its binding 
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preference and typical input – that information), then the original gene 
contains the information of the produced DNA strand. The ribosome 
channels information from a gene into an enzyme. The enzyme can 
create new information by building new DNA strands. The actual 
mechanism in a cell employs messenger RNA to get genetic informa-
tion from the nucleus to the ribosomes in the cytoplasm. Information 
is carried by the RNA to the ribosomes (by having some special en-
zymes in the nucleus copying DNA strands in the nucleus into RNA 
strands).  

Enzymes and ribosomes do not care about information. They do, of 
course, not understand what they are doing. The little typographic ma-
chines are only moving along a strand executing one operation at a 
time. The information is objectively processed by the whole system. It 
is there in the code and exhibited by the structure of the system. 

Seen from an adaptionist’s perspective one could even say that the 
gene itself channels information. It channels information from the en-
vironment which phenotype traits are able to sustain their bearer and 
which are not. Thinking of various trade-offs between phenotype 
traits, their variation by mutation and the accidents of a creature’s en-
vironment, however, makes one suspect that a principle like the Xerox-
principle will fail in this adaptionist channelling. 

Self-replication means that a strand of DNA is used to manufacture 
enzymes which by operating on this strand of DNA in the copy mode 
produce another instance of that very strand. Information, therefore, 
can be copied by the cell in the usual sense of copying (i.e. keeping the 
way of rendering the information). 

The information present in the genes determines – given a hierarchy 
of information extracting devices and development – the phenotype of 
an organism. Given some measure of length of a gene one could try to 
measure the information present in a gene either in the syntactic style 
of Shannon or even in the sense of Algorithmic Information Theory, 
taking the informational content of some feature of an organism to be 
the length or measure of the shortest DNA code that determines it. 
This looks like being a naïve picture of isolating single DNA strands 
and isolated developments, but some biologists do just that (cf. 
Haken/Haken-Krell 1989). One might consider the distribution of the 
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bases or duplets within a DNA strand. If they are not equally frequent 
the occurrence of some base or duplet carries – according to Shannon’s 
measure of information (see Chapter 1|2) – more information than the 
occurrence of some more frequent base or duplet. Given equal distri-
bution of the genes coding for one of the 20 amino acids involved in 
DNA reproduction one would carry the information log20 = 4,3 bits. 
Given some assessment of ordinary distribution of bases or duplets 
you can measure the syntactic amount of information of a DNA 
strand by the sum of its letters/duplets weighted by some given prob-
ability measure of their chance of occurring. The DNA of a typical 
mammal cell contains 3 × 109 duplets, about 50% of which are redun-
dant! The amount of information of a mammal cell measured thus is 
said to be 6 × 107 bits (cf. Haken/Haken-Krell 1989, 67-68). One can 
then relate the amount of information present to the size of the mem-
ory, arriving thus at a measure of information density in genetic in-
formation storage. E. coli is said to have an information density of 1027 
bits/m³. 

Second Thoughts 
So far there does not seem to be a problem in applying information 
terminology to biological phenomena. However, having a look at the 
lively debate on the concept of information in biology that evolved re-
cently in the philosophy of science, it might seem that we have so far 
only considered a very simplified or even naïve picture of the situation. 
Well, what is at issue? 

It is not really quite clear what is at issue. If biologists use the word 
‘information’, ‘meaning’, ‘genetic code’ without talking past each 
other, there is no reason for a philosopher to intervene. The best thing 
he might do is to tell them that their concept does not, however, match 
the concept normal folks have. Chromoquantumdynamics talks about 
quarks being blue or red, but in fact these are not the kind of things 
that have any colors in the normal sense of the word (quarks are 
smaller than the wavelength of visible light). To highlight this might 
help people outside physics to understand better what the physicists 
are talking about and might reduce confusions.  
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To prove a claim like this when it comes to ‘information’ is of course 
hopeless, given that there is no one folk-notion of information as you 
might have grasped by now. On the other hand, showing that a biolo-
gist does not use ‘information’ according to, say, Shannon’s explica-
tion of it, does not prove that the biologist made any mistake either, 
but rather that Shannon’s theory does not cover all uses of ‘informa-
tion’ in science (as you should have grasped by now, too). So what is 
really at issue? 

One discussion seems to center around the question of whether it 
can reasonably be distinguished between the developmental contribu-
tions of genetic causal factors and non-genetic causal factors. Some 
seem to argue that there is a naturalistic (scientifically respectable) no-
tion of information that can support such a distinction and hence mark 
a difference between genetic factors and the rest in developmental sys-
tems theory. This, however interesting it may be, does not affect the 
question of whether or not it is correct to use information-vocabulary 
when talking about the genetic code. It seems that even if, as some ad-
vocates of developmental systems theory hold, there is no principled 
distinction between genetic and non-genetic factors that could be 
cashed out in information vocabulary, you can still talk about the ge-
netic code as carrying information, as long as you are also willing to 
apply this terminology to non-genetic causal factors. Whether the par-
ity thesis is true or not is largely an empirical question. We will not 
pursue this here. If you are interested in this discussion, read the paper 
by John Maynard Smith from the Further Reading-section.  

Quite another question is whether information talk is correct when 
applied to genes (the way we did above). What are the worries here?  

1.) One worry is that it is unclear what the gene codes for. Does it – 
for example – only code for proteins or does it code for penicillin resis-
tance, if the protein produced has a key role in producing this resis-
tance. 

2.) Another worry is that the DNA does not seem to carry indicative 
but rather imperative semantic content, it carries instructions. But it is 
unclear how ‘carrying information’-talk can be applied to imperatives. 

3.) A question closely connected to the problem we briefly discussed 
above is the parity of information channels. It seems that the symbol 
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carries information about the channel, if the source is known. But then 
it is arbitrary what the channel is and what the role of the source plays. 
In biology is no such arbitrariness, therefore information talk is not 
adequate. Genes code for phenotypes, but phenotypes do not code for 
genes. The concept of information does not allow such an asymmetry. 

4.) Part of the DNA seems to be meaningless; normally we would 
not think that something containing a message or carrying information 
carries huge meaningless parts. 

Concerning question (1.), the model presented sees the genetic code 
as primarily coding for proteins. The point of this modelling was to 
show that the concept of information as presented in this book is ab-
stract enough to cover a sensible talk of genetic information. That the 
environment is a crucial condition only in correlation with which the 
genetic code then can be considered to code for the phenotype is no 
problem for our concept of information, since information is out there 
in the world (so is there in the environmental conditions as well as in 
the genetic code proper). Concerning the coding of the proteins the ge-
netic code is not just described in a vague analogy (using merely the 
vocabulary of information theory) as carrying information, the ab-
stract concept of information directly applies to it. If more of the de-
velopment of organisms can be described in information terms the bet-
ter. 

Concerning question (2.), the model presented takes the code as cod-
ing for imperatives of an imperative programming language, where the 
effects of executing these imperatives result in structures that are thus 
indirectly coded for. 

Concerning question (3.), the model presented here has no problem 
with a wider application of information talk, and a choice of different 
focus according to your explanatory goal in question. The possibility 
to switch the focus shows that we are dealing with a distributed system 
that allows reasoning from one part to the other. 

Concerning question (4.) it suffices to remember MCT and the oc-
curence of redundancy in code. 
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Further Reading 
The account given in the first part of the chapter draws heavily on 
Chapter 26 of  

 
��Douglas Hofstadter, Gödel, Escher, Bach. An Eternal Golden 

Braid, London 1979. 

 
The biological details you may find in a textbook on genetics. For the 
broader picture on evolution and the role of information there, see: 

 
��Daniel Dennett, Darwin’s Dangerous Idea. Evolution and the 

Meanings of Life, London 1995. 
 
The part of this chapter titled ‘Second Thoughts’ refers to a discussion 
that evolved around a paper by the biologist John Maynard Smith: 

 
�� John Maynard Smith, ‘The Concept of Information in Biology’, 

Philosophy of Science 67, 177-194. (See also the contributions by 
Godfrey-Smith, Sterelny, and Sarkar, as well as the reply by 
Smith in the same volume) . 

 
For a rather critical view on the use of the concept of information in 
biology, see 

 
�� Paul E. Griffith, ‘Genetic Information: A Metaphor in Search of 

a Theory’, Philosophy of Science 68, 394-412. 
 
and 
 
�� Peter Godfrey-Smith, ‘Genes and Codes: Lessons from the Phi-

losophy of Mind?’, in: Valerie Gray Hardcastle (ed.), Where Bi-
ology Meets Psychology, MIT Press 1999, 305-331. 



 

 

 



 

Epilogue 

You have come a long way. What have we seen? The theory of infor-
mation is no unified field of research or framework of reference. The 
ubiquity of the concept of information in the ‘age of information’ 
stands in marked contrast to this vagueness of the very central concept. 
Whereas in engineering and some scientific contexts (as concerning the 
transfer of data in bits) the syntactic theory in the vain of Shannon is 
widely known and the preferred theory referred to, the common sense 
concept of information is related to meaning. According to this pre-
dominant view something carries information given some shared con-
vention or regularity between the sender and the receiver. The informa-
tion thus conveyed can be stated by a sentence. This applies as well to 
most if not all data base entries. 

The classic syntactic approach, however, turns out to contain only 
partially this intuition. Given some prearranged specific coding some 
transferred signal can indeed convey information about something, but 
this is relative to the situation, the prearranged coding and the channel 
used.  

The early possible worlds semantic approach gives formal expression 
to the idea that sentences conventionally contain information. It sus-
tains the relation between meaning and information. 
 
This idea is taken up in a way by situation semantics. Situation seman-
tics provides both an account of linguistic information carriage as well 
as an account of information being in the world and being conveyed by 
non-linguistic regularities. The idea of amount of information is – at 
least for the beginning – given up, but may have been not that central 
in the first place. That some sentence is more informative than another 
can in many cases be seen by its logical complexity and the correspond-
ing set of consequences within some theory and using some logic. A 
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logarithmic measure is too far off from the available and practically 
usable knowledge in situations of communication. 

In situation semantics the central notion of an infon can be em-
ployed both as the content of a sentence as well as a state of the world, 
a fact, that information is conveyed of by another event in the world.  
Therefore we focus on situation theory as the preferred theory of in-
formation. Within its framework – especially by its concepts of infons, 
constraints and infomorphisms – it is possible to outline a theory of 
semantic information channels and the information architectures used 
in information flow. 
 
Situation semantics has been classified as a degenerating research pro-
gram, especially since the untimely death of Jon Barwise. This may be 
so in semantics, if situation semantics was ever a serious contender to 
replace truth conditional semantics (ala Davidson) or categorical 
grammars (ala Montague) or the mentalist framework (ala Fodor or 
Jackendoff). We believe, however, that this is not so in information 
theory. 
  

The idea of infons and their constraints building up an informa-
tion architecture accounting for information flow may be the ba-
sis for a comprehensive theory of information.  

It is further on in intimate connection to externalist accounts of 
information and the availability of information to cognitive sys-
tems in epistemology (in like Dretske’s theory of knowledge).  

Its framework is abstract enough to rephrase the idea of genetic 
information in its terminology. 

It is here that a general theory of information and its formal presenta-
tion may develop and to its basic ideas we hope to have introduced 
you. 

A 

A 

A 
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Glossary of Notation 

  
log2, log 
 

natural logarithm to the base 2, if not otherwise 
indicated. 

∑
=

n

i
ip



 
sum of all p1, p2, ..., pn. 

pk, p(k) unconditional probability of k. 
pkl, pk(l), P(l|k) conditional probability of l, given k. 
p(l, k)  unconditional probability of l and k. 

∞→T
Lim  taking the limit. 

min minimum 
lg length 
º material biconditional 
É material conditional 
Ø negation 
Ù conjunction 
Ú disjunction 
" universal quantifier 
$ existential quantifier 
® metalanguage conditional; relevant conditional in 

chapter 5|2 
s ’ A s makes A true 

s – A s does not make true A 

G, L, S, ... sets of types or statements 

j, y propositional variables (if not indicated other-
wise) 

G � A A can be derived from G 
^ falsum 
{x|F(x)} the set of all x such that x is F 
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x Î A x is a member of A 

s1 Í s2 s1 is a subset of s2 

ªA necessary A 

©A possibly A 

[x*|s ’ I] type abstraction 
Þ constraint, metalanguage conditional in chapter 

5|3 
Û metalanguage biconditional in chapter 5|3 
 


