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Abstract. Let κ < λ be regular uncountable cardinals. Using a finite
support iteration of ccc posets we obtain the consistency of b = a = κ <
s = λ. If µ is a measurable cardinal and µ < κ < λ, then using similar
techniques we obtain the consistency of b = κ < a = s = λ.

1. Introduction

In the following we will study the bounding, splitting and almost disjoint-
ness numbers (for basic definitions and notation see [2]). Following standard
notation ωω denotes the set of all functions from ω to ω, [ω]ω denotes the
set of infinite subsets of ω and ≤∗ denotes the eventual dominance order
on ωω. That is for f, g in ωω f ≤∗ g if and only if there is n ∈ ω such
that for all i ≥ n(f(i) ≤ g(i)). A family B ⊆ ωω is unbounded if there
is no single real which simultaneously dominates all elements of B. The
bounding number b is the minimal cardinality of an unbounded family. A
family A ⊆ [ω]ω is almost disjoint (a.d.) if any two distinct elements of
A have finite intersection. An almost disjoint family A is maximal, called
maximal almost disjoint , if for every C ∈ [ω]ω there is A ∈ A such that
|A ∩ C| = ω. The almost disjointness number a is the minimal cardinality
of a maximal almost disjoint family. It is well known that b ≤ a (see [2]).
A family S ⊆ [ω]ω is splitting if for every A ∈ [ω]ω there is B ∈ S such that
|A ∩ B| = |A ∩ Bc| = ω. The splitting number s is the minimal cardinality
of a splitting family.

The bounding and the splitting numbers are independent. The consis-
tency of s < b was obtained in 1985 by J. Baumgartner and P. Dordal
(see [1]). The consistency of b < s was obtained in 1984 by S. Shelah
(see [9]) using a proper forcing notion of size continuum, which is almost
ωω-bounding and adds a real not split by the ground model reals. There
is an increased interest in obtaining models in which c ≥ ℵ3. In 1998 J.
Brendle obtained the consistency of b = κ < a = κ+ using a finite support
iteration of ccc posets (see [5]). The consistency of b = κ < s = κ+ was
obtained in [7] (see also [6]). In fact the forcing construction of the last two
models, can be combined and in an appropriate finite support iteration of
ccc posets one obtains the consistency of b = κ < a = s = κ+.
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In the present paper, we obtain the more general consistency results of
b = a = κ < s = λ, for κ, λ arbitrary regular uncountable cardinals (see
Theorem 17) and b = κ < s = a = λ where κ < λ are arbitrary regular
cardinals, above a measurable µ (see Theorem 21). Both of the constructions
use the idea of matrix iteration introduced by A. Blass and S. Shelah in [3].

Notation: For an ultrafilter U on ω, let MU denote the associated Mathias
forcing (see [2]). That is MU is the poset of all (a,A) ∈ [ω]<ω ×U such that
max a < minA with extension relation defined as follows: (a1, A1) ≤ (a2, A2)
if a2 is an initial segment of a1, a1\a2 ⊆ A2 and A1 ⊆ A2. The Hechler
forcing D (see [2]) consists of all (s, f) ∈ <ωω × ωω with extension relation
defined as follows: (s1, f1) ≤ (s2, f2) if s2 is an initial segment of s1, for all
i ∈ dom(s1)\dom(s2), s1(i) ≥ f2(i) and for all i ∈ ω f2(i) ≤ f1(i). For µ a
measurable cardinal and D a µ-complete ultrafilter on µ, let Pµ/D denote
the ultrapower of P (see [4]), where P is a given poset. Ultrapowers of posets
were introduced by S. Shelah in [10].

2. Adding a mad family

Definition 1 (S. Hechler [8]). For γ an ordinal, Pγ is the poset of all finite
partial functions p : γ×ω → 2 such that dom(p) = Fp×np where Fp ∈ [γ]<ω,
np ∈ ω. The order is given by q ≤ p if p ⊆ q and |q−1(1)∩F p×{i}| ≤ 1 for
all i ∈ nq\np .

Pγ is ccc. If G is Pγ-generic, then the family Aγ = {Aα : α < γ}, where
Aα = {i : ∃p ∈ Gp(α, i) = 1} is almost disjoint and for γ ≥ ω1 maximal
almost disjoint (see [8]). This product like forcing decomposes as a two-step
iteration as follows. Let γ < δ, G a Pγ-generic filter. In V [G], let P[γ,δ) be
the poset of all pairs (p,H) such that p : (δ\γ) × ω → 2 is a finite partial
function with dom(p) = Fp×np where Fp ∈ [δ\γ]<ω, np ∈ ω and H ∈ [γ]<ω.
The order is given by (q,K) ≤ (p,H) if q ≤Pδ p, H ⊆ K and for all α ∈ Fp,
β ∈ H, i ∈ nq\np if i ∈ Aβ, then q(α, i) = 0. Observe that Pδ = Pγ ∗ Ṗ[γ,δ),
i.e. Pδ is forcing equivalent to the two step iteration of Pγ and Ṗ[γ,δ).

Definition 2. Let M ⊆ N be models of set theory, B = {Bα}α<γ ⊆M∩[ω]ω,
A ∈ N ∩ [ω]ω. Then (?M,N

B,A ) holds if for every h : ω× [γ]<ω → ω, h ∈M and
m ∈ ω there are n ≥ m, F ∈ [γ]<ω such that [n, h(n, F ))\

⋃
α∈F Bα ⊆ A.

Lemma 3. Let (?M,N
B,A ) hold, B = {Bα}α<γ, let I(B) be the ideal generated

by B and the finite sets and let B ∈M ∩ [ω]ω, B /∈ I(B). Then |A∩B| = ℵ0.

Proof. Otherwise A ∩ B ⊆ n for some n ∈ ω. Let m ≥ n, F ∈ [γ]<ω. Since
B /∈ I(B), B 6⊆∗

⋃
α∈F Bα and so there is km,F ∈ B\

⋃
α∈F Bα greater than

m. Define h(m,F ) = km,F +1 for all m ≥ n, F ∈ [γ]<ω and h�n× [γ]<ω = 0.
Then h is a function in M such that [m,h(m,F ))\

⋃
α∈F Bα 6⊆ A for all

m ≥ n, F ∈ [γ]<ω, contradicting (?M,N
B,A ). �

The sets Aα added by the forcing Pγ satisfy the above property in the
following sense:

Lemma 4. Let Gγ+1 be Pγ+1-generic, Gγ = Gγ+1∩Pγ and Aγ = {Aα}α<γ,
where Aα = {i : ∃p ∈ Gγ+1p(α, i) = 1}, α ≤ γ. Then (?V [Gγ ],V [Gγ+1]

Aγ ,Aγ ) holds.
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Proof. Let h ∈ V [Gγ ], h : ω × [γ]<ω → ω, (p,H) ∈ P[γ,γ+1), m ∈ ω.
Then dom(p) = {γ} × np where np ∈ ω. Define an extension (q,K) of
(p,H) in P[γ,γ+1) as follows. Let n > max{m,np}, nq = h(n,H). Let
dom(q) = {γ} × nq, K = H, q�{γ} × np = p, q�{γ} × [np, n) = 0 and for
i ∈ [n, nq) let q(γ, i) = 1 if and only if i 6∈

⋃
α∈H Aα. Then (q,K) ≤ (p,H)

and (q,K)  [n, h(n,H))\
⋃
α∈H Aα ⊆ Aγ . �

3. Combinatorics and preservation

In addition to (?M,N
B,A ), we consider one more combinatorial property which

will be crucial for the second consistency result to be established, and sys-
temize some preservation theorems for both of these properties.

Definition 5. If M ⊆ N are models of set theory, c ∈ N ∩ [ω]ω such that
for all f ∈M ∩ [ω]ω, N � c 6≤∗ f , we will say that (?M,N, c) holds.

The following lemma can be found in [3].

Lemma 6 (A. Blass, S. Shelah, [3]). Let M ⊆ N be models of set theory,
U an ultrafilter in M , c ∈ ωω ∩N such that (?M,N, c) holds. Then there is
an ultrafilter V ⊇ U in N such that:

(1) every maximal antichain of MU which belongs to M is a maximal
antichain of MV in N ,

(2) (?M [G], N [G], c) holds where G is MV-generic over N (and thus, by
(1), MU -generic over M).

In analogy, we obtain the following.

Crucial Lemma 7. Let M ⊆ N be models of set theory, B = {Bα}α<γ ⊆
M ∩ [ω]ω, A ∈ N ∩ [ω]ω such that (?M,N

B,A ) holds. Let U be an ultrafilter in
M . Then there is an ultrafilter V ⊇ U in N such that

(1) every maximal antichain of MU which belongs to M is a maximal
antichain of MV in N ,

(2) (?M [G],N [G]
B,A ) holds where G is MV-generic over N (and thus, by (1),

MU -generic over M).

Proof. Work in N . Let C ⊆ MU , C ∈ M , be a maximal antichain, and let
s ∈ [ω]<ω. We say X is forbidden by C, s if (s,X) is incompatible with all
conditions from C.

Given an MU -name ḣ : ω× [γ]<ω → ω, ḣ ∈M , there are (in M) maximal
antichains Dḣ

n,F ⊆ MU and functions gḣn,F : Dḣ
n,F → ω such that p forces

that ḣ(n, F ) = gḣn,F (p) for all p ∈ Dḣ
n,F . Say Y is forbidden by ḣ, t if, for

all n and all F , (t, Y ) is incompatible with all conditions p ∈ Dḣ
n,F which

satisfy [n, gḣn,F (p)) \
⋃
α∈F Bα ⊆ A. (This means that (t, Y ) forces that

[n, ḣ(n, F )) \
⋃
α∈F Bα 6⊆ A for all n, F .)

Let I be the ideal generated by all forbidden sets.

Main Claim 8. I ∩ U = ∅

Once the main claim in proved, we construct V ⊇ U such that V ∩ I = ∅.
Then (1) and (2) easily hold.
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Proof. By contradiction. Assume there are forbidden sets

X0, ..., Xk−1, Y0, ..., Yk−1

with witnesses

C0, s0, ..., Ck−1, sk−1, ḣ0, t0, ..., ḣk−1, tk−1

such that Z :=
⋃
i<kXi ∪

⋃
i<k Yi ∈ U (in M).

For t ∈ [ω]<ω and (s,X) ∈ MU , say (s,X) permits t if s ⊆ t ⊆ s ∪X. If
C ⊆ MU , say C permits t if there is p ∈ C which permits t. Note that p is
compatible with (t, Y ) iff there is u ⊆ Y such that p permits t ∪ u.

Subclaim 9. There is h : ω × [γ]<ω → ω, h ∈ M , with h(n, F ) ≥ n, such
that whenever we partition Z ∩ [n, h(n, F )) into 2k pieces, then at least one
piece s has the following property:

• for all i < k there is t ⊆ s such that Ci permits si ∪ t,
• for all i < k there is t ⊆ s such that some p ∈ Dḣi

n,F with gḣin,F (p) <
h(n, F ) permits ti ∪ t.

Proof. The subclaim only mentions objects from M , and is clearly absolute.
Therefore we may prove it in M .

Assume the subclaim was false for some n and F . Consider Z \ n. By a
compactness argument (equivalently, by König’s Lemma) we could partition
Z \ n into 2k pieces none of which satisfies the conclusion of the subclaim.
One of the 2k pieces, say W , must belong to U . Since Ci is a maximal
antichain, there is p ∈ Ci such that p and (si,W ) are compatible. Thus
there is t ⊆W such that p permits si ∪ t. Similarly, there are p ∈ Dḣi

n,F and
t ⊆ W such that p permits ti ∪ t. If we choose h(n, F ) large enough, s =
W∩[n, h(n, F )) has the required properties, contradictory to our assumption
about n and F . �

We continue the proof of the main claim. Fix n and F . Consider the
partition given by {Xi ∩ [n, h(n, F )), Yi ∩ [n, h(n, F )) : i < k}. Consider
a piece Xi ∩ [n, h(n, F )). Since (si, Xi) is incompatible with all conditions
from Ci, there is no t ⊆ Xi∩ [n, h(n, F )) such that Ci permits si∪ t. So Xi∩
[n, h(n, F )) is not as in the subclaim. Hence one piece s = Yi ∩ [n, h(n, F ))
satisfies the conclusion of the subclaim. Thus there are t ⊆ Yi ∩ [n, h(n, F ))
and p ∈ Dḣi

n,F with gḣin,F (p) < h(n, F ) such that p permits ti∪t. In particular
p is compatible with (ti, Yi). On the other hand, (ti, Yi) is incompatible with
all q ∈ Dḣi

n,F which satisfy [n, gḣin,F (q)) \
⋃
α∈F Bα ⊆ A. Thus [n, gḣin,F (p)) \⋃

α∈F Bα 6⊆ A, and [n, h(n, F )) \
⋃
α∈F Bα 6⊆ A follows. Unfixing n and F ,

we see this holds for all n and F . This contradicts (?M,N
B,A ), and the proof of

the main claim and the crucial lemma is complete. �

�

Lemma 10. Let 〈P`,η, Q̇`,η : η < ζ〉, ` ∈ {0, 1} be finite support iterations
such that P0,η is a complete suborder of P1,η for all η < ζ. Then P0,ζ is a
complete suborder of P1,ζ .
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Proof. It is clear that P0,ζ ⊆ P1,ζ and that incompatibility is preserved. Let
p ∈ P1,ζ . Since P1,ζ is finite support iteration, there is η < ζ such that
p ∈ P1,η. However P0,η<◦ P1,η and so there is q ∈ P0,η which is a reduction
of p (in P0,η). Then q is also a reduction of p in P0,ζ . Indeed, let r ≤ q,
r ∈ P0,ζ . Then r = r0 ∪ r1 where r0 ∈ P0,η and suppt(r1) ⊆ [η, ζ). Then
r0 ≤ q and since q is a reduction of p in P0,η, there is r̃0 ∈ P0,η which is a
common extension of p and r0. Then r̃0∪ r1 is a common extension of r and
p. Thus q is a reduction of p in P0,ζ . �

Lemma 11. Let M ⊆ N be models of set theory, P ∈ M a poset such that
P ⊆M , G a P-generic filter over M (and so P-generic over N).

(1) Let B = {Bα}α∈γ ⊆M ∩ [ω]ω, A ∈ N ∩ [ω]ω such that (?M,N
B,A ) holds.

Then (?M [G],N [G]
B,A ) holds.

(2) Let c ∈ N ∩ ωω such that (?M,N, c). Then (?M [G], N [G], c) holds.

Proof. We give a proof only of (1), since part (2) is proved similarly. If (1)
does not hold, then there are h ∈M [G], h : ω × [γ]<ω → ω and m ∈ ω such
that for all n ≥ m, F ∈ [γ]<ω, N [G] � [n, h(n, F ))\

⋃
α∈F Bα 6⊆ A. Then

there are a P-name ḣ for h in M , p ∈ G and m ∈ ω such that

p N,P ∀n ≥ m∀F ∈ [γ]<ω([n, ḣ(n, F ))\
⋃
α∈F

Bα 6⊆ A).

However for all n ≥ m, F ∈ [γ]<ω there are pn,F ≤ p (in M) and kn,F ∈ ω
such that pn,F M,P ḣ(n, F ) = kn,F . Then

pn,F N,P [n, kn,F )\
⋃
α∈F

Bα 6⊆ A

and so N � [n, kn,F )\
⋃
α∈F Bα 6⊆ A. In M define h0 : ω × [γ]<ω → ω as

follows. Let h0�m × [γ]<ω = 0 and for all n ≥ m, F ∈ [γ]<ω let h0(n, F ) =
kn,F . Then h0 gives a contradiction to (?M,N

B,A ). �

Lemma 12. Let 〈P`,n, Q̇`,n : n ∈ ω〉, ` ∈ {0, 1} be finite support iterations
such that P0,n is a complete suborder of P1,n for all n. Let V`,n = V P`,n.

(1) Let B = {Aγ}γ<α ⊆ V0,0 ∩ [ω]ω, A ∈ V1,0 ∩ [ω]ω. If (?V0,n,V1,n

B,A ) holds

for all n ∈ ω, then (?V0,ω ,V1,ω

B,A ) holds.
(2) Let c ∈ V1,0 ∩ ωω. If (?V0,n, V1,n, c) holds for all n ∈ ω, then

(?V0,ω, V1,ω, c) holds.

Proof. We will give a proof of (1). The proof of (2) is analogous. Thus
suppose the claim of (1) does not hold and let h : ω × [α]<ω → ω be a
function in V0,ω such that for some m ∈ ω, for all n ≥ m, F ∈ [α]<ω,
V1,ω � [n, h(n, F ))\

⋃
γ∈F Aγ 6⊆ A. Then there are a P0,ω-name ḣ, p ∈ P1,ω

such that p  [k, ḣ(k, F ))\
⋃
γ∈F Aγ 6⊆ A for all k ≥ m, F ∈ [α]<ω. Since

p has finite support, there is n ∈ ω such that p ∈ P1,n. Let G1,n be a
P1,n-generic filter containing p and let h′ = ḣ/G0,n be the quotient name,
where G0,n = G1,n ∩ P0,n. Let R`

n,ω be the quotient poset P`,n/G`,n in
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V`,n = V [G`,n]. Then h′ ∈ V0,n and for all k ≥ m, F ∈ [α]<ω

Vn,1 � R1
n,ω

[k, h′(k, F ))\
⋃
γ∈F

Aγ 6⊆ A.

Then for all k ≥ m, F ∈ [α]<ω find pk,F ∈ R0
n,ω and xk,F ∈ ω such that

pk,F  h′(k, F ) = xk,F and define h0(k, F ) = xk,F . Let h0�m × [α]<ω = 0.
Then h0 ∈ V0,n and [k, h0(k, F ))\

⋃
γ∈F Aγ 6⊆ A for all k ≥ m, F ∈ [α]<ω

contradicting (?V0,n,V1,n

B,A ). �

The following Lemma is well-known and often used.

Lemma 13. Let P,Q be partial orders, such that P is completely embedded
into Q. Let Ȧ be a P-name for a forcing notion, Ḃ a Q-name for a forcing
notion such that Q Ȧ ⊆ Ḃ, and every maximal antichain of Ȧ in V P is a
maximal antichain of Ḃ in V Q. Then P ∗ Ȧ<◦ Q ∗ Ḃ.

Proof. It is sufficient to show that every maximal antichain of P ∗ Ȧ is a
maximal antichain of Q ∗ Ḃ. Thus let {(pα, ȧα) : α < κ} be a maximal
antichain of P ∗ Ȧ. Suppose it is not maximal in Q ∗ Ḃ and let (q, ḃ) be a
condition in Q ∗ Ḃ which is incompatible with all (pα, ȧα) for α < κ. Let Ḣ
be the canonical P-name for the P-generic filter and let Ω̇ be a P-name such
that  Ω̇ = {α : pα ∈ Ḣ}.

Claim.  “{ȧα : α ∈ Ω̇} is a maximal antichain of Ȧ”.

Proof. Suppose not. Then, there are p ∈ P and a P-name ȧ such that
p  ∀α(α ∈ Ω̇ → ȧ⊥ȧα). Then (p, ȧ) ∈ P ∗ Ȧ and so there is α < κ
such that (p, ȧ) 6⊥ (pα, ȧα). Let (p′, ȧ′) be a common extension. Then
p′  (ȧ′ ≤ ȧ and ȧ′ ≤ ȧα), and since p′ ≤ pα, p′  α ∈ Ω̇. That is,
p′  (α ∈ Ω̇ and ȧ′ ≤ ȧ, ȧ′ ≤ ȧα) which is a contradiction. �

Let G be Q-generic filter such that q ∈ G. Then since P<◦ Q, there is a
P-generic filter H such that V [H] ⊆ V [G]. Now let b = ḃ[G], aα = ȧα[G] =
ȧα[H] (for α such that pα ∈ H) and let Ω = Ω̇[G] = {α < κ : pα ∈ H}. By
the above claim {aα : α ∈ Ω} is a maximal antichain in A (in V [G]) and so
by the hypothesis of the Lemma, it is a maximal antichain of B (in V [G]).
So there is α ∈ Ω such that b = ḃ[G] is compatible with aα = ȧα[H]. So
there is q′ ∈ G such that q′ ≤ pα, q′ ≤ q and q′  (α ∈ Ω̇ and ḃ 6⊥ ȧα).
Thus there is a Q-name ḃ′ such that q′  “ḃ′ ≤ ḃ, ḃ′ ≤ ȧα” and so (q′, ḃ′) is
a common extension of (q, ḃ) and (pα, ȧα), which is a contradiction. �

4. The consistency of b = a = κ < s = λ

Let f : {η < λ : η ≡ 1 mod 2} → κ be an onto mapping, such that for all
α < κ, f−1(α) is cofinal in λ. Recursively define a system of finite support
iterations 〈〈Pα,ζ : α ≤ κ, ζ ≤ λ〉, 〈Q̇α,ζ : α ≤ κ, ζ < λ〉〉 as follows. For all
α, ζ let Vα,ζ = V Pα,ζ . We refer to such systems as matrix iterations. Note
that this type of iterations appeared for the first time in [3].

(1) If ζ = 0, then for all α ≤ κ, Pα,0 is Hechler’s poset (see Definition 1) for
adding an a.d. family Aα = {Aβ}β<α (note that for α ≥ ω1, Aα is mad in
Vα,0).
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(2) If ζ = η + 1, ζ ≡ 1 mod 2, then Pα,η Q̇α,η = MU̇α,η where U̇α,η is a

Pα,η-name for an ultrafilter and for all α < β ≤ κ, Pβ,η U̇α,η ⊆ U̇β,η.
(3) If ζ = η + 1, ζ ≡ 0 mod 2, then if α ≤ f(η), Q̇α,η is a Pα,η-name for the
trivial forcing notion; if α > f(η) then Q̇α,η is a Pα,η-name for DVf(η),η .
(4) If ζ is a limit, then for all α ≤ κ, Pα,ζ is the finite support iteration of
〈Pα,η, Q̇α,η : η < ζ〉.

Furthermore the construction will satisfy the following two properties:

(a) ∀ζ ≤ λ∀α < β ≤ κ, Pα,ζ is a complete suborder of Pβ,ζ .
(b) ∀ζ ≤ λ∀α < κ (?Vα,ζ ,Vα+1,ζ

Aα,Aα ) holds.

Proceed by recursion on ζ. For ζ = 0, α ≤ κ let Pα,0 be the poset
from Definition 1. Then by the product property of Pα,0 and Lemma 4
respectively, properties (a) and (b) above hold. Let ζ = η+ 1 be a successor
ordinal and suppose ∀α ≤ κ, Pα,η has been defined so that properties (a)
and (b) above hold.

If ζ ≡ 1 mod 2 define Q̇α,η by induction on α ≤ κ as follows. If α = 0,
let U̇0,η be a P0,η-name for an ultrafilter, Q̇0,η a P0,η-name for MU̇0,η

and

let P0,ζ = P0,η ∗ Q̇0,η. If α = β + 1 and U̇β,η has been defined, by the
inductive hypothesis and Lemma 7 there is a Pα,η-name U̇α,η for an ultrafilter
such that Pα,η U̇β,η ⊆ U̇α,η, every maximal antichain of MU̇β,η in Vβ,η is a

maximal antichain of MU̇α,η and (?Vβ,ζ ,Vβ+1,ζ

Aβ ,Aβ ) holds, where Vβ+1,ζ = V Pα,ζ ,

Pα,ζ = Pα,η∗Q̇α,η and Q̇α,η is a Pα,η-name for MU̇α,η . Note that by Lemma 13
Pβ,ζ = Pβ,η ∗MU̇β,η is a complete suborder of Pα,ζ . If α is a limit ordinal and

for all β < α U̇β,η has been defined (and so Q̇β,η is a Pβ,η-name for MU̇β,η ;

Pβ,ζ = Pβ,η ∗ Q̇β,η), consider the following two cases. If cf(α) = ω, find a
Pα,η-name U̇α,η for an ultrafilter such that for all β < α, Pα,η U̇β,η ⊆ U̇α,η
and every maximal antichain of MU̇β,η from Vβ,η is a maximal antichain of
MUα,η (in Vα,η) (for the construction of such an ultrafilter in V Pα,η see [3],
p. 266). If cf(α) > ω, then let U̇α,η be a Pα,η-name for

⋃
β<α Uβ,η. Let Q̇α,η

be a Pα,η-name for MU̇α,η and let Pα,ζ = Pα,η ∗ Q̇α,η. Again by Lemma 13
for all β < α Pβ,ζ is a complete suborder of Pα,ζ .

If ζ ≡ 0 mod 2, then for all α ≤ f(η) let Q̇α,η be a Pα,η-name for the
trivial poset and for α > f(η) let Q̇α,η be a Pα,η-name for DVf(η),η . Let
Pα,ζ = Pα,η ∗ Q̇α,η. If α < β ≤ f(η), then Pα,ζ = Pα,η, Pβ,ζ = Pα,η and so by
the inductive hypothesis Pα,ζ is a complete suborder of Pβ,ζ . If α ≤ f(η) <
β, then Pα,ζ = Pα,η and Pα,η<◦ Pβ,η<◦ Pβ,η ∗ Q̇β,η. Thus Pα,ζ<◦ Pβ,ζ . If
f(η) < α < β, then again by Lemma 13 Pα,ζ<◦ Pβ,ζ . Furthermore by
Lemma 11.(1) (?Vα,ζ ,Vα+1,ζ

Aα,Aα ) holds for all α ≤ κ.
If ζ is a limit and for all η < ζ, Pα,η, Q̇α,η have been defined, let Pα,ζ be

the finite support iteration of 〈Pα,η, Q̇α,η : η < ζ〉. By Lemma 10 Pα,ζ is a
complete suborder of Pβ,ζ and by Lemma 12.(1) (?Vα,ζ ,Vα+1,ζ

Aα,Aα ) holds.
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Remark 14. For all α < β ≤ κ, ζ < η ≤ λ Pα,ζ<◦ Pβ,η.

Lemma 15. For ζ ≤ λ:
(1) for every p ∈ Pκ,ζ there is α < κ such that p belongs to Pα,ζ ,
(2) for every Pκ,ζ-name for a real ḟ there is α < κ such that ḟ is a

Pα,ζ-name.

Proof. The proof follows just as in the last Lemma of [3], p. 270. For
completeness we will give a proof as well. We will prove (1) and (2) simul-
taneously by induction on ζ. Note that by the ccc property of Pκ,ζ and the
fact that κ is regular, uncountable, it is clear that (2) follows immediately
from (1). If ζ = 0 the claim follows from the product property of Pκ,0. If ζ
is a limit, p ∈ Pκ,ζ then since p has a finite support, there is η < ζ such that
p ∈ Pκ,η. By inductive hypothesis there is α < η such that p ∈ Pα,η and so
in particular p ∈ Pα,ζ . Let ζ = η + 1 be a successor. Then p ∈ Pκ,ζ is of
the form (p0, ṗ1) where p0 ∈ Pκ,η and Pκ,η ṗ1 ∈ Q̇κ,η. If ζ ≡ 1 mod 2 then
ṗ1 is of the form (a, Ȧ) where Pκ,η Ȧ ∈ U̇κ,η, a ∈ [ω]<ω. If ζ ≡ 0 mod 2,
then ṗ1 is of the form (s, ḟ) where ḟ is a Pκ,η-name for a real, s ∈ <ωω
or ṗ1 is trivial. In either of the above cases, the inductive hypothesis for
(2) implies that there is α1 < κ such that ṗ1 is a Pα1,η-name. Again the
inductive hypothesis for (1) implies that p0 ∈ Pα0,η for some α0 < κ. Then
p = (p0, ṗ1) belongs to Pα,η where α = max{α0, α1}. �

Lemma 16. Vκ,λ � b = a = κ < s = λ.

Proof. The family {Aα}α∈κ remains a maximal almost disjoint family in
Vκ,λ. Indeed, otherwise there is a set B ∈ Vκ,λ ∩ [ω]ω such that ∀α <
κ(|B ∩ Aα| < ω). By Lemma 15 there is α < κ such that B ∈ Vα,λ ∩ [ω]ω.
However B /∈ I(Aα). On the other hand (?Vα,λ,Vα+1,λ

Aα,Aα+1
) holds, and so by

Lemma 3 |B ∩Aα+1| = ω which is a contradiction. Therefore a ≤ κ.
Let B ⊆ Vκ,λ ∩ ωω be of cardinality < κ. Then by Lemma 15 there are

α < κ, ζ < λ such that B ⊆ Vα,ζ . Since {γ : f(γ) = α} is cofinal in λ,
there is ζ ′ > ζ such that f(ζ ′) = α. Then Pα+1,ζ′+1 adds a real dominating
Vα,ζ′ ∩ ωω (and so Vα,ζ ∩ ωω since Vα,ζ ⊆ Vα,ζ′). Thus B is not unbounded.
Therefore Vκ,λ  b ≥ κ. However b ≤ a (see [2]) and so Vκ,λ  b = a = κ.

To see that Vκ,λ � s = λ, note that if S ⊆ Vκ,λ ∩ [ω]ω is a family of
cardinality < λ, then there is ζ < λ such that ζ = η + 1, ζ ≡ 1 mod 2
and S ⊆ Vκ,η. Then MUκ,η adds a real not split by S and so S is not
splitting. �

Theorem 17. Let κ < λ be arbitrary regular uncountable cardinals. Then
there is a ccc generic extension in which b = a = κ < s = λ.

5. The consistency of κ = b < s = a = λ above a measurable

Let µ be a measurable cardinal, D a µ-complete ultrafilter on µ. Let κ < λ
be regular such that µ < κ. For notation regarding ultrapowers of posets
and names, see [4] and [10]. In the Lemma below we show that (?M,N, c)
is preserved under ultrapowers.

Lemma 18. Let P<◦ Q, c ∈ V Q such that for all f ∈ V P ∩ ωω, P c 6≤∗ f .
Let Q′ = Qµ/D, P′ = Pµ/D, f ∈ V P′ ∩ ωω. Then Q′ c 6≤∗ f .
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Proof. Suppose not. Thus there is a P′ name for a real ḟ and [q] ∈ Q′
such that for some k ∈ ω, for all i ≥ k, [q]  ċ(i) ≤ ḟ(i). Note that ḟ
is determined by maximal antichains {[pn,i]}n,i∈ω and {kn,i}n,i∈ω ⊆ ω such
that for all n, i [pn,i] P′ ḟ(i) = kn,i. Furthermore we can assume (see [4])
that for all α ∈ µ there are maximal antichains {pαn,i}n,i∈ω in P, such that
[pn,i] = 〈pαn,i : α < µ〉/D, and a P-name for a real ḟα such that pαn,i P

ḟα(i) = kn,i. By elementarity, A = {α : q(α) Q ċ(i) ≤ ḟα(i)} is in D, and
so in particular A is non-empty. Here we identify ċ with its ultrapower. Let
α ∈ A. Then ḟα is a P-name and for all i ≥ k, q(α) Q ċ(i) ≤ fα(i), which
is a contradiction. �

Let f : {η < λ : η ≡ 1 mod 3} → κ be an onto mapping such that
for all α < κ, f−1(α) is cofinal in λ. Similarly to the construction from
the previous section, recursively define a system of finite support iterations
〈〈Pα,ζ : α ≤ κ, ζ ≤ λ〉, 〈Q̇α,ζ : α ≤ κ, ζ < λ〉〉 so that properties (1)− (5), as
well as (a)− (b) below hold. For all α, ζ let Vα,ζ = V Pα,ζ .

(1) If ζ = 0, then for all α ≤ κ, let Pα,0 be the forcing notion for adding α
many Cohen reals, {cγ}γ<α.
(2) If ζ = η + 1, ζ ≡ 1 mod 3, then Pα,η Q̇α,η = MU̇α,η where U̇α,η is a

Pα,η-name for an ultrafilter and for all α < β ≤ κ, Pβ,η U̇α,η ⊆ U̇β,η.
(3) If ζ = η + 1, ζ ≡ 2 mod 3, then if α ≤ f(η), Q̇α,η is a Pα,η-name for the
trivial forcing notions; if α > f(η) then Q̇α,η is a Pα,η-name for DVf(η),η .
(4) If ζ = η + 1, ζ ≡ 0 mod 3, then for every α ≤ κ let Q̇α,η be a Pα,η-name
for the quotient poset of ((Pα,η)µ)/D and Pα,η.
(5) If ζ is a limit, Pα,ζ is the finite support iteration of 〈Pα,η, Q̇α,η : η < ζ〉.

Furthermore the construction will satisfy the following two properties:

(a) ∀ζ ≤ λ∀α < β ≤ κ, Pα,ζ is a complete suborder of Pβ,ζ .
(b) ∀ζ ≤ λ∀α < κ (?Vα,ζ , Vα+1,ζ , cα+1) holds.

Proceed by induction on ζ. If ζ = 0, then for all α ≤ κ let Pα,0 be the
forcing notion for adding α many Cohen reals, {cγ}γ<α. The properties
of Cohen forcing imply that (a) and (b) above hold. Let ζ = η + 1 be a
successor ordinal and suppose that for all α ≤ κ, Pα,η has been defined so
that the relevant properties (a) and (b) above hold.

If ζ ≡ 1 mod 3 define Q̇α,η by induction on α ≤ κ as follows. If α = 0
let U̇0,η be a P0,η-name for an ultrafilter, Q̇0,η a P0,η-name for MU̇0,η

and let

P0,ζ = P0,η ∗ Q̇0,η. If α = β + 1 and U̇β,η has been defined, by the inductive
hypothesis and Lemma 6 there is a Pα,η-name U̇α,η for an ultrafilter such that
Pα,η U̇β,η ⊆ U̇α,η, every maximal antichain of MU̇β,η in Vβ,η is a maximal
antichain of MU̇α,η and (?Vβ,ζ , Vβ+1,ζ , cβ+1) holds, where Vβ+1,ζ = V Pα,ζ ,

Pα,ζ = Pα,η ∗ Q̇α,η and Q̇α,η is a Pα,η-name for MU̇α,η . By Lemma 13 Pβ,ζ =
Pβ,η ∗MU̇β,η is a complete suborder of Pα,ζ . If α is a limit ordinal and for all

β < α, U̇β,η has been defined, proceed as in the limit case for α, ζ successor,
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odd ordinal, in the construction of the system of finite support iterations
from the previous section.

If ζ ≡ 2 mod 3 then for all α ≤ f(η) let Q̇α,η be a Pα,η-name for the
trivial poset and for α > f(η) let Q̇α,η be a Pα,η-name for DVf(η),η . Let
Pα,ζ = Pα,η ∗ Q̇α,η. Property (a) can be established for ζ and α ≤ κ just
as in the successor, even case in the construction from the previous section.
The inductive hypothesis and Lemma 11.(2) imply that for ζ and α ≤ κ,
property (b) holds as well.

If ζ ≡ 0 mod 3 then for all α ≤ κ let Q̇α,η be a Pα,η-name for the
quotient poset of (Pµα,η)/D and Pα,η. Let Pα,ζ = Pα,η ∗ Q̇α,η. Then by the
inductive hypothesis and Lemma 5 of [4] for all α < β ≤ κ Pα,ζ is a complete
suborder of Pβ,ζ . By the inductive hypothesis and Lemma 18 for all α < κ
(?Vα,ζ , Vα+1,ζ , cα+1) holds.

If ζ is a limit and for all η < ζ, Pα,η and Q̇α,η have been defined, then
let Pα,ζ be the finite support iteration of 〈Pα,η, Q̇α,η : η < ζ〉. By Lemma 10
for all α < β ≤ κ Pα,ζ is a complete suborder of Pβ,ζ and by Lemma 12.(2)
(?Vα,ζ , Vα+1,ζ , cα+1) holds for all α < κ.

Lemma 19. For ζ ≤ λ:
(1) for every p ∈ Pκ,ζ there is α < κ such that p belongs to Pα,ζ ,
(2) for every Pκ,ζ-name for a real ḟ there is α < κ such that ḟ is a

Pα,ζ-name.

Proof. If ζ is a limit, proceed as in the limit case of Lemma 15. If ζ = η+ 1
is a successor and ζ ≡ 1 mod 3 or ζ ≡ 2 mod 3 the proof follows as in the
successor case of Lemma 15. Let ζ ≡ 0 mod 3 and let p ∈ (Pκ,η)µ/D. Then
p = [f ] = 〈f(γ) : γ < µ〉/D where f(γ) ∈ Pκ,η for γ < µ. By the inductive
hypothesis and κ = cf(κ) > µ, there is α < κ such that f(γ) ∈ Pα,η for all
γ < µ and so p = [f ] belongs to (Pα,η)µ/D = Pα,ζ . �

Lemma 20. Vκ,λ � b = κ < s = a = λ,

Proof. Let ḟ ∈ Vκ,λ ∩ ωω. Then there are ζ < λ, α < κ such that f ∈
Vα,ζ ∩ ωω. Since (? Vα,ζ Vα+1,ζ cα+1) holds, Vα+1,ζ � cα+1 6≤∗ f and so
Vκ,λ � cα+1 6≤∗ f . Therefore {cα+1}α<κ is unbounded in Vκ,λ. If B ⊆
Vκ,λ ∩ ωω is a family of reals of cardinality < κ, then there are α < κ, ζ < λ
such that B ⊆ Vα,ζ . Since {γ : f(γ) = α} is cofinal in λ, there is ζ ′ > ζ such
that f(ζ ′) = α. Therefore (b = κ)Vκ,λ .

Since a ≥ b, we have Vκ,λ � a ≥ κ. Let A ⊆ Vκ,λ ∩ [ω]ω be an almost
disjoint family of cardinality ν where κ ≤ ν < λ. Then there is ζ < λ such
that ζ = η+ 1, ζ ≡ 0 mod 3 and A ⊆ Vκ,η. Then by Lemma 4 of [4], in Vκ,ζ
there is a real which has a finite intersection with all elements of A and so
A is not maximal. Therefore (a = c = λ)Vκ,λ .

To see that (s = λ)Vκ,λ note that if S ⊆ Vκ,λ ∩ [ω]ω, |S| < λ, then there is
ζ < λ, ζ = η + 1, ζ ≡ 1 mod 3 such that S ⊆ Vκ,η. Then in Vκ,ζ there is a
real which is not split by S (added by MUκ,η) and so S is not splitting. �

Thus we obtain the following theorem.

Theorem 21. Let µ be a measurable cardinal, κ < λ regular such that
µ < κ. Then there is a ccc generic extension in which b = κ < s = a = λ.
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6. Comments and questions

The converse consistency κ = s < b = a = λ is well-known and standard.
However of interest remain the following questions:
(1) Is it relatively consistent that b < a < s?
(2) Is it relatively consistent that b < s < a?
(3) Is it relatively consistent that b < s = a without assuming a measurable?
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