MAD FAMILIES, SPLITTING FAMILIES, AND LARGE CONTINUUM

JÖRG BRENDLE AND VERA FISCHER

Abstract

Let $\kappa<\lambda$ be regular uncountable cardinals. Using a finite support iteration of ccc posets we obtain the consistency of $\mathfrak{b}=\mathfrak{a}=\kappa<$ $\mathfrak{s}=\lambda$. If μ is a measurable cardinal and $\mu<\kappa<\lambda$, then using similar techniques we obtain the consistency of $\mathfrak{b}=\kappa<\mathfrak{a}=\mathfrak{s}=\lambda$.

1. Introduction

In the following we will study the bounding, splitting and almost disjointness numbers (for basic definitions and notation see [2]). Following standard notation ${ }^{\omega} \omega$ denotes the set of all functions from ω to $\omega,[\omega]^{\omega}$ denotes the set of infinite subsets of ω and \leq^{*} denotes the eventual dominance order on ${ }^{\omega} \omega$. That is for f, g in ${ }^{\omega} \omega f \leq^{*} g$ if and only if there is $n \in \omega$ such that for all $i \geq n(f(i) \leq g(i))$. A family $\mathcal{B} \subseteq \omega_{\omega}$ is unbounded if there is no single real which simultaneously dominates all elements of \mathcal{B}. The bounding number \mathfrak{b} is the minimal cardinality of an unbounded family. A family $\mathcal{A} \subseteq[\omega]^{\omega}$ is almost disjoint (a.d.) if any two distinct elements of \mathcal{A} have finite intersection. An almost disjoint family \mathcal{A} is maximal, called maximal almost disjoint, if for every $C \in[\omega]^{\omega}$ there is $A \in \mathcal{A}$ such that $|A \cap C|=\omega$. The almost disjointness number \mathfrak{a} is the minimal cardinality of a maximal almost disjoint family. It is well known that $\mathfrak{b} \leq \mathfrak{a}$ (see [2]). A family $S \subseteq[\omega]^{\omega}$ is splitting if for every $A \in[\omega]^{\omega}$ there is $B \in S$ such that $|A \cap B|=\left|A \cap B^{c}\right|=\omega$. The splitting number \mathfrak{s} is the minimal cardinality of a splitting family.

The bounding and the splitting numbers are independent. The consistency of $\mathfrak{s}<\mathfrak{b}$ was obtained in 1985 by J. Baumgartner and P. Dordal (see [1]). The consistency of $\mathfrak{b}<\mathfrak{s}$ was obtained in 1984 by S. Shelah (see [9]) using a proper forcing notion of size continuum, which is almost $\omega_{\omega} \omega$-bounding and adds a real not split by the ground model reals. There is an increased interest in obtaining models in which $\mathfrak{c} \geq \aleph_{3}$. In 1998 J . Brendle obtained the consistency of $\mathfrak{b}=\kappa<\mathfrak{a}=\kappa^{+}$using a finite support iteration of ccc posets (see [5]). The consistency of $\mathfrak{b}=\kappa<\mathfrak{s}=\kappa^{+}$was obtained in [7] (see also [6]). In fact the forcing construction of the last two models, can be combined and in an appropriate finite support iteration of ccc posets one obtains the consistency of $\mathfrak{b}=\kappa<\mathfrak{a}=\mathfrak{s}=\kappa^{+}$.

[^0]In the present paper, we obtain the more general consistency results of $\mathfrak{b}=\mathfrak{a}=\kappa<\mathfrak{s}=\lambda$, for κ, λ arbitrary regular uncountable cardinals (see Theorem 17) and $\mathfrak{b}=\kappa<\mathfrak{s}=\mathfrak{a}=\lambda$ where $\kappa<\lambda$ are arbitrary regular cardinals, above a measurable μ (see Theorem 21). Both of the constructions use the idea of matrix iteration introduced by A. Blass and S. Shelah in [3].

Notation: For an ultrafilter \mathcal{U} on ω, let $\mathbb{M}_{\mathcal{U}}$ denote the associated Mathias forcing (see [2]). That is $\mathbb{M}_{\mathcal{U}}$ is the poset of all $(a, A) \in[\omega]<\omega \times \mathcal{U}$ such that $\max a<\min A$ with extension relation defined as follows: $\left(a_{1}, A_{1}\right) \leq\left(a_{2}, A_{2}\right)$ if a_{2} is an initial segment of $a_{1}, a_{1} \backslash a_{2} \subseteq A_{2}$ and $A_{1} \subseteq A_{2}$. The Hechler forcing \mathbb{D} (see [2]) consists of all $(s, f) \in{ }^{<\omega} \omega \times{ }^{\omega} \omega$ with extension relation defined as follows: $\left(s_{1}, f_{1}\right) \leq\left(s_{2}, f_{2}\right)$ if s_{2} is an initial segment of s_{1}, for all $i \in \operatorname{dom}\left(s_{1}\right) \backslash \operatorname{dom}\left(s_{2}\right), s_{1}(i) \geq f_{2}(i)$ and for all $i \in \omega f_{2}(i) \leq f_{1}(i)$. For μ a measurable cardinal and \mathcal{D} a μ-complete ultrafilter on μ, let $\mathbb{P}^{\mu} / \mathcal{D}$ denote the ultrapower of $\mathbb{P}($ see $[4])$, where \mathbb{P} is a given poset. Ultrapowers of posets were introduced by S. Shelah in [10].

2. Adding a mad family

Definition 1 (S. Hechler [8]). For γ an ordinal, \mathbb{P}_{γ} is the poset of all finite partial functions $p: \gamma \times \omega \rightarrow 2$ such that $\operatorname{dom}(p)=F_{p} \times n_{p}$ where $F_{p} \in[\gamma]^{<\omega}$, $n_{p} \in \omega$. The order is given by $q \leq p$ if $p \subseteq q$ and $\left|q^{-1}(1) \cap F^{p} \times\{i\}\right| \leq 1$ for all $i \in n_{q} \backslash n_{p}$.
\mathbb{P}_{γ} is ccc. If G is \mathbb{P}_{γ}-generic, then the family $\mathcal{A}_{\gamma}=\left\{A_{\alpha}: \alpha<\gamma\right\}$, where $A_{\alpha}=\{i: \exists p \in G p(\alpha, i)=1\}$ is almost disjoint and for $\gamma \geq \omega_{1}$ maximal almost disjoint (see [8]). This product like forcing decomposes as a two-step iteration as follows. Let $\gamma<\delta, G$ a $\mathbb{P}_{\gamma^{-}}$generic filter. In $V[G]$, let $\mathbb{P}_{[\gamma, \delta)}$ be the poset of all pairs (p, H) such that $p:(\delta \backslash \gamma) \times \omega \rightarrow 2$ is a finite partial function with $\operatorname{dom}(p)=F_{p} \times n_{p}$ where $F_{p} \in[\delta \backslash \gamma]^{<\omega}, n_{p} \in \omega$ and $H \in[\gamma]^{<\omega}$. The order is given by $(q, K) \leq(p, H)$ if $q \leq_{\mathbb{P}_{\delta}} p, H \subseteq K$ and for all $\alpha \in F_{p}$, $\beta \in H, i \in n_{q} \backslash n_{p}$ if $i \in A_{\beta}$, then $q(\alpha, i)=0$. Observe that $\mathbb{P}_{\delta}=\mathbb{P}_{\gamma} * \dot{\mathbb{P}}_{[\gamma, \delta)}$, i.e. \mathbb{P}_{δ} is forcing equivalent to the two step iteration of \mathbb{P}_{γ} and $\dot{\mathbb{P}}_{[\gamma, \delta)}$.

Definition 2. Let $M \subseteq N$ be models of set theory, $\mathcal{B}=\left\{B_{\alpha}\right\}_{\alpha<\gamma} \subseteq M \cap[\omega]^{\omega}$, $A \in N \cap[\omega]^{\omega}$. Then $\left(\star_{\mathcal{B}, A}^{M, N}\right)$ holds if for every $h: \omega \times[\gamma]^{<\omega} \rightarrow \omega, h \in M$ and $m \in \omega$ there are $n \geq m, F \in[\gamma]^{<\omega}$ such that $[n, h(n, F)) \backslash \bigcup_{\alpha \in F} B_{\alpha} \subseteq A$.
Lemma 3. Let $\left(\star_{\mathcal{B}, A}^{M, N}\right)$ hold, $\mathcal{B}=\left\{B_{\alpha}\right\}_{\alpha<\gamma}$, let $\mathcal{I}(\mathcal{B})$ be the ideal generated by \mathcal{B} and the finite sets and let $B \in M \cap[\omega]^{\omega}, B \notin \mathcal{I}(\mathcal{B})$. Then $|A \cap B|=\aleph_{0}$.

Proof. Otherwise $A \cap B \subseteq n$ for some $n \in \omega$. Let $m \geq n, F \in[\gamma]^{<\omega}$. Since $B \notin \mathcal{I}(\mathcal{B}), B \not \mathbb{E}^{*} \bigcup_{\alpha \in F} B_{\alpha}$ and so there is $k_{m, F} \in B \backslash \bigcup_{\alpha \in F} B_{\alpha}$ greater than m. Define $h(m, F)=k_{m, F}+1$ for all $m \geq n, F \in[\gamma]^{<\omega}$ and $h\left\lceil n \times[\gamma]^{<\omega}=0\right.$. Then h is a function in M such that $[m, h(m, F)) \backslash \bigcup_{\alpha \in F} B_{\alpha} \nsubseteq A$ for all $m \geq n, F \in[\gamma]^{<\omega}$, contradicting $\left(\star_{\mathcal{B}, A}^{M, N}\right)$.

The sets A_{α} added by the forcing \mathbb{P}_{γ} satisfy the above property in the following sense:
Lemma 4. Let $G_{\gamma+1}$ be $\mathbb{P}_{\gamma+1}$-generic, $G_{\gamma}=G_{\gamma+1} \cap \mathbb{P}_{\gamma}$ and $\mathcal{A}_{\gamma}=\left\{A_{\alpha}\right\}_{\alpha<\gamma}$, where $A_{\alpha}=\left\{i: \exists p \in G_{\gamma+1} p(\alpha, i)=1\right\}, \alpha \leq \gamma$. Then $\left(\star_{\mathcal{A}_{\gamma}, A_{\gamma}}^{V\left[G_{\gamma}\right], V\left[G_{\gamma+1}\right]}\right)$ holds.

Proof. Let $h \in V\left[G_{\gamma}\right], h: \omega \times[\gamma]^{<\omega} \rightarrow \omega,(p, H) \in \mathbb{P}_{[\gamma, \gamma+1)}, m \in \omega$. Then $\operatorname{dom}(p)=\{\gamma\} \times n_{p}$ where $n_{p} \in \omega$. Define an extension (q, K) of (p, H) in $\mathbb{P}_{(\gamma, \gamma+1)}$ as follows. Let $n>\max \left\{m, n_{p}\right\}, n_{q}=h(n, H)$. Let $\operatorname{dom}(q)=\{\gamma\} \times n_{q}, K=H, q \upharpoonright\{\gamma\} \times n_{p}=p, q \upharpoonright\{\gamma\} \times\left[n_{p}, n\right)=0$ and for $i \in\left[n, n_{q}\right)$ let $q(\gamma, i)=1$ if and only if $i \notin \bigcup_{\alpha \in H} A_{\alpha}$. Then $(q, K) \leq(p, H)$ and $(q, K) \Vdash[n, h(n, H)) \backslash \bigcup_{\alpha \in H} A_{\alpha} \subseteq A_{\gamma}$.

3. Combinatorics and preservation

In addition to $\left(\star_{\mathcal{B}, A}^{M, N}\right)$, we consider one more combinatorial property which will be crucial for the second consistency result to be established, and systemize some preservation theorems for both of these properties.
Definition 5. If $M \subseteq N$ are models of set theory, $c \in N \cap[\omega]^{\omega}$ such that for all $f \in M \cap[\omega]^{\omega}, N \vDash c \not \mathbb{Z}^{*} f$, we will say that $(\star M, N, c)$ holds.

The following lemma can be found in [3].
Lemma 6 (A. Blass, S. Shelah, [3]). Let $M \subseteq N$ be models of set theory, \mathcal{U} an ultrafilter in $M, c \in \omega^{\omega} \cap N$ such that $(\star M, N, c)$ holds. Then there is an ultrafilter $\mathcal{V} \supseteq \mathcal{U}$ in N such that:
(1) every maximal antichain of $\mathbb{M}_{\mathcal{U}}$ which belongs to M is a maximal antichain of $\mathbb{M}_{\mathcal{V}}$ in N,
(2) $(\star M[G], N[G], c)$ holds where G is $\mathbb{M}_{\mathcal{V}}$-generic over N (and thus, by (1), $\mathbb{M}_{\mathcal{U}}$-generic over $\left.M\right)$.

In analogy, we obtain the following.
Crucial Lemma 7. Let $M \subseteq N$ be models of set theory, $\mathcal{B}=\left\{B_{\alpha}\right\}_{\alpha<\gamma} \subseteq$ $M \cap[\omega]^{\omega}, A \in N \cap[\omega]^{\omega}$ such that $\left(\star_{\mathcal{B}, A}^{M, N}\right)$ holds. Let \mathcal{U} be an ultrafilter in M. Then there is an ultrafilter $\mathcal{V} \supseteq \mathcal{U}$ in N such that
(1) every maximal antichain of $\mathbb{M}_{\mathcal{U}}$ which belongs to M is a maximal antichain of $\mathbb{M}_{\mathcal{V}}$ in N,
(2) $\left(\star_{\mathcal{B}, A}^{M[G], N[G]}\right)$ holds where G is $\mathbb{M}_{\mathcal{V}}$-generic over N (and thus, by (1), $\mathbb{M}_{\mathcal{U}}$-generic over M).
Proof. Work in N. Let $C \subseteq \mathbb{M}_{\mathcal{U}}, C \in M$, be a maximal antichain, and let $s \in[\omega]^{<\omega}$. We say X is forbidden by C, s if (s, X) is incompatible with all conditions from C.

Given an $\mathbb{M}_{\mathcal{U}}$-name $\dot{h}: \omega \times[\gamma]^{<\omega} \rightarrow \omega, \dot{h} \in M$, there are (in M) maximal antichains $D_{n, F}^{\dot{h}} \subseteq \mathbb{M}_{\mathcal{U}}$ and functions $g_{n, F}^{\dot{h}}: D_{n, F}^{\dot{h}} \rightarrow \omega$ such that p forces that $\dot{h}(n, F)=g_{n, F}^{\dot{h}}(p)$ for all $p \in D_{n, F}^{\dot{h}}$. Say Y is forbidden by \dot{h}, t if, for all n and all $F,(t, Y)$ is incompatible with all conditions $p \in D_{n, F}^{h}$ which satisfy $\left[n, g_{n, F}^{\dot{h}}(p)\right) \backslash \bigcup_{\alpha \in F} B_{\alpha} \subseteq A$. (This means that (t, Y) forces that $[n, \dot{h}(n, F)) \backslash \bigcup_{\alpha \in F} B_{\alpha} \nsubseteq A$ for all n, F.)

Let \mathcal{I} be the ideal generated by all forbidden sets.
Main Claim 8. $\mathcal{I} \cap \mathcal{U}=\emptyset$
Once the main claim in proved, we construct $\mathcal{V} \supseteq \mathcal{U}$ such that $\mathcal{V} \cap \mathcal{I}=\emptyset$. Then (1) and (2) easily hold.

Proof. By contradiction. Assume there are forbidden sets

$$
X_{0}, \ldots, X_{k-1}, Y_{0}, \ldots, Y_{k-1}
$$

with witnesses

$$
C_{0}, s_{0}, \ldots, C_{k-1}, s_{k-1}, \dot{h}_{0}, t_{0}, \ldots, \dot{h}_{k-1}, t_{k-1}
$$

such that $Z:=\bigcup_{i<k} X_{i} \cup \bigcup_{i<k} Y_{i} \in \mathcal{U}($ in $M)$.
For $t \in[\omega]^{<\omega}$ and $(s, X) \in \mathbb{M}_{\mathcal{U}}$, say (s, X) permits t if $s \subseteq t \subseteq s \cup X$. If $C \subseteq \mathbb{M}_{\mathcal{U}}$, say C permits t if there is $p \in C$ which permits t. Note that p is compatible with (t, Y) iff there is $u \subseteq Y$ such that p permits $t \cup u$.

Subclaim 9. There is $h: \omega \times[\gamma]^{<\omega} \rightarrow \omega, h \in M$, with $h(n, F) \geq n$, such that whenever we partition $Z \cap[n, h(n, F))$ into $2 k$ pieces, then at least one piece s has the following property:

- for all $i<k$ there is $t \subseteq s$ such that C_{i} permits $s_{i} \cup t$,
- for all $i<k$ there is $t \subseteq s$ such that some $p \in D_{n, F}^{h_{i}}$ with $g_{n, F}^{h_{i}}(p)<$ $h(n, F)$ permits $t_{i} \cup t$.
Proof. The subclaim only mentions objects from M, and is clearly absolute. Therefore we may prove it in M.

Assume the subclaim was false for some n and F. Consider $Z \backslash n$. By a compactness argument (equivalently, by König's Lemma) we could partition $Z \backslash n$ into $2 k$ pieces none of which satisfies the conclusion of the subclaim. One of the $2 k$ pieces, say W, must belong to \mathcal{U}. Since C_{i} is a maximal antichain, there is $p \in C_{i}$ such that p and $\left(s_{i}, W\right)$ are compatible. Thus there is $t \subseteq W$ such that p permits $s_{i} \cup t$. Similarly, there are $p \in D_{n, F}^{\dot{h}_{i}}$ and $t \subseteq W$ such that p permits $t_{i} \cup t$. If we choose $h(n, F)$ large enough, $s=$ $W \cap[n, h(n, F))$ has the required properties, contradictory to our assumption about n and F.

We continue the proof of the main claim. Fix n and F. Consider the partition given by $\left\{X_{i} \cap[n, h(n, F)), Y_{i} \cap[n, h(n, F)): i<k\right\}$. Consider a piece $X_{i} \cap[n, h(n, F))$. Since $\left(s_{i}, X_{i}\right)$ is incompatible with all conditions from C_{i}, there is no $t \subseteq X_{i} \cap[n, h(n, F))$ such that C_{i} permits $s_{i} \cup t$. So $X_{i} \cap$ $[n, h(n, F))$ is not as in the subclaim. Hence one piece $s=Y_{i} \cap[n, h(n, F))$ satisfies the conclusion of the subclaim. Thus there are $t \subseteq Y_{i} \cap[n, h(n, F))$ and $p \in D_{n, F}^{\dot{h}_{i}}$ with $g_{n, F}^{\dot{h}_{i}}(p)<h(n, F)$ such that p permits $t_{i} \cup t$. In particular p is compatible with $\left(t_{i}, Y_{i}\right)$. On the other hand, $\left(t_{i}, Y_{i}\right)$ is incompatible with all $q \in D_{n, F}^{\dot{h}_{i}}$ which satisfy $\left[n, g_{n, F}^{\dot{h}_{i}}(q)\right) \backslash \bigcup_{\alpha \in F} B_{\alpha} \subseteq A$. Thus $\left[n, g_{n, F}^{\dot{h}_{i}}(p)\right) \backslash$ $\bigcup_{\alpha \in F} B_{\alpha} \nsubseteq A$, and $[n, h(n, F)) \backslash \bigcup_{\alpha \in F} B_{\alpha} \nsubseteq A$ follows. Unfixing n and F, we see this holds for all n and F. This contradicts $\left(\star_{\mathcal{B}, A}^{M, N}\right)$, and the proof of the main claim and the crucial lemma is complete.

Lemma 10. Let $\left\langle\mathbb{P}_{\ell, \eta}, \dot{\mathbb{Q}}_{\ell, \eta}: \eta<\zeta\right\rangle, \ell \in\{0,1\}$ be finite support iterations such that $\mathbb{P}_{0, \eta}$ is a complete suborder of $\mathbb{P}_{1, \eta}$ for all $\eta<\zeta$. Then $\mathbb{P}_{0, \zeta}$ is a complete suborder of $\mathbb{P}_{1, \zeta}$.

Proof. It is clear that $\mathbb{P}_{0, \zeta} \subseteq \mathbb{P}_{1, \zeta}$ and that incompatibility is preserved. Let $p \in \mathbb{P}_{1, \zeta}$. Since $\mathbb{P}_{1, \zeta}$ is finite support iteration, there is $\eta<\zeta$ such that $p \in \mathbb{P}_{1, \eta}$. However $\mathbb{P}_{0, \eta}<0 \mathbb{P}_{1, \eta}$ and so there is $q \in \mathbb{P}_{0, \eta}$ which is a reduction of p (in $\mathbb{P}_{0, \eta}$). Then q is also a reduction of p in $\mathbb{P}_{0, \zeta}$. Indeed, let $r \leq q$, $r \in \mathbb{P}_{0, \zeta}$. Then $r=r_{0} \cup r_{1}$ where $r_{0} \in \mathbb{P}_{0, \eta}$ and $\operatorname{suppt}\left(r_{1}\right) \subseteq[\eta, \zeta)$. Then $r_{0} \leq q$ and since q is a reduction of p in $\mathbb{P}_{0, \eta}$, there is $\tilde{r}_{0} \in \mathbb{P}_{0, \eta}$ which is a common extension of p and r_{0}. Then $\tilde{r}_{0} \cup r_{1}$ is a common extension of r and p. Thus q is a reduction of p in $\mathbb{P}_{0, \zeta}$.

Lemma 11. Let $M \subseteq N$ be models of set theory, $\mathbb{P} \in M$ a poset such that $\mathbb{P} \subseteq M, G$ a \mathbb{P}-generic filter over M (and so \mathbb{P}-generic over N).
(1) Let $\mathcal{B}=\left\{B_{\alpha}\right\}_{\alpha \in \gamma} \subseteq M \cap[\omega]^{\omega}$, $A \in N \cap[\omega]^{\omega}$ such that $\left(\star_{\mathcal{B}, A}^{M, N}\right)$ holds. Then $\left(\star_{\mathcal{B}, A}^{M[G], N[G]}\right)$ holds.
(2) Let $c \in N \cap^{\omega} \omega$ such that $(\star M, N, c)$. Then $(\star M[G], N[G], c)$ holds.

Proof. We give a proof only of (1), since part (2) is proved similarly. If (1) does not hold, then there are $h \in M[G], h: \omega \times[\gamma]^{<\omega} \rightarrow \omega$ and $m \in \omega$ such that for all $n \geq m, F \in[\gamma]^{<\omega}, N[G] \vDash[n, h(n, F)) \backslash \bigcup_{\alpha \in F} B_{\alpha} \nsubseteq A$. Then there are a \mathbb{P}-name \dot{h} for h in $M, p \in G$ and $m \in \omega$ such that

$$
p \Vdash_{N, \mathbb{P}} \forall n \geq m \forall F \in[\gamma]^{<\omega}\left([n, \dot{h}(n, F)) \backslash \bigcup_{\alpha \in F} B_{\alpha} \nsubseteq A\right) .
$$

However for all $n \geq m, F \in[\gamma]^{<\omega}$ there are $p_{n, F} \leq p$ (in M) and $k_{n, F} \in \omega$ such that $p_{n, F} \Vdash_{M, \mathbb{P}} \dot{h}(n, F)=k_{n, F}$. Then

$$
p_{n, F} \Vdash_{N, \mathbb{P}}\left[n, k_{n, F}\right) \backslash \bigcup_{\alpha \in F} B_{\alpha} \nsubseteq A
$$

and so $N \vDash\left[n, k_{n, F}\right) \backslash \bigcup_{\alpha \in F} B_{\alpha} \nsubseteq A$. In M define $h_{0}: \omega \times[\gamma]^{<\omega} \rightarrow \omega$ as follows. Let $h_{0} \upharpoonright m \times[\gamma]^{<\omega}=0$ and for all $n \geq m, F \in[\gamma]^{<\omega}$ let $h_{0}(n, F)=$ $k_{n, F}$. Then h_{0} gives a contradiction to $\left(\star_{\mathcal{B}, A}^{M, N}\right)$.

Lemma 12. Let $\left\langle\mathbb{P}_{\ell, n}, \dot{\mathbb{Q}}_{\ell, n}: n \in \omega\right\rangle, \ell \in\{0,1\}$ be finite support iterations such that $\mathbb{P}_{0, n}$ is a complete suborder of $\mathbb{P}_{1, n}$ for all n. Let $V_{\ell, n}=V^{\mathbb{P}_{\ell, n}}$.
(1) Let $\mathcal{B}=\left\{A_{\gamma}\right\}_{\gamma<\alpha} \subseteq V_{0,0} \cap[\omega]^{\omega}, A \in V_{1,0} \cap[\omega]^{\omega}$. If $\left(*_{\mathcal{B}, A}^{V_{0, n}, V_{1, n}}\right)$ holds for all $n \in \omega$, then $\left(\star_{\mathcal{B}, A}^{V_{0, \omega}, V_{1, \omega}}\right)$ holds.
(2) Let $c \in V_{1,0} \cap{ }^{\omega} \omega$. If $\left(\star V_{0, n}, V_{1, n}, c\right)$ holds for all $n \in \omega$, then $\left(\star V_{0, \omega}, V_{1, \omega}, c\right)$ holds.

Proof. We will give a proof of (1). The proof of (2) is analogous. Thus suppose the claim of (1) does not hold and let $h: \omega \times[\alpha]^{<\omega} \rightarrow \omega$ be a function in $V_{0, \omega}$ such that for some $m \in \omega$, for all $n \geq m, F \in[\alpha]^{<\omega}$, $V_{1, \omega} \vDash[n, h(n, F)) \backslash \bigcup_{\gamma \in F} A_{\gamma} \nsubseteq A$. Then there are a $\mathbb{P}_{0, \omega}$-name $\dot{h}, p \in \mathbb{P}_{1, \omega}$ such that $p \Vdash[k, \dot{h}(k, F)) \backslash \bigcup_{\gamma \in F} A_{\gamma} \nsubseteq A$ for all $k \geq m, F \in[\alpha]^{<\omega}$. Since p has finite support, there is $n \in \omega$ such that $p \in \mathbb{P}_{1, n}$. Let $G_{1, n}$ be a $\mathbb{P}_{1, n}$-generic filter containing p and let $h^{\prime}=\dot{h} / G_{0, n}$ be the quotient name, where $G_{0, n}=G_{1, n} \cap \mathbb{P}_{0, n}$. Let $\mathbb{R}_{n, \omega}^{\ell}$ be the quotient poset $\mathbb{P}_{\ell, n} / G_{\ell, n}$ in
$V_{\ell, n}=V\left[G_{\ell, n}\right]$. Then $h^{\prime} \in V_{0, n}$ and for all $k \geq m, F \in[\alpha]^{<\omega}$

$$
V_{n, 1} \vDash \Vdash_{\mathbb{R}_{n, \omega}^{1}}\left[k, h^{\prime}(k, F)\right) \backslash \bigcup_{\gamma \in F} A_{\gamma} \nsubseteq A
$$

Then for all $k \geq m, F \in[\alpha]^{<\omega}$ find $p_{k, F} \in \mathbb{R}_{n, \omega}^{0}$ and $x_{k, F} \in \omega$ such that $p_{k, F} \Vdash h^{\prime}(k, F)=x_{k, F}$ and define $h_{0}(k, F)=x_{k, F}$. Let $h_{0} \upharpoonright m \times[\alpha]^{<\omega}=0$. Then $h_{0} \in V_{0, n}$ and $\left[k, h_{0}(k, F)\right) \backslash \bigcup_{\gamma \in F} A_{\gamma} \nsubseteq A$ for all $k \geq m, F \in[\alpha]^{<\omega}$ contradicting $\left(\star_{\mathcal{B}, A}^{V_{0, n}, V_{1, n}}\right)$.

The following Lemma is well-known and often used.
Lemma 13. Let \mathbb{P}, \mathbb{Q} be partial orders, such that \mathbb{P} is completely embedded into \mathbb{Q}. Let $\dot{\mathbb{A}}$ be a \mathbb{P}-name for a forcing notion, $\dot{\mathbb{B}}$ a \mathbb{Q}-name for a forcing notion such that $\Vdash_{\mathbb{Q}} \dot{\mathbb{A}} \subseteq \dot{\mathbb{B}}$, and every maximal antichain of $\dot{\mathbb{A}}$ in $V^{\mathbb{P}}$ is a maximal antichain of $\dot{\mathbb{B}}$ in $V^{\mathbb{Q}}$. Then $\mathbb{P} * \dot{\mathbb{A}}<0 \mathbb{Q} * \dot{\mathbb{B}}$.
Proof. It is sufficient to show that every maximal antichain of $\mathbb{P} * \dot{\mathbb{A}}$ is a maximal antichain of $\mathbb{Q} * \dot{\mathbb{B}}$. Thus let $\left\{\left(p_{\alpha}, \dot{a}_{\alpha}\right): \alpha<\kappa\right\}$ be a maximal antichain of $\mathbb{P} * \dot{\mathbb{A}}$. Suppose it is not maximal in $\mathbb{Q} * \dot{\mathbb{B}}$ and let (q, \dot{b}) be a condition in $\mathbb{Q} * \dot{\mathbb{B}}$ which is incompatible with all $\left(p_{\alpha}, \dot{a}_{\alpha}\right)$ for $\alpha<\kappa$. Let \dot{H} be the canonical \mathbb{P}-name for the \mathbb{P}-generic filter and let $\dot{\Omega}$ be a \mathbb{P}-name such that $\Vdash \dot{\Omega}=\left\{\alpha: p_{\alpha} \in \dot{H}\right\}$.
Claim. \Vdash " $\left\{\dot{a}_{\alpha}: \alpha \in \dot{\Omega}\right\}$ is a maximal antichain of $\dot{\mathbb{A}}$ ".
Proof. Suppose not. Then, there are $p \in \mathbb{P}$ and a \mathbb{P}-name \dot{a} such that $p \Vdash \forall \alpha\left(\alpha \in \dot{\Omega} \rightarrow \dot{a} \perp \dot{a}_{\alpha}\right)$. Then $(p, \dot{a}) \in \mathbb{P} * \dot{\mathbb{A}}$ and so there is $\alpha<\kappa$ such that $(p, \dot{a}) \not \not \perp\left(p_{\alpha}, \dot{a}_{\alpha}\right)$. Let $\left(p^{\prime}, \dot{a}^{\prime}\right)$ be a common extension. Then $p^{\prime} \Vdash\left(\dot{a}^{\prime} \leq \dot{a}\right.$ and $\left.\dot{a}^{\prime} \leq \dot{a}_{\alpha}\right)$, and since $p^{\prime} \leq p_{\alpha}, p^{\prime} \Vdash \alpha \in \dot{\Omega}$. That is, $p^{\prime} \Vdash\left(\alpha \in \dot{\Omega}\right.$ and $\left.\dot{a}^{\prime} \leq \dot{a}, \dot{a}^{\prime} \leq \dot{a}_{\alpha}\right)$ which is a contradiction.

Let G be \mathbb{Q}-generic filter such that $q \in G$. Then since $\mathbb{P}<0 \mathbb{Q}$, there is a \mathbb{P}-generic filter H such that $V[H] \subseteq V[G]$. Now let $b=\dot{b}[G], a_{\alpha}=\dot{a}_{\alpha}[G]=$ $\dot{a}_{\alpha}[H]$ (for α such that $p_{\alpha} \in H$) and let $\Omega=\dot{\Omega}[G]=\left\{\alpha<\kappa: p_{\alpha} \in H\right\}$. By the above claim $\left\{a_{\alpha}: \alpha \in \Omega\right\}$ is a maximal antichain in \mathbb{A} (in $V[G]$) and so by the hypothesis of the Lemma, it is a maximal antichain of \mathbb{B} (in $V[G]$). So there is $\alpha \in \Omega$ such that $b=\dot{b}[G]$ is compatible with $a_{\alpha}=\dot{a}_{\alpha}[H]$. So there is $q^{\prime} \in G$ such that $q^{\prime} \leq p_{\alpha}, q^{\prime} \leq q$ and $q^{\prime} \Vdash\left(\alpha \in \dot{\Omega}\right.$ and $\left.\dot{b} \not \subset \dot{a}_{\alpha}\right)$. Thus there is a \mathbb{Q}-name \dot{b}^{\prime} such that $q^{\prime} \Vdash " \dot{b}^{\prime} \leq \dot{b}, \dot{b}^{\prime} \leq \dot{a}_{\alpha}$ " and so $\left(q^{\prime}, \dot{b}^{\prime}\right)$ is a common extension of (q, \dot{b}) and $\left(p_{\alpha}, \dot{a}_{\alpha}\right)$, which is a contradiction.

4. The consistency of $\mathfrak{b}=\mathfrak{a}=\kappa<\mathfrak{s}=\lambda$

Let $f:\{\eta<\lambda: \eta \equiv 1 \bmod 2\} \rightarrow \kappa$ be an onto mapping, such that for all $\alpha<\kappa, f^{-1}(\alpha)$ is cofinal in λ. Recursively define a system of finite support iterations $\left\langle\left\langle\mathbb{P}_{\alpha, \zeta}: \alpha \leq \kappa, \zeta \leq \lambda\right\rangle,\left\langle\dot{\mathbb{Q}}_{\alpha, \zeta}: \alpha \leq \kappa, \zeta<\lambda\right\rangle\right\rangle$ as follows. For all α, ζ let $V_{\alpha, \zeta}=V^{\mathbb{P}_{\alpha, \zeta}}$. We refer to such systems as matrix iterations. Note that this type of iterations appeared for the first time in [3].
(1) If $\zeta=0$, then for all $\alpha \leq \kappa, \mathbb{P}_{\alpha, 0}$ is Hechler's poset (see Definition 1) for adding an a.d. family $\mathcal{A}_{\alpha}=\left\{A_{\beta}\right\}_{\beta<\alpha}$ (note that for $\alpha \geq \omega_{1}, \mathcal{A}_{\alpha}$ is mad in $\left.V_{\alpha, 0}\right)$.
(2) If $\zeta=\eta+1, \zeta \equiv 1 \bmod 2$, then $\Vdash_{\mathbb{P}_{\alpha, \eta}} \dot{\mathbb{Q}}_{\alpha, \eta}=\mathbb{M}_{\dot{\mathcal{U}}_{\alpha, \eta}}$ where $\dot{\mathcal{U}}_{\alpha, \eta}$ is a $\mathbb{P}_{\alpha, \eta}$-name for an ultrafilter and for all $\alpha<\beta \leq \kappa, \Vdash_{\mathbb{P}_{\beta, \eta}} \dot{\mathcal{U}}_{\alpha, \eta} \subseteq \dot{\mathcal{U}}_{\beta, \eta}$.
(3) If $\zeta=\eta+1, \zeta \equiv 0 \bmod 2$, then if $\alpha \leq f(\eta), \dot{\mathbb{Q}}_{\alpha, \eta}$ is a $\mathbb{P}_{\alpha, \eta}$-name for the trivial forcing notion; if $\alpha>f(\eta)$ then $\dot{\mathbb{Q}}_{\alpha, \eta}$ is a $\mathbb{P}_{\alpha, \eta}$-name for $\mathbb{D}^{V_{f(\eta), \eta}}$.
(4) If ζ is a limit, then for all $\alpha \leq \kappa, \mathbb{P}_{\alpha, \zeta}$ is the finite support iteration of $\left\langle\mathbb{P}_{\alpha, \eta}, \dot{\mathbb{Q}}_{\alpha, \eta}: \eta<\zeta\right\rangle$.

Furthermore the construction will satisfy the following two properties:
(a) $\forall \zeta \leq \lambda \forall \alpha<\beta \leq \kappa, \mathbb{P}_{\alpha, \zeta}$ is a complete suborder of $\mathbb{P}_{\beta, \zeta}$.
(b) $\forall \zeta \leq \lambda \forall \alpha<\kappa\left(\star_{\mathcal{A}_{\alpha}, A_{\alpha}}^{V_{\alpha, \zeta}, V_{\alpha+1, \zeta}}\right)$ holds.

Proceed by recursion on ζ. For $\zeta=0, \alpha \leq \kappa$ let $\mathbb{P}_{\alpha, 0}$ be the poset from Definition 1. Then by the product property of $\mathbb{P}_{\alpha, 0}$ and Lemma 4 respectively, properties (a) and (b) above hold. Let $\zeta=\eta+1$ be a successor ordinal and suppose $\forall \alpha \leq \kappa, \mathbb{P}_{\alpha, \eta}$ has been defined so that properties (a) and (b) above hold.

If $\zeta \equiv 1 \bmod 2$ define $\dot{\mathbb{Q}}_{\alpha, \eta}$ by induction on $\alpha \leq \kappa$ as follows. If $\alpha=0$, let $\dot{\mathcal{U}}_{0, \eta}$ be a $\mathbb{P}_{0, \eta}$-name for an ultrafilter, $\dot{\mathbb{Q}}_{0, \eta}$ a $\mathbb{P}_{0, \eta}$-name for $\mathbb{M}_{\dot{\mathcal{U}}_{0, \eta}}$ and let $\mathbb{P}_{0, \zeta}=\mathbb{P}_{0, \eta} * \dot{\mathbb{Q}}_{0, \eta}$. If $\alpha=\beta+1$ and $\dot{\mathcal{U}}_{\beta, \eta}$ has been defined, by the inductive hypothesis and Lemma 7 there is a $\mathbb{P}_{\alpha, \eta}$-name $\dot{\mathcal{U}}_{\alpha, \eta}$ for an ultrafilter such that $\Vdash_{\mathbb{P}_{\alpha, \eta}} \dot{\mathcal{U}}_{\beta, \eta} \subseteq \dot{\mathcal{U}}_{\alpha, \eta}$, every maximal antichain of $\mathbb{M}_{\dot{\mathcal{U}}_{\beta, \eta}}$ in $V_{\beta, \eta}$ is a maximal antichain of $\mathbb{M}_{\dot{\mathcal{U}}_{\alpha, \eta}}$ and $\left({ }_{\mathcal{A}_{\beta}, A_{\beta}}^{V_{\beta, \zeta}, V_{\beta+1, \zeta}}\right)$ holds, where $V_{\beta+1, \zeta}=V^{\mathbb{P}_{\alpha, \zeta}}$, $\mathbb{P}_{\alpha, \zeta}=\mathbb{P}_{\alpha, \eta} * \dot{\mathbb{Q}}_{\alpha, \eta}$ and $\dot{\mathbb{Q}}_{\alpha, \eta}$ is a $\mathbb{P}_{\alpha, \eta}$-name for $\mathbb{M}_{\dot{\mathcal{U}}_{\alpha, \eta}}$. Note that by Lemma 13 $\mathbb{P}_{\beta, \zeta}=\mathbb{P}_{\beta, \eta} * \mathbb{M}_{\dot{\mathcal{U}}_{\beta, \eta}}$ is a complete suborder of $\mathbb{P}_{\alpha, \zeta}$. If α is a limit ordinal and for all $\beta<\alpha \dot{\mathcal{U}}_{\beta, \eta}$ has been defined (and so $\dot{\mathbb{Q}}_{\beta, \eta}$ is a $\mathbb{P}_{\beta, \eta}$-name for $\mathbb{M}_{\dot{U}_{\beta, \eta}}$; $\left.\mathbb{P}_{\beta, \zeta}=\mathbb{P}_{\beta, \eta} * \dot{\mathbb{Q}}_{\beta, \eta}\right)$, consider the following two cases. If $\operatorname{cf}(\alpha)=\omega$, find a $\mathbb{P}_{\alpha, \eta}$-name $\dot{\mathcal{U}}_{\alpha, \eta}$ for an ultrafilter such that for all $\beta<\alpha, \Vdash_{\mathbb{P}_{\alpha, \eta}} \dot{\mathcal{U}}_{\beta, \eta} \subseteq \dot{\mathcal{U}}_{\alpha, \eta}$ and every maximal antichain of $\mathbb{M}_{\dot{\mathcal{U}}_{\beta, \eta}}$ from $V_{\beta, \eta}$ is a maximal antichain of $\mathbb{M}_{\mathcal{U}_{\alpha, \eta}}$ (in $V_{\alpha, \eta}$) (for the construction of such an ultrafilter in $V^{\mathbb{P}_{\alpha, \eta}}$ see [3], p. 266). If $\operatorname{cf}(\alpha)>\omega$, then let $\dot{\mathcal{U}}_{\alpha, \eta}$ be a $\mathbb{P}_{\alpha, \eta}$-name for $\bigcup_{\beta<\alpha} \mathcal{U}_{\beta, \eta}$. Let $\dot{\mathbb{Q}}_{\alpha, \eta}$ be a $\mathbb{P}_{\alpha, \eta}$-name for $\mathbb{M}_{\dot{\mathcal{U}}_{\alpha, \eta}}$ and let $\mathbb{P}_{\alpha, \zeta}=\mathbb{P}_{\alpha, \eta} * \dot{\mathbb{Q}}_{\alpha, \eta}$. Again by Lemma 13 for all $\beta<\alpha \mathbb{P}_{\beta, \zeta}$ is a complete suborder of $\mathbb{P}_{\alpha, \zeta}$.

If $\zeta \equiv 0 \bmod 2$, then for all $\alpha \leq f(\eta)$ let $\dot{\mathbb{Q}}_{\alpha, \eta}$ be a $\mathbb{P}_{\alpha, \eta}$-name for the trivial poset and for $\alpha>f(\eta)$ let $\dot{\mathbb{Q}}_{\alpha, \eta}$ be a $\mathbb{P}_{\alpha, \eta}$-name for $\mathbb{D}^{V_{f(\eta), \eta}}$. Let $\mathbb{P}_{\alpha, \zeta}=\mathbb{P}_{\alpha, \eta} * \dot{\mathbb{Q}}_{\alpha, \eta}$. If $\alpha<\beta \leq f(\eta)$, then $\mathbb{P}_{\alpha, \zeta}=\mathbb{P}_{\alpha, \eta}, \mathbb{P}_{\beta, \zeta}=\mathbb{P}_{\alpha, \eta}$ and so by the inductive hypothesis $\mathbb{P}_{\alpha, \zeta}$ is a complete suborder of $\mathbb{P}_{\beta, \zeta}$. If $\alpha \leq f(\eta)<$ β, then $\mathbb{P}_{\alpha, \zeta}=\mathbb{P}_{\alpha, \eta}$ and $\mathbb{P}_{\alpha, \eta}<\circ \mathbb{P}_{\beta, \eta}<\circ \mathbb{P}_{\beta, \eta} * \dot{\mathbb{Q}}_{\beta, \eta}$. Thus $\mathbb{P}_{\alpha, \zeta}<\circ \mathbb{P}_{\beta, \zeta}$. If $f(\eta)<\alpha<\beta$, then again by Lemma $13 \mathbb{P}_{\alpha, \zeta}<\circ \mathbb{P}_{\beta, \zeta}$. Furthermore by Lemma 11.(1) $\left(\star_{\mathcal{A}_{\alpha}, A_{\alpha}}^{V_{\alpha,}, V_{\alpha+1, \zeta}}\right)$ holds for all $\alpha \leq \kappa$.

If ζ is a limit and for all $\eta<\zeta, \mathbb{P}_{\alpha, \eta}, \dot{\mathbb{Q}}_{\alpha, \eta}$ have been defined, let $\mathbb{P}_{\alpha, \zeta}$ be the finite support iteration of $\left\langle\mathbb{P}_{\alpha, \eta}, \dot{\mathbb{Q}}_{\alpha, \eta}: \eta<\zeta\right\rangle$. By Lemma $10 \mathbb{P}_{\alpha, \zeta}$ is a complete suborder of $\mathbb{P}_{\beta, \zeta}$ and by Lemma 12.(1) $\left(\star_{\mathcal{A}_{\alpha}, A_{\alpha}}^{V_{\alpha, \zeta}, V_{\alpha+1, \zeta}}\right)$ holds.

Remark 14. For all $\alpha<\beta \leq \kappa, \zeta<\eta \leq \lambda \mathbb{P}_{\alpha, \zeta}<0 \mathbb{P}_{\beta, \eta}$.
Lemma 15. For $\zeta \leq \lambda$:
(1) for every $p \in \mathbb{P}_{\kappa, \zeta}$ there is $\alpha<\kappa$ such that p belongs to $\mathbb{P}_{\alpha, \zeta}$,
(2) for every $\mathbb{P}_{\kappa, \zeta}$-name for a real \dot{f} there is $\alpha<\kappa$ such that \dot{f} is a $\mathbb{P}_{\alpha, \zeta}$-name.

Proof. The proof follows just as in the last Lemma of [3], p. 270. For completeness we will give a proof as well. We will prove (1) and (2) simultaneously by induction on ζ. Note that by the ccc property of $\mathbb{P}_{\kappa, \zeta}$ and the fact that κ is regular, uncountable, it is clear that (2) follows immediately from (1). If $\zeta=0$ the claim follows from the product property of $\mathbb{P}_{\kappa, 0}$. If ζ is a limit, $p \in \mathbb{P}_{\kappa, \zeta}$ then since p has a finite support, there is $\eta<\zeta$ such that $p \in \mathbb{P}_{\kappa, \eta}$. By inductive hypothesis there is $\alpha<\eta$ such that $p \in \mathbb{P}_{\alpha, \eta}$ and so in particular $p \in \mathbb{P}_{\alpha, \zeta}$. Let $\zeta=\eta+1$ be a successor. Then $p \in \mathbb{P}_{\kappa, \zeta}$ is of the form $\left(p_{0}, \dot{p}_{1}\right)$ where $p_{0} \in \mathbb{P}_{\kappa, \eta}$ and $\Vdash_{\mathbb{P}_{\kappa, \eta}} \dot{p}_{1} \in \dot{\mathbb{Q}}_{\kappa, \eta}$. If $\zeta \equiv 1 \bmod 2$ then \dot{p}_{1} is of the form (a, \dot{A}) where $\Vdash_{\mathbb{P}_{\kappa, \eta}} \dot{A} \in \dot{\mathcal{U}}_{\kappa, \eta}, a \in[\omega]^{<\omega}$. If $\zeta \equiv 0 \bmod 2$, then \dot{p}_{1} is of the form (s, \dot{f}) where \dot{f} is a $\mathbb{P}_{\kappa, \eta}$-name for a real, $s \in{ }^{<\omega} \omega$ or \dot{p}_{1} is trivial. In either of the above cases, the inductive hypothesis for (2) implies that there is $\alpha_{1}<\kappa$ such that \dot{p}_{1} is a $\mathbb{P}_{\alpha_{1}, \eta}$-name. Again the inductive hypothesis for (1) implies that $p_{0} \in \mathbb{P}_{\alpha_{0}, \eta}$ for some $\alpha_{0}<\kappa$. Then $p=\left(p_{0}, \dot{p}_{1}\right)$ belongs to $\mathbb{P}_{\alpha, \eta}$ where $\alpha=\max \left\{\alpha_{0}, \alpha_{1}\right\}$.
Lemma 16. $V_{\kappa, \lambda} \vDash \mathfrak{b}=\mathfrak{a}=\kappa<\mathfrak{s}=\lambda$.
Proof. The family $\left\{A_{\alpha}\right\}_{\alpha \in \kappa}$ remains a maximal almost disjoint family in $V_{\kappa, \lambda}$. Indeed, otherwise there is a set $B \in V_{\kappa, \lambda} \cap[\omega]^{\omega}$ such that $\forall \alpha<$ $\kappa\left(\left|B \cap A_{\alpha}\right|<\omega\right)$. By Lemma 15 there is $\alpha<\kappa$ such that $B \in V_{\alpha, \lambda} \cap[\omega]^{\omega}$. However $B \notin \mathcal{I}\left(\mathcal{A}_{\alpha}\right)$. On the other hand $\left(\star_{\mathcal{A}_{\alpha}, A_{\alpha+1}}^{V_{\alpha, \lambda}, V_{\alpha+1, \lambda}}\right)$ holds, and so by Lemma $3\left|B \cap A_{\alpha+1}\right|=\omega$ which is a contradiction. Therefore $\mathfrak{a} \leq \kappa$.

Let $\mathcal{B} \subseteq V_{\kappa, \lambda} \cap{ }^{\omega} \omega$ be of cardinality $<\kappa$. Then by Lemma 15 there are $\alpha<\kappa, \zeta<\lambda$ such that $\mathcal{B} \subseteq V_{\alpha, \zeta}$. Since $\{\gamma: f(\gamma)=\alpha\}$ is cofinal in λ, there is $\zeta^{\prime}>\zeta$ such that $f\left(\zeta^{\prime}\right)=\alpha$. Then $\mathbb{P}_{\alpha+1, \zeta^{\prime}+1}$ adds a real dominating $V_{\alpha, \zeta^{\prime}} \cap^{\omega} \omega$ (and so $V_{\alpha, \zeta} \cap^{\omega} \omega$ since $V_{\alpha, \zeta} \subseteq V_{\alpha, \zeta^{\prime}}$. Thus \mathcal{B} is not unbounded. Therefore $V_{\kappa, \lambda} \Vdash \mathfrak{b} \geq \kappa$. However $\mathfrak{b} \leq \mathfrak{a}$ (see [2]) and so $V_{\kappa, \lambda} \Vdash \mathfrak{b}=\mathfrak{a}=\kappa$.

To see that $V_{\kappa, \lambda} \vDash \mathfrak{s}=\lambda$, note that if $S \subseteq V_{\kappa, \lambda} \cap[\omega]^{\omega}$ is a family of cardinality $<\lambda$, then there is $\zeta<\lambda$ such that $\zeta=\eta+1, \zeta \equiv 1 \bmod 2$ and $S \subseteq V_{\kappa, \eta}$. Then $\mathcal{M}_{\mathcal{U}_{\kappa, \eta}}$ adds a real not split by S and so S is not splitting.

Theorem 17. Let $\kappa<\lambda$ be arbitrary regular uncountable cardinals. Then there is a ccc generic extension in which $\mathfrak{b}=\mathfrak{a}=\kappa<\mathfrak{s}=\lambda$.

5. The consistency of $\kappa=\mathfrak{b}<\mathfrak{s}=\mathfrak{a}=\lambda$ ABOVE A MEASURABLE

Let μ be a measurable cardinal, \mathcal{D} a μ-complete ultrafilter on μ. Let $\kappa<\lambda$ be regular such that $\mu<\kappa$. For notation regarding ultrapowers of posets and names, see [4] and [10]. In the Lemma below we show that $(\star M, N, c)$ is preserved under ultrapowers.

Lemma 18. Let $\mathbb{P}<0 \mathbb{Q}, c \in V^{\mathbb{Q}}$ such that for all $f \in V^{\mathbb{P}} \cap^{\omega} \omega$, $\Vdash_{\mathbb{P}} c \not \mathbb{Z}^{*} f$. Let $\mathbb{Q}^{\prime}=\mathbb{Q}^{\mu} / \mathcal{D}, \mathbb{P}^{\prime}=\mathbb{P}^{\mu} / \mathcal{D}, f \in V^{\mathbb{P}^{\prime}} \cap \omega$. Then $\Vdash_{\mathbb{Q}^{\prime}} c \not \mathbb{Z}^{*} f$.

Proof. Suppose not. Thus there is a \mathbb{P}^{\prime} name for a real \dot{f} and $[q] \in \mathbb{Q}^{\prime}$ such that for some $k \in \omega$, for all $i \geq k,[q] \Vdash \dot{c}(i) \leq \dot{f}(i)$. Note that \dot{f} is determined by maximal antichains $\left\{\left[p_{n, i}\right]\right\}_{n, i \in \omega}$ and $\left\{k_{n, i}\right\}_{n, i \in \omega} \subseteq \omega$ such that for all $n, i\left[p_{n, i}\right] \vdash_{\mathbb{P}^{\prime}} \dot{f}(i)=k_{n, i}$. Furthermore we can assume (see [4]) that for all $\alpha \in \mu$ there are maximal antichains $\left\{p_{n, i}^{\alpha}\right\}_{n, i \in \omega}$ in \mathbb{P}, such that $\left[p_{n, i}\right]=\left\langle p_{n, i}^{\alpha}: \alpha<\mu\right\rangle / \mathcal{D}$, and a \mathbb{P}-name for a real \dot{f}^{α} such that $p_{n, i}^{\alpha} \Vdash_{\mathbb{P}}$ $\dot{f}^{\alpha}(i)=k_{n, i}$. By elementarity, $A=\left\{\alpha: q(\alpha) \Vdash_{\mathbb{Q}} \dot{c}(i) \leq \dot{f}^{\alpha}(i)\right\}$ is in \mathcal{D}, and so in particular A is non-empty. Here we identify \dot{c} with its ultrapower. Let $\alpha \in A$. Then \dot{f}^{α} is a \mathbb{P}-name and for all $i \geq k, q(\alpha) \Vdash_{\mathbb{Q}} \dot{c}(i) \leq f^{\alpha}(i)$, which is a contradiction.

Let $f:\{\eta<\lambda: \eta \equiv 1 \bmod 3\} \rightarrow \kappa$ be an onto mapping such that for all $\alpha<\kappa, f^{-1}(\alpha)$ is cofinal in λ. Similarly to the construction from the previous section, recursively define a system of finite support iterations $\left\langle\left\langle\mathbb{P}_{\alpha, \zeta}: \alpha \leq \kappa, \zeta \leq \lambda\right\rangle,\left\langle\dot{\mathbb{Q}}_{\alpha, \zeta}: \alpha \leq \kappa, \zeta<\lambda\right\rangle\right\rangle$ so that properties $(1)-(5)$, as well as $(a)-(b)$ below hold. For all α, ζ let $V_{\alpha, \zeta}=V^{\mathbb{P}_{\alpha, \zeta}}$.
(1) If $\zeta=0$, then for all $\alpha \leq \kappa$, let $\mathbb{P}_{\alpha, 0}$ be the forcing notion for adding α many Cohen reals, $\left\{c_{\gamma}\right\}_{\gamma<\alpha}$.
(2) If $\zeta=\eta+1, \zeta \equiv 1 \bmod 3$, then $\Vdash_{\mathbb{P}_{\alpha, \eta}} \dot{\mathbb{Q}}_{\alpha, \eta}=\mathbb{M}_{\dot{\mathcal{U}}_{\alpha, \eta}}$ where $\dot{\mathcal{U}}_{\alpha, \eta}$ is a $\mathbb{P}_{\alpha, \eta}$-name for an ultrafilter and for all $\alpha<\beta \leq \kappa, \Vdash_{\mathbb{P}_{\beta, \eta}} \dot{\mathcal{U}}_{\alpha, \eta} \subseteq \dot{\mathcal{U}}_{\beta, \eta}$.
(3) If $\zeta=\eta+1, \zeta \equiv 2 \bmod 3$, then if $\alpha \leq f(\eta), \dot{\mathbb{Q}}_{\alpha, \eta}$ is a $\mathbb{P}_{\alpha, \eta}$-name for the trivial forcing notions; if $\alpha>f(\eta)$ then $\dot{\mathbb{Q}}_{\alpha, \eta}$ is a $\mathbb{P}_{\alpha, \eta}$-name for $\mathbb{D}^{V_{f(\eta), \eta}}$.
(4) If $\zeta=\eta+1, \zeta \equiv 0 \bmod 3$, then for every $\alpha \leq \kappa$ let $\dot{\mathbb{Q}}_{\alpha, \eta}$ be a $\mathbb{P}_{\alpha, \eta}$-name for the quotient poset of $\left(\left(\mathbb{P}_{\alpha, \eta}\right)^{\mu}\right) / \mathcal{D}$ and $\mathbb{P}_{\alpha, \eta}$.
(5) If ζ is a limit, $\mathbb{P}_{\alpha, \zeta}$ is the finite support iteration of $\left\langle\mathbb{P}_{\alpha, \eta}, \dot{\mathbb{Q}}_{\alpha, \eta}: \eta<\zeta\right\rangle$.

Furthermore the construction will satisfy the following two properties:
(a) $\forall \zeta \leq \lambda \forall \alpha<\beta \leq \kappa, \mathbb{P}_{\alpha, \zeta}$ is a complete suborder of $\mathbb{P}_{\beta, \zeta}$.
(b) $\forall \zeta \leq \lambda \forall \alpha<\kappa\left(\star V_{\alpha, \zeta}, V_{\alpha+1, \zeta}, c_{\alpha+1}\right)$ holds.

Proceed by induction on ζ. If $\zeta=0$, then for all $\alpha \leq \kappa$ let $\mathbb{P}_{\alpha, 0}$ be the forcing notion for adding α many Cohen reals, $\left\{c_{\gamma}\right\}_{\gamma<\alpha}$. The properties of Cohen forcing imply that (a) and (b) above hold. Let $\zeta=\eta+1$ be a successor ordinal and suppose that for all $\alpha \leq \kappa, \mathbb{P}_{\alpha, \eta}$ has been defined so that the relevant properties (a) and (b) above hold.

If $\zeta \equiv 1 \bmod 3$ define $\dot{\mathbb{Q}}_{\alpha, \eta}$ by induction on $\alpha \leq \kappa$ as follows. If $\alpha=0$ let $\dot{\mathcal{U}}_{0, \eta}$ be a $\mathbb{P}_{0, \eta}$-name for an ultrafilter, $\dot{\mathbb{Q}}_{0, \eta}$ a $\mathbb{P}_{0, \eta}$-name for $\mathbb{M}_{\dot{\mathcal{U}}_{0, \eta}}$ and let $\mathbb{P}_{0, \zeta}=\mathbb{P}_{0, \eta} * \dot{\mathbb{Q}}_{0, \eta}$. If $\alpha=\beta+1$ and $\dot{\mathcal{U}}_{\beta, \eta}$ has been defined, by the inductive hypothesis and Lemma 6 there is a $\mathbb{P}_{\alpha, \eta}$-name $\dot{\mathcal{U}}_{\alpha, \eta}$ for an ultrafilter such that $\Vdash_{\mathbb{P}_{\alpha, \eta}} \dot{\mathcal{U}}_{\beta, \eta} \subseteq \dot{\mathcal{U}}_{\alpha, \eta}$, every maximal antichain of $\mathbb{M}_{\dot{\mathcal{U}}_{\beta, \eta}}$ in $V_{\beta, \eta}$ is a maximal antichain of $\mathbb{M}_{\dot{\mathcal{U}}_{\alpha, \eta}}$ and $\left(\star V_{\beta, \zeta}, V_{\beta+1, \zeta}, c_{\beta+1}\right)$ holds, where $V_{\beta+1, \zeta}=V^{\mathbb{P}_{\alpha, \zeta}}$, $\mathbb{P}_{\alpha, \zeta}=\mathbb{P}_{\alpha, \eta} * \dot{\mathbb{Q}}_{\alpha, \eta}$ and $\dot{\mathbb{Q}}_{\alpha, \eta}$ is a $\mathbb{P}_{\alpha, \eta}$-name for $\mathbb{M}_{\dot{\mathcal{U}}_{\alpha, \eta}}$. By Lemma $13 \mathbb{P}_{\beta, \zeta}=$ $\mathbb{P}_{\beta, \eta} * \mathbb{M}_{\dot{\mathcal{U}}_{\beta, \eta}}$ is a complete suborder of $\mathbb{P}_{\alpha, \zeta}$. If α is a limit ordinal and for all $\beta<\alpha, \dot{\mathcal{U}}_{\beta, \eta}$ has been defined, proceed as in the limit case for α, ζ successor,
odd ordinal, in the construction of the system of finite support iterations from the previous section.

If $\zeta \equiv 2 \bmod 3$ then for all $\alpha \leq f(\eta)$ let $\dot{\mathbb{Q}}_{\alpha, \eta}$ be a $\mathbb{P}_{\alpha, \eta}$-name for the trivial poset and for $\alpha>f(\eta)$ let $\dot{\mathbb{Q}}_{\alpha, \eta}$ be a $\mathbb{P}_{\alpha, \eta}$-name for $\mathbb{D}^{V_{f(\eta), \eta}}$. Let $\mathbb{P}_{\alpha, \zeta}=\mathbb{P}_{\alpha, \eta} * \dot{\mathbb{Q}}_{\alpha, \eta}$. Property (a) can be established for ζ and $\alpha \leq \kappa$ just as in the successor, even case in the construction from the previous section. The inductive hypothesis and Lemma 11.(2) imply that for ζ and $\alpha \leq \kappa$, property (b) holds as well.
If $\zeta \equiv 0 \bmod 3$ then for all $\alpha \leq \kappa$ let $\dot{\mathbb{Q}}_{\alpha, \eta}$ be a $\mathbb{P}_{\alpha, \eta}$-name for the quotient poset of $\left(\mathbb{P}_{\alpha, \eta}^{\mu}\right) / \mathcal{D}$ and $\mathbb{P}_{\alpha, \eta}$. Let $\mathbb{P}_{\alpha, \zeta}=\mathbb{P}_{\alpha, \eta} * \dot{\mathbb{Q}}_{\alpha, \eta}$. Then by the inductive hypothesis and Lemma 5 of [4] for all $\alpha<\beta \leq \kappa \mathbb{P}_{\alpha, \zeta}$ is a complete suborder of $\mathbb{P}_{\beta, \zeta}$. By the inductive hypothesis and Lemma 18 for all $\alpha<\kappa$ $\left(\star V_{\alpha, \zeta}, V_{\alpha+1, \zeta}, c_{\alpha+1}\right)$ holds.
If ζ is a limit and for all $\eta<\zeta, \mathbb{P}_{\alpha, \eta}$ and $\dot{\mathbb{Q}}_{\alpha, \eta}$ have been defined, then let $\mathbb{P}_{\alpha, \zeta}$ be the finite support iteration of $\left\langle\mathbb{P}_{\alpha, \eta}, \dot{\mathbb{Q}}_{\alpha, \eta}: \eta<\zeta\right\rangle$. By Lemma 10 for all $\alpha<\beta \leq \kappa \mathbb{P}_{\alpha, \zeta}$ is a complete suborder of $\mathbb{P}_{\beta, \zeta}$ and by Lemma 12.(2) $\left(\star V_{\alpha, \zeta}, V_{\alpha+1, \zeta}, c_{\alpha+1}\right)$ holds for all $\alpha<\kappa$.
Lemma 19. For $\zeta \leq \lambda$:
(1) for every $p \in \mathbb{P}_{\kappa, \zeta}$ there is $\alpha<\kappa$ such that p belongs to $\mathbb{P}_{\alpha, \zeta}$,
(2) for every $\mathbb{P}_{\kappa, \zeta}$-name for a real \dot{f} there is $\alpha<\kappa$ such that \dot{f} is a $\mathbb{P}_{\alpha, \zeta}$-name.
Proof. If ζ is a limit, proceed as in the limit case of Lemma 15. If $\zeta=\eta+1$ is a successor and $\zeta \equiv 1 \bmod 3$ or $\zeta \equiv 2 \bmod 3$ the proof follows as in the successor case of Lemma 15 . Let $\zeta \equiv 0 \bmod 3$ and let $p \in\left(\mathbb{P}_{\kappa, \eta}\right)^{\mu} / \mathcal{D}$. Then $p=[f]=\langle f(\gamma): \gamma<\mu\rangle / \mathcal{D}$ where $f(\gamma) \in \mathbb{P}_{\kappa, \eta}$ for $\gamma<\mu$. By the inductive hypothesis and $\kappa=\operatorname{cf}(\kappa)>\mu$, there is $\alpha<\kappa$ such that $f(\gamma) \in \mathbb{P}_{\alpha, \eta}$ for all $\gamma<\mu$ and so $p=[f]$ belongs to $\left(\mathbb{P}_{\alpha, \eta}\right)^{\mu} / \mathcal{D}=\mathbb{P}_{\alpha, \zeta}$.
Lemma 20. $V_{\kappa, \lambda} \vDash \mathfrak{b}=\kappa<\mathfrak{s}=\mathfrak{a}=\lambda$,
Proof. Let $\dot{f} \in V_{\kappa, \lambda} \cap{ }^{\omega} \omega$. Then there are $\zeta<\lambda, \alpha<\kappa$ such that $f \in$ $V_{\alpha, \zeta} \cap{ }^{\omega} \omega$. Since ($\star V_{\alpha, \zeta} V_{\alpha+1, \zeta} c_{\alpha+1}$) holds, $V_{\alpha+1, \zeta} \vDash c_{\alpha+1} \nless 大^{*} f$ and so $V_{\kappa, \lambda} \vDash c_{\alpha+1} \not \mathbb{Z}^{*} f$. Therefore $\left\{c_{\alpha+1}\right\}_{\alpha<\kappa}$ is unbounded in $V_{\kappa, \lambda}$. If $\mathcal{B} \subseteq$ $V_{\kappa, \lambda} \cap^{\omega} \omega$ is a family of reals of cardinality $<\kappa$, then there are $\alpha<\kappa, \zeta<\lambda$ such that $\mathcal{B} \subseteq V_{\alpha, \zeta}$. Since $\{\gamma: f(\gamma)=\alpha\}$ is cofinal in λ, there is $\zeta^{\prime}>\zeta$ such that $f\left(\zeta^{\prime}\right)=\alpha$. Therefore $(\mathfrak{b}=\kappa)^{V_{k, \lambda}}$.
Since $\mathfrak{a} \geq \mathfrak{b}$, we have $V_{\kappa, \lambda} \vDash \mathfrak{a} \geq \kappa$. Let $\mathcal{A} \subseteq V_{\kappa, \lambda} \cap[\omega]^{\omega}$ be an almost disjoint family of cardinality ν where $\kappa \leq \nu<\lambda$. Then there is $\zeta<\lambda$ such that $\zeta=\eta+1, \zeta \equiv 0 \bmod 3$ and $\mathcal{A} \subseteq V_{\kappa, \eta}$. Then by Lemma 4 of $[4]$, in $V_{\kappa, \zeta}$ there is a real which has a finite intersection with all elements of \mathcal{A} and so \mathcal{A} is not maximal. Therefore $(\mathfrak{a}=\mathfrak{c}=\lambda)^{V_{\kappa, \lambda}}$.

To see that $(\mathfrak{s}=\lambda)^{V_{\kappa, \lambda}}$ note that if $S \subseteq V_{\kappa, \lambda} \cap[\omega]^{\omega},|S|<\lambda$, then there is $\zeta<\lambda, \zeta=\eta+1, \zeta \equiv 1 \bmod 3$ such that $S \subseteq V_{\kappa, \eta}$. Then in $V_{\kappa, \zeta}$ there is a real which is not split by S (added by $\mathbb{M}_{\mathcal{U}_{\kappa, \eta}}$) and so S is not splitting.

Thus we obtain the following theorem.
Theorem 21. Let μ be a measurable cardinal, $\kappa<\lambda$ regular such that $\mu<\kappa$. Then there is a ccc generic extension in which $\mathfrak{b}=\kappa<\mathfrak{s}=\mathfrak{a}=\lambda$.

6. Comments and questions

The converse consistency $\kappa=\mathfrak{s}<\mathfrak{b}=\mathfrak{a}=\lambda$ is well-known and standard. However of interest remain the following questions:
(1) Is it relatively consistent that $\mathfrak{b}<\mathfrak{a}<\mathfrak{s}$?
(2) Is it relatively consistent that $\mathfrak{b}<\mathfrak{s}<\mathfrak{a}$?
(3) Is it relatively consistent that $\mathfrak{b}<\mathfrak{s}=\mathfrak{a}$ without assuming a measurable?

References

[1] J. Baumgartner, P. Dordal Adjoining dominating functions, The Journal of Symbolic Logic 50(1985), 94-101.
[2] A. Blass Combinatorial Cardinal Characteristics of the Continuum, for the Handbook of Set-Theory.
[3] A. Blass and S. Shelah Ultrafilters with Small Generating Sets, Israel Journal of Mathematics 65(1984), 259-271.
[4] J. Brendle Mad families and Ultrafilters Acta Universitatis Carolinae. Mathematica et Physica 49(2007), 19-35.
[5] J. Brendle Mob families and mad families Arch. Math. Logic 37(1998), 183-197.
[6] V. Fischer The consistency of arbitrarily large spread between the bounding and the splitting numbers, doctoral dissertation, York University, 2008.
[7] V. Fischer, J. Steprāns The consistency of $\mathfrak{b}=\kappa<\mathfrak{a}=\kappa^{+}$Fundamenta Mathematicae 201(2008), 283-293.
[8] S. Hechler Short complete nested sequences in $\beta \mathbb{N} / \mathbb{N}$ and small maximal almost-disjoint families General Topology and its Applications 2(1972), 139-149.
[9] S. Shelah On cardinal invariants of the continuum Contemporary Mathematics 31(1984), 184-207.
[10] S. Shelah Two cardinal invariants of the coninuum $(\mathfrak{d}<\mathfrak{a})$ and FS linearly ordered iterated forcing Acta Math. 192(2004), 187-223.

Graduate School of Engineering, Kobe University, Rokko-dai 1-1, Nada-ku, Kobe 657-8501, Japan

E-mail address: brendle@kurt.scitec.kobe-u.ac.jp
Kurt Gödel Research Center, University of Vienna, Währinger Strasse 25, 1090 Vienna, Austria

E-mail address: vfischer@logic.univie.ac.at

[^0]: The first author is partially supported by Grants-in-Aid for Scientific Research (C) 21540128 and (A) 19204008, Japan Society for the Promotion of Science, and by the Hausdorff Research Institute for Mathematics/Hausdorff Center for Mathematics, Universität Bonn.

 The second author would like to thank the Austrian Science Fund FWF for postdoctoral support through grant no. P 20835-N13.

