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§1 Introduction 
 

Two of the central problems in the philosophy of mathematics are whether there 
are numbers (at all) and if there are numbers how many of them there are.  

This essay does not deal with the first question. Here we are concerned with the 
problem of infinity. Infinity/the infinite is beset with (supposed) paradoxes of 
the infinitely large and the infinitely small. We will not deal with these 
paradoxes here, they can be dealt with (cf. Oppy 2006).  

One may have epistemological problems with the infinite. These usually centre 
on the question how we can know about the properties of infinite structures or of 
objects (like numbers) infinitely away from our (epistemic) point of view. Such 
concerns may lead one either to change the logic one is working with when 
considering such an – supposedly, epistemically almost inaccessible – realm. So 
intuitionists gave away on tertium non datur in general (i.e. apart from 
constructively accessible structures). If one does not want to change logic one 
can restrict oneself to parts of standard set theory and mathematics by restricting 
oneself to their recursive parts (i.e. concern oneself only with those infinite 
subsets x of infinite sets, like ω, where the membership in x is recursive) thus 
working in recursive mathematics (cf. McCarty 1985). We are not concerned 
with such epistemological considerations here. 

We are rather concerned with ontological scruples one may have about the 
infinite. Even if one otherwise is a staunch realist one may have serious doubts 
whether there is anything infinite. As far as we know the universe is finite, at 
least the number of elementary particles in it may well be finite, and whether 
one has to assume an infinity of space-time-points beyond the elementary 
particles may raise just more ontological scruples. The infinity of (non-
relativistic) time – always running on, or even having always been running – 
might have been already a difficult idea to grasp, but a completed infinity (a 
collection of infinitely many entities) is even harder to grasp. And such doubts 
are aggravated for a nominalist or anyone denying the existence of abstract 
entities, since with them more option for infinities may seem available. The 
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question of finitism has to be kept apart from that of nominalism. For a 
nominalist even one abstract entity is one too much. For a finitist nothing is 
gained if the infinities are not postulated in some abstract realm but as non-
abstract entities (e.g. as a continuum of space-time points, these being of an 
ontological category sui generis). Finitists will find it easier, though, to be 
nominalists. 

A mixture of epistemological and ontological concerns may be methodological 
problems. If one denies the existence of completed totalities, but sees the infinite 
as being always in the making (typically in time or in construction), where this 
process can never stop, one is forced to disallow (like Poincare) impredicative 
definitions over such totalities, since at different stages of the construction of the 
infinite such definitions may pick out different objects. 

We are concerned on the one hand with problems that are linked with the 
traditional distinction between the potential and the actual infinite (cf. Moore 
1993). On the other hand we are concerned with the question whether we need 
an infinity of natural numbers at all to have arithmetic (or even more advanced 
mathematical theories). Linked to these concerns are the topic of schematic 
representation and the idea of the indefinite, as to be distinguished from the 
infinite. 

Some may accept countable infinities ω but reject uncountable infinities (like 
ℵ1). This requires to change standard set theory, not with respect to the Axiom 
of Infinity, but, at least, with respect to both the Axiom of Powersets and the the 
Axiom of Replacement to block deriving the larger cardinalities. We are 
concerned here with blocking or avoiding even the countable infinity of  ω. 

 
 
§2 Potential and Actual Infinities 
 

The idea of the potential infinite seems to spring from the idea of continuously 
or repeatedly doing the same thing – going on “for ever and ever”. The 
paradigm example is counting: starting “1,2, 3, 4” we are easily led to “and so 
on (and on)”. On the other hand is it not clear that our idea of continuing 
indefinitely with a process is the same as or implies the idea of continuing 
infinitely long. Even early Greek mathematics operated with the idea of having 
unbounded quantities. Again, however, working with the assumption of 
unboundedness may simply mean that we never hit on a limit and need not mean 
an infinite quantity. The idea of the potential infinite typically (e.g. by strict 
intuitionists like Brouwer or already in Aristotle) is set up as a contrast to the 
actual infinite: The infinite is considered as that which cannot be traversed (and 
thus cannot be collected having finished such a traversing).  
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The idea of the actual infinite seems to spring from the idea – championed by 
Cantor – that any such process as imagined as potentially infinite has to have a 
domain on which it works or which is created by it. If the former then one 
should easily talk about this infinite domain, thus proceeding by this Domain 
Principle from a process (or process talk) to a domain (or domain talk). If the 
latter, then this nevertheless invites collecting the results of the infinite process, 
especially so since the paradigm examples of potentially infinite progressions 
are built by applications of functions, which should take no time at all, being a 
mere matter of logic or mathematics. Traditional arguments (like those of 
Aristotle) claim the infinite to be untraversable, since they understand such a 
traversing as being a temporal process and time cannot be completed. This 
restriction does not apply to a logical process (i.e. an iterated application of a 
function). Frege argued that there is the singleton of every x, so that if there is 
one x (say the empty set, ∅) there are infinitely many sets. Thus there is a 
totality which is infinite. On the other hand does a collected infinity seem to be 
determinate (so to say be enclosed within the set) whereas the infinite should 
resist being thus restrained or conclusively collected – isn’t this what its being 
unbounded – even by bounds of sets and membership – means? Once we have 
sets we seem to be able to unite or enlarge them. Thus the idea of collecting 
infinities provides room for the further idea of infinities of different size 

In Naïve Set Theory an infinite set is guaranteed by an instance of Naïve 
Comprehension. Within standard set theory ZFC enough numbers are provided 
by the Axiom of Infinity, which explicitly states as an axiom the condition that 
would be used in Naïve Comprehension. One of its versions is: 

(Axiom of Infinity) 

There is a set such that ∅ is an element of that set, and for each 
element of that set the singleton of that element is in the set. 

(∃x)(∅∈x ∧ (∀y)(y∈x ⊃ {y}∈x)) 

This formulation ensures that the proposed set is infinite, since the “process” of 
having another singleton in it never ends. In this image of putting singletons into 
this set the construction is looking ahead. The image of putting singletons into 
this set, of course, is an image inspired by the idea of potential infinity whereas 
the axiom itself is a paradigm of the Domain Principle. 

It is explicitly stated that we assume to deal with infinite amounts. In 
combination with the Axiom of Powersets and Cantor’s Theorem (therewith 
derivable) the infinites of ZFC become larger and larger in cardinality. Ordinal 
numbers of any rank are reached with the Axiom of Replacement. What is 
unlimited now in ZFC is the process (i.e. ontological hierarchy) of having ever 
larger infinities (cardinal numbers). The totality of all this cannot be a set in 
ZFC, but may be added in stronger set theories, which than have their own even 
larger totalities. [Cantor considered such ultimate totalities (like the collection of 
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all ordinals) to be inconsistent totalities, too big to treated as a domain. 
Nevertheless he described them as absolute infinities.] 

The logicists (especially Russell), who wanted to reduce mathematics and set 
theory to logic, had their problems with the Axiom of Infinity, since it clearly 
makes an ontological claim beyond the logical notions involved. Russell 
justifies the axiom as being necessary for real number theory, although not for 
arithmetic (cf. Russell 1919). Russell also explicitly sees the axiom as an 
insurance for never conceding “n = n + 1” [cf. §6 below]. 

Even though intuitionism criticizes using standard logical principles (like 
tertium non datur) or non-constructive axioms (like the Axiom of Choice) when 
dealing with infinities, standard intuitionistic set theory contains the standard 
form of the Axiom of Infinity, with the quantifiers being understood 
intuitionistically. Very large cardinalities are blocked, since Cantor’s Theorem is 
not constructive, but countable infinities are present in the usual versions of 
intuitionistic or constructive mathematics. That infinities are considered as not 
being completed is mirrored in the invalidity of  “¬(∀x)F(x) ⊃ (∃x)¬F(x)” in 
intuitionistic logic: even if the assumption that all x we have are F has to be 
rejected that does not mean that we can give some specific x such that this x 
having F can be rejected (this x may be “too far” away for our constructions). 

That we need an Axiom of Infinity for a theory of natural numbers and standard 
arithmetic turns out, however, to be an artificiality of (systems like) ZFC. One 
can have standard arithmetic without infinity. 

 
 
§3 Arithmetic with Virtuality instead of Infinity 
 

One way to have standard arithmetic without infinity in an almost standard set 
theory is Quine’s theory of virtual classes. 1  In Set Theory and its Logic (Quine 
1963) Quine tries to set out the common core of different conceptions of sets, 
i.e. he tries to develop as much set theory as possible with as little axiomatic 
assumptions as possible before introducing the axioms that set, say, ZFC and NF 
or NBG apart. One of his main tools in this enterprise is his theory of virtual 
classes. “Virtual classes” are set expressions built by curly brackets and set 
abstraction (like: {x | x > y ∧ x ≠ z}) that occur on the right hand side of “∈”. 
These set expressions thus are used to built statements like: w∈{x | F(x)}. Since 
the language under consideration allows for statements like “x∈y” these set 
expressions function as singular terms syntactically on a par with variables that 

                                                
1  Quine speaks of  “classes“ but this is used synonymously to “sets“. We speak of “sets” 
here and mean by “classes” so-called “proper classes”. 
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can be interpreted as having some set as value. The crucial point about their 
virtuality is that they cannot be quantified over (in that position to the right of 
“∈”). Since Quine follows the methodological maxim that only those entities are 
admitted into a theory that are quantified over, these set expressions do not stand 
for or denote entities. They are short hand for statements in which conversion 
has occurred, i.e. “w∈{x | F(x)}” is short (depending on the length of “F”, of 
course) for “F(w)”. They are virtual also in the sense that some such expression 
might be quantified over later, so we do not know when we see such an 
expression whether it never materializes into a set later on. They can be 
quantified over indirectly in expressions like: (∃y)(y = {x | F(x)} ∧ y∈z). One 
can thus introduce existential commitments piecemeal.  

Quine starts with a definition and an axiom for “=” ensuring extensionality of 
sets and a pair of weak axioms (providing the existence of ∅ and of pair sets, 
{x, y} for all x and y), which given the framework of virtual classes provide the 
finite sets (only).2  

These finite sets, however, are sufficient for standard arithmetic! Each natural 
number can be constructed as a finite set, say the set of its predecessors (the 
predecessor relation being the converse of the usual successor relation). For 
some purposes of arithmetic we need to talk about the set of all natural numbers 
however. ZFC introduces the set of natural numbers for this purpose by the 
axiom of infinity. This need for infinity can be circumvented. The decisive idea 
is to use a virtual class instead of the Axiom of Infinity. The Axiom of Infinity 
uses the successor operation and so “looks forward” towards infinity. One may 
also use the converse of the successor operation and “look backwards” instead. 
We take ∅ as representing 0, as usual. The successor function is modelled by 
the function giving for any x the unit set {x}. Let us denote the predecessor 
function by “φ” and the closure of a function ƒ with respect to a set x by “ƒ*x”. 
Now we can define that some number x is smaller or equal than a number y by: 

 (≤) x ≤ y  � (∀z)(y∈z ∧ φ*z ⊆ z ⊃ x∈z) 

i.e. x is smaller than y if x is present in all sets which contain y and are closed 
under the predecessor function. We can now define � by 

 (�) � is short for “{x | ∅ ≤ x}” 

Nothing demands that � is more than virtual! Note than the quantified in (≤) 
need only to range over finite sets.  

                                                
2  This framework contains First Order Logic (with a ι-operator) and the usual set 
theoretic constructions like unions and cuts. It contains the identification of objects with their 
unit sets! It also can express the existence of a set x by “x∈V” with V being the universal set  
{x | x = x }, which may itself be merely virtual, however! [V only contains existents, since the 
“x” left to “|” carries ontological commitment.] Proper classes are thus excluded from the 
theory. Existential formula are needed, since by virtuality not every singular term refers, and 
the usual quantification rules have to be restricted to existing objects. 
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The finite sets can be identified at this point as sets that contain some number as 
largest element and are closed with respect to the predecessor relation. A further 
axiom – a finite version of the Axiom of Replacement – is added:  

(FR) The range of a function applied to a finite set exists.  

This again yields only further finite sets. By this axiom mathematical induction 
can be derived as the scheme 

 (I) F(∅) ∧ (∀x)(F(x) ⊃ F({x})) ∧ y ∈ � ⊃ F(y) 

Given the finite version of replacement, induction and the thus available notions 
of iteration and ancestral the well known arithmetical operations and (Peano) 
axioms for addition, multiplication and exponentiation can be derived (Quine 
1963: §16).  

Arithmetic can thus be done without infinity, it seems. No explicit commitment 
to infinity has to be introduced in the corresponding core set theory. 

Quine’s theory, however, gives way to ever larger infinites when the need for 
real numbers arises, supposing that there is a need for real numbers. Rational 
and real numbers are introduced as sets of sets of natural numbers. For these 
definitions to work (i.e. get beyond the empty set) one has to ensure that for 
arbitrary subsets of � their union exists, and this is an existential commitment to 
infinity. One such axiom of infinity then is: (∀x)(x ⊂ � ⊃ x ∈ V). 

Another problem is – even if not the idea of mere virtuality itself – the 
presupposed and non explicit meta-theory. The quantifier in (≤) has to range 
over the set of all finite sets, and this set, of course, is a non-finite set. The meta-
theory laying down the truth conditions for the quantifiers in this set theory has 
to use an infinite domain. 

 
 
§4 Finitism I: The Idea of the Indefinite 
 

Finitism comes in at least three versions.  

On the one hand one may try to develop a formalism that does not commit one 
to the actual infinite by some axiom.  

Hilbert’s finitism (Hilbert 1925) was not directed against the idea of the ever 
larger infinities of “Cantor’s paradise”, but was inspired by the idea of secure 
foundations for talk of infinity, where in these foundations (considered as meta-
logic) the notion of the infinite was not to be presupposed. What is interesting 
even for the critic of infinities in Hilbert’s finitism is his method of trying to 
work around the commitment to actual infinities (cf. George/Velleman 2002: 
147-72; Shapiro 2000: 158-65).  
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Hilbert wants to justify set theory and Cantor’s theory of transfinite numbers by 
using only finitary arithmetic in the meta-theory. Finitary arithmetic includes 
equations and their truth functional combinations. Also sentences with bounded 
quantifiers, like “(∀x<120)”, are admissible. Any combination of such sentences 
is effectively decidable (by dealing with finitely many specific numbers and 
their properties). Now, to include some generality (i.e. to be able to make 
general statements like the commutativity of addition) Hilbert introduces 
schematic letters: a, b…. One can thus express 

 (CA) a + b = b + a 

Hilbert considers a statement like (CA) to be finitary! The idea is: Which ever 
specific numerals we choose to replace “a” and “b” the corresponding statement 
will be an acceptable (decidable) finitary statement.  

Whereas in standard logic one typically reasons 

 (UG)  For some arbitrary x: F(x) 
   … 
   G(x) 
  Thus: (∀x)(F(x) ⊃ G(x))  since x was arbitrarily chosen. 

the finitary reasoning is different. (UG)-like reasoning infers to the totality of 
the domain. Finitary reasoning rather argues:  

 (FG)  The following proof scheme is valid for any instance: 
   F(a) 
   … 
   G(a) 
  Thus: F(a) ⊃ G(a) 

Nothing is supposed about a totality of objects. It is rather provided a scheme to 
turn the assumption “F(a)” for any given or thought of individual term “a” into a 
proof of “G(a)”. One might express this as the dialogical challenge “Once you 
name the object, I will provide the proof that it is well-behaved as well.” 

Employing the Wittgensteinian distinction between saying and showing one can 
understand the distinction between (UG) and (FG) as having (UG) saying what 
(FG) only shows, where, of course, Wittgenstein, who after 1929 took a position 
close to the use of schemata by Hilbert or Skolem (cf. Marion 1998), would add 
that what (FG) shows cannot be said at all, since there are no completed 
infinities. 

Since no totality of objects to be quantified over is presupposed once need not 
assume that there is such a totality as the (infinite) set of natural numbers. One 
just claims that theorems can be proven for any number expression that someone 
comes up with. Since this is a general claim about forms/schemata of theorems – 
what else should one wish for in arithmetic? 
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Apart from the difficulties with Hilbert’s larger program (like the 
incompleteness theorems, especially Gödel’s Second Incompleteness Theorem) 
finitism in this sense has its own difficulties. What to think, for example, about 
the negation of schemata like (CA)? One might think they are equivalent to 
sentences or schemata with an unbounded existential quantifier. Hilbert thus 
sees them as “transfinite propositions”, i.e. as illegitimate in finitism.3 

Nevertheless one may take up the idea of schematic representation.  

If the idea of schematic indefinite understanding was viable, it would have far 
reaching consequence well beyond the philosophy of mathematics or set theory. 
So, for example, one might think that a schematic presentation of defining truth 
within the standard semantic hierarchy could be given somewhat like: 

(T) [“F(a)” is true-in-Ln ≡ F(a)]n+1 

where “F( )”, “a” and – especially! – “n” are schematic, and the bracketed 
sentence being thought of as place at level Ln+1. One would so – supposedly – 
understand that truth can be defined for some (level of) language at the next 
higher meta-language (level). One might then go on and argue that we thus 
understand what it means to define semantic concepts by a semantic hierarchy 
by understanding schemata of this sort. The case for the inexpressibility of such 
hierarchies would seem to break down – one of the mayor arguments for 
dialetheism (cf. Priest 2006: 18-25). 

Again, however, one wonders where to place such schemata. They cannot be 
somewhere within the hierarchy. First because then the usual regained 
antinomies reoccur. Second because by being schematic they cannot be on any 
non-schematic level at all. Where are they then? Do we have some additional 
faculty of schematic abstraction? That needed some explanation. And, in any 
case, such an explanation would not solve but aggravate the problem that once 
we were able to express what this faculty comes to and how it works we are 
placed again within the semantic hierarchy, thus facing the regained antinomies. 
The ineffability problem raises its head again. 

Further on, leaving semantics to the side, one may ask in general what 
understanding a schema comes to. Is it not just to understand that some 
schematic representation is true/well-formed/valid for all its specifications? In 
understanding the schema we seem to have access to the domain of its instances 

                                                
3  And even excluding negations of schemata like (CA) seems to leave one with 
primitive recursive arithmetic (cf. also Tait 1981). Remember that the primitive recursive 
function do not include µ-minimization. Primitive recursion comes down to bounded 
quantification. To have the usual means of logic available Hilbert allows these non-finite 
formula in, but considers them as „ideal“ (i.e. devoid of respectable finitist content). Formulas 
are only considered in their inferential role. The formulas themselves can then be taken as the 
new (material) objects of this reasoning. Thus finitism gives way to formalism.  
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(respectively the domain that these instances are talking about). In this case we 
seem to have a strong intuition in favour of some domain principle. 

 
 
§5 Finitism II: The Axioms of Zillions 
 

The second version of Finitism takes up the idea of the indefinite, but also tries 
to combine it with the intuition that there is some domain the instances come 
from. The essential property of this domain, of course, has to be its finitude.  

The formalism (cf. Lavine 1994: 267-308) proceeds by changing all quantifiers 
into bounded quantifiers. The bounds are given by large collections Ωi which 
work like indefinite ordinals (“i” representing some rational number4). One calls 
them “zillions”.  

A formula is regular if it is bounded and whenever Ωi occurs within the scope of 
Ωj then j < i. (Domains reachable relative to some other indefinite domain have 
to be larger. They need not contain all the elements of the source domain.)  

ϕ is a finitization of ϕ’ if we get ϕ’ by dropping all the bounds on the quantifiers 
in ϕ. “Ωi(a)” says that Ωi is large enough to contain a. The axiom schemata of 
finitization then are: 

(1)   Ωi(a) 

(2)   (∀x1 … xn∈Ωi) Ωj(ƒ(x1…xn))  for i < j 

(3)   (∀x∈Ωi) Ωj(x)    for i < j 

(4)   (∀x∈Ωi)((∀y∈Ωj)ϕ ≡ (∀y∈Ωk)ϕ) for i < j, i < k, ϕ regular 

To be added are relativized axiom schemata for identity (like: (∀x,y∈Ωj)(x = y 
⊃ y = x). Axiom 2 says that if ƒ is a function with n arguments available in Ωi 
then the range of ƒ is any set Ωj indefinitely large with respect to Ωi. Axiom 3 
expresses the inclusion relation between extended indefinite domains. Axiom 4 
says that the Ω are indiscernible: One can exchange any of them for a larger one 
without changing the truth values of formulas (cf. Mycielski 1986).  

Having finitized a theory T in this fashion gives Fin(T). Fin(T) may have infinite 
models if T has, but it does also have finite models of indefinite size. This is so 
because we commit ourselves only to the instances of (bounded) formulas as we 
need them. If we make use of only a finite number of instances of the axiom 
schemata in some theory Fin(T), then we can have a model the universe of 
                                                
4  Rational numbers are chosen only for convenience: One uses a rational to insert some 
Ω between others, e.g. Ω3, Ω4, now we insert Ω7/2 for some indefinite realm between the two. 
A renumbering would do as well. 
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which is a subset of the universe of T and Fin(T) and T agree on the 
interpretation of the shared language (i.e. predicates, constants, functions) – 
provided that there is a model of T. Thus given a finitization of arithmetic PA, 
Fin(PA), we consider only as many numbers as we are interested in, and have 
then a finite model that agrees with PA on the interpretation of the arithmetic 
operations (for these numbers). 

A finitization of the Axiom of Infinity yields the Axiom of Zillions: 

 (AZ) (∃x∈Ω0)(∅∈x ∧ (∀y∈Ω1)(y∈x ⊃ {y}∈x)) 

This axiom says that there is come indefinitely large collection Ω0 which 
contains a set x that contains the empty set, and from Ω0 a larger indefinite 
collection Ω1 can be reached such that if some of its objects are in the set x, then 
their singleton is in x as well. If infinite sets should be excluded one has to focus 
on a case where there is some number n∈Ω1 such that {n}∈x, but where this 
successor then is not in Ω1 itself, {n}∉Ω1. So x and Ω1 can have some greatest 
member which breaks the progression to infinity. (Remember that Ω1 need not – 
and in this case here must not – include all the members of Ω0.)  

The decisive result relating finitizations to their base theories is (Mycielski 
1986): 

 (MT) If ϕ’ is a regular relativization of ϕ: �Tϕ iff �Fin(T)ϕ’ 

This immediately entails that T is consistent iff Fin(T) is.5   

The finite versions of our theories thus deliver in some sense the same results as 
the original versions. The only difference is that every result carries a restriction 
rider on it. 

One wonders how the Ω-construction is distinct from ω if it allows for a 
function that takes up the work of the successor function. Are the successors of 
Ω0 at most in Ω1? Do we not need then a new successor function for each Ωi? It 
seems that either we have no general successor function or are simply back to ω 
or just schemata. In fact to have finite models one has to use the rule that one is 
only committed to the used instances of schemata. The procession of Ωs then 
may come to a halt. No closure conditions are forced on the arithmetic 
operations!  

The main philosophical question about the theory of zillions may centre on the 
very idea of some indefinite boundary. The approach uses the idea of some 
boundary, but does not make the boundary explicit. This runs against any 
realistic intuitions concerning numbers or objects in general: Even if the domain 
                                                
5   This does not provide us with an easy road to the consistency of ZFC, since proving 
that every subset of Fin(ZFC) is consistent may be well beyond us by the Ωs being 
indefinitely large. One cannot simply check them – but cf. strict finitism below! 
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is indefinitely large it certainly has to have some size (cardinality). Even if we 
cannot count up to that size, we can introduce a name for it. Let us call it “#” 
And then we have to modify either our mathematics or our logic since the 
successor operation either cannot be applied to # or yields: # = # + 1. 

Further on, the positive claim that we can have a finite model for some Fin(T) 
presupposes that there is a model of T. Then, however, the commitments to 
infinity that come with standard arithmetic and, say, ZFC are in no way avoided, 
at least not in the meta-theory. 

If the Ωs mentioned in the Axiom of Zillions can be superseded by larger Ωj 
there seems to be a clear sense in which the numbers in the set x cannot be all 
the numbers. And if we restart counting within some other Ωj the union of the 
generated number sets will be a number set y such that there are gaps in the 
progression of numbers (otherwise x would be the only number set). This seems 
a strange consequence: We have then numbers without successor and numbers 
without predecessor within the same number set. This deviates clearly from our 
ordinary concept of number. 

Even if there is some largest number, and the models of zillions allow for there 
to be a largest number, there can never be a theorem that explicitly states that 
there is a largest number or gives a name to it. 

It is here that we have to turn to strict finitism. 

 
 
§6 Finitism III: Strict Finitism in Arithmetic 
 

The third version of finitism is strict finitism. Strict finitism really assumes that 
there is no infinity of natural numbers. This, of course, is a controversial and 
non-standard approach. 

Strict finitism can be presented in a way similar to the finitude of zillions taking 
up Hilbert’s idea of the indefinitely large. This version of strict finitism may 
proceed as follows, adding arithmetic axioms to First Order Logic:   

The axioms of arithmetic do not imply infinity by themselves. One can keep the 
following axioms, with “s( )” being the successor function (cf. Mycielski 1981): 

(A1) ¬(∃x)(s(x) = 0) 

(A3) (∀x)(x + 0 = 0) 

(A4) (∀x,y)(x + s(y) = s(x + y)) 

(A5) (∀x)(x • 0 = 0) 

(A6) (∀x,y)(x • s(y) = (x • y) + x) 
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and the schema of induction 

(IS)  F(0), (∀x)(F(x) ⊃ F(s(x))) � (∀x)F(x) 

what has to be changed is the axiom of successor functionality: 

(A2’) (∀x,y)(x ≠ s(x) ∧ y ≠ s(y) ⊃ (s(x) = s(y) ⊃ x = y)) 
These axioms allow for models in which there is some number # such that 
(∀x<#)(x ≠ s(x)), because (∀x<#)(s(x) = x + 1), and s(#) = # (i.e. # being 
something like the largest number beyond which there is no further number). 
These axioms allow also for infinite models, however, just because elements of 
� make the antecedent of (A2’) always true. A strict finitistic arithmetic is 
reached (cf. van Bendegem 2003, 2006) by adding the axiom: 

(A7) (∃x)(x = # ∧ s#s((0)) = #) 

for the constant “#” and “s#” being the #th application of the successor function 
(thus giving here: s(#) = #), and rewriting (A2’) as: 

(A2’’) (∀x,y)(x ≠ # ∧ y ≠ # ⊃ (s(x) = s(y) ⊃ x = y)) 
# is the unique largest number in this system, as one can now prove: (∀x)(x = 
s(x) ⊃ x = #). Quantifiers can be eliminated in favour of conjunctions or 
disjunctions up to having #-many sub-formulas.  

By this the resulting system of finite arithmetic has remarkable properties: 

(SFAT) Strictly Finite Arithmetic Meta-Theorem 

The system (A1), (A2’’), (A3)-(A7), (IS) is: 
(i) decidable 

(ii) categorical 

(iii) consistent 

(iv) deduction-complete 

(v) Löwenheim-Skolem immune (i.e. theorems of this type do not apply) 

Proof (Outline):  

The resulting system is decidable by being finite: The sentences of the language 
(of arithmetic) have recursive truth conditions and in case of quantification only 
finitely many cases have to be considered. It is categorical, since on the one 
hand finite systems are not compact, and thus do not yield non-standard models 
for arithmetic (cf. Gurevich 1984), and on the other hand the system has to be 
categorical by having only models of size #, required by (A7). It is consistent 
(i.e. does not contain ϕ and ¬ϕ for all ϕ of the language) by having finite 
models with domains of size #. And because quantifiers are eliminable and 
propositional reasoning is deduction-complete one derives all arithmetically 
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valid ϕ of the language, thus the system is deduction-complete. By finitude and 
categoricity Löwenheim-Skolem theorems cannot apply. � 

Strict finite arithmetic thus has some of those admirable properties that the 
limitative theorems exclude for standard arithmetic. Further on, categoricity, 
which otherwise may be seen as the main reason to have second order systems 
in mathematics (cf. Shapiro 1991), is achieved within a first order language.  

This version of strict finitism contains the idea of the indefinite in that the 
largest number # is kept indefinite. On the one hand this seems clear, since it is 
doubtful how we could ever come to recognize what the largest number is. On 
the other hand this makes using detachment on the assumption “5 ≠ #”  looking 
like making use of some indefinite formula (i.e. a formula the truth of which 
seems to be indefinite itself for some numeral n large enough). One may rather 
bite the bullet and reason with some fixed but large enough6 largest number like 
21000. Or one may consider a range of systems each of which assumes some 
specific largest number [see below]. Further on it might be seen as an advantage 
if one need not change the axioms or arithmetics (in comparison to standard 
PA). Changing the underlying logic seems, of course, the stronger deviation than 
changing the axioms, but if one has already changed the underlying logic for 
some other reasons it may be an advantage to save standard arithmetic axioms.7 

Strict finitism can also be presented containing the explicit denial of infinity or 
the explicit statement of the existence of a largest number in combination with 
the more or the less standard arithmetical axioms. This combination then is 
inconsistent and strict finitism of this kind has to be embedded within a 
paraconsistent logic. One arrives at inconsistent mathematics, here: inconsistent 
arithmetic.  

Inconsistent arithmetics that are finite may have any finite size you like. They 
contain one largest number. Since we do not know which number really is the 
largest we may assume that one of these arithmetics is true, although we do not 
know which. Which one it is is not that important, since all these arithmetics 
have common properties: 

Let n be some natural number, then let Nn be a set of arithmetic sentences. Let N 
be standard arithmetic, as usual (i.e. the set of all standard arithmetic truths). 
These sets Nn then have the following properties (cf. Priest 1994, 1997): 
                                                
6  Present physics is compatible with a discrete picture of the universe where the basic 
building blocks are space-time regions having the minimal size of Planck-length (10-35m) and 
the minimal temporal duration of Planck-time (10-43s), thus comprising 10-148m3s. Given 
present theories the universe is roughly 1078m3 large and 1018s old. Thus the number of  basic 
objects being 10244, well below 21000. Of course nothing forbids choosing 21000000 if needed. 
7  So if one for some other reason has adopted a paraconsistent logic this step is (further) 
vindicated by finding another field of useful application of  paraconsistency. Providing the 
logical framework for strict finitism thus strengthens the case for strong paraconsistency. 
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(IAT) Inconsistent Arithmetic Meta-Theorem  

(i) N ⊂ Nn. 

(ii) Nn is inconsistent. 

(iii) ϕ∈Nn for a (negated) equation ϕ concerning numbers < n  if and only if 
ϕ∈N. 

(iv) Nn is decidable.  

(v) Nn is representable in Nn (thus we have a Nn truth predicate). 

(vi) For the proof predicate B( ) of Nn every instance of  B("ϕ") ⊃ ϕ is in 
Nn. 

(vii) If ϕ is not a theorem of Nn ¬B("ϕ")∈Nn. 

(viii) For the Gödel sentence G for Nn G∈Nn and ¬G∈Nn.  

(ix) Nn is finitely axiomatizable. 

An inconsistent arithmetic Nn thus has quite remarkable properties: 

• by (i) we have that Nn is negation-complete, since N is. 

• by (ii) and (viii) we have, of course, that it is inconsistent. 

• by (iv) it has all the nice properties that N does not have, although 
Nn is complete! 

• by (v) we can in the language of arithmetic define a truth predicate 
for that very same language. 

• by (vi) Nn has an ordinary proof predicate. 

• by (vii) in conjunction with (iii) we have not only that Nn is not 
trivial (by excluding some the equations that are excluded by N), 
but that this non-triviality can be established within Nn itself. 

 

A key element is that any finite theory is decidable, (iv): just check the finitely 
many objects for having the property in question. How do we get (IAT)?  

Proof  (Outline):  

• A theory with less numbers than N can have less counterexamples to a given 
arithmetic sentence. Thus it contains at most more sentences (as true). This 
holds in general (called Collapsing Lemma). Therefore (i). So we do not lose 
any of the power of N by switching to Nn.  

• Since N is negation complete adding any sentence (as true) means adding a 
sentence for which the negation is already in N. Thus the resulting theory 
contains for at least one ϕ, ϕ and ¬ϕ. Thus (ii). This means that the logic of 
these arithmetic theories has to be a paraconsistent logic. 
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• Representability of truth is a consequence of (iv) and (i). The same holds for 
the representability of the proof predicate, (vi). Once the proof predicate is 
representable in the decidable theory Nn we can represent non-provability, and 
thus have (vii) and finally (viii). Whereas N is not axiomatizable at all, (ix) is 
another trivial consequence of finitude. 

• (iii) is the most interesting property and results from the way the domain of a 
corresponding model is constructed [see below]. � 

The properties of inconsistent arithmetics by this even exceed those of strictly 
finite arithmetics which use First Order Logic. Since these arithmetics are 
(already) inconsistent neither Tarski’s Theorem nor Gödel’s Second 
Incompleteness Theorem have any force. For finite inconsistent theories truth 
and provability cannot come apart. That is the reason that the Gödel sentence 
behaves like a liar sentence in these theories. Provability can be as inconsistent 
as truth. Although checking whether some number codes a proof is primitive 
recursive it can be the case that an inconsistent arithmetic Nn claims that some 
number is and is not a number of a proof (of ϕ). The positive claim typically is 
provided by going through an effective computation of proof coding. The 
negative claim then is provided by another proof of the claim that the number is 
not the number of a proof of ϕ (typically because one can prove the 
generalisation that no number codes a proof of ϕ, for example in the case of the 
Gödel sentence G). 

If one considers the systems Nn as a series one may consider standard arithmetic 
PA as the limit of this series (i.e. as generated by taking the transfinite union of 
all the systems of the series, as ZFC would have it). Once one takes this limit all 
the admirable properties stated in (FAT) and (IAT) are lost, and PA thus may be 
considered to be “quite unnatural” (van Bendegem 2003) compared to the series 
of finite systems. 

A model of a theory Nn can be constructed as a filtering of an ordinary 
arithmetic model. In general one can reduce the cardinality of some domain by 
substituting for the objects equivalence classes given some equivalence relation 
(i.e. instead of objects o1, o2 ... we have [o1], [o2]...). The equivalence classes 
provide then the substitute objects. Since the objects within the equivalence 
class are equivalent in the sense of interest in the given context the predicates 
still apply (now to the substitute object). 

The trick in case of Nn is to chose the filtering which puts every number < n into 
its equivalence class, and nothing else; and puts all numbers ≥ n into n's 
equivalence class. The numerals are taken to refer to such equivalence classes. 

An identity statement “m = n” is true iff (∃x,y)(x∈[m]∧y∈[n]∧x=y). For 
functions ƒ: ƒ(m) = n iff (∃x,y)(x∈[m]∧y∈[n]∧ƒ(x)=y). As a result of this for x 
< n the standard equations are true (of [x]), while in case of y ≥ n everything that 
could be said of such a y is true of [n]. So we have immediately  n = n (by 
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identity) and n = n + 1 (since for y = n + 1 in N this is true). For x < n the usual 
functional values/equations obtain, for y ≥ n everything that could be reached by 
a function applied to y∈[n] can be reached from [n]. With respect to x < n the 
standard arithmetical truths are preserved (so-called Collapsing Lemma as noted 
in (IAT) clause (iii)). 

The domain of a theory Nn so is of cardinality n. The denotation of “n” now is 
an inconsistent object of  Nn.  

A simpler model, which avoids the usage of equivalence classes, may be given 
by having all numerals preceding “n” having their ordinary denotation and 
mapping all numerals starting with “n” to n. If for the moment we picture the 
successor function by arrows we can picture the structure of a model of Nn thus: 

 
� 0  →   1 → ... →  n     
              � 
              

Such models are called heap models. 

The logic modelling  Nn has to be paraconsistent. And it has to have restrictions 
on standard first order reasoning as well:  identity elimination, substitution of 
identicals (=E), cannot hold for n of Nn if triviality is to be avoided, consider: 

 
1.  n – n = n – n  Theorem (for any number) 

2. n = n + 1   Assuming n to be the largest number 

3. n – n = n – (n+1) (=E) 1, 2 

4. n – n = 0   Theorem 

5. 0 = n – (n+1)  (=E) 4, 3 

6. 0 = (n+1) – n       Commutativity, 5 

7. ((n+1)-n)×(b-a)/((n+1)-n)=((n+1)-n)×(b-a)/((n+1)-n)  Theorem  

8. (0×(b-a)/((n+1)-n) = ((n+1)-n)×(b-a)/((n+1)-n)  (=E) 7, 6 

9. 0×(b-a)/((n+1)-n) = 0      Theorem 

10.  0 = ((n+1)-n)×(b-a)/((n+1)-n)    (=E) 8, 9 

11. ((n+1)-n)×(b-a)/((n+1)-n) = b – a    Theorem 

12.  0 = b – a       (=E) 10, 11 

… 18. a = b        by some Theorems for “+”, “–“  �  
 

A logic with unrestricted (=E) so yields a=b for any numbers!  
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Mortensen (1995) chooses RM3# (an arithmetic based on the Relevant Logic 
RM3) as basic system and finitizes it by substituting for a number n the number 
n modulo some m. Thus the domain becomes {0, 1, 2, ... m-1}. The resulting 
arithmetic RM3m (where the “m” indicates the cardinality of the domain) is 
complete, non-trivial and decidable. 

RM3m is axiomatisable by adding to RM3# the axioms: 

� 0 = m 

and all instances of the following axiom scheme for n ∈{0, 1, ... m-1}: 

�(0  = n ↔ 0 = 1). 

The approach “modulo some m” has at least the same deviant results than the 
heap models mentioned before: In RM35 we have  4 + 2 = 6 (since RM35 is 
complete, i.e. has all theorems of N) and 4 × 6 = 4 (since “6” denotes 1). And the 
approach “modulo some m” has these deviant sentences for some known 
numbers! Heap models may, therefore, be preferred in the light of the recapture 
problem. In general it is a good idea to consider finite systems with a largest 
number way beyond any physical magnitude we might encounter (say 21000). 
One avoids entertaining too many abnormal equations by this. 

Arithmetic is constructed thus as a finite theory. One can generalize the steps of 
this procedure to apply it to other mathematical theories. 

Van Bendegem (1993) distinguishes the following steps: 

1. Take any first-order theory T with finitely many predicates. Let M be a 
model of T. 

2. Reformulate the semantics of T in a paraconsistent fashion (i.e. the 
mapping to truth values and overlapping extensions of P+ and P-). 

3. If the models of M are infinite, define an equivalence relation R over the 
domain D of M such that D/R is finite. 

4. The model M/R is a finite paraconsistent model of the given first-order 
theory T such that validity is at least preserved. 

The restriction to theories with finitely many predicates is no real restriction in 
any field of applied mathematics or formal linguistics, since no physical device 
(be it human or machine) can store a non-enumerable list of basic predicates. 

One may to express the strength of this paraconsistent procedure may be called 
the Paraconsistent Downward Löwenheim/Skolem-Theorem. The standard 
Löwenheim/Skolem-Theorem is one of the limitative or negative meta-theorems 
of standard arithmetic and First Order Logic. It says that any theory presented in 
First Order Logic has a denumerable model. This is strange, since there are first 
order representations not only of real number theory (the real numbers being 
presented there as uncountable), but of set theory itself. Thus the denumerable 
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models are deviant models (usually Herbrand models of self-representation), but 
they cannot be excluded.8 Given the general procedure to finitize an existing 
mathematical first order theory using paraconsistent semantics, there is a 
paraconsistent strengthened version of the Löwenheim/Skolem-Theorem: 

(PDLST) Any mathematical theory presented in first order logic has a 
finite paraconsistent model. 

Ideally strict finitism agrees with standard arithmetic as much as possible. 
Similarly to the problem of classical recapture in paraconsistent logics in 
general (i.e. the problem of keeping as much as possible of standard logic when 
reasoning about a consistent premise set) paraconsistent arithmetic should 
contain Peano Arithmetic. Thus property (iii) in the characterisation of the 
arithmetics Nn is crucial.  

This advantage of combining the fruits of standard arithmetic and standard logic 
with an adherence to strict finitism can be strengthened when one uses an 
Adaptive Logic to embed strict finite arithmetic. 

Adaptive logics (cf. Batens 2000) employ standard logic in consistent context 
and with respect to consistent objects and use a paraconsistent logic for the 
inconsistent cases. They are adaptive in that one proceeds on the assumption that 
one deals with a consistent case only on explicit information that the context is 
inconsistent some supposed consequences have to be retracted. Practically this 
works by adding to natural deduction style derivation a further column in which 
one notes the consistency or normality assumptions/presuppositions that have to 
be made when employing some critical rules of inference. For example, the 
paraconsistent logic LP makes – as do paraconsistent logics typically – 
Disjunctive Syllogism invalid; since LP, further on, uses the standard material 
conditional this means that Modus Ponens is not valid in general; but it is valid 
on the assumption that the antecedent ϕ of the conditional ϕ ⊃ φ used in an 
instance of Modus Ponens is a consistent statement. Thus noting the assumption 
°ϕ� (“°” expressing the consistency of a formula) in the extra column of a 
derivation one can employ Modus Ponens, but once it turns out by the internal 
dynamics of drawing further consequences that ϕ was not consistent after all, 
the derived line and all lines dependent on it have to be retracted. We use such 
an adaptive version of LP here (often called “minimally inconsistent LP”, cf. 
Priest 2006: 221-30). Standard or non-standard quantificational rules are added.9  
We have to deal however with the failure of substitution of identicals for 
inconsistent objects. Identity elimination, (=E), has to be restricted to consistent 

                                                
8  They can be excluded in some second order semantics for second order set and 
number theory, see (Shapiro 1991).     
9  Since paraconsistency is not a matter of quantificational theory one may add standard 
quantificational rules or one’s preferred non-standard account (like Free Logic quantification). 
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objects. We define a consistency predicate “K( )” for objects (as a logical 
constant, of course) to do this: 

(DK) K(a) � ¬(∃P)(P(a) ∧ ¬P(a)) 
Since we do not use a second order system here, we may employ (DK) in that 
way that we note ¬K(a) in some line of a derivation if for the object named “a” 
we could have a line with an instance of the schema: P(a) ∧ ¬P(a). Identity 
Elimination then takes the form: 

n.<m> P(a)  ...  Γ  
o.<k> a = e  ...  Λ 
p.<m,k> P(e)  (=E) n,o  Γ ∪ Λ ∪ {K(e)}  

where the column on the right takes down the sets of normality/consistency 
assumptions (or other presuppositions, cf. Bremer 2005: 224-36). The principal 
inconsistent object we are concerned with here is, of course, #. For # we have “# 
= # + 1” by (A7) and we have, if we use the standard axioms of arithmetic, “# ≠ 
# + 1” as well. Thus using (=E) with # is not possible and thus back-propagating 
of “# = # + 1” to “1 = 0” is blocked (compare the use of (=E) in the proof of a 
generic “a = b” above). 

We can now use the standard axiom of successor functionality: 

(A2)  (∀x,y)(s(x) = s(y) ⊃ x = y)) 

To make the assumption of strict finitism explicit in our proof theory we assume 
(A7) with “#” denoting the unique largest number (say 21000). 

As an example of a proof in this system (consisting of LPQm, the identity rules 
(=E) and (∀x)(x=x), (A7) and PA) we prove (with “n”, ”m”, “l” denoting 
specific numbers): 

(T1) (∀x,y,z)(x = y ⊃ x + z = y + z) 

1.<1>  n = m   Assumption  ∅ 

2.<>  (∀x)(x = x)   (=I)   ∅ 

3.<>  n + l = n + l   (∀E), 2  ∅ 

4.<1>  n + l = m + l  (=E), 1, 3  {K(m)} 

5.<> n = m ⊃ n + l = m + l  (⊃I), 1, 4 {K(m)} 

6.<> (∀x,y,z)(x = y ⊃ x + z = y + z)  (∀I), 5 {K(m)} 

The right column tells us that we derived this theorem on the assumption that 
“m” denotes a consistent object (i.e. does not denote #). So for all consistent 
numbers the theorem holds. If “m” turns out to denote an inconsistent object the 
whole proof (lines 3 – 5) is retracted. (We can prevent this by using the 
numerals “1”, “2”, “3” instead of “n”, “m”, “l”.) 
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Vermeir (Vermeir 1999) uses another paraconsistent lower limit logic in his 
version of adaptive paraconsistent arithmetic. The logics CLuN and CLuNs are 
often used in adaptive approaches. CLuN adds a non-compositional negation to 
the positive part of standard propositional logic. CLuNs adds properties of 
negation (like dualities, DeMorgan-laws, double negation elimination) not 
available in CLuN. Only atomic negations (literals) are independent of positive 
sentences in CluNs. Since CLuNs contains a bottom particle and does not 
restrict (=E) one cannot have (A7) with standard (A2) without trivialization. 
Thus a non-standard axiomatization of arithmetic is needed. In these systems 
either one has to prove that some number is a standard number or inference rules 
like Modus Tollens are blocked generally in key axioms. The systems use two 
types of conditionals. For these reasons the adaptive system used above may be 
preferred. 

The central – and obvious – problem with strict finitism of the inconsistent 
variety is the existence of an inconsistent object: the greatest number #. What an 
inconsistent object is supposed to be is quite not clear. If # is a physical object 
(like a structural universal or a trope) one wonders how a physical objects could 
ever be inconsistent (i.e. manage to have and not have a property). If numbers 
are seen as structures (of cardinality), which are where the heaps are they 
characterize (with respect to cardinality), it seems to be beyond imagination how 
a structure can the thus and not thus at the same time. If, on the other hand, 
numbers are considered to be abstract objects, it may be better conceived how 
they just may have inconsistent properties. But when one assumes abstract 
entities in the first place, why not then have as much of them as one wishes, 
namely infinitely many. Our inclination towards finitude is based on our 
conception of a – supposedly – finite universe. There is no reason, it seems, why 
an abstract realm should have limitations of size. Some (like Priest 2005), 
therefore, have proposed a theory of non-being (noneism) according to which 
numbers neither are nor are not – a theory well beyond the comprehension of 
many.  

If the largest number is large enough one might avoid any problems with 
numbering any sentences that we can ever encounter (using some standard 
coding for Gödel numbers). Coding sentences with numbers close to the largest 
number seems to raise the problem that we run out of numbers to code such 
sentences. 

A similar problem connected to the finitude of the set of numbers seems to be 
the consequences this should have for notions like countability and higher 
cardinalities provided by Cantor’s Theorem. It seems that the powerset of the set 
of numbers up to # cannot be countable, since there are no numbers available to 
count it.  

In fact there are not any numbers around that are used in this counting, but 
nevertheless the set can be paired with numerical expressions. The decisive 
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shortcoming of these numerical expressions just is that most of them refer to #. 
Paraconsistent finitism keeps the standard theorems and thus the standard 
concepts like countability. Gödel numbering provides us with coding numerical 
expressions. Now, however, we often cannot take their standard realistic reading 
for granted (i.e. a reading functional with respect to denotation).10  Even this 
problem can be circumvented if one works with a series of finite systems. Then 
somewhere in the series a system Nm follows Nn, able to functionally code the 
consistent subsystem and any part of the inconsistent subsystem of Nn we like.  

These reservations point to the task to reconsider set theory as well once one 
starts with paraconsistency. Dialetheism has the option to use Naïve 
Comprehension with all its power (like making special axioms of infinity or 
choice superfluous) – and all the inconsistent objects that come with this. This 
may be left to another occasion. 

These reservations may also lead one on to incorporate more epistemological 
considerations into strict finitism. So far strict finitism was presented as an 
ontological theory (i.e. concerning the denotation of arithmetical expressions). 
In this restriction to finitely many numbers we have made use of the problematic 
assumption of having enough numerals around. In fact if the universe is finite 
and one does not take numerals to be abstract entities there can be only finitely 
many numerals. If numerals are objects used to label other objects and labelling 
is functional not all objects can be labelled (cf. van Bendegem 1999). Given 
this, however, not everything can be counted, and it may well be beyond the 
given representational resources to Gödel number all of (finite) arithmetic within 
(finite) arithmetic. The corresponding positive powers of self-description and 
representability of truth and provability (as proclaimed in (IAT) as clauses (v) – 
(ix)) are lost, it seems. On the other hand nothing else should be expected in 
such a (naturalistic) theory of arithmetics. There are (simply by the finitude of 
human attention span, life span and brain size) limits to the length of human 
expressible numerals. In some sense (some) logical properties of numbers are 
thus inexpressible. This inexpressibility, however, is not one of the mysterious 
kind we find in Wittgenstein’s Tractatus or in the logical inexpressibility of 
semantic hierarchies, but an inexpressibility that results itself from human 
finitude. 

 
 

                                                
10  Remember that numerals are just devices of convenience to substitute for expressions 
like: 0’”, 0’’’”, 0’’’’’’’ – etc. A finitist thus has not to assume some pre-given infinite set of 
numerals (or variables). 
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§7 (Strict) Finitism Beyond Arithmetic 
 

Looking beyond arithmetic might be considered necessary, since it is often 
claimed that the sciences are committed at least to analysis if not to complex 
numbers. 

Mortensen (Mortensen 1995) set outs an inconsistent analysis, but it uses 
infinitely large hyperreals and  infinitesimals. Mycielski’s original aim (cf. 
Mycielski 1981) was to develop a finitistic version of analysis. This analysis 
makes use of indefinitely large numbers and indefinitely fine agreement between 
ratios or reals. It thus is not a strictly finitistic analysis, but a finitistic analysis 
following the approach of the axioms of zillions.  

Just by the generality of the procedures of finitization one can generate some 
Fin(T) of zillions for any theory T. So one could have a finitized version of 
analysis as well. Limits, for example, may be modelled as indefinite extensions 
(cf. Lavine 1994: 279-84).  

The same general remark applies to van Bendegem’s procedure of 
paraconsistent finitization. The difference being that van Bendegem’s procedure 
yields a strictly finitistic theory.  

With respect to the rationals ��constructing them from the finitely many natural 
numbers yields a limited density. One may introduce rationals – as usual – as 
ordered pairs of natural numbers: 

��= {<n,m> | n∈� ∧ m∈� ∧ m ≠ 0} 

the set � being available as the closure of the successor function (going into the 
loop at the largest number #). To identify 2/4 with 1/2 one may introduce an 
equivalence relation “�” for elements x and y of ��by having x = <x’,x’’> ��y 
= <y’,y’’>  (with x’, x’’, y’, y’’ all being elements of �) iff  x’ • y’’ = y’ • x’’. 
The corresponding equivalence classes [x] for x∈�� then being the reduced 
rational numbers.  

As a fact about multiplication in strict finite arithmetic we note: 

(LM) (∀x,y)(∃z)((∃w)(w ≤ # ∧ x•y = w ∧ z = w) ∨ z = #) 

Thus the smallest unit of rational discreteness (by this limit of multiplication) is 
1/#. We can then define and postulate a limited density as a property of strictly 
finite rationals �: 

(LD) (∀x,y)(y < x ∧ (∃n∈�)(x – y ≥ 2n • 1/#) ⊃ (∃w)(x < w ∧ w < y)) 
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The standard proof of the density of the rationals does not go through in our 
adaptive system, since it uses (∀x,y)(∃z)(y•z > x), which is not true only (but 
also false) with respect to substituting # for “x”. 

Since the largest number is to be chosen as being beyond physical or 
psychological applicability the smallest ratio will be without any applicability 
and thus supposedly small enough. (Given 21000 as # the smallest ratio 2-1000 is 
way below the Planck-length 10-35, whatever the units may be.) 

Finitism as here introduced has no use for real numbers, especially given the 
picture of a discrete universe. It is, of course, an option for a finitist – as for 
anyone else – to be a mathematical fictionalist about 	 if this was needed. 

 

 

§8 Conclusion 
 

We have considered here several versions of finitism or conceptions that try to 
work around postulating sets of infinite size. 

Restricting oneself to the so-called potential infinite seems to rest either on 
temporal readings of infinity (or infinite series) or on anti-realistic background 
assumptions. Both these motivations may be considered problematic. 

Quine’s virtual set theory points out where strong assumptions of infinity enter 
into number theory, but is implicitly committed to infinity anyway. 

The approaches centring on the indefinitely large and the use of schemata would 
provide a work-around to circumvent usage of actual infinities if we had a clear 
understanding of how schemata work and where to draw the conceptual line 
between the indefinitely large and the infinite. Neither of this seems to be clear 
enough. 

Versions of strict finitism in contrast provide a clear picture of a (realistic) finite 
number theory. One can recapture standard arithmetic without being committed 
to actual infinities. The major problem of them is their usage of a paraconsistent 
logic with an accompanying theory of inconsistent objects. If we are, however, 
already using a paraconsistent approach for other reasons (in semantics, 
epistemology or set theory), we get finitism for free. This strengthens the case 
for paraconsistency. 
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