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Abstract

An axiomatic development of the theory of apartness and nearness of
a point and a set is introduced as a framework for constructive topology.
Various notions of continuity of mappings between apartness spaces are
compared; the constructive independence of one of the axioms from the
others is demonstrated; and the product apartness structure is defined
and analysed.
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1 Introduction

Errett Bishop, thanks to whom we now know that a broad spectrum of deep
mathematics can be developed constructively [3], dismissed topology 1 with the
following remark:

Very little is left of general topology after that vehicle of classical
mathematics has been taken apart and reassembled constructively.
With some regret, plus a large measure of relief, we see this flam-
boyant engine collapse to constructive size ([3], page 63).

He then suggested that, at least for the purposes of analysis, many topological
matters, such as those involved in the theory of distributions, could be taken
care of on an ad hoc basis ([3], Appendix A). Apart from Bishop’s later, un-
published attempt to develop a constructive topology [5], a number of papers
dealing with special topological spaces such as metric and locally convex ones
(for example, [13]), and work on intuitionistic topology [21, 23], general topol-
ogy has been marginalised in constructive mathematics. We believe that this
is to be regretted, since a constructive development of (some form of) general
topology is at least a challenge and may well shed light even on aspects of the
classical theory.

1However, in a later paper he mentioned general topology as a branch of mathematics ripe
for constructivisation ([4], page 29).
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In [14] we presented a first—order axiomatic constructive theory of nearness
spaces based on primitive notions of point—set nearness and apartness, and
analogous to the nearness spaces studied by some classical topologists [12, 18].
We indicated at the end of that paper that although the first—order theory runs
fairly smoothly, a second—order theory appears to have substantial advantages
over it. We develop a second—order constructive theory of point—set apartness,
in which nearness is a defined notion, in the present paper.
In reading our work, one should be aware that it is not written from the view-

point of a dogmatic philosophical constructivist. For us, constructive mathe-
matics is a matter of practice, rather than philosophy, that practice being based
on intuitionistic logic, the exclusive use of which produces proofs and results
that are valid not only in classical mathematics but also in a variety of other
models, including computational ones such as recursive function theory [9]. This
is not to say, or even suggest, that we are uninterested in philosophical construc-
tivism; rather, we believe that constructive mathematics in practice produces
insights, especially computational ones, that may interest mathematicians of all
philosophical persuasions.
In order to understand the work below, one does not really need any special

background in constructive analysis: an appreciation of the differences between
classical and intuitionistic logic should suffice. However, the reader may benefit
from keeping at hand either [3] or [6]. Other general references for constructive
mathematics are [2, 11, 22]; for the recursive approach to constructive mathe-
matics, see [1, 16].

2 Apartness
Let X be a set with a binary relation 6= of inequality, or point—point apart-
ness, satisfying

x 6= y ⇒ ¬ (x = y) ,
x 6= y ⇒ y 6= x.

We say that 6= is nontrivial if there exist x, y in X with x 6= y.
A subset S of a set X with an inequality 6= has two natural complementary

subsets:

• the logical complement

¬S = {x ∈ X : ∀y ∈ S ¬ (x = y)} ;

• the complement

∼S = {x ∈ X : ∀y ∈ S (x 6= y)} .

We are interested in a set X that carries a nontrivial inequality 6= and a
relation apart(x, S) between points x ∈ X and subsets S of X. If apart(x, S) ,
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then we say that the point x is apart from the set S. For convenience we
introduce the apartness complement

−S = {x ∈ X : apart(x,S)}

of S; and, when A is also a subset of X, we write

A− S = A ∩−S.
We assume that the following axioms are satisfied.

A1 x 6= y ⇒ apart(x, {y})
A2 apart(x,A)⇒ x /∈ A
A3 apart (x,A ∪B)⇔ apart(x,A) ∧ apart(x,B)

A4 x ∈ −A ⊂ ∼B ⇒ apart(x,B)

A5 apart (x,A)⇒ ∀y ∈ X (x 6= y ∨ apart(y,A))

We then call X an apartness space, and the data defining the relations 6= and
apart the apartness structure on X. We say that the point x ∈ X is near
the set A ⊂ X, and we write near(x,A) , if

∀S (x ∈ −S ⇒ ∃y ∈ A− S) .
If X is an apartness space, and Y is a subset of X upon which the induced

inequality is nontrivial, then there is a natural apartness structure induced on
Y by that on X. Taken with that structure, Y is called an apartness subspace
of X.
In the corresponding classical development [12], nearness is taken as the

primitive notion and apartness is defined as the negation of nearness. It is easy
to see, using the classical axioms for nearness, that our definition of nearness is
classically equivalent to the negation of apartness; but, as we prove in a moment,
this equivalence does not hold constructively.
Our canonical example of an apartness space is a metric space (X, ρ) , in

which the inequality and apartness are defined by

x 6= y⇔ ρ(x, y) > 0

and
apart(x,A)⇔ ∃r > 0∀y ∈ A (ρ(x, y) ≥ r) .

It is routine to verify axioms A1—A5 in this case. We call this apartness structure
the metric apartness structure corresponding to the metric ρ, and we refer
to X as a metric apartness space. The apartness complement

−S = {x ∈ X : ∃r > 0∀y ∈ A (ρ(x, y) ≥ r)}
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is then also called the metric complement of S in X.
We denote the open (respectively, closed) ball with centre x and radius r in

a metric space by B(x, r) (respectively, B(x, r)). Note that when we describe a
set S as nonempty, we mean that there exists (we can construct) an element
of S; this is a stronger property than ¬ (S = ∅) .
Proposition 1 Let X be a metric space, x ∈ X, and A ⊂ X. Then near (x,A)
if and only if A ∩B(x, r) is nonempty for each r > 0.

Proof. Suppose that near (x,A). Given r > 0, let

S = {y ∈ X : ρ(x, y) ≥ r/2} .

Then
x ∈ −S ⊂ B(x, r/2) ⊂ B(x, r).

Hence, by definition of nearness, there exists y ∈ A− S ⊂ A ∩B(x, r).
Now suppose, conversely, that A ∩B(x, r) is nonempty for each r > 0, and

that x ∈ −S. Then there exists r > 0 such that ρ(x, s) ≥ r for each s ∈ S;
whence B(x, r) ⊂ −S and therefore A−S is nonempty. Since S is arbitrary, we
conclude that near (x,A) . q.e.d.

Since
∀t ∈ R∀r > 0 (¬ (t < r)⇒ t ≥ r) ,

it readily follows from Proposition 1 that in the context of a metric space X,
near (x,A) implies ¬apart (x,A) . However, even in the metric space R, we
cannot hope to prove that ¬apart (x,A) implies near (x,A) . To see this, let a
be a real number such that ¬ (a = 0) , and let

A = Ra = {ta : t ∈ R} .

If apart (1, a) , then ¬ (a 6= 0) and therefore a = 0, a contradiction. Hence
¬apart (1, A) . However, if near (1, a) , then, using Proposition 1, we can find
t ∈ R such that |1− ta| < 1; whence ta 6= 0 and therefore a 6= 0. Thus the
proposition

∀x ∈ R∀A ⊂ R (¬apart (x,A)⇒ near (x,A)) ,

entails
∀x ∈ R (¬ (x = 0)⇒ x 6= 0) .

The latter statement is easily seen to be equivalent to Markov’s Principle
(MP):

For each binary sequence (an) , if ¬∀n (an = 0) , then ∃n (an = 1) .
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This is a form of unbounded search that most constructive practitioners find
unpalatable since it is independent of the axioms of Heyting arithmetic; see [11]
(pages 130—131). We conclude that we cannot expect to prove constructively
that nearness is the negation of apartness.

We now derive some elementary consequences of the axioms in an apartness
space X.

Proposition 2 ¬ (near(x,A) ∧ apart(x,A)) .

Proof. Assume that near(x,A) ∧ apart(x,A) . Then x ∈ −A, and so, by
the definition of “near”, there exists y ∈ A − A, which contradicts axiom A2.
q.e.d.

Corollary 3 If near(x, {y}) , then ¬ (x 6= y) .
Proof. Let near(x, {y}) . If also x 6= y, then apart(x, {y}) , by axiom A1.
This contradicts Proposition 2. q.e.d.

Corollary 4 Suppose that the inequality on X is tight: that is,

∀x, y ∈ X (¬ (x 6= y)⇒ x = y) .

If near(x, {y}) , then x = y.

Proposition 5 near(x,A) ∧ apart(y,A)⇒ x 6= y.
Proof. Assume that near(x,A) ∧ apart(y,A) . By axiom A5, either x 6= y
or apart(x,A) ; the latter alternative is ruled out by Proposition 2. q.e.d.

Proposition 6 x ∈ A⇒ near(x,A) .

Proof. If x ∈ A, then for each B with x ∈ −B we have x ∈ A− B. Hence,
by definition, near(x,A) . q.e.d.

Corollary 7 −A ⊂ ∼A.
Proof. If x ∈ A and y ∈ −A, then, by Propositions 6 and 5, x 6= y. q.e.d.

Corollary 8 A−A = ∅.
Proof. Immediate, by Corollary 7. q.e.d.

Proposition 9 x = y ⇒ near(x, {y}) .
Proof. If x = y, then x ∈ {y} and so, by Proposition 6, near(x, {y}) . q.e.d.

Corollary 10 near(x, {x}) .
Proposition 11 near(x, {y})⇒ near(y, {x}) .
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Proof. Let near(x, {y}) , and let B ⊂ X be such that apart(y,B) . Then
by axiom A5, either x 6= y or apart(x,B) . In the first case, axiom A1 shows
that apart(x, {y}) , which is absurd by Proposition 2. Hence apart(x,B) ; so
x ∈ {x}−B. Since B is arbitrary, we conclude that near(y, {x}) . q.e.d.

Proposition 12 apart(x, {y})⇒ x 6= y.
Proof. If apart(x, {y}) , then, by axiomA5, either x 6= y or else apart(y, {y}) .
In the latter case, since near(y, {y}) (by Corollary 10), we contradict Proposi-
tion 2. q.e.d.

Proposition 13 apart(x,A) ∧B ⊂ A⇒ apart(x,B)

Proof. By Corollary 7, we have −A ⊂ ∼A ⊂∼ B. The result now follows
from axiom A4. q.e.d.

Proposition 14 near(x,A) ∧ ∀y ∈ A (near(y,B))⇒ near(x,B) .

Proof. Assume that x ∈ −S. Then, by the definition of “near”, there exists
y ∈ A − S. Since y ∈ A, we see that near(y,B) . Since also apart(y, S) , it
follows from the definition of “near” that there exists z ∈ B − S. Thus

∀S ⊂ X (x ∈ −S ⇒ ∃z ∈ B − S)
–that is, near(x,B) . q.e.d.

Corollary 15 near(x,A) ∧A ⊂ B ⇒ near(x,B) .

Proof. Use Propositions 6 and 14. q.e.d.

Corollary 16 near(x,A)⇒ near(x,A ∪B) .

Proof. Apply the preceding corollary with B replaced by A ∪B. q.e.d.

One of the axioms of the classical theory is

near(x,A ∪B)⇔ near(x,A) ∨ near(x,B) .

As in [14], we can show that a constructive proof of the implication from left to
right implies the limited principle of omniscience (LPO):

For each binary sequence (an) , either an = 0 for all n or else there
exists n such that an = 1.

Since LPO is false in the recursive model of constructive mathematics2, we
cannot expect to prove the left—right implication of (1) constructively.

2 It is also independent of Heyting arithmetic–that is, Peano arithmetic with intuitionistic
logic; see [2, 22].
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Proposition 17 near(x,A) ∧ apart(x,B)⇒ near(x,A−B) .
Proof. Write S = A − B, and let x ∈ −C. We need to show that S − C is
nonempty. To this end, observe that x ∈ −B and x ∈ −C, so by axiom A3,
x ∈ − (B ∪C) . Since x ∈ A, it follows from the definition of “near” that there
exists y ∈ A− (B ∪C) ; but A− (B ∪C) = S −C, so we are through. q.e.d.

We now establish the extensionality of apartness and nearness.

Proposition 18 (apart(x,A) ∧ x = x0 ∧A = A0)⇒ apart(x0, A0) .

Proof. By axiom A5, either x 6= x0 or else, as must be the case, apart(x0, A) .
Since A0 = A, we have x0 ∈ −A ⊂∼ A = ∼ A0, by Corollary 7; whence
apart(x0, A0) , by axiom A4. q.e.d.

Proposition 19 (near(x,A) ∧ x = x0 ∧A = A0)⇒ near(x0, A0) .

Proof. Let x0 ∈ −B. Then x ∈ −B, by the previous proposition; so, as
near(x,A) , there exists y ∈ A−B. But A0 = A, so y ∈ A0−B. It follows from
our definition of “near” that near(x0, A0) . q.e.d.

Lemma 20 For each x ∈ X there exists y ∈ X such that x 6= y.
Proof. We are assuming throughout that the inequality onX is nontrivial; so
we can choose a, a0 ∈ X with a 6= a0. By axiom A1, apart(a, {a0}) ; whence, by
axiom A5, either x 6= a or else apart (x, {a0}) ; in the latter event, Proposition
12 shows that x 6= a0. q.e.d.

Proposition 21 apart(x, ∅) .
Proof. Using the preceding lemma, choose y ∈ X with x 6= y. Then apart(x, {y}) ,
by axiom A1; so, by Proposition 18, apart (x, {y} ∪ ∅) . It follows from axiom
A3 that apart(x, ∅) . q.e.d.

Proposition 22 near(x,A)⇒ ∃y ∈ A.
Proof. By Proposition 21, x ∈ −∅. So if near (x,A) , then, by definition of
near, there exists y in A− ∅, which equals A. q.e.d.

3 Apartness and topology

We next look at a natural apartness in a certain type of topological space (X, τ) .
If x ∈ X and A ⊂ X, we define

apart(x,A)⇔ ∃U ∈ τ (x ∈ U ⊂ ∼A)
and, of course,

near(x,A)⇔ ∀B (x ∈ −B ⇒ ∃y ∈ A−B) .
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It is easy to show that these relations satisfy axioms A2—A4. To get axiom A1,
we need X to be a T1—space:

x 6= y ⇒ ∃U ∈ τ (x ∈ U ⊂ ∼{y}) .

To make X into an apartness space we also need to postulate axiom A5 or
something that implies it. One such “something” is

x ∈ U ∧U ∈ τ ⇒ ∀y ∈ X (x 6= y ∨ y ∈ U)

(which certainly holds in a metric space). For suppose that this axiom holds,
let apart(x,A) , and choose U ∈ τ such that x ∈ U ⊂ ∼A. Then either x 6= y
or else y ∈ U ; in the latter case, apart(y,A) .
We say that the topological space (X, τ) is a topological apartness space

if the apartness and nearness defined above turn X into an apartness space; we
then call the apartness structure on X the topological apartness structure
corresponding to τ.
An important non—metric example of a topological apartness space is pro-

vided by a locally convex space X [13]. If (pi)i∈I is the family of seminorms
defining the locally convex topology on X, then the corresponding inequality
relation, defined by

x 6= y ⇔ ∃i ∈ I (pi(x− y) > 0) ,
is tight. To establish axiom A5 in this situation we argue as follows. Let
apart(x,A) ; then there exist ε > 0 and elements i1, . . . , in of I such that

U =

(
y ∈ X :

nX
k=1

pik
(x− y) < ε

)
⊂ ∼A.

Given y ∈ X, we have either Pn
k=1 pik(x − y) > 0 or

Pn
k=1 pik(x − y) < ε.

In the first case, pik
(x − y) > 0 for some k and so x 6= y. In the second case,

y ∈ U ⊂∼A and so, by the definition of apartness, apart(y,A) .

A subset S of an apartness space X is said to be nearly open if it can be
written as a union of apartness complements: that is, if there exists a family
(Ai)i∈I such that S =

S
i∈I −Ai. Clearly, ∅ is nearly open (∅ = −X), X is

nearly open (X = −∅) , and a union of nearly open sets is nearly open. Since,
by a simple application of axiom A3, the intersection of a finite number of
apartness complements is an apartness complement, it can easily be shown that
a finite intersection of nearly open sets is nearly open. Thus the nearly open
sets form a topology–the apartness topology–on X for which the apartness
complements form a basis.

Proposition 23 In a topological apartness space every nearly open set is open.
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Proof. Let (X, τ) be a topological space. It suffices to show that every apart-
ness complement −A in X is open. Let x ∈ −A and choose U ∈ τ such that
x ∈ U ⊂ ∼A. Then, by the definition of the apartness in X, U ⊂ −A. Hence
−A is open. q.e.d.

Classically, every open set A in a topological apartness space satisfies A =
− ∼A, and so the converse of Proposition 23 holds. Constructively, although
A ⊂ − ∼ A holds for an open set A, we cannot hope to prove the reverse
inclusion. To see this, consider the metric subspace

X = {0, 1− a, 2}
of R, where a < 1 and ¬ (a ≤ 0) . Let B be the open ball with centre 0 and
radius 1 in X. Then 2 ∈∼B. On the other hand, if x ∈∼B and x 6= 2, then
x must equal 1 − a, so ¬ (1− a < 1); whence 1 − a ≥ 1 and therefore a ≤ 0,
a contradiction. It follows that ∼ B = {2} and hence that − ∼ B = − {2} .
If −∼B ⊂ B, then 1 − a, which certainly belongs to − {2} , is in B; whence
1− a < 1 and therefore a > 0. Thus, although (as is easily seen) any ball B in
a metric apartness space satisfies B ⊂ −∼B ⊂ B, the proposition

Every open ball B in a metric space satisfies B = −∼B
entails

∀x ∈ R (¬ (x ≤ 0)⇒ x > 0) .

The latter statement is easily seen to be equivalent to Markov’s Principle.
This example suggests that although, for a topological apartness space, the

apartness topology and the original topology coincide classically, the former
looks coarser than the latter constructively. It is therefore pleasing to prove the
converse of Proposition 23 for a metric space.

Proposition 24 A subset of a metric space is open if and only if it is nearly
open.

Proof. In view of Proposition 23, it is enough to prove that an open subset
A of a metric space X is nearly open. To this end, let x ∈ A, choose r > 0 such
that B(x, r) ⊂ A, and let

E = {y ∈ X : ρ(x, y) > r} .
Then

x ∈ X −E ⊂ B(x, r) ⊂ A.
It follows that A is a union of metric complements and is therefore nearly open.
q.e.d.

It remains an open [sic] problem to find good constructive conditions on a
not—necessarily—metrisable topological space that ensure that nearly open sets
are open.
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We now define a subset S of an apartness space X to be nearly closed if

∀x ∈ X (near(x, S)⇒ x ∈ S) .
(This is just “closed” in a metric space.) Both X and ∅ are nearly closed. The
intersection of any family of nearly closed sets is nearly closed (this is easy!),
but–as with closed sets in R–we cannot show that the union of two nearly
closed sets is nearly closed ([8], (6.3)).

Proposition 25 For each nonempty subset A of an apartness space X, the
closure

A = {x ∈ X : near(x,A)}
of A in X is nearly closed.

Proof. Apply Proposition 14 withA andB replaced byA and A, respectively,
to show that if near

¡
x,A

¢
, then near(x,A) and therefore x ∈ A. q.e.d.

Proposition 26 If S is a nearly open subset of an apartness space X, then its
logical complement equals its complement and is nearly closed.

Proof. Let S =
S

i∈I −Ai be nearly open, let T = ¬S, and consider x
such that near(x, T ) . Given y ∈ S, choose i ∈ I such that y ∈ −Ai. Then
apart(y,Ai) , so, by axiom A5, either x 6= y or apart(x,Ai) . In the latter case,
since near(x, T ) , we see from Proposition 17 that near(x,T −Ai); whence, by
Proposition 22, there exists z ∈ T −Ai ⊂ T ∩S, which is absurd. It follows that
¬apart(x,Ai) and hence that x 6= y.We have thus shown that if near (x,¬S) ,
then x ∈∼S. Since ∼S ⊂ ¬S, the desired conclusions follow. q.e.d.

Proposition 27 Let X be an apartness space. Then for each x ∈ X and each
A ⊂ X,

apart(x,A)⇔ ∃B ⊂ X (x ∈ −B ⊂∼A) .
Proof. Let x ∈ X and A ⊂ X. If apart(x,A) , then x ∈ −A ⊂∼A, by
Corollary 7. Conversely, if there exists B ⊂ X such that x ∈ −B ⊂ ∼A, then it
follows from axiom A4 (with A and B interchanged) that apart (x,A) . q.e.d.

Proposition 28 Let X be an apartness space, x ∈ X and A ⊂ X. Then
near(x,A) if and only if A intersects each nearly open subset of X that contains
x.

Proof. Let near(x,A) , and let U =
S

i∈I −Ai be any nearly open set con-
taining x. Choosing i ∈ I such that x ∈ −Ai, we see from Proposition 17 that
near(x,A−Ai) . So, by Proposition 22, there exists y ∈ A − Ai ⊂ A ∩ U.
Conversely, if A intersects each nearly open set containing x, then since −B is
nearly open for each B ⊂ X, we see immediately from the definition of “near”
that near(x,A) . q.e.d.

It follows from Proposition 27 that if X is an apartness space, then its given
apartness structure is the same as that associated with the apartness topology.
We use this observation later to motivate the definition of a product of two
apartness spaces X1 and X2.
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4 Apartness and continuity

Let f : X → Y be a mapping between apartness spaces. We say that f is

B nearly continuous if

∀x ∈ X ∀A ⊂ X (near(x,A)⇒ near(f(x), f(A))) ;

B continuous if

∀x ∈ X ∀A ⊂ X (apart(f(x), f(A))⇒ apart(x,A)) ;

B topologically continuous if f−1(S) is nearly open in X for each nearly
open S ⊂ Y.

It is almost trivial that the composition of continuous functions is continuous,
and that the restriction of a continuous function to an apartness subspace of its
domain is continuous. Analogous remarks hold for nearly continuous functions
and for topologically continuous ones.

Proposition 29 A continuous mapping f : X → Y between apartness spaces
is strongly extensional: that is, if f(x) 6= f(y), then x 6= y.
Proof. For if f(x) 6= f(y), then by axiom A1, apart(f(x), {f(y)}) ; so
apart(x, {y}) and therefore, by Proposition 12, x 6= y. q.e.d.

Proposition 30 The following conditions are equivalent on a mapping f : X →
Y between apartness spaces.

(i) f is nearly continuous.

(ii) For each nearly closed subset S of Y, f−1(S) is nearly closed.

(iii) For each subset A of X, f
¡
A

¢ ⊂ f (A).
Proof. Suppose that f is nearly continuous onX, and let S be a closed subset
of Y. If x ∈ X and near

¡
x, f−1(S)

¢
, then near

¡
f(x), f

¡
f−1(S)

¢¢
and therefore

near(f(x), S) . Since S is closed, f(x) ∈ S; whence x ∈ f−1(S). Thus (i) implies
(ii).
Now suppose that (ii) holds. Let x ∈ X, A ⊂ X, and near(x,A) . Note

that A ⊂ f−1
³
f(A)

´
, so near

³
x, f−1(f(A))

´
, by Corollary 15. Since, by

Proposition 25, f(A) is nearly closed, so is f−1(f(A)). Hence x ∈ f−1
³
f(A)

´
,

so f(x) ∈ f(A) and therefore near(f(x), f(A)) . Thus (ii) implies (i).
The equivalence of (i) and (iii) is trivial. q.e.d.

Proposition 31 A topologically continuous mapping between apartness spaces
is continuous.
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Proof. Let f : X → Y be a topologically continuous mapping between apart-
ness spaces, consider x ∈ X and A ⊂ X such that apart(f(x), f(A)) , and write

Ω = f−1 (−f(A)) .

Since −f(A) is nearly open, Ω = S
i∈I −Aifor some family of sets Ai. Choose

i ∈ I such that x ∈ −Ai. Note that A ⊂ ¬Ω : for if z ∈ A ∩ Ω, then f(z) ∈
f(A) ∩ −f(A), which is absurd. Since Ω is nearly open, Proposition 26 shows
that ¬Ω =∼Ω. Hence

A ⊂ ¬Ω =∼Ω ⊂∼−Ai

and therefore−Ai ⊂ ∼A.Applying Proposition 27, we now see that apart(x,A).
q.e.d.

What about the converse of Proposition 31? To discuss that, we define an
apartness space X to be completely regular if it has the following property:

For each x ∈ X and each subset A of X such that apart(x,A) ,
there exists a continuous function φ : X → R such that φ(x) = 0
and φ (A) = {1} .

We then say that φ separates x and A.
Every metric space is completely regular. For if apart(x,A) in a metric

space X, then, choosing r > 0 such that ρ(x, y) ≥ r for all y ∈ S, we obtain a
separating function φ : X → R by setting

φ(t) = min

½
1,
1

r
ρ(x, t)

¾
(t ∈ X) .

Trivially, an apartness subspace of a completely regular apartness space is
completely regular.

Proposition 32 Every continuous mapping from an apartness space into a
completely regular apartness space is topologically continuous.

Proof. LetX be an apartness space, Y a completely regular apartness space,
and f : X → Y a continuous mapping. It is enough to show that for each B ⊂ Y,
f−1(−B) is nearly open in X. To this end, consider x ∈ f−1(−B). Since Y is
completely regular, there exists a continuous function φ : Y → [0, 1] such that
φ (f(x)) = 0 and φ (B) = {1} . For convenience, write

S = φ−1
¡

1
2 , 1

¤
.

Consider any y ∈ −f−1(S). By axiom A2, y /∈ f−1(S) and so f(y) /∈ S; whence
φ (f(y)) ≤ 1/2 and therefore apart(φ (f(y)) , {1}) . Since φ is continuous, it
follows that apart(f(y), B) and therefore f(y) ∈ −B. Hence

−f−1(S) ⊂ f−1 (−B) .

12



On the other hand, apart
¡
0,

¡
1
2 , 1

¤¢
and φ is continuous on Y, so apart(f(x), S)

and therefore, by the continuity of f, apart
¡
x, f−1(S)

¢
. Thus x ∈ −f−1(S) ⊂

f−1 (−B) . We have now shown that for each x ∈ f−1 (−B) there exists S ⊂ Y
such that x ∈ −f−1(S) ⊂ f−1 (−B) . So f−1 (−B) is a union of apartness
complements and is therefore nearly open. q.e.d.

Proposition 33 A topologically continuous mapping between apartness spaces
is nearly continuous.

Proof. Let f : X → Y be a topologically continuous mapping between apart-
ness spaces. Consider x ∈ X and A ⊂ X such that near(x,A) . Let B ⊂ Y and
f(x) ∈ −B; then x ∈ f−1 (−B) . By the topological continuity of f, there exists
a family (Ai)i∈I of subsets of X such that f−1(−B) = S

i∈I −Ai. Choose i0 with
x ∈ −Ai0 . Then, as near(x,A) , there exists y ∈ A − Ai0 ⊂ A ∩ ¡S

i∈I −Ai

¢
;

whence

f(y) ∈ f(A) ∩ f
Ã[

i∈I

−Ai

!
= f (A)−B.

Thus
∀B ⊂ Y (f(x) ∈ −B ⇒ ∃z ∈ f(A)−B)

and so near(f(x), f(A)) . q.e.d.

Corollary 34 Every continuous mapping from an apartness space into a com-
pletely regular apartness space is nearly continuous.

Proof. Use Propositions 32 and 33. q.e.d.

There seems no reason to believe that we can say more, constructively, about
the classically true equivalence of near continuity, continuity, and topological
continuity for a mapping between two general apartness spaces. If, however,
the spaces are metric spaces, then we can say a little more.

Proposition 35 Let f : X → Y be a mapping between metric apartness spaces.
Then f is continuous if and only if for each x ∈ X and each ε > 0 there exists
δ > 0 such that ρ (f(x), f(x0)) < ε whenever x0 ∈ X and ρ (x, x0) < δ. In that
case, f is topologically continuous.

The proof is essentially the same as that of Proposition 1 of [14], and so is
omitted. Note that the ε—δ condition in this proposition is just that of pointwise
continuity, in the usual metric space sense, of f.

Proposition 36 A mapping f : X → Y between metric spaces is nearly con-
tinuous if and only if the following condition holds: for each x ∈ X and each
sequence (xn) converging to x, f(x) is a cluster point of the sequence (f(xn))

∞
n=1 .

In that case, f(x) is the unique cluster point of the sequence (f(xn))
∞
n=1 .

Suppose also that X is complete. Then f is nearly continuous if and only if
it is sequentially continuous: that is, for each x ∈ X and each sequence (xn)
of points of X converging to x, limn→∞ f(xn) = f(x).

13



The first part of this proposition is proved in [10]. It is also shown there
that if nearly continuous implies sequentially continuous for functions from a
non—complete metric space, then LPO holds.

5 Pre—apartness spaces

Let X be a set with a nontrivial inequality 6= . By a pre—apartness relation
on X we mean a relation apart between points and subsets of X that satisfies
axioms A1—A4, but not necessarily A5. Taken with such a relation, X becomes
a pre—apartness space, on which we define notions such as apartness comple-
ment, nearly open, continuous, topologically continuous, and completely regular
as for an apartness space. Results whose proofs do not require axiom A5 hold
when “apartness” is replaced by “pre—apartness” throughout.

Proposition 37 A completely regular pre—apartness space satisfies axiom A5.

Proof. LetX be a completely regular pre—apartness space, and let apart(x,A)
in X. Construct a continuous mapping φ of X into [0, 1] (with the usual apart-
ness) such that φ(x) = 0 and φ(A) = {1} . Let y be any element of X. Then
either φ(y) > 0, in which case y 6= x, or else φ(y) < 1. In the latter case,
apart(φ(y),φ(A)) and so, as φ is continuous, apart(y,A) . q.e.d.

We now consider an example of a pre—apartness space that cannot be proved
to be an apartness space. This shows that axiom A5 for an apartness space is
constructively independent of axioms A1—A4.
Let X be [0, 1] with the usual inequality relation, let τ denote the topology

induced on X by the standard topology on R, and let

A =
©
n−1 : n = 1, 2, 3, . . .

ª
.

Define a relation apartbetween points x and subsets S of X as follows:

apart(x, S)⇔ ∃U ∈ τ ∃B ⊂ A (x ∈ U ∼ B ⊂∼S) .
It is straightforward to verify that apartsatisfies axioms A1—A4 and so turns X
into a pre—apartness space.3 SinceX ∈ τ and 0 ∈ X ∼ A, we have apart(0, A) .
Given a binary sequence (an) with at most one term equal to 1, define

y =
∞X

n=1

an

n
∈ X.

If y 6= 0, then an = 1 for some n; if apart (y,A) , then an = 0 for all n. Thus if
axiom A5 holds in the pre—apartness space X, we can prove LPO.
It follows from Proposition 37 that this pre—apartness space X is not com-

pletely regular. To see this directly, let Y denote the space [0, 1] taken with the
3Classically, the family of (pre—apartness) nearly open subsets of X forms the Smirnov

topology [20].
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apartness relation associated with the topology on R, and suppose that there
exists a continuous mapping φ : X → Y such that φ(0) = 0 and φ(A) = {1} .
Since apart

¡
0,

¡
1
2 , 1

¤¢
in Y, we have apart

¡
0,φ−1

¡
1
2 , 1

¤¢
in X; so there exist

r > 0 and B ⊂ A such that

0 ∈ [0, r) ∼ B ⊂∼φ−1
¡

1
2 , 1

¤
and hence (as φ(A) = {1}) that

0 ∈ [0, r) ∼ A ⊂∼φ−1
¡

1
2 , 1

¤
. (1)

Choose a positive integer N > max {1, 1/r} .We claim that near
¡

1
N , [0, r) ∼ A

¢
in X. To prove this, let apart

¡
1
N , S

¢
in X, and choose t ∈

³
0, 1

N−1 − 1
N

´
and

C ⊂ A such that £
1
N − t, 1

N + t
¤ ∼ C ⊂∼S.

Next, choose y such that 1
N < y < min

©
1
N + t, r

ª
. Then y ∈ [0, r) ∼ A and

y ∈ −S. It follows from the definition of nearness in X that near
¡

1
N , [0, r) ∼ A

¢
.

Now, 1
N ∈ A and so φ ¡

1
N

¢
= 1. It follows from (1) that

apart
¡
φ

¡
1
N

¢
,φ ([0, r) ∼ A)¢ .

Since φ is continuous, we have apart
¡

1
N , [0, r) ∼ A

¢
. This contradicts Propo-

sition 2 and completes the proof that X is not completely regular.

6 Product apartness spaces

Let X1 and X2 be apartness spaces, let X be their Cartesian product X1×X2,
and, for example, let x denote the element (x1, x2) of X. The inequality relation
on X is defined by

x 6= y if and only if (x1 6= y1 ∨ x2 6= y2) .

Define a relation apartbetween points and subsets of X as follows:

apart(x, A)⇔ ∃U1 ⊂ X1 ∃U2 ⊂ X2 (x ∈ −U1 ×−U2 ⊂∼A) ,

where −Uk is the apartness complement of Uk in the apartness space Xk. Define
also

near(x, A)⇔ ∀B (apart(x, B)⇒ ∃y ∈ A−B) ,
where −B is the apartness complement of B in the product space X. We show
that these definitions provide X with an apartness structure–the product
apartness structure. We then call X, equipped with this apartness structure,
the product of the apartness spaces X1 and X2.
To verify axiom A1, suppose that x 6= y. Then either x1 6= y1 or else x2 6= y2.

Taking, for example, the first alternative, we see from axiom A1 applied to X1
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that apart(x1, {y1}) ; whence, by Proposition 27, there exists U1 ⊂ X1 such
that x1 ∈ −U1 ⊂∼{y1} . Then x ∈ −U1 ×X2 ⊂ ∼{y} ; since X2 is nearly open,
it follows that apart(x, {y}) . Hence axiom A1 holds.
It is routine to verify that axioms A2—A4 hold in X1 × X2; so it remains

to deal with axiom A5. To this end, let apart(x, A) in X1 ×X2, and choose
sets Uk ⊂ Xk such that x ∈ −U1 × −U2 ⊂∼A; then xk ∈ −Uk. Consider any
y ∈ X. By axiom A5 in the apartness space X1, either x1 6= y1 or y1 ∈ −U1.
Since x 6= y in the first case, we may assume that y1 ∈ −U1. Likewise, we may
assume that y2 ∈ −U2. Hence y ∈ −U1×−U2 ⊂ ∼A, and therefore apart(y, A) .
This completes the verification of axiom A5.
Classically, the product apartness structure on X satisfies

near(x, A)⇔ ¬apart(x, A)

⇔ ∀U1 ⊂ X1 ∀U2 ⊂ X2 (x ∈ −U1 ×−U2 ⇒ ∃y ∈ (−U1 ×−U2) ∩A) .

Constructively, we have

Proposition 38 Let X = X1 ×X2 be a product of two apartness spaces, and
let x be a point of X such that if U1 ⊂ X1, U2 ⊂ X2, and x ∈ −U1×−U2, then
(−U1 ×−U2) ∩A is nonempty. Then near(x, A).

Proof. Consider any subset B of X such that apart(x, B) . There exist Uk ⊂
Xk such that x ∈ −U1 × −U2 ⊂ ∼B. Then, by definition of the apartness on
the product space X, −U1 ×−U2 ⊂ −B. Thus

A−B ⊃ (−U1 ×−U2) ∩A,
which, by our hypotheses, is nonempty. Thus

∀B (apart(x, B)⇒ ∃y ∈ A−B)

–that is, near(x, A) . q.e.d.

To discuss a converse of Proposition 38, we need some auxiliary results.

Lemma 39 Let X1,X2 be apartness spaces. Then the projection mappings prk :
X1 ×X2 → Xk are continuous.

Proof. Let apart(pr1(x),pr1(S)) , where S ⊂ X = X1 × X2; then there
exists U1 ⊂ X1 such that

x1 = pr1(x) ∈ −U1 ⊂ ∼pr1(S).

Then x ∈ −U1 ×X2 = −U1 × −∅. Also, if y ∈ −U1 × −∅, then y1 ∈ −U1, so
for all z ∈ S, y1 6= z1 and therefore y 6= z. Thus −U1 × −∅ ⊂ ∼S, and there-
fore apart(x, S) . This proves the continuity of pr1; that of pr2 is established
similarly. q.e.d.
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Lemma 40 Let X be the product of two apartness spaces X1 and X2, and let
x be a point of X with the following property: if U1 ⊂ X1, U2 ⊂ X2, and
x ∈ −U1 × −U2, then there exists S ⊂ X such that x ∈ −S ⊂ −U1 × −U2. If
near (x, A) , then (−U1 ×−U2) ∩A is nonempty for all U1 ⊂ X1 and U2 ⊂ X2

with x ∈ −U1 ×−U2.

Proof. Given that near(x, A) , let Uk be a subset of Xk such that x ∈ −U1×
−U2. Choose S ⊂ X such that x ∈ −S ⊂ −U1 ×−U2. Since near(x,A) , there
exists y ∈ A− S; then y ∈ (−U1 ×−U2) ∩A. q.e.d.

Proposition 41 Let X be the product of two completely regular apartness spaces
X1 and X2. Let x ∈ X, and let Uk ⊂ Xk be such that x ∈ −U1 × −U2. Then
there exists S ⊂ X such that

x ∈ −S ⊂ −U1 ×−U2.

Proof. Since xk ∈ −Uk, there exists a continuous function fk : Xk → [0, 1]
such that fk(xk) = 0 and fk (Uk) = {1} . Let

S =
©
ξ ∈ X : f1(ξ1) ≥ 1

2 ∨ f2(ξ2) ≥ 1
2

ª
.

By the continuity of the functions fk, x ∈ −S. On the other hand, if ξ ∈ −S,
then for k = 1, 2 we have fk (ξk) < 1, so, again by continuity, ξk ∈ −Uk. Hence
−S ⊂ −U1 ×−U2. q.e.d.

We now arrive at our converse to Proposition 38.

Corollary 42 Let X be the product of two completely regular apartness spaces
X1 and X2, let x ∈ X, and let A be a subset of X such that near(x, A) . Then
(−U1 ×−U2)∩A is nonempty for all U1 ⊂ X1 and U2 ⊂ X2 with x ∈ −U1×−U2.

Proof. Use Proposition 41 and Lemma 40. q.e.d.

Lemma 43 Let X = X1 ×X2 be a product of apartness spaces, and f a con-
tinuous mapping of X into an apartness space Y. Then for each x2 ∈ X2 the
mapping x 7→ f(x, x2) is continuous on X1; and for each x1 ∈ X1 the mapping
x 7→ f (x1, x) is continuous on X2.

Proof. Define g(x) = f(x, x2). Let x ∈ X1 andA ⊂ X1 satisfy apart(g(x), g(A))–
that is,

apart(f(x, x2), f(A× {x2})) .
Since f is continuous, we have apart((x, x2) , A× {x2}) , so there exist Uk ⊂ Xk

such that
(x, x2) ∈ −U1 ×−U2 ⊂ ∼(A× {x2}) .

Hence x ∈ −U1 ⊂ ∼A and therefore apart(x,A) . Thus g is continuous. A
similar argument shows that x 7→ f (x1, x) is continuous onX2 for each x1 ∈ X1.
q.e.d.
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Proposition 44 Let X = X1×X2 be the product of two apartness spaces. Then
X is completely regular if and only if each Xk is completely regular.

Proof. Suppose first that X is completely regular. Let x1 ∈ −U1 ⊂ X1 and
let x2 ∈ X2. Then

x = (x1, x2) ∈ −U1 ×X2 = −U1 ×−∅ ⊂∼(U1 ×X2) .

Hence, by definition of the apartness on X, x ∈ − (U1 ×X2) . So there exists a
continuous function f : X → [0, 1] such that f (x) = 0 and f (U1 ×X2) = {1} .
Define f1 : X1 → [0, 1] by

f1 (ξ) = f (ξ, x2) .

Then f1 is continuous, by Lemma 43, and f1(x1) = 0. Given ξ ∈ U1, suppose
that f1 (ξ) < 1. Then apart (f(ξ, x2), {1}) ; so by the continuity of f , (ξ, x2) ∈
− (U1 ×X2) and therefore ξ ∈ −U1, a contradiction. Thus f1 (U1) = {1} . This
completes the proof that X1 is completely regular; that for X2 is similar.
Now suppose, conversely, that eachXk is completely regular. Consider ξ ∈ X

and S ⊂ X such that ξ ∈ −S. Choose U1 ⊂ X1 and U2 ⊂ X2 such that
ξ ∈ −U1 × −U2 ⊂ ∼S. There exist continuous mappings fk : Xk → [0, 1] such
that fk(ξk) = 0 and fk (Uk) = {1} . Define

f(x) = max {f1(ξ1), f2(ξ2)} .
Then f is continuous, as a composition of continuous functions. Let x ∈ S, and
note that

S ⊂ ∼∼S ⊂ ∼(−U1 ×−U2) .

If f(x) < 1, then fk(xk) < 1 and so, by the continuity of fk, xk ∈ −Uk; whence

x ∈ −U1 ×−U2 ⊂ ∼S,
a contradiction. We conclude that f (x) = 1 for each x ∈ S. q.e.d.

It is natural to ask for conditions under which the projection mappings
on a product apartness space are not only continuous but also topologically
continuous.

Proposition 45 The following are equivalent conditions on a product X =
X1 ×X2 of apartness spaces.

(i) For all x ∈ X, U1 ⊂ X1, and U2 ⊂ X2 such that x ∈ −U1 × −U2 there
exists S ⊂ X such that x ∈ −S ⊂ −U1 ×−U2.

(ii) For all U1 ⊂ X1 and U2 ⊂ X2 the set −U1 ×−U2 is nearly open in X.

(iii) If Ak is nearly open in Xk (k = 1, 2), then A1 ×A2 is nearly open in X.

(iv) The projections prk are topologically continuous on X (k = 1, 2) .
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Proof. If (i) holds and Uk ⊂ Xk, then

−U1 ×−U2 =
[

x∈−U1×−U2

{−S : x ∈ −S ⊂ −U1 ×−U2} ,

which is nearly open. Thus (i) implies (ii). It is trivial that (ii) implies (i).
It is routine to prove that (ii) is equivalent to (iii). Now assume (iii) and

let B ⊂ X1. Then pr−1
1 (−B) = −B × X2 = −B × −∅, which is nearly open.

It follows that (iii) implies (iv). Finally, assume (iv) and let Uk ⊂ Xk. Then
pr−1

k (−Uk) is nearly open, so pr−1
1 (−U1) ∩ pr−1

2 (−U2) is nearly open. But

pr−1
1 (−U1) ∩ pr−1

2 (−U2) = (−U1 ×X2) ∩ (X1 ×−U2) = −U1 ×−U2.

Thus −U1 ×−U2 is nearly open, from which we easily deduce (iii). q.e.d.

7 Concluding remarks

There is one serious issue that needs to be addressed before we conclude this pa-
per: namely, the quantification over subsets ofX in the definition of near (x,A) .
Such quantification leads to impredicativity, a notion viewed with horror by the
pioneers of constructivism. Indeed, Beeson ([2], page 19) and others have sus-
pected that the power set axiom–implicit in a second—order theory like ours as
it stands–is inherently nonconstructive; to quote Myhill [17],

Power set seems especially nonconstructive and impredicative ... it
does not involve ... putting together or taking apart sets that one
has already constructed but rather selecting, out of the totality of
all sets, all those that stand in the relation of inclusion to a given
set.

Is there, then, a way of modifying our second—order theory so as to remove its
dependence on the full power set axiom?
We may be able to do this by prescribing for each space X a family F (X) of

subsets to which the relation apart may be applied exclusively. Such a family
would need to satisfy the following (and maybe only the following) conditions:

F1 {x} ∈ F (X) for each x ∈ X.
F2 Finite unions of sets in F (X) belong to F (X) .
F3 For any map f : X → Y between apartness spaces, if S ∈ F (X) , then

f(S) ∈ F (Y ) .
F4 For any map f : X → Y between apartness spaces, if T ∈ F (Y ) , then

f−1(T ) ∈ F (X) .
F5 Any interval belongs to F (R) .
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Another way out of the impredicativity problem might be to work with
an informal notion of “well—constructed subset of X”, intended to capture the
idea of a subset of X built up from some basic collection of subsets by purely
predicative means. Our definition of near (x,A) would then read as follows:

∀S (S is a well—constructed subset of X ∧ x ∈ −S ⇒ ∃y ∈ A− S) .
This idea is not as imprecise as may at first appear: there is a constructive
formalisation of Morse set theory [7] with a universal class U , in which objects
appear4 to be constructed impredicatively if and only if they can be proved
to belong to U . If this appearance is, in fact, reality, then our definition of
near (x,A) could be recast predicatively in the form

∀S (S ∈ U ∧ S ⊂ X ∧ x ∈ −S ⇒ ∃y ∈ A− S) .
We hope to discuss ways of removing the apparent impredicativity in our

theory in a later paper. In the mean time, we believe that the work presented
above shows that the second—order theory of apartness spaces holds consider-
able promise as a constructive framework for general topology and is worthy of
further exploration. There are several avenues along which such explorations
might proceed. For example, there is the detailed examination of convergence,
which, in the absence of ultrafilters (whose classical existence depends on Zorn’s
Lemma), may turn out to be more than a routine constructivisation of the clas-
sical theory. Then there is the discussion of various types of topological space
(Hausdorff, regular, completely regular, normal, ...) and constructive analogues
of Urysohn’s Lemma and the Tietze Extension Theorem (such analogues exist
constructively in the context of metric spaces). The problem of finding applica-
ble substitutes for various classical notions of compactness is a serious one in
the absence of a uniform structure (such as that on a metric space, where total
boundedness and completeness together form a useful type of compactness).
Apartness relations generalise inequalities between points. Another avenue

to be explored leads to proximity relations, which generalise apartness relations
to pairs of sets [18]. This will be done in the next paper [19] in our series on
constructive apartness structures.
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