Skip to main content
Log in

Beyond Reduction and Pluralism: Toward an Epistemology of Explanatory Integration in Biology

  • Original Article
  • Published:
Erkenntnis Aims and scope Submit manuscript

Abstract

The paper works towards an account of explanatory integration in biology, using as a case study explanations of the evolutionary origin of novelties—a problem requiring the integration of several biological fields and approaches. In contrast to the idea that fields studying lower level phenomena are always more fundamental in explanations, I argue that the particular combination of disciplines and theoretical approaches needed to address a complex biological problem and which among them is explanatorily more fundamental varies with the problem pursued. Solving a complex problem need not require theoretical unification or the stable synthesis of different biological fields, as items of knowledge from traditional disciplines can be related solely for the purposes of a specific problem. Apart from the development of genuine interfield theories, successful integration can be effected by smaller epistemic units (concepts, methods, explanations) being linked. Unification or integration is not an aim in itself, but needed for the aim of solving a particular scientific problem, where the problem’s nature determines the kind of intellectual integration required.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amundson, R. (2005). The changing role of the embryo in evolutionary thought: Roots of evo-devo. Cambridge: Cambridge University Press.

    Google Scholar 

  • Bechtel, W. (1986). Integrating sciences by creating new disciplines: the case of cell biology. Biology and Philosophy, 8, 277–299.

    Article  Google Scholar 

  • Bechtel, W. (2006). Discovering cell mechanisms: The creation of modern cell biology. Cambridge: Cambridge University Press.

    Google Scholar 

  • Bechtel, W., & Richardson, R. (1993). Discovering complexity: Decomposition and localization as strategies in scientific research. Princeton: Princeton University Press.

    Google Scholar 

  • Bock, W. J. (1959). Preadaptation and multiple evolutionary pathways. Evolution, 13, 194–211.

    Article  Google Scholar 

  • Brigandt, I. (2007). Typology now: homology and developmental constraints explain evolvability. Biology and Philosophy, 22, 709–725.

    Article  Google Scholar 

  • Brigandt, I., & Griffiths, P. E. (2007). The importance of homology for biology and philosophy. Biology and Philosophy, 22, 633–641.

    Article  Google Scholar 

  • Brigandt, I., & Love, A. C. (2008). Reductionism in biology. In E. N. Zalta (Ed.), The Stanford Encyclopedia of Philosophy (Fall 2008 Edition). <http://plato.stanford.edu/archives/fall2008/entries/reduction-biology>.

  • Brigandt, I., & Love, A. C. (in press). Evolutionary novelty and the evo-devo synthesis: field notes. Evolutionary Biology. doi:10.1007/s11692-010-9083-6.

  • Craver, C. F. (2005). Beyond reduction: mechanisms, multifield integration and the unity of neuroscience. Studies in the History and Philosophy of Biological and Biomedical Sciences, 36, 373–395.

    Article  Google Scholar 

  • Darden, L. (2006). Reasoning in biological discoveries: Essays on mechanisms, interfield relations, and anomaly resolution. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Darden, L., & Maull, N. (1977). Interfield theories. Philosophy of Science, 44, 43–64.

    Article  Google Scholar 

  • Dupré, J. (1993). The disorder of things: Metaphysical foundations of the disunity of science. Cambridge, MA: Harvard University Press.

    Google Scholar 

  • Gilbert, S. F. (2001). Ecological developmental biology: developmental biology meets the real world. Developmental Biology, 233, 1–12.

    Article  Google Scholar 

  • Gilbert, S. F., Opitz, J. M., & Raff, R. A. (1996). Resynthesizing evolutionary and developmental biology. Developmental Biology, 173, 357–372.

    Article  Google Scholar 

  • Grantham, T. A. (2004a). Conceptualizing the (dis)unity of science. Philosophy of Science, 71, 133–155.

    Article  Google Scholar 

  • Grantham, T. A. (2004b). The role of fossils in phylogeny reconstruction, or why is it difficult to integrate paleontological and neontological evolutionary biology? Biology and Philosophy, 19, 687–720.

    Article  Google Scholar 

  • Hall, B. K. (1998). Evolutionary developmental biology (2nd ed.). London: Chapman and Hall.

    Google Scholar 

  • Hall, B. K. (Ed.). (2006). Fins into limbs: Evolution, development and transformation. Chicago: University of Chicago Press.

    Google Scholar 

  • Hall, B. K. (2007). Tapping many sources: the adventitious roots of evo-devo in the nineteenth century. In M. D. Laubichler & J. Maienschein (Eds.), From embryology to evo-devo: A history of developmental evolution (pp. 467–497). Cambridge, MA: MIT Press.

    Google Scholar 

  • Hall, B. K., & Olson, W. M. (Eds.). (2003). Keywords and concepts in evolutionary developmental biology. Cambridge, MA: Harvard University Press.

    Google Scholar 

  • Hendrikse, J. L., Parsons, T. E., & Hallgrímsson, B. (2007). Evolvability as the proper focus of evolutionary developmental biology. Evolution and Development, 9, 393–401.

    Article  Google Scholar 

  • Hull, D. L. (1974). Philosophy of biological science. Englewood Cliffs: Prentice-Hall.

    Google Scholar 

  • Kirschner, M., & Gerhart, J. (2005). The plausibility of life: Resolving Darwin’s dilemma. New Haven: Yale University Press.

    Google Scholar 

  • Kitcher, P. (1984a). 1953 and all that: a tale of two sciences. The Philosophical Review, 93, 335–373.

    Article  Google Scholar 

  • Kitcher, P. (1984b). Species. Philosophy of Science, 51, 308–333.

    Article  Google Scholar 

  • Kitcher, P. (1999). Unification as a regulative ideal. Perspectives on Science, 7, 337–348.

    Article  Google Scholar 

  • Love, A. C. (2003). Evolutionary morphology, innovation, and the synthesis of evolutionary and developmental biology. Biology and Philosophy, 18, 309–345.

    Article  Google Scholar 

  • Love, A. C. (2005). Explaining evolutionary innovation and novelty: A historical and philosophical study of biological concepts. Dissertation, University of Pittsburgh. <http://etd.library.pitt.edu/ETD/available/etd-05232005-142007>.

  • Love, A. C. (2006). Evolutionary morphology and evo-devo: hierarchy and novelty. Theory in Biosciences, 124, 317–333.

    Article  Google Scholar 

  • Love, A. C. (2008). Explaining evolutionary innovation and novelty: criteria of adequacy and multidisciplinary prerequisites. Philosophy of science, 75, 874–886.

    Article  Google Scholar 

  • Maull, N. (1977). Unifying science without reduction. Studies in History and Philosophy of Science, 8, 143–162.

    Article  Google Scholar 

  • Mayr, E. (1960). The emergence of evolutionary novelties. In S. Tax (Ed.), Evolution after Darwin (vol. 1, pp. 349–380). Chicago: University of Chicago Press.

  • Mitchell, S. D. (2002). Integrative pluralism. Philosophy of Science, 17, 55–70.

    Google Scholar 

  • Mitchell, S. D. (2003). Biological complexity and integrative pluralism. Cambridge: Cambridge University Press.

    Google Scholar 

  • Müller, G. B. (1990). Developmental mechanisms at the origin of morphological novelty: a side-effect hypothesis. In M. H. Nitecki (Ed.), Evolutionary innovations (pp. 99–130). Chicago: University of Chicago Press.

    Google Scholar 

  • Müller, G. B. (2007). Six memos for evo-devo. In M. D. Laubichler & J. Maienschein (Eds.), From embryology to evo-devo: A history of developmental evolution (pp. 499–524). Cambridge, MA: MIT Press.

    Google Scholar 

  • Müller, G. B., & Newman, S. A. (1999). Generation, integration, autonomy: three steps in the evolution of homology. In G. R. Bock & G. Cardew (Eds.), Homology (pp. 65–73). Chicester: Wiley.

    Google Scholar 

  • Müller, G. B., & Wagner, G. P. (1991). Novelty in evolution: Restructuring the concept. Annual Review of Ecology and Systematics, 22, 229–256.

    Article  Google Scholar 

  • Müller, G. B., & Wagner, G. P. (2003). Innovation. In B. K. Hall & W. M. Olson (Eds.), Keywords and concepts in evolutionary developmental biology (pp. 218–227). Cambridge, MA: Harvard University Press.

    Google Scholar 

  • Nagel, E. (1961). The structure of science. New York: Harcourt, Brace, and World.

    Google Scholar 

  • Newman, S. A., & Müller, G. B. (2000). Epigenetic mechanisms of character origination. Journal of Experimental Zoology (Molecular and Developmental Evolution), 288, 304–317.

    Article  Google Scholar 

  • Oppenheim, P., & Putnam, H. (1958). Unity of science as a working hypothesis. In H. Feigl, M. Scriven, & G. Maxwell (Eds.), Concepts, theories, and the mind-body problem (pp. 3–36). Minneapolis: University of Minnesota Press.

    Google Scholar 

  • Rosenberg, A. (1994). Instrumental biology or the disunity of science. Chicago: University of Chicago Press.

    Google Scholar 

  • Rosenberg, A. (1997). Reductionism redux: computing the embryo. Biology and Philosophy, 12, 445–470.

    Article  Google Scholar 

  • Schaffner, K. F. (1969). The Watson-Crick model and reductionism. British Journal for the Philosophy of Science, 20, 325–348.

    Article  Google Scholar 

  • Schaffner, K. F. (1993). Discovery and explanation in biology and medicine. Chicago: University of Chicago Press.

    Google Scholar 

  • Sober, E. (1984). The nature of selection: Evolutionary theory in philosophical focus. Cambridge, MA: MIT Press.

    Google Scholar 

  • Wagner, G. P. (2000). What is the promise of developmental evolution? Part I: Why is developmental biology necessary to explain evolutionary innovations? Journal of Experimental Zoology (Molecular and Developmental Evolution), 288, 95–98.

    Article  Google Scholar 

  • Wagner, G. P. (2007a). How wide and how deep is the divide between population genetics and developmental evolution? Biology and Philosophy, 22, 145–153.

    Article  Google Scholar 

  • Wagner, G. P. (2007b). The current state and the future of developmental evolution. In M. D. Laubichler & J. Maienschein (Eds.), From embryology to evo-devo: A history of developmental evolution (pp. 525–545). Cambridge, MA: MIT Press.

    Google Scholar 

  • Wagner, G. P., & Larsson, H. C. E. (2003). What is the promise of developmental evolution? Part III: the crucible of developmental evolution. Journal of Experimental Zoology (Molecular and Developmental Evolution), 300B, 1–4.

    Article  Google Scholar 

  • Wagner, G. P., & Laubichler, M. D. (2004). Rupert Riedl and the re-synthesis of evolutionary and developmental biology: Body plans and evolvability. Journal of Experimental Zoology (Molecular and Developmental Evolution), 302B, 92–102.

    Article  Google Scholar 

  • Wake, D. B. (1996). Evolutionary developmental biology: prospects for an evolutionary synthesis at the developmental level. Memoirs of the California Academy of Sciences, 20, 97–107.

    Google Scholar 

  • Wallace, B. (1986). Can embryologists contribute to an understanding of evolutionary mechanisms? In W. Bechtel (Ed.), Integrating scientific disciplines (pp. 149–163). Dordrecht: M. Nijhoff.

    Google Scholar 

  • Wimsatt, W. C. (1979). Reductionism and reduction. In P. D. Asquith & H. E. Kyburg (Eds.), Current research in philosophy of science (pp. 352–377). East Lansing: Philosophy of Science Association.

    Google Scholar 

Download references

Acknowledgments

I thank Alan Love for helpful comments on earlier versions of this paper. The work on this essay was funded with Standard Research Grant 410-2008-0400 by the Social Sciences and Humanities Research Council of Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ingo Brigandt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brigandt, I. Beyond Reduction and Pluralism: Toward an Epistemology of Explanatory Integration in Biology. Erkenn 73, 295–311 (2010). https://doi.org/10.1007/s10670-010-9233-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10670-010-9233-3

Keywords

Navigation