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Abstract

We generalize the Kolmogorov axioms for probability calculus to obtain
conditions defining, for any given logic, a class of probability functions
relative to that logic, coinciding with the standard probability functions
in the special case of classical logic but allowing consideration of other
classes of “essentially Kolmogorovian” probability functions relative to
other logics. We take a broad view of the Bayesian approach as dictating
inter alia that from the perspective of a given logic, rational degrees of be-
lief are those representable by probability functions from the class appro-
priate to that logic. Classical Bayesianism, which fixes the logic as classi-
cal logic, is only one version of this general approach. Another, which we
call Intuitionistic Bayesianism, selects intuitionistic logic as the preferred
logic and the associated class of probability functions as the right class
of candidate representions of epistemic states (rational allocations of de-
grees of belief). Various objections to classical Bayesianism are, we argue,
best met by passing to intuitionistic Bayesianism – in which the proba-
bility functions are taken relative to intuitionistic logic – rather than by
adopting a radically non-Kolmogorovian, e.g. non-additive, conception
of (or substitute for) probability functions, in spite of the popularity of
the latter response amongst those who have raised these objections. The
interest of intuitionistic Bayesianism is further enhanced by the availabil-
ity of a Dutch Book argument justifying the selection of intuitionistic
probability functions as guides to rational betting behaviour when due
consideration is paid to the fact that bets are settled only when/if the
outcome betted on becomes known.

1 Introduction
It is a standard claim of modern Bayesian epistemology that reasonable epistemic
states should be representable by probability functions. There have been a number
of authors who have opposed this claim. For example, it has been claimed that epis-
temic states should be representable by Zadeh’s fuzzy sets, Dempster and Shafer’s
evidence functions, Shackle’s potential surprise functions, Cohen’s inductive prob-
abilities or Schmeidler’s non-additive probabilities.1 A major motivation of these
theorists has been that in cases where we have little or no evidence for or against p,
it should be reasonable to have low degrees of belief in each of p and ¬p, something

† Penultimate draft only. Please cite published version if possible. Final version published in Notre
Dame Journal of Formal Logic 44 (2003): 111Ð123. Thanks to Alan Hájek, Graham Oppy and, especially,
Lloyd Humberstone for comments and suggestions on various drafts of this paper.

1 For more details, see Zadeh (1978), Dempster (1967), Shafer (1976), Shackle (1949), Cohen (1977),
Schmeidler (1989).
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apparently incompatible with the Bayesian approach. There are two broad types of
response to this situation, the second of which shows the incompatibility just men-
tioned is more apparent than real. The first of these – much in evidence in the work
of the writers just cited – is to replace or radically reconstrue the notion of probabil-
ity taken by that approach to represent degrees of belief. The second – to be defended
here – seeks to maintain the core of standard probability theory but to generalize the
notion of a probability function to accommodate variation in the background logic
of the account; this allows us to respond to such issues as the low degree of belief
in a proposition and its negation by simply weakening the background logic from
classical to intuitionistic logic. Thus if Bayesianism is construed as in our opening
sentence, one way to respond to the objections of the heterodox writers listed above
is to trade in classical Bayesianism for intuitionistic Bayesianism. Since for many theo-
rists at least the motivation for their opposition to Bayesianism is grounded in either
verificationism or anti-realism, a move to a intuitionistic theory of probability seems
appropriate. Indeed, as Harman (1983) notes, the standard analysis of degrees of belief
as dispositions to bet leads naturally to a intuitionistic theory of probability. We give
a Dutch Book argument in defence of constructive Bayesianism in Section 4 below.

The appropriate generalization of the notion of a probability function makes ex-
plicit allowance for a sensitivity to the background logic. The latter we identify with
a consequence relation, such as, in particular, the consequence relation CL associ-
ated with classical logic or the consequence relation IL associated with intuitionistic
logic. To keep things general, we assume only that the languages under discussion
have two binary connectives: ∨ and ∧. No assumptions are made about how a conse-
quence relation on such a language treats compounds formed using these connectives,
though of course in the cases in which we are especially interested, CL and IL , such
compounds have the expected logical properties. We take the language of these two
consequences relations to be the same, assuming in particular that negation (¬) is
present for both. Finally, if A belongs to the language of a consequence relation ,
then we say that A is a -thesis of A and that A is a -antithesis if for all B in that
language A B . (Thus the -theses and antitheses represent the logical truths and
logical falsehoods as seen from the perspective of .) We are now in a position to give
the key definition.

If is a consequence relation, then a function Pr mapping the language of to
the real interval [0,1] is a -probability function if and only if the following conditions
are satisfied:

P0) Pr(A) = 0 if A is a -antithesis.
(P1) Pr(A) = 1 if A is a -thesis
(P2) If A B then Pr(A) ≤ Pr(B)
(P3) Pr(A) + Pr(B) = Pr(A∨ B) + Pr(A∧ B)

If is CL , then we call a -probability function a classical probability function; if
is IL we call a -probability function an intuitionistic probability function. The

position described above as constructive Bayesianism would replace classical proba-
bility functions by intuitionistic probability functions as candidate representations
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of reasonable epistemic states. Note that classical probability functions in this sense
are exactly those obeying the standard probability calculus axioms. In paricular, the
familiar negation axiom dictating that Pr(¬A) = 1 – Pr(A) emerges as a by-product of
the interaction between the general (i.e., logic-independent) condition (P3) and, via
(P0) and (P1), the logic-specific facts that A ∧ ¬A is a CL -antithesis and A ∨ ¬A is a
CL -thesis for any A.

Although it is these two kinds – intuitionistic and classical – of probability func-
tions we shall be dealing with specifically in what follows, we emphasize the gen-
erality of the above definition of a -probability function, and invite the reader to
consider what effect further varying the choice of has on the behaviour of such
functions. Our attention will be on the comparative merits of CL and IL in this
regard. (It may have occurred to the reader in connection with (P3) above that we
might naturally have considered a generalized version of (P3) for ‘countable additiv-
ity’. Whether such a condition ought be adopted will turn on some rather difficult
questions concerning the use of infinities in constructive reasoning; let us leave it as
a question for further research. We have stated (P3) in its finitary form so as not to
require that intuitionistic probability functions satisfy the more contentious general
condition.)

In the following section we shall review some of the motivations for intuition-
istic Bayesianism. The arguments are rather piecemeal; they are designed to show
that given the philosophical commitments various writers in the field have expressed
they would be better off taking this route, i.e., focussing on the class of intuitionistic
probability functions, than – as many of them have suggested –abandoning Bayesian-
ism in our broad sense. In particular, we shall urge that moves in the latter direction
which involve abandoning (what we shall call) the Principle of Addition are seriously
undermotivated.

One aspect of the Bayesian perspective which we have not considered concerns
the dynamics rather than the statics of epistemic states: in particular the idea that
changes in such states are governed for rational agents by the principle of condition-
alizing on new information. This requires that we have a dyadic functor available
for expressing conditional probabilities. Accordingly, where Pr is for some conse-
quence relation a -probability function, we favour the standard account and take
the associated conditional -probability function Pr( · , · ) to be given by Pr(A,B)
= Pr(A ∧ B)/Pr(B) when Pr(B) 6= 0, with Pr(A,B) undefined when Pr(B) = 0. The
intention, of course, is that Pr(A,B) represents the conditional probability of A given
B . We defer further consideration of conditional probability until the Appendix.

2 Motivating Intuitionistic Bayesianism
There are four main reasons for grounding preferring intuitionistic over classical
probability functions as representing the range of reasonable epistemic states. These
are: (1) a commitment to verificationism, (2) a commitment to anti-realism, (3) preser-
vation of the principle of Addition, and (4) avoidance of direct arguments for the or-
thodox approach. Now some of these will be viewed by some people as bad reasons
for adopting the given position, a reaction with which it is not hard to sympathise.
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In particular, the verificationist and anti-realist elements of the theory might well
be viewed as negatives. These arguments are principally directed at showing that by
their own lights, various opponents of classical Bayesianism would do better to adopt
the intuitionistic Bayesian position than some still more heterodox non-Bayesian ac-
count.

2.1 A standard objection to classical Bayesianism is that it has no way of rep-
resenting complete uncertainty. Because of the failures of Laplace’s principle of in-
difference, it can’t be said that uncertainty about p is best represented by assigning
credence 1/2 to p. Heterodox approaches usually allow the assignment of credence 0
to both p and ¬p when an agent has no evidence at all as to whether or not p is true.
Because these approaches generally require an agent to assign credence 1 to classical
tautologies, including p ∨ ¬p, these theories must give up the following Principle of
Addition.

Addition For incompatible A, B : Bel(A∨ B) = Bel(A) + Bel(B).

“Bel(A)” is here used to mean the degree of belief the agent has in A, and “incompat-
ible” to apply to A and B in which for some favoured consequence relation , the
conjunction of A with B is a -antithesis. Such conditions as Addition are of course
taken not as descriptive theories about all agents, since irrational agents would serve
as counterexamples. Rather, they are proposed coherence constraints on all rational
agents.

The Principle of Addition is stated in terms of degrees of belief, or credences.
Where no ambiguity results we also use the same term to refer to the correspond-
ing principle applied to -probability functions, with incompatibility understood in
terms of (as just explained). Now in some writings (particularly Shafer’s) the rea-
son suggested for giving up Addition is openly verificationist. Shafer says that when
an agent has no evidence for p, they should assign degree of belief 0 to p. Degrees of
belief, under this approach, must be proportional to evidence.2 In recent philosoph-
ical literature, this kind of verificationism is often accompanied by an insistence that
validity of arguments be judged by the lights of IL rather than CL .

A similar line of thought is to be found in Harman (1983). He notes that when
we don’t distinguish between the truth conditions for a sentence and its assertibility
conditions, the appropriate logic is intuitionistic. And when we’re considering gam-
bles, something like this is correct. When betting on p we don’t, in general, care if p
is true as opposed to whether it will be discovered that p is true. A p-bet, where p
asserts the occurrence of some event for instance, becomes a winning bet, not when
that event occurs, but when p becomes assertible. So perhaps not just verificationists
like Shafer, but all those who analyse degrees of belief as propensity to bet should
adopt constructivist approaches to probability.

To see the point Harman is making, consider this example. We are invited to
quote for p-bets and ¬p-bets, where p is O. J. Simpson murdered his wife. If we are to
take the Californian legal system literally, the probability of that given the evidence

2This assumption was shared by many of the participants in the symposium on probability in legal
reasoning, reported in the Boston University Law Review 66 (1986).
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is strictly between one-half and one. To avoid one objection, these bets don’t just
pay $1 if the bettor guesses correctly. Rather they pay $1 invested at market rates of
interest at the time the bet is placed. The idea is that if we pay x cents for the bet
now, when it is discovered that we have bet correctly we will receive a sum of money
that is worth exactly as much as $1 now. Still, we claim, it might be worthwhile to
quote less than 50 cents for each of the bets. Even if we will receive $1 worth of
reward if we wager correctly, there is every possibility that we’ll never find out. So
it might be that placing a bet would be a losing play either way. To allow for this,
the sum of our quotes for the p-bet and the ¬p-bet may be less than $1. As Harman
points out, to reply by wielding a Dutch Book argument purporting to show that this
betting practice is incoherent would be blatantly question-begging. That argument
simply assumes that p ∨ ¬p is a logical truth, which is presumably part of what’s at
issue. (In our terminology, this disjunction has the status of a CL -thesis which is not
a IL -thesis.)

Harman’s point is not to argue for a intuitionistic approach to probability. Rather,
he is arguing against using probabilistic semantics for propositional logic. Such an ap-
proach he claims would be bound to lead to intuitionistic logic for the reasons given
above. He thinks that, since this would be an error, the move to probabilistic seman-
tics is simply misguided. Whatever we think of this conclusion, we can press into
service his arguments for intuitionistic Bayesianism.

2.2 The second argument for this approach turns on the anti-realism of some het-
erodox theorists. So George Shackle, for example, argues that if we are anti-realists
about the future, we will assign positive probability to no future-directed proposi-
tion. The following summary is from a sympathetic interpreter of Shackle’s writing.

[T]here is every reason to refuse additivity: [it] implies that the certainty
that would be assigned to the set of possibilities should be ‘distributed’
between different events. Now this set of events is undetermined as the
future – that exists only in imagination – is. (Ponsonnet, 1996, 171)

Shackle’s anti-realism is motivated by what most theorists would regard as a philo-
sophical howler: he regards realism about the future as incompatible with human
freedom, and holds that human beings are free. The second premise here seems harm-
less enough, but the first is notoriously difficult to motivate. Nevertheless, there are
some better arguments than this for anti-realism about the future. If we adopt these,
it isn’t clear why we should ‘assign certainty’ to the set of possibilities.

Shackle is here assuming that for any proposition p, even a proposition about the
future, p ∨ ¬p is now true, although neither disjunct is true. Given his interests it
seems better to follow Dummett here and say that if we are anti-realists about a sub-
ject then for propositions p about that subject, p ∨¬p fails to be true. Hence we have
no need to ‘assign certainty to the set of possibilities’. Or perhaps more accurately,
assigning certainty to the set of possibilities does not mean assigning probability 1
to p ∨ ¬p; in particular, condition (P1) on -probability functions does not require
this when we choose as IL .
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2.3 The third motivation for adopting an intuitionistic approach to probability
is that it allows us to retain the Kolmogorov axioms for probability, in particular
the Principle of Addition. This principle has, to my mind at least, some intuitive
motivation. And the counterexamples levelled against it by heterodox theorists seem
rather weak from the intuitionistic Bayesian perspective. For they all are cases where
we might feel it appropriate to assign a low probability to a proposition and its nega-
tion3. Hence if we are committed to saying Pr(A ∨ ¬A) = 1 for all A, we must give
up the Principle of Addition. But the intuitionistic Bayesian simply denies that in
these cases Pr(A ∨ ¬A) = 1, so no counterexample to Addition arises. This denial
is compatible with condition (P1) on Pr’s being a IL -probability function since, as
already noted, A∨ ¬A is not in general a IL -thesis.

2.4 The final argument for taking an intuitionistic approach is that it provides
a justification for rejecting the positive arguments for classical Bayesianism. These
provide a justification for requiring coherent degrees of belief to be representable by
the classical probability calculus. There are a dizzying variety of such arguments
which link probabilistic epistemology to decision theory, including: the traditional
Dutch Book arguments found in Ramsey (1926), Teller (1973) and Lewis (1999); de-
pragmatized Dutch Book arguments which rely on consistency of valuations, rather
than avoiding actual losses, as in Howson and Urbach (1989), Christensen (1996) and
Hellman (1997); and arguments from the plausibility of decision theoretic constraints
to constraints on partial beliefs, as in Savage (1954), Maher (1993) and Kaplan (1996).
As well as these, there are arguments for classical Bayesianism which do not rely
on decision theory in any way, but which flow either directly from the definitions
of degrees of belief, or from broader epistemological considerations. A summary
of traditional arguments of this kind is in Paris (1994). Joyce (1998) provides an
interesting modern variation on this theme.

All such arguments assume classical – rather than, say, intuitionistic – reasoning
is appropriate. The intuitionist has a simple and principled reason for rejecting those
arguments. The theorist who endorses CL when considering questions of inference,
presumably lacks any such simple reason. And they need one, unless they think it
appropriate to endorse one position knowing there is an unrefuted argument for an
incompatible viewpoint.

We are not insisting that non-Bayesians will be unable to refute these arguments
while holding on to CL . We are merely suggesting that the task will be Herculean.
A start on this project is made by Shafer (1981), which suggests some reasons for
breaking the link between probabilistic epistemology and decision theory. Even if
these responses are successful, such a response is completely ineffective against argu-
ments which do not exploit such a link. As we think these are the strongest argu-
ments for classical Bayesianism, non-Baeyesians have much work left to do. And it
is possible that this task cannot be completed. That is, it is possible that the only
questionable step in some of these arguments for classical Bayesianism is their use of

3Again the discussion in (Shafer, 1976, ch. 2) is the most obvious example of this, but similar examples
abound in the literature.
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non-constructive reasoning. If this is so only theorists who give up CL can respond
to such arguments.

In sum, non-Bayesians need to be able to respond to the wide variety of arguments
for Bayesianism. Non-Bayesians who hold on to CL must do so without questioning
the implicit logical assumptions of such arguments. Given this restriction, producing
these responses will be a slow, time-consuming task, the responses will in all likeli-
hood be piecemeal, providing little sense of the underlying flaw of the arguments,
and for some arguments it is possible that no effective response can be made. Intu-
itionistic Bayesians have a quick, systematic and, we think, effective response to all
these arguments.

3 More on Intuitionistic Probability Functions
Having explained the motivation for intuitionistic Bayesianism, let us turn our at-
tention in greater detail to its main source of novelty: the intuitionistic probability
functions. We concentrate on logical matters here, in the following section justifying
the singling out of this class of probability functions by showing that an epistemic
state represented by Bel is invulnerable to a kind of Dutch Book if and only if Bel is
an intuitionistic probability function.

For the case of specifically classical probability functions, the conditions (P0)–(P4)
of Section 1 involve substantial redundancy. For example, we could replace (P2) and
(P3) by – what would in isolation be weaker conditions – (P2′) and (P3′).

(P2′) If A B then Pr(A) = Pr(B)
(P3′) If ¬(A ∧ B) then Pr(A∨ B) = Pr(A) + Pr(B)

However, in the general case of arbitrary -probability functions (or rather: those
for which ¬ is amongst the connectives of the language of ), such a replacement
would result in a genuine weakening, as we may see from a consideration of the class
of IL -probability functions. While both (P2′) and (P3′) are satisfied for as IL , the
class of functions Pr satisfying (P0), (P1), (P2′) and (P3′) is broader (for this choice of

) than the class of intuitionistic probability functions. To see this, first note that
the function P, defined immediately below, satisfies (P0), (P1), (P2) and (P3′), but not
(P3).

P (A) =

(

1 if p ∨ q IL A
0 otherwise

(Here p and q are a pair of atomic sentences.) To see that (P3′) is satisfied, assume
P(A ∨ B) = 1 and IL ¬(A ∧ B). Then p ∨ q IL A ∨ B , and B IL ¬A. Hence
p ∨ q IL A ∨ ¬A, but this only holds if either (1) p ∨ q IL A or (2) p ∨ q IL ¬A.
(For if p ∨ q IL A ∨ ¬A, then p IL A ∨ ¬A and q IL A ∨ ¬A, whence by a gener-
alization, due to Harrop, of the Disjunction Property for intuitionistic logic, either
p IL A or p IL ¬A and similarly either q IL A or q IL ¬A. Thus one of the following
four combinations obtains: (a) p IL A and q IL A, (b) p IL A and q IL ¬A, (c) p IL ¬A
and q IL A, (d) p IL ¬A and q IL ¬A. But cases (b) and (c) can be ruled out since they
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would make p and q IL -incompatible, contradicting their status as atomic sentences,
and from (a) and (d), (1) and (2) follow respectively.) If (1) first holds then P(A) = 1,
as required. If (2) holds then p ∨ q IL (A ∨ B) ∧ ¬A and (A ∨ B) ∧ ¬A IL B , so P(B)
= 1. The other cases are trivial to verify and are left to the reader.

To see (P2) is needed (for the current choice of ), as opposed to just (P2′), con-
sider the following Kripke tree.

1

2 3¬p

p4

We introduce a “weighting” function w by setting w(1) = 0.2, w(2) = 0.3, w(3) = -0.1
and w(4)= 0.6. For any A, let P(A)= Σw(i), where the summation is across all points
i that force A. So P( p) = 0.6 and P(¬¬p) = 0.5, contradicting (P2). But (P0), (P1),
(P2′) and (P3) are all satisfied, showing that (P2) is in the general case not derivable
from these three conditions.

4 Bets and Intuitionistic Probability Functions
Say that an A-bet is a bet that pays $1 if A and nothing otherwise. These will some-
times be called bets on A. In this theory, as in real life, it is possible that neither A-bets
nor ¬A-bets will ever be collected, so holding an A-bet and a ¬A-bet is not necessarily
as good as holding $1. An A-bet becomes a winning bet, i.e. worth $1, just when
it becomes known that A. We will assume that bookmakers and punters are both
logically proficient and honest, so that when a B -bet becomes a winning bet and B
IL A, then an A-bet is a winning bet. The picture underlying this story is the Kripke
tree semantics for intuitionistic logic. Bettors are thought of as being at some node
of a Kripke tree, an A-bet wins at that stage iff A is forced by that node. Bettors do
not know that any future nodes will be reached, so they cannot be confident that all
bets on classical tautologies ( CL -theses) will be winning. And more importantly, we
take it that an (A ∨ B)-bet wins if and only if an A-bet wins or a B -bet wins. Again
this mirrors the fact that A∨ B is forced at a node iff A is forced or B is forced.

Finally, to get the Dutch Book style argument going, assume that for any sequence
of bets on A1, A2, ..., Ak, the bettor values the sequence at $(Bel(A1) + Bel(A2) + ...
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+ Bel(Ak)). This is obviously unrealistic and economically suspect4, but is perhaps a
useful analogy. Then Bel leads to coherent valuations in all circumstances iff Bel is a
intuitionistic probability function. That is, if Bel is not an intuitionistic probability
function (henceforth: IPF) then there will be two finite sequences of bets S1 and S2
such that S1 is guaranteed to pay at least as much as S2 in all circumstances, but S2 is
given higher value by the agent. For simplicity Bel will be called incoherent if this
happens, and coherent otherwise. If Bel is an IPF there are no two such sequences, so
it is coherent.

If Bel is not an IPF then we just need to look at which axiom is breached in order
to construct the sequences. For example, if (P3) is breached then let the sequences be
〈A, B〉 and 〈A ∨ B , A ∧ B〉. The same number of propositions from each sequence
are forced at every node of every Kripke tree, so the coherence requirement is that
the two sequences receive the same value. But ex hypothesi they do not, so Bel is inco-
herent. Similar proofs suffice for the remaining axioms (the remaining conditions on

-probability functions, that is, as they apply in the special case of = IL ).
To show that if Bel is an IPF it is coherent, we need some more notation. Let

〈A1, ..., Ak〉 be a sequence of propositions. Then say cn, k is the proposition true iff at
least n of these are true. So c2,3 is the proposition (A1 ∧ A2) ∨ (A1 ∧ A3) ∨ (A2 ∧ A3).
Assuming Bel is a IPF, we prove the following lemma holds for all k:

Lemma:
k
∑

i=1

Bel(Ai ) =
k
∑

i=1

Bel(ci ,k )

The proof is by induction on k. For k=1 and k=2, the proof is given by the axioms.
So it remains only to complete the inductive step. For ease of reading in the proof we
write A for Bel(A) where no ambiguity would result.

By the inductive hypothesis we have:

k
k+1
∑

i=1

Ai = k
k
∑

i=1

ci ,k + kAk+1

= (k − 1)
k
∑

i=1

ci ,k +
k
∑

i=1

ci ,k + kAk+1

= (k − 1)
k
∑

i=1

ci ,k +
k
∑

i=1

(ci ,k ∨Ak+1)+ (ci ,k +Ak+1) by k applications of (P3)

Since
k+1
∑

i=1

Ai =
k
∑

i=1

+Ak+1 =
k
∑

i=1

ci ,k +Ak+1, this equation simplifies to

k+1
∑

i=1

Ai +(k − 1)Ak+1 =
k
∑

i=1

(ci ,k ∨Ak+1)+ (ci ,k +Ak+1)

4 It is economically suspect because, in simplified terms, Bel(A) gives at best the use-value of an A-bet,
but this is distinct from the exchange-value the agent places on the bet. And it is the exchange-value that
determines her patterns of buying and selling.
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Since ci ,k ∨Ak+1 ci ,k+1 ∨Ak+1 and ci ,k ∧Ak+1 ci+1,k+1 ∧Ak+1 we have:
k+1
∑

i=1

Ai +(k − 1)Ak+1 =
k
∑

i=1

(ci ,k+1 ∨Ak+1)+
k
∑

i=1

(ci+1,k+1 ∧Ak+1)

Now, c1,k+1∨ Ak+1 ci ,k+1 and ck+1,k+1 ∧ Ak+1 ck+1,k+1 from the definitions
of c . So substituting in these equivalences and slightly renumbering, we get:
k+1
∑

i=1

Ai +(k − 1)Ak+1 = ci ,k+1+ ck+1,k+1+
k−1
∑

i=1

(ci ,k+1 ∨Ak+1)+
k−1
∑

i=1

(ci+1,k+1 ∧Ak+1)

Regrouping the last two summations and applying (P3),
k+1
∑

i=1

Ai +(k − 1)Ak+1 = ci ,k+1+ ck+1,k+1+
k−1
∑

i=1

ci+1,k+1+Ak+1

=
k+1
∑

i=1

ci ,k+1+(k − 1)Ak+1

And cancelling out the second term on each side gives us the result we want. From
this it follows immediately that Bel is coherent. Let S1 and S2 be any two sequences
such that S1 is guaranteed to pay as much as S2. That is, that S2 pays $n entails S1 pays
at least $n for all n. Now the lemma shows that for each sequence of bets, their value
equals the sum of the probability that they’ll pay at least n for all values of n, up to
the length of the sequence. So by as many appeals to (P2) as there are bets in S1, we
have that the value of S2 is less than or equal to the value of S1, as required.

Given the well-known problems with Dutch Book arguments5, it might be won-
dered if we can give a different justification for the axioms. Indeed it may be consid-
ered helpful to have a semantics for the logic which does not refer to betting practices.
One possibility is to say that IPFs are normalised measures on Kripke trees. The idea
is that the probability of a proposition is the measure of the set of points at which the
proposition is forced. It is straightforward to give a non-constructive proof that the
axioms are sound with respect to these semantics, but making this proof constructive
and providing any proof that the axioms are complete is a harder task. So for now
this Dutch Book justification for the axioms is the best available.

Appendix: The Morgan–Leblanc–Mares Calculus
In a series of papers (Morgan and LeBlanc (1983a,b), Morgan and Mares (1995)) an
approach to probability grounded in intuitionistic logic has been developed. The
motivation is as follows. A machine contains an unknown set of propositions S,
which need not be consistent. Pr(A, B) is the maximal price we’d pay for a bet that
S and B intuitionistically entail A (S, A IL B, that is). By standard Dutch Book ar-
guments, we obtain axioms for a probability calculus which has some claim to being
constructivist. The point of this section is to register the shortcomings of this ap-
proach as a theory of uncertain reasoning from evidence – to point out, that is, the

5 See Maher (1993) for criticisms of the most recent attempts at successful Dutch Book arguments and
references to criticisms of earlier attempts.
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implausibility of interpreting the axioms they derive as normative constraints on de-
grees of belief. (It should be noted from the start that this was not the advertised
purpose of their theory, and at least one of the authors (Mares) has said (p.c.) that
the primary purpose of constructing these theories was to generalise of the triviality
results proved in Lewis (1976). So the purpose of this appendix may be to argue for
something that isn’t in dispute: that these theories can’t be pushed into double duty
as theories of reasoning under uncertainty.)

The axiomatisations given in the Morgan and Leblanc papers differs a little from
that given in the Morgan and Mares paper, but the criticisms levelled here apply to
their common elements. In particular, the following four axioms are in both sets.

(C1) 0 ≤ Pr(A, B) ≤ 1
(C2) Pr(A, A∧ B) = 1
(C3) Pr(A, B ∧ C) · Pr(B , C) = Pr(B , A∧ C) · Pr(A, C)
(C4) Pr(A⊃ B , C) = Pr(B , A∧ C)

These four are enough to get both the unwanted consequences. In particular, from
these we get the ‘no negative evidence’ rule: Pr(A, B ∧ C)≥ Pr(A, B). The proof is in
Morgan and Mares (1995) Now given the semantic interpretation they have adopted,
this is perhaps not so bad. After all, if we can prove A from B and S, we can certainly
prove it from B ∧ C and S, but the converse does not hold. However from our
perspective this feature seems a little implausible. In particular, if C is ¬A, it seems
we should have Pr(A, B ∧ ¬A) = 0 unless B IL A, in which case Pr(A, B ∧ ¬A) is
undefined.

It shouldn’t be that surprising that we get odd results given (C4). Lewis (1976)
shows that adopting it for a (primitive or defined) connective ‘→’ within the classical
probability calculus leads to triviality. And neither the arguments he uses there nor
the arguments for some stronger conclusions in Lewis (1999) rely heavily on classical
principles. The papers by Morgan and Leblanc don’t discuss this threat, but it is
taken discussed in detail in Morgan and Mares (1995). Morgan and Mares note that
it’s possible to build a theory based on (C1) to (C4) that isn’t trivial in the sense
Lewis described. But these theories still have enough surprising features that they
aren’t suitable for use as a theory of reasoning under uncertainty.

In intuitionistic logic we often take the falsum ⊥ as a primitive connective, func-
tioning as a IL -antithesis. Hence a set S is intuitionistically consistent iff we do not
have S IL ⊥. Now the following seems a plausible condition:

(C⊥) For consistent B , Pr(⊥, B) = 0.

Given consistent evidence, we have no evidence at all that the falsum is true. Hence
we should set the probability of the falsum to 0 (as required by our condition (P0)
from Section 1). Given Morgan and Leblanc’s original semantic interpretation there
is less motivation for adopting (C⊥), since S might be inconsistent. The restriction
to consistent B in (C⊥) is imposed because we take Pr(A, B) to be undefined for
inconsistent B , as explained at the end of Section 1. (In more detail: if B is a IL -
antithesis then Pr(B) = 0 for any intuitionistic probability function Pr, whence the
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undefinedness of Pr(A, B) by the remarks at the end of that section.) Morgan, Leblanc
and Mares take it to be set at 1. The choice here is a little arbitrary, the only decisive
factor being apparently the easier statement of certain results. Now if we take the
falsum as a primitive the next move is usually to introduce ¬ as a defined connective,
as follows.

¬A=df A⊃ ⊥

Assuming A ∧ B is consistent, it follows from (C4) and (C⊥) that Pr(¬A, B) = 0.
Again, from our perspective this is an implausible result. The main purpose of this
appendix has been to show that the Morgan–Leblanc–Mares probability calculus can-
not do the work Bayesians want a probability calculus to do. That is, it is implausible
to regard their Pr(A, B) as the reasonable degree of belief in A given B . Hence the ac-
count of conditional probability these authors offer diverges from the intuitionistic
Bayesianism that we have been urging heterodox theorists to endorse.
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