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Abstract 
 Confronted with the problem of induction, Hans Reichenbach accepts that we cannot justify that induction 
is reliable. He tries to solve the problem by proving a weaker proposition: that induction is an optimal 
method of prediction, because it is guaranteed not to be worse and may be better than any alternative. 
Regarding the most serious objection to his approach, Reichenbach himself hints at an answer without 
spelling it out. In this paper, I will argue that there are two workable strategies to rehabilitate Reichenbach’s 
account. The first leads to the widely discussed method of meta-induction, as proposed by Gerhard Schurz. 
The second strategy has not been suggested thus far. I will develop the second strategy and argue for it 
being, in some respects, superior to the first and closer to Reichenbach’s own position. The strategy is based 
on Reichenbach’s idea that the inductive straight rule is not only applicable on the object but also on the 
method level. He does not spell out how exactly this insight is supposed to save his account. But he seems 
to assume that nothing more than the straight rule and the different levels of its application is needed for 
this purpose. The strategy introduced in this paper illustrates that this assumption is correct. 
 
 
 
 
1 Introduction 

 
Inductive reasoning is a central tool in science. The following are simple schemata of 
certain forms of inductive inferences (enumerative induction (I), (II); statistical induction 
(III), (IV)): 
 

 
As illustrated in these schemata, inductive inferences draw conclusions from the 
previously observed to the yet unobserved; in this sense induction is a method of 
prediction. Some forms of inductive inference predict something about the next 
previously unobserved instance of an event (see (I), (III)), while others predict something 
about all of them (see (II), (IV)). 

I) 
  (Observed) X1 is F 

(Observed) X2 is F 
(Observed) X3 is F 
… 
(Observed) Xn is F 
 
Thus: (Unobserved) Xn+1 is 
F 

II) 
(Observed) X1 is F 
(Observed) X2 is F 
(Observed) X3 is F 
… 
(Observed) Xn is F 
 
Thus: All X are F 

III) 
p% of the observed X are F 
 
Thus: With probability p, the 
next unobserved X is F. 

IV) 
p% of the observed X 
are F 
 
Thus: p% of all X are 
F. 
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However, whether induction is a reliable method of prediction—that is, whether it 
leads from true premises to true conclusions most of the time—depends on the uniformity 
principle. The uniformity principle states (approximately) that the hitherto-unobserved 
cases of a phenomenon resemble those cases hitherto observed. It can be argued, however, 
that this principle is justified neither a priori nor a posteriori. It is not justified a priori 
because to justify that the empirical world behaves uniformly, we have to look at it. There 
are simply no a priori reasons to assume the uniformity of nature. Furthermore, the 
principle is not justified a posteriori because any attempt to do so would be circular (or 
would lead into a regress): such an attempt would point to the fact that we have 
experienced nature behaving uniformly in the past and predict that it will continue to do 
so in the future—thereby presupposing that which is supposed to be justified in the first 
place, namely that the world behaves uniformly. However, because every justification is 
either a priori or a posteriori, the uniformity principle and thereby the reliability of 
induction is not justified at all. This is the problem of induction.1 In times of growing 
scepticism about science, this fundamental problem in epistemology also gains relevance 
from a social and political point of view. A satisfactory solution to the problem should 
therefore be dialectically effective in that it should be able to convince sceptics with respect 
to science and adherents of other nonscientific prediction methods. 

How can we solve the problem of induction? Is there a way to block the argument 
that leads to the problem? Throughout the history of philosophy, various affirmative 
answers to this question have been suggested. Immanuel Kant ([1998]), for example, 
famously argued that there are indeed a priori reasons to assume that the experientially 
accessible world behaves uniformly. Others have defended an a posteriori justification of 
induction by arguing that the kind of circularity involved (namely, rule-circularity in 
contrast to premise-circularity) is in fact epistemically acceptable (Papineau [1992]; Van 
Cleve [1984]). Still others have accepted that Hume’s argument cannot be blocked but take 
the position that science ultimately does not depend on inductive procedures (Popper 
[2002]). None of these widely discussed reactions, however, has been met with widespread 
approval. 

In this paper, I will focus on the vindication of induction suggested by Hans 
Reichenbach ([2006], §31; [1949], §91). Reichenbach accepts the conclusion of Hume’s 
sceptical argument; that is, he accepts that we cannot justify that induction is a reliable 
method of prediction. However, in his view we can justify that induction is optimal in the 
following sense: If there is any method that reliably infers from the observed to the 
unobserved, it is the inductive method. This attempted defence of induction does not 
amount to a justification of the claim that induction is reliable, but to something weaker: 
induction is in any case not worse, but possibly better than any alternative procedure—
for example, believing self-proclaimed clairvoyants, faith healers, religious leaders, or 
political demagogues.  

Even if Reichenbach’s proposal leads to something weaker than we might have 
hoped for, the proposal, if successful, would still amount to an important achievement. 
This is especially true in view of the increasing non-academic relevance of the problem. If 
Reichenbach is right, then we can rationally defend induction against attacks from 
advocates of nonscientific methods. If he is correct, then with respect to inductive 

																																																								
1 For the classical source of the problem, see (Hume [2009], Book 1, part iii, sec. 6; [2010], sect. iv); for a 
useful overview to the discussion concerning the problem, see (Henderson [2018]). 
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methods—and only with respect to them—it can be proven that they are guaranteed to 
be as good as alternative methods, and possibly better.2  

Unfortunately, Reichenbach’s proposal has a number of difficulties, many of 
which he was aware of. With respect to what is probably the most serious problem, he 
also hinted at a solution. However, he never spelled out a solution in detail. In this paper, 
I will argue that there are basically two strategies to work out Reichenbach’s vague remarks 
on how to rehabilitate his initial solution to the problem of induction. The first strategy 
leads to the method of meta-induction proposed by Gerhard Schurz, which has received 
much attention––and rightly so. Schurz’s reflections and the results concerning meta-
induction have far-reaching and fascinating consequences for a number of epistemological 
issues (Schurz [2008]; [2018]; [2019]; [forthcoming]). In contrast, the second strategy has 
not been discussed thus far. In this paper, I will develop this second strategy and argue for 
it being, in some respects, superior to the first.  

To avoid misunderstandings, it should be mentioned at the outset that I cannot 
discuss––let alone solve––every problem that arises with respect to inductive reasoning. 
For example, I will not address the so-called ‘new-riddle of induction’ raised by Goodman 
([1955], sect. 3.4).3 My focus is solely on addressing the main difficulties of Reichenbach’s 
interesting response with respect to the aforementioned induction-sceptic argument. 

In Section 2, I will first outline Reichenbach’s solution and address the central 
difficulties of his proposal. Additionally, I will present his own hints on how to solve the 
most serious problem of his approach. In Section 3, I will introduce the two strategies of 
spelling out Reichenbach’s hints. In section 4, I will discuss the first strategy in more detail 
and, in this context, introduce the main features of Gerhard Schurz’s meta-induction. 
Then, in Section 5, I will discuss the second strategy and establish its advantages over the 
first. I will end the investigation with a brief summary in Section 6. 
 
 
 
2 Reichenbach’s Vindication of Induction 

 
Reichenbach accepts that there are neither a priori nor a posteriori reasons for believing 
that induction leads reliably from true premises to true conclusions. However, he argues 
that it is nevertheless epistemically rational to use the method of induction. He argues that 
with respect to our epistemic goal of maximizing the set of true beliefs, induction is still 
the best method available to us. It is optimal in the following sense: With respect to our 
epistemic goal, it is guaranteed that the method is at least not worse and possibly better 
than alternative procedures. If the world behaves uniformly then induction is better, and 
if the world does not behave uniformly then induction is at least not worse than alternative 
noninductive methods. Thus, within Reichenbach’s suggestion, it is not the belief in the 
reliability of induction that is justified, but the decision to hold on to induction as a 
particular belief-forming method. That is why Reichenbach’s defence is sometimes called 
a ‘pragmatic vindication of induction’ (Feigl [1950]). It is important to note, however, that 
Reichenbach’s best alternative approach remains an epistemic defence insofar as the 

																																																								
2 Note that Reichenbach does not claim that it can be proved that inductive methods are the only methods 
that are optimal in this respect (i.e., he does not argue that induction is a dominant prediction strategy). He 
rather claims that it is the only method for which it can be proven that it is optimal (Schurz [2008], p. 303). 
3 For interesting recent discussions of this problem see, for example, (Freitag ([2015]; Zinke ([2020]). 
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inductive method is supposed to be optimal with respect to our epistemic goal of 
maximizing the set of true beliefs and not with respect to any other non-epistemic aim. 

Why does Reichenbach think that induction is optimal? The answer to this 
question depends on his characterization of uniformity and his specification of the 
inductive method, both of which in turn depend on his probabilistic epistemology together 
with a frequentist interpretation of probability.  

Suppose we have observed that out of 1,000 people who ate a certain kind of 
mushroom—let’s say a death cap—800 people died. Thus, we have observed the relative 
frequency fn of an incident m (dying-after-death-cap-consumption) in n cases (of death-
cap-consumption). In our example: f1000=8/10=0.8. Reichenbach introduces the notion of 
a ‘limiting relative frequency’ as follows: ‘The frequency fn has a limit at p, if for any given 
sufficiently small number ϵ there is an n such that fn is within p ±	ϵ and remains within 
this interval for all the rest of the series’ (Reichenbach [1938/2006], p. 351). Thus, fn has a 
limit, if for any extension of the series of observations, at some point the frequency will 
continue to fall within a small interval. 

If the world behaves uniformly, then such limiting relative frequencies exist. Let 
us suppose that we have reached the limit in our example after 1,000 observed incidents, 
then the limiting relative frequency of dying-after-death-cap-consumption is close to 0.8; 
in Reichenbach’s words: it is within the interval 0.8 ±	ϵ. The frequency will not change 
drastically any further, no matter how many more observations we will make in the future. 
If, on the other hand, the world does not behave uniformly, then no limiting relative 
frequencies exist. In this case the relative frequency of incident m (dying-after-death-cap-
consumption) in n cases (of death-cap-consumption) can change drastically with any 
extension of the series (Reichenbach [2006], p. 350).  

Thus, Reichenbach specifies what it means to say that the world behaves uniformly 
via recourse to the notion of ‘limiting relative frequency’. To understand his vindication 
of induction, we also have to clarify how he characterizes the method of induction. In his 
view induction is ‘a procedure in which the relative frequency observed statistically is 
assumed to hold approximately for any future prolongation of the series’ (Reichenbach 
[2006], p. 340). This method simply demands that we take the current observed relative 
frequency as the limiting frequency. Reichenbach calls this the ‘the principle of induction’, 
but it is today best known as the ‘straight rule’. In the context of a frequentist interpretation 
of probability, this characterization fits well with the schemata of inductive inferences 
given in section 1—where enumerative inductive inferences (I)–(II) can be understood as 
special cases of statistical inductive inferences (III)–(IV).  

Of course, the straight rule will deliver false results at the beginning of the series 
of observations, because it will map random fluctuations in the sample frequency. In the 
long run, however, the straight rule is guaranteed to determine the correct limiting relative 
frequency—provided there is such a limit. With Reichenbach, we can therefore hold that 
if the world behaves uniformly—that is, if there are limiting relative frequencies, then the 
inductive method is reliable—that is, then the straight rule will correctly determine the 
limit in the long run. Furthermore, if the world does not behave uniformly, then no 
limiting frequencies exist, and no method will find them. 

We are now in a position to formulate the argument that is supposed to establish 
the optimality of induction: 

 
(i) Either the world behaves uniformly and there are, thus, limiting relative 

frequencies, or not. 
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(ii) If the world behaves uniformly and there are limiting relative frequencies, then 
induction is in the long run a successful method of prediction (i.e., then 
induction is guaranteed to determine the limiting relative frequencies in the 
long run). 

(iii) If the world does not behave uniformly and there are no limiting relative 
frequencies, then neither inductive nor noninductive methods of prediction 
are successful. 

(iv) Therefore, induction is the optimal method of prediction: it is guaranteed not 
to be worse and possibly better than noninductive methods. 
 

As a defence of induction, this argument invites several objections. First, in the argument 
the goal of inductive inferences is restricted to finding limiting relative frequencies. 
However, not all forms of scientific reasoning can be reduced to this task. Thus, the 
argument cannot prove that scientific reasoning in general is optimal. This remark does 
not amount to a devastating objection. Reichenbach’s argument is not strong enough to 
establish optimality for all kinds of scientific inferences, but it might still be strong enough 
to establish optimality for the kinds of induction introduced in section 1—after all, they 
can be understood as being directed at estimating limiting frequencies. Because these kinds 
of induction are undeniably important to science, their defence would remain an important 
achievement. 

Second, Reichenbach’s defence seems too dependent on the long run. He can only 
show that the inductive method (straight rule) will determine the correct limit—if there is 
one—in the long run. However, after any number of observations, no matter how large, 
it is always possible that we will not have reached the limit. Even worse, it is always possible 
that the observed frequency is maximally far away from the true limit. Thus, we never 
really know what the limit is (BonJour [1998], p. 194; Salmon [1966], p. 53; Schurz [2019], 
p. 82; Skyrms [1964], pp. 259–60). This observation is correct and it would certainly be 
nice if the dependence on the long run could be avoided somehow. Nonetheless, I do not 
consider this a devastating objection. After all, even in the face of this objection it remains 
true: if there is a limit, the method is guaranteed to find it (in the long run). Thus, using 
the method is still rational and justified from an epistemic perspective. Pointing to the fact 
that we never know whether we have reached the limit is less an indication of the 
nonrationality of the inductive method than an indication of the open-endedness of 
science. (Reichenbach’s ([2006], pp. 361–62; [1949], pp. 447–48) own response to the 
problem consists in introducing a ‘practical limit’). 

Third, the achieved defence does not only concern the inductive method—that is, 
the straight rule—but many other methods as well, namely all methods that converge the 
straight rule asymptotically. For simple examples of such asymptotic methods, add any 
function to the straight rule that converges to 0 with increasing n (Henderson [2018], sec. 
7.1; Salmon [1966], p. 53). This is a serious problem. How can we establish that the straight 
rule is in no case worse than one of the asymptotic rules? Isn’t it possible that one of the 
asymptotic rules finds the limiting frequency faster or more accurately (with smaller ϵ) 
than the straight rule? In my view, even in the face of this concern, using the inductive 
method remains justified, because it is still guaranteed that, if a limiting frequency exists, 
then the straight rule will find it (in the long run). Furthermore, the other methods are 
more complex, and they only work because they gradually approach the inductive method. 
Thus, the inductive method (straight rule) seems more fundamental and descriptively 
simpler than the other methods, and, therefore, with regard to the epistemic aims of 
simplicity and explanatory strength as well as with regard to its application, even superior 
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to them (see also Reichenbach [1949], pp. 475–76). (Reichenbach ([2006], pp. 355–56) 
additionally argues that the inductive straight rule is less risky.) 

Fourth, Reichenbach’s argument depends on an overly simplistic characterization 
of our epistemic goal as well as an incomplete description of the available options. The 
goal is determined as maximization of true beliefs, and the options are limited to the choice 
between inductive or noninductive methods of belief formation. This is misleading. Our 
epistemic goal is not simply to maximize the number of true beliefs, otherwise it would be 
epistemically rational to believe everything whatsoever. After all, this would guarantee the 
maximum amount of true beliefs. To avoid this implausible consequence, our epistemic 
goal must be characterized in more complex terms: increasing the number of true beliefs 
while at the same time avoiding false ones. This more complex goal, however, brings into 
play the hitherto ignored option of suspending judgment. If it is true that in case of the 
nonuniformity of nature neither inductive nor noninductive methods are successful, then 
in this case, with respect to our more complex epistemic goal, suspension of judgment 
would be better than following the inductive method. After all, in this case no option 
would increase the set of true beliefs, but suspension of judgment would be the only 
option that would at least not increase the set of false ones. Thus, within an accurate 
description of our epistemic aim and the available options, the inductive method cannot 
be proven to be optimal anymore (for a related concern, see Lange [2011], p. 77).  

This also is a serious concern with respect to Reichenbach’s suggestion. Probably 
the only way to deal with it is by referring to the practical necessity of making predictions. 
Given the fact that to survive we have to make predictions and infer from the observed 
to the unobserved, it is reasonable to ignore the option of suspension. Often suspension 
is simply not a viable option for us. We have to accept, though, that ignoring the option 
of suspension cannot be motivated from a strictly epistemic point of view, that is, in terms 
of our epistemic goal alone. Thus, calling Reichenbach’s position a ‘pragmatic’ vindication 
of induction seems appropriate in another sense as well: on closer examination, his 
epistemic defence of induction depends on the assumption of certain practical necessities. 

The fifth and final objection is the most devastating one: premise (iii) is simply 
false. It is not true that no method of prediction, neither inductive nor noninductive, can 
be successful if the world does not behave uniformly (Herz [1936]; Skyrms [1964], p. 260). 
Even in a world in which no limiting relative frequencies exist, it could still be true that 
soothsayers with perfect foresight reliably predict events in the future. Think of the 
mushroom example again. If the world is so disorderly that there is no limiting relative 
frequency of dying after death-cap consumption, then a soothsayer could not determine 
the limiting relative frequency—after all, it does not exist—but she could still successfully 
and reliably predict whether the next person who eats a death cap dies or not. Not all 
prediction methods are tied to finding limiting relative frequencies. 

Reichenbach was keenly aware of this problem. He replied that a world with 
reliable soothsayers would exhibit a certain form of uniformity again, which could be 
specified by a limiting relative frequency and which, therefore, inductivists could make use 
of. If the soothsayer is reliable in making predictions, then the limiting relative frequency 
of correct predictions is above a certain threshold and the straight rule is guaranteed to 
find it (Reichenbach [2006], pp. 358–60; [1949]; p. 476). This is true. On the level of 
prediction methods, the inductive straight rule is guaranteed to determine the relative 
frequency of correct answers within a prediction method in the long run—provided there 
exists such a limit.  

All this said, how is this supposed to help us vindicate induction on the object 
level: that is, induction applied not at the level of methods, but at the level of events 
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(Schurz [2008], p. 281; [2019], pp. 82–3; Skyrms [1975], p. 44)? This is a crucial question 
because our goal, of course, was to prove that it is epistemically rational to use the scientific 
method of induction on the object level. It is therefore all the more surprising that 
Reichenbach himself does not even address this question. 
 
 
 
3 Two Ways to Rehabilitate Reichenbach’s Solution 

 
Induction can be used on the object level or on the method level. Induction at the object 
level amounts to using induction to make predictions of events in the world. In our 
mushroom example, the inductive straight rule is used at the object level to predict the 
probability of death-after-death-cap-consumption. Induction can also be used at the 
method level. In our soothsayer example, the inductive straight rule is used at the method 
level to predict the limiting relative frequency of correct answers of the soothsayer 
prediction method. I will refer to induction on the method level as ‘method-induction’. 
The central question is: How can Reichenbach’s vague hints concerning induction on the 
method level be spelled out as relevant to induction on the object level? Two strategies 
can be distinguished.  
 

(I) Inductivists must take into account the success of alternative noninductive 
methods and base their own predictions on the success of those other 
methods. This new and more complex inductive method is called ‘meta-
induction’ (Schurz [2008]; [2019]) and must be specified in detail. It has little 
in common with the straight rule favoured by Reichenbach; nevertheless, it 
can be shown that this more complex inductive method is optimal in the 
previously specified sense. 

(II) Inductivists apply the straight rule not only at the object level, but also at the 
method level. In a first step, it can be shown a priori that the inductive straight 
rule is optimal with respect to the method level. In any world—uniform or 
not—the inductive straight rule is the best option to determine which method 
on the object level is reliable—given there is a reliable method in the first place. 
In a second step, inductivists apply the straight rule to the prediction methods 
actually used in our world. This application leads to the result that the scientific 
inductive methods are more reliable on the object level than noninductive 
alternatives. This second step can be characterized as an inductive, a posteriori 
justification of object induction. In contrast to former attempts to justify 
induction a posteriori, the suggested strategy, however, is neither circular, nor 
does it lead into a regress. After all, in the first step induction at the method 
level is proven to be optimal a priori. 

 
Strategy (I) has been explored by Gerhard Schurz. As already indicated, he calls the more 
complex inductive method ‘meta-induction’. Regardless of the name, within the 
framework of meta-induction predictions are made with respect to events on the object 
level. The difference from the usual forms of induction is that meta-induction takes into 
account the predictions and success rates of all other prediction methods. The usual 
inductive methods that predict events without basing their predictions on the predictions 
of all other methods are called ‘object induction’. Thus, in the context of discussing 
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strategies (I) and (II), we should differentiate among (A) object induction, which predicts 
events on the object level, without basing predictions on the predictions and success rates 
of other methods; (B) meta-induction, which predicts events on the object level by basing 
their predictions on the predictions and success rates of all accessible prediction methods; 
and (C) method induction, which does not make predictions of events on the object level 
but predictions concerning the reliability of other prediction methods. 

Referring to mathematical results in the field of computational learning theory, 
Schurz proves that there are meta-inductive methods that are optimal. This is an 
impressive result. However, the meta-inductive method of prediction is greatly different 
from the usual inductive methods used in science.4 Therefore, in the context of strategy 
(I), Schurz also relies on a second step. He argues: if we apply the optimal method of meta-
induction in our world, then we see that the actual scientific inductive procedures are 
reliable—after all, meta-induction keeps track of the success rates of all methods on the 
object level. 

However, if strategy (I) also relies on a double step in defending the inductive 
inferences used in science, it seems worthwhile to examine strategy (II) more closely. In 
the following, I will first outline Schurz’s version of strategy (I) in a little more detail (see 
section 4). I will then investigate strategy (II) and argue that it is in certain respects superior 
to Schurz’s account (see section 5). 

 
 
 

4 Strategy (I): Schurz’s Meta-Induction 
 

Meta-inductive methods MI predict events by taking into account the predictions of all 
other methods. A simple example is the following version of an imitate the best meta-
induction (ITB*):5 
 

ITB*: Observe which method (or methods) predicted correctly in the last round 
and follow it (or one of it) in the next round of predictions.  

 
ITB* is not optimal. There are worlds in which ITB* is worse than other methods. Consider 
two methods, M1 and M2, that always make opposing predictions. Furthermore, assume 
the world behaves in such a way that whenever M1 is correct (and M2 is wrong), in the 
next round of predictions M2 is correct (and M1 is wrong), and so on. If the methods M1 
and M2 alternate in this way, both are correct 50% of the time. However, a person who 
follows ITB* will make wrong predictions 100% of the time. She will observe that M1 is 
right in a given round of predictions, she will follow M1 in the next round, and she will 
predict wrongly. Furthermore, she will have observed that in this second round M2 was 
correct, so she will follow M2 in the third round, and will be wrong again, and so forth. 
Therefore, ITB* is not an optimal method of prediction; it is not guaranteed for any course 
of events that ITB* is not worse than alternative methods. 

																																																								
4 This is not to say that scientists never use methods that aggregate the results of other methods. Consider, 
for example, certain forms of meta-analysis in statistics. 
5 Note that Schurz characterizes imitate the best meta-induction (ITB) differently. This is why I do not use 
‘ITB’, but ‘ITB*’. Furthermore, Schurz ([2019], sec. 6.3) argues for the more general conclusion that not 
only ITB, but every one-favourite prediction method is non-optimal. 
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The central idea of an optimal meta-inductive method lies in two modifications: 
first, an optimal meta-induction should not favour a single method but should rather make 
its predictions depend on the predictions of all (accessible) methods. Second, it should 
base its predictions on the predictions of all other methods in a special way: to be optimal, 
its prediction must be the weighted average of the predictions of all the other methods. 
The framework in which Schurz specifies these improvements is the framework of 
sequential predictions in computational learning theory. In the following, I will mostly 
follow Schurz’s notation.  

Schurz defines a prediction game G as a pair ((e), Π) of a sequence of events (e) and 
a pool Π of finitely many prediction methods or players: {M1, M2, M3,…}.6 Events are 
identified with values in a set of values Val, and predictions are elements in a set of values 
Valpred. For real-valued prediction games, both events and predictions are in the range of 
[0,1], that is, Val = Valpred = [0,1].  

Players have the task of predicting events, where ‘predn(M)’ denotes a prediction of 
the method M for time n that is issued at n-1. The loss that a method M incurs in round n 
is measured by a loss function: 

 
lossn(M) = def loss(predn(M), en).  

 
This function measures the deviation of prediction predn from the event en. Various loss 
functions are possible, but for the purposes of this paper we will concentrate on the so-
called natural loss function:  
 

loss(predn, en) = def |predn – en|. 
 
Via recourse to the loss of M, Schurz defines the ‘score’ that M earns for predn as follows:  
 

scoren(M) = def1 – lossn(M).  
 
Via recourse to the score, the ‘absolute success’ achieved by M until n is defined as the 
sum of M’s scores for predictions until n:  
 

absn(M) = def score*
+	,	- i(M).  

 
And via recourse to the absolute success, the ‘success rate’ of M at n is defined by:  
 

sucn(M) = def 
./01	(3)

5
. 

 
Given these notions, we can finally formulate what we are looking for in precise 

terms. What we are looking for is a meta-inductive strategy MI that has access to the 
predictions of all methods M in Π (including its own) and predicts in such a way that is 
optimal with respect to Π. MI is optimal with respect to Π if it will always, irrespective of 
the history of events, be at least as successful as any M ∈ Π in the long run. This long run 
optimality requires that the difference of MI’s success rate—its average success per 
round—and that of any other M converges to a nonnegative value:  
																																																								
6 The fact that Schurz’s meta-inductive strategy is restricted to a finite set of prediction methods has been 
objected to by Arnold ([2010]). Schurz ([2018], pp. 3891–92) responds convincingly to the objection. For a 
helpful discussion of this issue, see Sterkenburg ([2019], pp. 986–89). 
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lim
*→;

(suc5 MI − 	suc5(M)) ≥ 0. 
 
There are other and more complex ways to specify the optimality of MI. Not all of 

them require that the difference between MI’s success rate and that of any other M 
converges to a limit, and not all of them are restricted to long run optimality (Schurz 
[2008]; [2019]; Sterkenburg [2020]). For now, however, it is sufficient to concentrate on 
the less complex long run optimality as it is heretofore specified.7 

Which meta-inductive Method MI achieves the characterized goal of long run 
optimality? It turns out that an optimal meta-inductive strategy predicts in each round by 
a weighted average of the predictions of all the other methods. Given the formula for 
weighted means, the weighted-average meta-inductivist wMI predicts as follows:  

 
pred5D-(wMI) =GHI

J1 3 	∙	LMHG1NO(3)P∈Q
J1 3P∈Q

. 

 
Which weight wn(M) do we have to choose so that this prediction method turns out to be 
optimal? Results in computational learning theory established that the weights have to 
depend on the strategies’ losses. The idea is to assign weights that are determined by how 
much better M did than the meta-inductive method in hindsight. Schurz calls this M’s 
‘attractivity’ and defines it as follows: 
 

 atn(M) = def sucn(M) – sucn (MI).  
 
In the method of attractivity-weighted meta-induction awMI, the weights for M are directly 
based on M’s attractivity—provided that M does not have negative attractivity, in which 
case it is simply ignored:  
 

For all n≥ 1 and M, the weight wn(M) = atn(M) if atn≥ 0 
          = 0, otherwise. 

 
Thus, the attractivity-weighted meta-inductive strategy awMI predicts as follows: 
 

pred5D-(awMI) =GHI
.T1 3 	∙	LMHG1NO(3)P∈Q

.T1 3P∈Q
. 

 
This method turns out to be optimal in the previously specified sense. One can prove that 
it satisfies the specified condition for an optimal strategy (see Cesa-Bianchi and Lugosi 
[2006]; Schurz [2008]; [2019]). 

It is important to note that comparable results can be established for various 
prediction games (not only with real-valued but also with binary (discrete) events) and 
different notions of optimality (long-run and short-run optimality). Demonstrating that 
awMI is not only optimal in the long run but also optimal in the short run is particularly 
important. This result allows Schurz to avoid two problems that Reichenbach’s original 
proposal faces. First, it avoids the problem of being too dependent on the long run (see 
the second problem in section 2). Second, it avoids the problem of asymptotic methods 
(see the third problem in section 2). There are many meta-inductive methods that converge 
																																																								
7 I will discuss the results with regard to short-run optimality, which are of central importance for Schurz in 
due course (see Schurz [2019], sec. 6.6).  
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awMI and are, therefore, also optimal in the long run (while differing drastically from 
awMI in their short-run predictions). However, there is only one variant of meta-induction 
that is optimal in the short run, namely awMI. Thus, the short-run results are also relevant 
in sidestepping the problem of asymptotic methods. 

In most general terms we can conclude: the meta-inductive method that predicts in 
a way that at each point in time, it favours the predictions of all other accessible methods 
to the extent of their relative success so far, is an optimal strategy (Schurz [2019]; 
Sterkenburg [2020]). This is an excellent result, showing a meta-inductive strategy that is 
optimal and guaranteed to be no worse than any other method of prediction. What, 
however, follows from this result for the inductive methods used in science?  The meta-
inductive strategy awMI is different from many inductive methods used in science. Even 
though there are various forms of meta-analysis in the natural sciences, usually the 
inductive methods used in science are not determined by the predictions of all other 
methods but rather by the history of events on the object level. Thus, many inductive 
methods used in science are forms of object induction OI. How is the optimality of awMI 
supposed to justify OI? Schurz acknowledges that a defence of OI requires a second step. 

This second step can be summarized as follows: irrespective of the history of 
events—that is, irrespective of whether the world is uniform or not—awMI is optimal. 
Thus, irrespective of the world we live in, using awMI is epistemically rational. This is a 
mathematical result that has been justified a priori. However, if for every world it is 
epistemically rational to use awMI, it is also epistemically rational to use it in our world. By 
applying awMI to the prediction methods used in our world, we have to keep track of the 
success rate of all methods in Π and thereby find that OI is more reliable than other 
noninductive methods.  

Of course, whether this actually is the case is ultimately an empirical question, but it 
seems reasonable to suppose that it is correct. Most of us will agree that science has been 
quite successful in the past, more so than alternative methods (such as following religious 
leaders, political demagogues, or self-proclaimed clairvoyants). However, because this is 
an empirical question, the justification of OI provided by this second step is a posteriori. 
What is important to realize, however, is that this new kind of a posteriori justification of 
induction is neither circular nor does it lead into a regress. It is not circular because OI is 
not justified by applying OI itself, but rather by applying the meta-inductive method awMI. 
Furthermore, it does not lead into a regress because the potential regress is stopped by 
justifying awMI a priori via mathematical reasoning. Thus, the familiar problems of a 
posteriori attempts to justify induction do not apply to the second justificatory step 
suggested by Schurz.  

As interesting and promising as Schurz’s line of thought is, as a defence of induction 
it faces various difficulties: inductive methods used in science have to be modelled as 
elements in pool Π of a prediction game. This is problematic for at least two reasons: first, 
to be an element of Π, the predictions have to be modelled as values in the range of [0,1]. 
A natural way to do that is to interpret scientific predictions as probabilistic predictions 
(Schurz [2019], ch. 7). Although this is acceptable to Bayesians, it may not appeal to others 
(Sterkenburg [2020], p. 526).8  

																																																								
8 One way to circumvent this problem would be to determine optimality not for a single meta-inductive 
method, but for collective of meta-inductivists (Schurz [2008], pp. 297–99; Schurz [2019], ch. 6.7.2). Schurz 
([2019], p. 148) also generalizes his account to discrete predictions without numerical structure in the form 
of several theorems. I cannot discuss these theorems here in detail. 
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Second, inductive methods in sciences are not restricted to the aim of making 
correct predictions of particular events; many inductive methods in science are directed at 
general, law-like statements. However, inductive methods that aim at law-like 
generalizations cannot be vindicated by Schurz’s suggestion. Meta-induction can justify 
the predictions of object-induction for the respective next round, but it cannot justify law-
like generalizations (Arnold [2010], p. 591; Sterkenburg [forthcoming], p. 6). 

Third, in the context of Schurz’s proposal we seem to lose the motivation to justify 
object induction. After all, Schurz has convincingly argued that there is a method that is 
optimal, namely awMI. So why should we even bother to justify object induction OI used 
in the sciences by applying awMI? In view of Schurz’s results, would it not be rational to 
switch to awMI in the sciences as well? 

Fourth, how exactly is OI justified by applying awMI? The meta-inductivist will give 
the highest weight to the predictions of OI. If OI is indeed much more successful than all 
the alternatives, the predictions of awMI will (approximately) coincide with OI’s 
predictions. So what can be justified at most by applying awMI is following OI’s current 
predictions. However, it is at least unclear whether justifying current predictions of a 
method is the same as justifying the method of object induction OI (Sterkenburg [2020], 
p. 538). 

Fifth, Schurz’s defence of scientific induction depends on mathematical 
considerations in a particular field of computational learning theory (predictions with 
expert advice). As a defence of induction against attacks from proponents of other 
methods, it faces the problem of being too complex. In times of emerging scepticism 
toward science in parts of our society, the defence may be too complex to be dialectically 
effective.9 

Although the first two difficulties in particular seem fairly serious to me, the 
problems listed do not make Schurz’s proposal worthless. Possibly some of the problems 
can be solved, and possibly others must be accepted as necessary theoretical costs for the 
greater epistemic good. In view of the difficulties, however, I want to suggest that it is 
worthwhile to take a closer look at strategy (II) with regard to a rehabilitation of 
Reichenbach’s ideas. This is especially true in light of the fact that ultimately even Schurz’s 
proposal of strategy (I) depends on a double argumentative step that combines a priori 
and a posteriori considerations. 
 
 
 
5 Strategy (II): Sticking to the Straight Rule in Method Induction 

 
The predictions of method induction do not concern events on the object level but the 
reliability of prediction methods. I will reserve ‘M’ for methods that predict events on the 
object level. What does it mean to say that M is reliable? M is reliable if and only if the 
limiting relative frequency of its correct predictions relative to all its predictions is above 
a certain threshold. In the context of strategy (II), it does not matter where exactly the 
threshold is. Let us assume that it is above 0.8. Thus, M is reliable if and only if the limiting 

																																																								
9 Sterkenburg ([2019]) discusses another potential problem for Schurz’s approach, namely that he cannot 
show the optimality of meta-induction for an expanding pool of prediction methods. The presentation and 
discussion of this problem would take up too much space, so I do not include it here. I will shortly come 
back to it, however, in fn. 12. For Schurz’s answer to this problem, see (Schurz [2019], sec. 7.3]. 
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relative frequency of its correct predictions is > 0.8. Therefore, if there is a reliable method 
M, then there exists a limiting relative frequency of correct predictions that is > 0.8.10 
 Furthermore, Reichenbach specifies induction as the ‘procedure in which the 
relative frequency observed statistically is assumed to hold approximately for any future 
prolongation of the series’ (Reichenbach [2006], p. 306). This amounts to the so-called 
straight rule that simply demands that we take the current observed relative frequency as 
the limiting relative frequency. What happens if we apply the straight rule to determine 
whether there is any reliable method M on the object level? Answer: In the long run, the 
straight rule is guaranteed to determine the limiting relative frequencies of true predictions 
of M—provided there is such a limit. Thus, if there is a reliable method M—that is, if there 
is a limiting relative frequency of correct predictions that is > 0.8—then applying the 
inductive straight rule will correctly determine the limit in the long run. Furthermore, if 
there is no reliable method M on the object level, then no procedure on the method level 
will be able to find a reliable method on the object level. Both conditionals are justified a 
priori because they directly follow from the formulation of the straight rule together with 
the specification of the reliability of a prediction method.  

In what follows, the term ‘method induction’ denotes an application of the straight 
rule to find the reliable methods on the object level. Relying on an argument that is 
structurally analogous to Reichenbach’s argument (i)–(iv) (see section 2), we can prove 
that method induction is optimal with respect to the goal of finding reliable methods on 
the object level. 

 
(i)* Either there are reliable methods on the object level and, thus, limiting relative 

frequencies of correct predictions that are > 0.8 exist, or not. 
(ii)* If there is a reliable method M, and, thus, a limiting relative frequency of correct 

predictions that is > 0.8 exists, then method induction will determine the limit 
in the long run and will thereby successfully identify the reliable method M. 

(iii)* If there is no reliable method M and, thus, no limiting relative frequency of 
correct predictions that is > 0.8 exists, then neither method induction nor 
noninductive procedures will find a reliable method M. 

(iv)* Therefore, method induction is optimal: it is guaranteed not to be worse and 
possibly better than noninductive procedures with respect to the goal of 
finding reliable methods on the object level (in the long run). 

 

																																																								
10 Suppose there is a method M* which after a certain point achieves a relative frequency of true answers 
that consistently remains above 0.8 but does not have a stable limit because the frequencies continue to 
oscillate in the range of [0.81, 0.99]. Isn’t M* reliable? And if so, isn’t this a problem for the suggested line 
of thought, because in this case no limiting relative frequency exists? I see two options to deal with this case. 
(a) Biting the bullet: Since M* does not converge to a limit, there is no limiting relative frequency and, thus, 
according to the paper’s definition of ‘reliability’, M* is not reliable. (b) Weakening: We have introduced the 
notion of a limiting relative frequency with Reichenbach as follows: The frequency fn has a limit at p, if for 
any given sufficiently small number ϵ there is an n such that fn is within p ±	ϵ and remains within this interval 
for all the rest of the series. However, as far as I can see the basic idea of the strategy would also work with 
a weaker notion, let’s call the weaker notion ‘limit*’. According to such a weaker notion, ϵ	would not be 
required to be chosen arbitrarily small: The frequency fn has a limit* at p, if there is a sufficiently small number 
ϵ (say ϵ	 ≤ 0.09) such that there is an n such that fn is within p ±	ϵ and remains within this interval for all the 
rest of the series. According to such a weaker notion, the oscillating method M* has a limit* at p = 0.9	with 
ϵ = 0.09. Via recourse to limit* we could define reliability* (as well as the straight rule*) and reformulate the 
strategy with these weaker notions. 
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We have already discussed the problems of Reichenbach’s original argument (i)-(iv) (see 
section 2). The most devastating objection concerned the following premise:  
 

(iii) If the world does not behave uniformly and there are, thus, no limiting relative 
frequencies (on the object level), then neither inductive nor noninductive 
methods of prediction are successful. 

 
Premise (iii) is false because not all possible prediction methods on the object level are tied 
to finding limiting relative frequencies. Even if no limiting relative frequencies on the 
object level exist, a soothsayer with perfect foresight could still successfully predict 
upcoming events.  

Premise (iii)* does not face this problem. All possible procedures on the method 
level—that is, all procedures that make predictions concerning the reliability of a method 
M—are necessarily tied to finding limiting relative frequencies. This is owing to the given 
specification of ‘reliability’. Thus, in contrast to (iii), (iii)* is correct: if there are no limiting 
relative frequencies of correct predictions on the object level, then no method on the 
object level is reliable, and no procedure on the method level is able to find a reliable 
method on the object level. 

Argument (i)*–(iv)* is valid, and the premises (i)*–(iii)* are justified a priori. Thus, 
via recourse to (i)*–(iv)*, the optimality of method induction is justified a priori. 
Irrespective of the world we live in (whether it contains reliable methods on the object 
level or not), applying the procedure of method induction is rational; it is not worse and 
possibly better than any other procedure on the method level. This concludes the first step 
of strategy (II). 

The second step is analogous to the second step Schurz is forced to take in the 
context of his meta-inductive strategy (I). It can be summarized as follows: irrespective of 
the world we live in (whether there are reliable methods on the object level or not), using 
method induction is epistemically rational. However, if for every world it is epistemically 
rational to use method induction, it is also epistemically rational to use it in our world. By 
applying method induction (i.e., the inductive straight rule on the method level) in our 
world, we find that object induction and scientific methods in general are more reliable 
than other nonscientific methods—such as believing self-proclaimed clairvoyants, miracle 
healers, and so on. Just as with respect to the second step in Schurz’s argument, whether 
this actually is the case is an empirical question. However, it seems highly reasonable to 
suppose that it is correct. However, given this is ultimately an empirical question, the 
justification offered by this second step is a posteriori.11 

It is important to note that the suggested a posteriori justification is no more circular 
or prone to regress than the second step within Schurz’s approach. It is not circular 
because object induction is not justified by applying object induction, but by applying 

																																																								
11 Suppose that by applying method-induction in our world we correctly determine many different reliable 
methods. Suppose there are five methods M1–M5 that sometimes make different predictions, but all have a 
limiting success rate of 0.8. Are all methods M1–M5 justified via method-induction and if so, which of the 
methods are we supposed to follow? Schurz ([2019]) argues that the following answer is problematic: Always 
follow the method that is the best at the time. A better answer is: Follow the best method and only switch 
to another method, if the other method exceeds the old favourite by a certain threshold (see for relevant 
details Schurz [2019], sec. 6.2). Proponents of strategy (II) are free to adopt the second answer in the light 
of the problematic case above. 
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method induction. Furthermore, it does not lead into a regress because the potential 
regress is stopped by justifying method induction via (i)*–(iv)* a priori. Thus, the familiar 
problems of attempts to justify induction a posteriori do not concern strategy (II) any 
more than they concern Schurz’s version of strategy (I). Strategy (II) is therefore able to 
preserve one of the key advantages of Schurz’s approach. Is strategy (II) also able to 
circumvent the problems that we have identified for Schurz’s proposal?  

In contrast to Schurz’s approach, the method-inductive strategy (II) does not rely 
on modelling scientific methods at the object level as elements in pool Π of a prediction 
game. This is beneficial for two reasons: first, predictions on the object level do not have 
to be modelled as values in the range of [0,1].  

Second, in contrast to Schurz’s account, strategy (II) is also applicable to inductive 
inferences of general, law-like statements. Schurz’s meta-induction cannot be applied to 
these inferences because inductive methods that aim at law-like generalizations cannot be 
modelled as elements in pool	Π of a prediction game (Arnold [2010], p. 591; Sterkenburg 
[forthcoming], p. 6). Strategy (II) does not rely on this kind of modelling, so there is no 
reason strategy (II) should not be applicable to inductive inferences of general statements. 
In the context of strategy (II), the methods with the best track records on the object level 
are determined by applying the straight rule. And this is also possible with respect to 
methods that infer general statements. The method which, in relation to all general, law-
like statements made by it, delivers the fewest false ones is the most reliable. Thus, in 
contrast to Schurz’s strategy (I), strategy (II) is also applicable to inductive generalizations. 
In fact, strategy (II) can be applied to scientific methods in general; for example, it can 
also be applied to inferences to the best explanation. 

A third advantage of the rehabilitation of Reichenbach’s vindication offered by 
strategy (II) is that, in contrast to Schurz’s meta-inductive strategy (I), it does not make 
the justification of object induction seem unmotivated. Just as with meta-induction, 
method induction is justified to be optimal a priori. However, in contrast to meta-
induction, method induction does not make predictions of events at the object level, but 
only predictions concerning the reliability of prediction methods. Thus, strategy (II) does 
not make the justification of object induction seem unmotivated. 

Fourth, in contrast to the meta-inductive strategy (I), strategy (II) does clearly justify 
the reliability of the method of object induction and not only its current predictions. It is 
interesting to note, however, that (II) does not justify that object induction will for all 
eternity be a reliable method. It is not a priori excluded that by applying method induction 
at some point, other methods on the object level are judged to be more reliable than object 
induction. Based on the optimality argument (i)*–(iv)*, scientists are justified in always 
holding on to method induction, but dogmatically clinging to object induction cannot be 
justified via strategy (II). 

Fifth, in contrast to Schurz’s meta-inductive strategy (I), the method-inductive 
strategy (II) does not depend on complex mathematical considerations in a particular field 
of computational learning theory (prediction with expert advice). It is therefore less 
complex and easier to grasp. In times of emerging scepticism toward science in parts of 
our society, this is an important advantage of strategy (II). Thanks to its relative simplicity, 
strategy (II) has a better chance of convincing sceptics with respect to science and 
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advocates of nonscientific prediction methods of the superiority of scientific methods 
over nonscientific ones.12 

However, it is important to note that besides these advantages, strategy (II) also has 
some disadvantages compared to Schurz’s strategy (I). The first step of strategy (II) is 
based on the argument (i)*–(iv)*, which is structurally analogous to Reichenbach’s original 
argument (i)–(iv). The new argument (i)*–(v)* avoids the most devastating objection with 
respect to (i)–(iv)—in contrast to premise (iii), premise (iii)* is not false. However, some 
of the other problems carry over to (i)*–(iv)*. This is especially worrisome with respect to 
the problem of being too dependent on the long run and the problem of asymptotic 
methods (see the second and third problem addressed in section 2).  

Schurz’s approach does not depend on the long run; within his account, short-run 
optimality can also be proven for awMI (Schurz [2019], sec. 6.6). This is a decisive 
advantage of his account. It allows Schurz to deal with methods that show certain feedback 
effects between predictions and events, and will, therefore, not converge to a stable limit 
(Schurz [2019], secs. 6.1–6.3).  

In addition, Schurz’s meta-induction avoids the problem of asymptotic methods. 
There are many methods that converge the straight rule asymptotically and are, therefore, 
also optimal in the long run. This generates a serious problem for the second step of 
strategy (II) because it is unclear whether applying those asymptotic methods now will 
select object induction at the object level. Strategy (I) avoids this difficulty. Strategy (I) 
does not depend on the straight rule but on awMI (see section 3). Even though there 
might be many different meta-inductive methods that converge awMI and are, therefore, 
also optimal in the long run, only awMI is optimal in the short run. And it is plausible that 
applying awMI now would in fact favour object induction on the object level. Thus, short-
run optimality helps Schurz solve the problem of asymptotic methods and thereby 
sufficiently restrict what we consider optimal methods, so that they can do what they are 
supposed to do in the second step of his argument. 

The fact that both problems, the problem of being too dependent on the long run 
and the problem of asymptotic methods, do not arise with respect to strategy (I) is an 
important advantage of Schurz’s account. In contrast, strategy (II) is only successful if 
these problems can be solved in one of the ways indicated in section 2 (or any other way 
for that matter).13 
 
 
 
6 Conclusion 

 
With regard to the problem of induction, Reichenbach accepts that induction cannot be 
justified to be reliable. What he thinks can be justified, however, is that induction is an 
optimal prediction method: it is guaranteed not to be worse and possibly better than any 
alternative. Reichenbach’s vindication of induction faces various difficulties, one of which 
is particularly severe (namely the reliable-soothsayer-objection, see the fifth problem in 
section 2). In the face of this difficulty, two strategies to rehabilitate Reichenbach’s account 

																																																								
12 Note that strategy (II) also has a chance to circumvent the issue raised by Sterkenburg ([2019]) for Schurz’s 
meta-inductive strategy of not being able to deal adequately with an expanding pool of object-level prediction 
methods, s. fn. 9.  
13 For a thorough discussion and an alternative solution to the problem of asymptotic methods in the context 
of Reichenbach’s original suggestion, see (Salmon [1991], pp. 103–07 and 113–19). 
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can be differentiated: (I) the meta-inductive strategy (s. section 4), and (II) the method-
inductive strategy (s. section 5). Strategy (I) has been motivated, developed, and defended 
by Schurz ([2008], [2019]). It is undoubtedly a highly interesting and powerful attempt at 
a justification of induction on the basis of Reichenbach’s ideas. In contrast, strategy (II) 
has not been suggested thus far. I have argued that strategy (II) is also able to rehabilitate 
Reichenbach’s account against its most serious objection and that it is in various respects 
even superior to Schurz’s proposal.  

The most important advantages are first that strategy (II) does not rely on 
mathematical considerations in a particular branch of computational learning theory 
(prediction with expert advice) and the corresponding need to mathematically model 
inductive methods as elements of a pool Π in a prediction game. This is an advantage 
because some of the modelling decisions in this regard are questionable. Second, and 
related to this, strategy (II) is not restricted to inductive inferences concerning particular 
events but also applies to inductive inferences concerning general and law-like statements. 
In fact, it can be applied to all scientific methods, no matter how we want to specify them 
in detail. Third, strategy (II) is much simpler and easier to grasp. It is therefore a more 
effective tool to defend science against attacks from pseudoscience and proponents of 
nonscientific prediction methods. 

An additional point that is interesting from an exegetical perspective is that strategy 
(II) is closer to Reichenbach’s own position. Regarding the main difficulty of his original 
proposal, Reichenbach himself already points out that the inductive straight rule is not 
only applicable on the object but also on the method level. He does not spell out how 
exactly this insight is supposed to save his original proposal. But he seems to assume that 
nothing more than the straight rule and the different levels of its application is needed for 
this purpose. Strategy (II) illustrates that this assumption is correct. 
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