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Cyberspace is the newest domain of conflict and cooperation between states. In cyberspace, as in all other domains, land, sea, air,
and space, these interactions often lead to the emergence of hegemons which are characterised by their predominant influence over
global world order and all other states. We examined the emergence and collapse of hegemons in a modelled cyberspace world
through the notions of power transition and power diffusion. We used Repast Simphony to construct a simple agent-based model
(ABM) of a system of states interacting both competitively and cooperatively in this world. Our simple model parsimoniously
captures the character of the real international system of states through simple parameters of wealth and power determining
the outcome of attack or cooperation amongst pairwise interacting states. We found hegemons of global world order emerged
in cyberspace as they do in the other traditional domains from models with these few parameters. And we found that hegemons,
contrary to traditional understanding, are not exceptional states butmerely occupy the tail of a continuous distribution of power and
lifetimes. We also found that hegemony in the system depends on two perhaps unexpected parameters: the difficulty of acquiring
power as wealth increases and the amount of cooperation between states. And as a consequence, we argue that cyberspace, as a
power-diffuse domain where cooperation is easier than elsewhere, is less suited to the kind of hegemony we see in the traditional
domains of state interaction.

1. Introduction

Cyberspace is a power-diffuse domain when compared to
the traditional domains of warfare and statecraft, land,
sea, air, and space. Scholars have convincingly argued that
cyberspace is an offence-dominated domainwith lowbarriers
to entry, one that diffuses power away from traditionally
powerful states and towards historically marginalised actors
[1]. Procuring information communication technology (ICT)
systems, acquiring zero-day exploits, and conducting com-
puter network operations (CNOs) are considerably cheaper
than large-scale military operations in the domains of land,
sea, air, or space. As an example, the Sony Pictures Entertain-
ment hack is a paradigmatic case of a historically margina-
lised state actor (North Korea) manipulating a third party
(Sony) to create preferential outcomes for itself by pursuing
aggressive statecraft against the United States, the hegemon
of world order [2].

Nye [3] has argued that power diffusion, a novel process
only now becoming fully appreciated with the emergence

of cyberspace, is one of two critical processes currently
influencing world order. The other is power transition, a
familiar historical process.

The novel process of power diffusion can be seen as a
weakening of the power differentials between states when we
compare the traditional domains of warfare and statecraft,
land, sea, air, and space, with the new domain of cyberspace.
Cyberpower requires a reevaluation of the power differen-
tials, since the threshold to becoming a relevant actor in
cyberspace is lower than in other domains, and the powers of
these actors are clustered closer together. As Nye [3] imagines
it, if we think that all the states are players on the world
stage, then “States will remain the dominant actor on the
world stage, but they will find the stage far more crowded and
difficult to control” (p. 114).

Analysts of international order must now consider cyber-
power in their calculus of factors that affect the rise and
fall of states [4], that is, power transition. We think that
this is particularly so in the important case of global hege-
mons. Hegemons have disproportionately greater capacity,
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and (usually) disproportionately greater success, in creating
preferential outcomes for themselves [5]. Every hegemon of
global world order is defined by its predominant influence
over all other states. Despite their preeminence, hegemons are
not impervious to the anarchical conditions of the interna-
tional system that permit both cooperation and conflict.

The rise and fall of hegemons, as for all states, are captured
in the process of power transition. It is particularly important
today. While it is true that the global world order is forever in
flux, there is a growing perception amongst scholars that the
United States is in relative decline due to the “rise of the rest,”
especially since states in the crowded neighbourhood of the
Indo-Pacific continue to rise towards great-power status [6].

Because cyberspace is a new and still evolving domain,
empirical studies of power diffusion and power transition in
cyberspace are not yet available.There have been a number of
recent calls from academics, policymakers, and practitioners
to better explain, model, and predict the kinds of competitive
behaviour we are seeing between states in cyberspace [7].
For example, Kello [8] has called for a synthesis of exist-
ing theoretical paradigms with emerging cyber phenomena
through the use of computer modelling. We therefore chose
to analyse the problem through simulation. We designed
a simple agent-based model to capture both the familiar
process of transition and the novel process of diffusion in an
abstract domain of conflict and cooperation. We simulated
the impact of differing degrees of power diffusion on the
frequency of power transitions in a domain, and we analysed
the resulting emergent hegemonic behaviour. We imagine
that the higher levels of power diffusionmore closely emulate
conditions in cyberspace.

By choosing an empirical simulation approach, we are
following in an agent-based modelling tradition grounded
in early work by Bremer and Mihalka [9] and later Axelrod
[10, 11] and Cederman [12, 13]. These early studies broadly
exposed the possibilities of simulation in this field.They were
often concerned with the emergence and dissolution of states
in quasi-geographic settings (e.g., Cederman and Girardin
[14]) andwith the balance between cooperation and competi-
tion (e.g., Bearce and Fisher [15] andMajeski [16]).Themodel
reported here builds on this work in the particular context of
cyberspace, where power diffusion is a key consideration [3]
and geography much less so.

As described below, our observations and analysis of the
model generated two hypotheses. The first hypothesis is that
hegemons maintain their status more easily in a domain
where it is difficult to gain power. Thus, in cyberspace we
expect it to be more difficult for any power to maintain hege-
mony.The fewer resources that need to be invested to achieve
a given level of power, that is, the more power diffusion
there is in the model world, the more competition a potential
hegemon will face.The second hypothesis is that cooperation
amongst states leads to more transitions amongst great
powers,meaning there is less stabilitywithin the international
order. When cooperation increases in the system, as it can
more easily in cyberspace, we expect to see a greater growth
of wealth overall, yet smaller relative power amounts amongst
states. Large states end up with more competitors, and their
positions end up less secure, even though their wealth is
higher overall than it otherwise would have been.

2. Description of the Model

We constructed a simple agent-basedmodel of states compet-
ing and cooperatingwith one another usingRepast Simphony
[17].We ran our experimentswith 20 states because that num-
ber is small enough to be manageable and yet large enough to
elicit interesting behaviour. (The essential behaviours do not
change with 100 states.) Each state has a power that represents
the state’s probability of winning in a conflict. This is our
proxy for the ability of a state to create preferred outcomes,
as power is traditionally defined [3]. From a contemporary
realist perspective, we assume that states are power maximis-
ers and that power depends on wealth [18]. The wealth in
our model is intended to be an abstract measure of the total
resources at the disposal of a state. The amount of power
(the probability of winning a game) purchasable by a given
amount of wealth can be seen as a feature of the domain of
conflict. In a more power-diffuse domain, it is easier to pur-
chase power.

Each state in the model makes one move per time step. A
move for one state consists of a choice of either cooperating
with or attacking an interaction partner. The partner is
selected at random and also makes the same choice. Thus,
with twenty states, twenty bilateral interactions take place per
time step. Each state initiates one interaction, and each state
is, on average, selected as a partner once per time step.

If both states choose cooperation then a mutually benefi-
cial interaction takes place.Thewealth of both states increases
marginally. In an environment where the vast majority of
states are cooperating, the overall wealth of the system grows.
If either state chooses to attack then a conflict occurs. The
probability of victory in a conflict is higher for the more
powerful state, but there is always a chance the weaker state
will prevail. In the model, the victor steals some wealth from
the loser, representing the spoils of war. The victor also loses
some wealth, which represents the cost of waging war. Thus,
lose-lose interactions can take place.

Our model has been constructed with the fewest param-
eters possible. It is defined by the probability that a state will
choose to cooperate and by the power function (the power,
or probability of conflict victory, resulting from a given level
of wealth). We argue that power diffusion is captured in the
power function.

There are, of course, other agents in cyberspace. So-
called nonstate actors include large firms, nongovernmental
organisations, and criminal syndicates. Their motivations
vary from profit and prestige to recreation and revenge. The
sophistication of hacking tools and techniques of nonstate
actors is highly variable, which affects the amount of power
they ultimately wield. We think nonstate actors are a class
deserving further investigation, although we confined this
first analysis to nation states. Future comparative analyses
could explore the relationship between nonstate actors’ moti-
vation, sophistication, and power, which can be contrasted
against the same parameters of states, for instance.

3. Tuning the Model for Cyberspace

The model, as described, is both minimalist and generic. It
seeks to capture, with very few parameters, the essence of
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states interacting through both cooperation and competition,
that is, the essence of international affairs. We wish to explore
how states interact in cyberspace. We want to see whether
and how the forces at play in the traditional domains of
statecraft, land, sea, air, and space, might lead, in cyberspace,
to the traditional outcomes of statecraft, the traditional inter-
national order of one or a few hegemonic or great powers, a
handful of middle powers, and a tail of many weaker powers.

To do this, we need to account, in the model, for two
canonical properties, geography and power diffusion, that
distinguish cyberspace from those traditional domains.

Geography is most apparent in interactions between
states in the land domain, and somewhat less so, but still
importantly, in the other traditional domains, sea, air, and
space. States have always interacted more easily with their
geographic neighbours than with states a long way away. The
wars throughout history in continental Europe as well as the
modern creation of the EuropeanUnion amongst contiguous
neighbours each attest to the power of geography in the land
domain. Sea, air, and space power allow states to circumvent
geography to an extent, but at a great cost to national wealth.
Generally, only great powers, such as the US or Russia, have
the wealth and resolve to project power in the sea, air, and
space domains that effectively reduces the importance of
geography.

But geography has a minimal impact on cyberspace.
States may just as easily interact in cyberspace with distant
states as with geographic neighbours. Ourmodel in its funda-
mental form, in contrast with some earlier models of state-
craft [9, 14], eschews geography completely, allowing states
to interact without regard to any concept of neighbourhood.
However, it should be noted that the model framework is
flexible enough that explicit geographies could be easily en-
coded in future work.

Power diffusion is in some ways a more subtle property
of statecraft than geography, but its significance, especially in
the cyber domain, has been argued powerfully byNye [3].We,
likeNye, see aweakening of power differentials between states
in cyberspace. And as discussed above, we should expect a
weakening of the power differentials between states and lower
barriers to entry to active participation in the domain.

To incorporate the notion of power diffusion in the
model, we need a functional relationship between a state’s
wealth and its power that reflects these ideas. As discussed
above, we see wealth as an abstract measure of the resources
available to a state, a quantity that can grow or shrink as a
result of interactions with other states. And we see power as a
quantity that measures the resources a state can apply to war
or competition. If states go to war, the probability that a state
will win depends on the powers of the two states, with the
more powerful state having a higher probability of winning(see Appendix A).

We argue, with Schmidt [18], that a state’s power depends
on its wealth, but that the relationship is nonlinear. It needs
to account for not only differences in the degree of power
diffusion across the different domains of statecraft, but also
differences between states. We know, for example, that there
exist states like Japan which, though wealthy, only weakly
convert that wealth to power, and states like North Korea

which, though poor, strongly convert what wealth they have
to power.

We describe below (Section 4) some general classes of
power functions that could capture these relationships, and
then (Section 5) we describe our strategy for exploring their
effects on statecraft in the cyber domain.

4. Power Functions: Creating State
Power from Wealth

All the domains where states interact vary on several param-
eters, amongst which are the degree of connectivity between
states and the degree of power diffusion in the domain. This
variation accounts for differences in the behaviour of states
amongst domains. In ourmodel, we focus on power diffusion
and assume, for simplicity, that all states can interact with all
other states, mimicking the high connectivity of cyberspace.
We identify the degree of power diffusion with the difficulty
of gaining power and model this parameter with a power
function, which provides the conversion rate from wealth to
power. The shape of the power function determines the out-
comes of conflict or cooperation amongst states and thus the
overall behaviour of the system. Figure 1 shows some general
classes of power functions.

Figure 1(a) is a function that curves rapidly upward.Thus,
small increases in wealth produce large increases in power,
which makes it easier for a large state to dominate smaller
states and get rapidly more powerful. In a domain with this
extreme power function, there is no limit to the power of a
state.We include this class for completeness only.We imagine
that such a function would only exist in highly asymmetric
cases, perhaps advanced colonial powers against primitive
indigenous peoples.

Figure 1(b) is a function that curves downward, represent-
ing diminishing returns on power. This creates a natural soft
limit on how powerful a state can realistically get. We think
asymptotic classes like this one reflect the common reality
of the conversion of wealth to power. This class would cover
many of the power relations in historic domains such as land
and sea.

In Figures 1(c) and 1(d), the functions are sigmoidal.They
represent the more general case where an initial investment
produces an initial burst of power, followed by gradually
diminishing returns. This class of functions is characterised
by the width on the 𝑥-axis of the upward-curving region.
States in this region are much weaker and easily dominated
by the stronger states outside of it. If the region is wide, like
in Figure 1(c), it takes a lot of wealth before a state reaches
the soft power limit. If it is narrow, like in Figure 1(d), then
it is easy for states to reach a high level of power. Thus, in
Figure 1(d) the power function represents a power-diffuse
domain like cyberspace, while in Figure 1(c) the function
could stand for expensive technology-rich domains, like air
and space, where power is harder to come by.

Note that in Figure 1(a) the function could be seen
as having an infinitely wide weak region, so that all states
are easily dominated by those larger than them, while in
Figure 1(b) the function does not have such a region, and so
increasing wealth never allows a state to be utterly dominant.
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Figure 1: Four possible power functions, representing (a) limitless power, (b) a soft limit to power, perhaps as in the historic domains of land
and sea, (c) perhaps an expensive technology-rich domain, like air and space, and (d) a power-diffuse domain like cyberspace.

5. Exploration Strategy

Wemade two sets of experiments to explore the behaviour of
our model. The first explored the extent to which the model
could capture the traditional dynamics of the international
order in traditional domains (Section 5.1). The second built
on the understanding gained in the first experiments to
explore the dynamics in the cyber domain (Section 5.2).

We experimented with two parameters, the probability of
cooperation between states and the degree of power diffusion.
The former was implemented directly as a factor in the
behaviour of the agents, while the latter was varied indirectly
by varying the power function.

For the first set of experiments, we used, for simplicity, a
simple linear power function (which does not have a power-
diffusingweak region as in Figure 1). And then, for the second
set of experiments, we used a logarithmic power function
(which allowed the degree of power diffusion to be varied
across the range implicit in Figures 1(c) and 1(d)). In each set,
we studied various levels of cooperation.

5.1. Behaviour of States in Traditional Domains. Figure 2
illustrates the simple linear power function we used in these
experiments, and Figure 3 shows the typical behaviour of the
model as states’ probability of cooperating is varied from low
to high. We show the evolution from tick (time step) 1000 to
tick 2000 because it takes about 1000 ticks for the model to
settle down into a stable state, after which the behaviour does
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Figure 2: The linear power function starts out flat until it reaches
what we call the minimum wealth, which is set to the value of 1.0.
States below this wealth are unable to fight wars with larger ones,
so this power function restricts the “major players” in the game to a
subset of all the states.

not change significantly, even beyond 100,000 ticks. Note that
the vertical scale varies between the plots.

Figure 3 shows that, with a low probability of cooperation
of 0.3, most states remain in the region below the minimum
wealth, where they cannot have conflicts. Whenever they rise
above, they are quickly put down by the power of the large
states. Furthermore, the correlation between the red and the
yellow state reveals that the most meaningful interactions
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Figure 3: Typical behaviour with the linear power function, across
several values of the probability of cooperation parameter. Each
colour represents one of the 20 states.

take place between two large states, not between large and
small.

At a cooperation probability of 0.5, small states are able
to rise above the minimumwealth by cooperating with larger
ones. This cooperation allows the upper layer (above mini-
mum wealth) to hold more states, but also makes it more dy-
namic: states enter and exit the layer more frequently.
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Figure 4: For a probability of cooperation of 0.5, we plot a point each
time a state rises above the minimum wealth. The dwell time is the
time spent above the minimum wealth, and themaximum wealth is
themaximumwealth achieved during that dwell time. A logarithmic
scale is used on the horizontal axis for clarity.The smoothness of the
distribution indicates that hegemonic states (in the top right of the
plot) are not special.

With a high probability of cooperation of 0.7, the dyna-
mism increases further. This happens because as the number
of large states increases, so does the probability of a large
defeat for any particular state, so none remain dominant for
long.

In summary, more cooperation means fewer wars, so the
equilibrium capacity of the upper layer increases. Increased
dynamism results from each state having more opportunities
for wars with other large states, which are the only kind of
war that can significantly affect a large state’s wealth with
this power function. To demonstrate this more rigorously, we
have Figures 4 and 5.

Figure 4 shows the distribution of state wealths and
lifetimes over the course of a single model run. (We chose
the awkward construction “wealths” because a nation state
can achieve any number of states of wealth, and we need to
distinguish these individual values and treat them as a set.
But we remain unhappy with this corruption of the English
language.) It shows that hegemons (such as the dominant red
state in Figure 3(a)) are not produced by a special process,
but are simply normal states at the extreme end of a range of
different levels of power.

Figure 5 combines data from model runs at several
different probabilities of cooperation. It demonstrates that
increased cooperation allows the upper layer (above mini-
mumwealth) to hold more states, but the states that are there
do not last quite as long.

We can also see the effect of cooperation by measuring
how much time states spend possessing different amounts of
wealth. We ran the model 100 times with different probabil-
ities of cooperation. A few pilot runs established the typical
range of wealths that states achieve. We split this range into
buckets and calculated the number of states whosewealthwas
within each bucket each tick. Summing these values across all
the ticks for a single model run produces one vertical slice of
Figure 6. The horizontal axis allows the results for different
probabilities of cooperation to be compared.
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Figure 5: As for Figure 4, but with several data sets of different
probabilities of cooperation now combined. The colours (see the
keys of the figure) range from red for high probability of cooperation
to blue and purple for low. At a higher level of cooperation, the
maximum wealth achieved by states is much larger on average, but
they do not last quite as long as the longest-lived hegemons in the
bottom-right when cooperation is low.

Figure 6 is coloured to show the frequency of different
levels of wealth achieved for different probabilities of coop-
eration.Thus warm colours indicate that states occupied that
level of wealth at that probability of cooperation more often,
while cool colours, less often.

Consider, for example, the vertical slice in Figure 6 at a
probability of cooperation of 0.4. Moving upwards, we see
first a thin green layer, states just above minimum wealth,
then a thick blue band, and another green band.This suggests
that, in that model run, states were often either just above
minimumwealth or far above (in the second green band), but
typically skipped right past the space in between. The point
at which the colour turns white indicates the highest wealth
achieved by any state in that model run.

Figure 6 shows the maximum wealth increasing with
higher probability of cooperation, although it is not achieved
very often. It also shows that states tend to concentrate in a
band somewhat above the minimum wealth level, but that
this band spreads out and encompasses most of the states at
higher levels of cooperation.The bright spot on the left corre-
sponds to the one or two hegemons that remain in control for
the entire model run at that low level of cooperation.The red
region on the right indicates that most states are able to
achieve a higher level of wealth when there is more coopera-
tion. This is again the same observation that more coopera-
tion leads to increased capacity and dynamism.

When we ran themodel withmore states, the results were
effectively the same, although plots like those in Figure 3
would appear compressed, as if the model were running
faster.Thismakes sense, since withmore states there aremore
interactions happening per time step, and hence each state
engages in more cooperation and more conflicts.
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Figure 6: The distribution of state wealth for different probabilities
of cooperation. Each vertical line represents one model run at a
particular probability of cooperation. Warmer colours indicate that
states occupied that level of wealth more often. Wealths below the
minimum, indicating inactive states, have been truncated.

The results above show that, with the linear power func-
tion, single hegemons invariably emerge and that increasing
cooperation leads to higher wealth overall, but reduces the
dwell time of such hegemons. These are satisfying results
because they closely emulate the observed international order
seen throughout history in the traditional domains of land
and sea. The emergence of relatively long-lived hegemons
when there are low levels of cooperation (Figure 3(a)) looks
very similar to the European powers at the height of their
mercantilist strategies in themid-19th century. And theworld
with higher levels of cooperation and wealth (Figure 3(c))
looks not unlike the postwar Bretton Woods world, with
rising wealth in middle powers.

The results also show a clear power-law relationship
between maximum wealth and dwell time of states (Figures
4 and 5). While we know of no empirical studies of power
transition in traditional domains, it is nonetheless satisfying
to see that a simple model driven by competition and cooper-
ation leads to the emergence of power-law relationships like
those seen empirically in other complex systems with simple
opposing internal forces. See, for example, Bettencourt [19]
on city size, Cederman [20] on war, and Hatton et al. [21] on
predator-prey relationships.

We conclude that the model, using a simple linear
power function, captures the essential behaviours of power
transitions in the traditional domains.This allows us to move
with some confidence to explore the behaviour of states in
cyberspace.

5.2. Behaviour of States in Cyberspace. Figure 7 shows the log-
arithmic power function that we used in these experiments.
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Figure 7:The logarithmic power function 𝑝(𝑤) = ln𝑘(1+𝑤) for two
values of the exponent 𝑘. It has two regions, one that curves up and
one that curves down. States in the second region have an advantage
over those in the first region. In other words, once a state has enough
wealth to reach the steep increase in power, it joins an elite club of
powerful states. The less wealth required to reach that region, the
more power-diffuse a domain is. Reducing the exponent shrinks that
region and so models increasingly power-diffuse domains.

This function is useful because it has a parameter, the power
exponent, that can be varied to alter how easy it is to acquire
power and hence the degree of power diffusion. A higher
exponent corresponds to less power diffusion. Thus we can
emulate the qualitative power functions of Figure 1 by varying
the exponent to create a broad class of function shapes that
encompass both shapes of Figures 1(c) and 1(d) in their
spectrum. This is described in more detail in Appendix C.

Figure 8 shows the behaviour of themodel as cooperation
increases. The power exponent is set at 1.75 for these experi-
ments. This creates a more or less linear power function, and
the results are broadly similar to Figure 3, indicating that our
analysis of the effects of cooperation applies in this case as
well. It also shows that the notion of power diffusion can be
effectively added to the model to provide a smooth path from
the dynamics in traditional domains to the new domain of
cyberspace.

Figure 9 shows the changes as the power exponent is
varied. As the power exponent drops (and hence power
diffusion increases), the worldmoves from a single hegemon,
to a cluster of great powers, to a free-for-all.

Figure 10 is comparable to Figure 4 and demonstrates that
the overall behaviour of the model with a logarithmic power
function is similar to its behaviour with the linear power
function.

Figure 11 allows us to analyse the effect of changing the
power exponent (and hence the degree of power diffusion).
We see that less power diffusion produces more and longer
lived hegemonic states, but at the expense of the rest. The
green dots that are not hegemons (the hegemons are in the top
right) are concentrated in the bottom left, beneath the bulk
of the red dots from the more power-diffuse domain. Less
power diffusion increases the difficulty of acquiring a signif-
icant amount of power, reducing the total number of large
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Figure 8: The typical behaviour of the model with the logarithmic
power function, with an average level of power diffusion, as
probability of cooperation is varied. Each colour represents one of
the 20 states in the model.

states and the competition for the dominant spot, allowing
hegemons to last for longer.

Finally, Figure 12, read together with Figure 11, clearly
shows a transition in the dynamics of the whole ensemble
of states as power diffusion increases (and thus the exponent
decreases). Figure 12 shows the results of several hundred
runs of the model with different exponents. It is coloured like
Figure 6 to show the frequency of different levels of wealth
achieved but, this time, for different levels of power diffusion
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Figure 9:The typical behaviour of themodel as the power exponent
is varied. (a) represents the least power-diffuse domain.

(as measured by the power exponent). Thus, warm colours
indicate thatmany states frequently occupied a level of wealth
at that level of power diffusionmore often, while cool colours
represent the inverse.

At the left of Figure 12, power diffusion is low and the
exponent high. A vertical slice in this region shows, moving
downwards inwealth, a few (at the limit, one)wealthy, power-
ful, long-lived (see Figure 11) states, hegemons, that suppress
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Figure 10: The shape of the distribution of maximum wealth and
lifetimes using a logarithmic power function with an exponent of
1.75 and a cooperation probability of 0.5 is similar to that seen in
Figure 3.

1.

1.25

1.5

1.75

2.

2.25

2.5

2.75

3.

10 1000100 10
4

Dwell time

0

5

10

15

20

25

30

35

M
ax

 w
ea

lth

Figure 11: Data from nine runs with different power exponents and
a fixed cooperation of 0.5 is plotted here. Each dot represents one
growth and decline period for one country in a particular run and
plots the maximum wealth achieved during that time. Redder dots
correspond to a more power-diffuse domain than the greener dots.

the wealth and power of the states below them. Thus imme-
diately below the hegemons is a relatively sparse region of
a few persistent middle powers (in green and yellow). Most
states (thus, in warmer colours) are below them at low levels
of wealth. Below these poorer states are a few states (thus, in
cooler colours) at the bottom that are very poor.

As power diffusion increases towards the right of Fig-
ure 12, the ensemble of states is becoming progressively
wealthier as the floor of minimum wealth grows (coloured
white), but the wealth of the wealthiest states is declining.
Taking a vertical slice in the middle of the figure and reading
downwards, we see a transition beginning as a widening band
of abundant reasonably wealthy states (thus, a widening band
of yellow progressing to red) emerges immediately below the
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Figure 12: The distribution of state wealth for different power
exponents (a lower exponent means more power diffusion). White
indicates no states, and warmer colours indicate that states occupied
that level of wealthmore often.Thehorizontal axis has been reversed
to emphasise the increase in power diffusion from left to right.

wealthiest states. The wealthiest states are now cheek by jowl
with a growing number of states that are nearly as wealthy.
That is, the wealthiest states are no longer suppressing those
immediately below them. The uppermost layers of wealth
now progressively hold more states. Below that emerging
band, we see the band of states with low levels of wealth
gradually dissipating as wealth is spread more widely.

Compared to the clearly hegemonic states at the top left
of Figure 12 (and top right of Figure 11), the wealthiest states
in the middle of Figure 12 are barely hegemonic. They are
relatively poorer and shorter-lived states (see Figure 11).They
are unable to suppress the wealth and power of most of the
other states which now cluster just below them in wealth and
longevity in an ensemble with far more flux (Figure 9).

At the extreme right of Figure 12, most states now have
more wealth (the warm band towards the top right is now
fully red), but the wealthiest states are now not so wealthy.
And we know, from Figure 11, that these wealthiest states do
not last as long as the wealthiest states in the less power-
diffuse regions further to the left.We no longer observe hege-
mons, but rather a set of states whose wealth and power are
constantly churning (Figure 9).

These results show that single hegemons once again
invariably emerge and that they are more stable when there
is less power diffusion, that is, when the power function was
more like Figure 1(c) rather than Figure 1(d). They also show,
as did the results in Section 5.1, a clear power-law relationship
between maximum wealth and dwell time of states.

6. Discussion

Wehave produced a simplemodel of state interactions. Clear-
ly it lacks any of the details of actual interactions, but
the simplicity of the model means that we make very few

assumptions, and thus the broad conclusions are widely
applicable [22].

We defined wealth as an abstract measurable value of the
total resources at the disposal of a state.This concept contains
metrics of military, economic, geographical, and scientific
indicators that constitute national wealth. In the real world,
qualifying what resources or attributes constitute national
wealth is fraught with inconsistencies and it has confounded
analysts in the past. However, resolving these questions is not
necessary to experiment with a simple model like our own
and glean useful insights from it.

In cyberspace, wealth can buy zero-day exploits. Euphe-
mistically, these are “guns with only one bullet” [23]. Wealth
can procure computer systems. Wealth can employ ICT
security architects to design safe systems. And wealth can
“grease the palms” (or fingertips) of black-hat hackers [24].
Wealth, as we conceptualise it, is an input that states can
utilise to purchase the bits and bytes necessary to defend
against or carry out statecraft in cyberspace.

In contrast, power is the ability to perform statecraft
within the environment of cyberspace to create preferential
outcomes. Power is the timely deployment of purchased
exploits towards strategic ends [25]. Power can create pre-
ferred outcomes, shape agendas, and create structural frame-
works.

For the purposes of our model, we defined power as a
quantity determined by the wealth of a state, with the exact
relationship depending on the domain. Amore power-diffuse
domain, like cyberspace, allows a state to gain more power
more easily, with a smaller investment of wealth.The conver-
sion from a given quantity of wealth to a particular amount
of power can be varied. This power function represents the
real-world capacity of states to turn resources into outcomes.
We argued above that different power functions allow us to
model the amount of power diffusion.

We have identified two factors that affect the distribution
of power under these simple dynamics. One is the rate of
cooperation. Like the conflicts, the cooperation in our model
can stand for many real-world interactions, such as trade,
technological diffusion, and intelligence sharing. We have
demonstrated that, with more cooperation, all or most of the
actors are better off than they otherwise would have been, but
the more hegemonic ones find it more difficult to hold onto
power for as long. Historically, this suggests that hegemons
who share power and technology with allies are likely to be
better off, but also less clearly dominant, than those who
prevent any competition by force. A different example of a
power structure that could also be modelled this way is the
ruling party or family in an authoritarian state. By ensuring
complete dominance, the rulers secure their position, at the
cost of the prosperity of their nation [26]. With more liberal
policies, everyone is often better off, and thewealthiest people
may be wealthier, but this would not be in the interests of
the existing elite, since the ability for a specific single actor
to maintain power in a cooperative environment is com-
promised.

The other significant factor was the shape of the power
function, which is how different domains of state interaction
can be abstractly represented in our model. A function that
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starts off flat, rises sharply, and then flattens again represents a
domainwhere the small players cannot significantly affect the
bigger players, but the biggest players are comparable to each
other. This, we claim, is the shape of the power distribution
in the traditional domains, and our model shows that it
produces hegemonic behaviour with only occasional upsets.
Increasing the size of the early flatter region corresponds to
a greater barrier to entry, and our model correctly predicts
long-term stable hegemony in this case. Finally, reducing the
size of the region (a smaller exponent) means lowering the
barriers to entry, for example, in cyberspace, where although
the power of a nation state is not easy to come by, small
actors can nonetheless have a large impact [27], and our
model predicts much greater instability in this power-diffuse
domain, in line with the expectations of some scholars [28].

7. Conclusion

We have presented a simple model of competition and
cooperation between states. Two key factors that affect the
emergence of hegemony are the amount of cooperation and
the ease of acquiring power. Less cooperation and greater
barriers to power favour the establishment and maintenance
of hegemonic actors. We argue that cyberspace as a domain
of conflict between states is less suited to hegemony on both
of these metrics than traditional domains like land, sea, and
air. We therefore agree with Nye [3] that cyberspace, as a
more power-diffuse domain, is unlikely to support the kind
of hegemonic behaviour we have seen states engage in in the
other domains.

8. Future Work

We now intend to evolve a more sophisticated model from
this fundamental framework of abstract states in abstract
domains. We plan to carefully parameterise the states, in
a stepwise manner, to give them some of the canonical
characters and behaviours of the set of real-world states. And
we will likewise parameterise the domains to create more
realistic topologies.

Appendix

A. Model Details

An agent-based model was constructed using Repast Sim-
phony. The model’s source code, including instructions for
how to get it running, is available at https://www.openabm
.org/model/4600/.

A.1. Parameters. The complete list of parameters (and default
settings) is as follows:

(i) Number of states,𝑁 = 20
(ii) Linear or logarithmic power = linear
(iii) Minimum wealth (linear only), MIN = 1.0
(iv) Power exponent (logarithmic only), 𝑘 = 1.75

(v) Probability of cooperation, 𝑐 = 0.5
(vi) Wealth modification factor, 𝑓 = 0.01
(vii) War steal factor, 𝑠 = 0.1
(viii) Cooperate penalty, 𝛾 = 0.5
(ix) End at tick = 10000.

Throughout the text, the symbols above will be used to refer
to these parameters, and wherever the text does not explicitly
mention them, they were at their default values.

All states begin at MIN wealth (for linear power) or 1.0
wealth (for logarithmic power).

A.2. Model Dynamics

(1) At every time step (tick), every state gets a turn to
select another state and interact, in a randomorder.𝑁
interactions happen per tick, and each state interacts
twice on average.

(2) Each state in an interaction chooses a move, to
either attack (ATT) or cooperate (COOP).Theymake
this choice randomly according to the probability of
cooperation 𝑐. If awar occurs, the probability of a state
being victorious depends on the powers of the two
states. Their wealth is altered depending on the out-
come. See below for details.

(3) For logarithmic power functions only, all states’
wealths are altered in between ticks according to𝑤𝑡+1 = 𝑤𝑡/(1 − 𝑓 + 2𝑓𝑝2)2. We refer to this as growth
correction, and it exists to counteract the otherwise
inevitable decline produced by that function.

A.3. Power Functions. We shall refer to thewealth of arbitrary
states as 𝑤, 𝑤𝑎, 𝑤𝑏 and their power as 𝑝, 𝑝𝑎, 𝑝𝑏. Power is a
function of wealth, and, based on some preliminary explo-
ration not recorded here, we selected two power functions of
interest:

(i) Linear power: 𝑝(𝑤) = max(𝑤 −MIN, 0)
(ii) Logarithmic power: 𝑝(𝑤) = ln𝑘(1 + 𝑤).

A power of zero (as happens below MIN for the linear
function) has the special effect of causing a state to ignore
wars. Furthermore, as analysed further below, the concave up
region in the logarithmic power for 𝑘 > 1 is a region where
states are weaker and tend to lose wealth to those above.Thus,
both power functions contain a region of low wealth where
states present less of a threat to wealthier ones. As we observe
later, this correspondence is responsible for similar behaviour
under both functions.

We chose these two functions for simplicity and utility:
they allow us to explore the qualitative dynamics of power as
a function of wealth in our unparameterised model.

Our linear power function allows for a power of zero
at some presumably low wealth (to allow for the case of a
state ignoring wars) and then shows an unbounded linear
relationship between power and wealth. It is essentially a base
case to compare with richer relationships.

https://www.openabm.org/model/4600/
https://www.openabm.org/model/4600/
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Our logarithmic power function addresses the issue that
many “growth” functions, especially those involving living
things, have a sigmoid shape, starting slowly, increasing, and
then slowing down. In ecology, these often explicitly asymp-
tote to a “carrying capacity.” Our logarithmic function has
a similar sigmoid shape, but no upper bound, since we do not
wish to constrain the growth of power in this way.The growth
just slows exponentially over time. Thus, using this function
allows us to explore the qualitative dynamics of a range of
different power-wealth relationships simply by varying the
exponent (see Appendix C).
A.4. Interactions. If states 𝑎 and 𝑏 both cooperate, they each
gain 𝑓(𝑤𝑎 + 𝑤𝑏)/2 wealth.

Otherwise, a war occurs, and state 𝑎wins with probability𝑝𝑎/(𝑝𝑎+𝑝𝑏). If one state cooperated, their power ismultiplied
by 𝛾 for this calculation. If 𝑏 loses, 𝑤𝑏𝑠 wealth is transferred
to 𝑎. Finally, the winner of the conflict has to pay a war cost
of 𝑓(𝑤𝑎 + 𝑤𝑏), which may result in overall losses instead of
gains for the victor. If one state has a power of zero in this
interaction, then no war occurs and all wealths remain the
same as before. Effectively, states with wealth below MIN are
insignificant compared to larger states and do not engage in
wars. They cooperate as normal.

A.5. Growth Correction. For the logarithmic function (or
indeed any power function that is always positive), the overall
growth and decline do not depend on the shape of the
function. Consider the average gain or loss for a single state
in a single interaction. If we assume (to simplify calculations)
that all states have equal wealth, the state has 𝑐2 probability
of gaining 𝑓𝑤 wealth and 1 − 𝑐2 probability of being in a war.
When talking about overall growth, we do not care about the
transfer of wealth between states, only about wealth that is
removed from the system, war costs. Since only one out of
the two states will have to pay war costs, the average loss is2𝑓𝑤 with probability (1 − 𝑐2)/2.

Thus, on average, a state with wealth 𝑤 will have wealth𝑐2𝑤(1 + 𝑓) − (1 − 𝑐2)𝑤(1 − 𝑓) after an interaction, which
corresponds to multiplying𝑤 by 1−𝑓+2𝑓𝑐2. Since each state
interacts twice on average, a correction multiplier of 1/(1 −𝑓 + 2𝑓𝑐2)2 has to be applied every tick to avoid uncontrolled
(and meaningless) growth or decline. This multiplier may be
greater or less than one.

For the linear power function, the more states have a
wealth below MIN, the fewer wars there are, while cooper-
ations are unaffected. Thus, the more states drop below that
line, themore growth everyone experiences. If the parameters
are such that the states experience overall decline, they will
drop until enough states have crossed that line, and the
decline ceases. The linear power function is therefore self-
stabilising for 𝑐 < 1/√2 ≈ 0.71. Above that value, corres-
ponding to the point at which the growth correction would
have to be smaller than one, states tend to gain from each
interaction on average, even when everyone is above the line.
Thus, the overall wealth grows uncontrollably. For this reason,
Figure 6 is cut off at 𝑐 = 0.7.

B. Assumptions

The model as described above inevitably includes some
assumptions that may not perfectly reflect the behaviour of
states in the real world. Our goal was tominimise the number
of assumptions (tominimise the ways in which themodel can
be wrong) and to make justifiable choices for the remainder.

Many features of real-world states are not reflected in
this model; for example, the states cannot communicate and
form alliances, they do not have any internal factions, and
they do not have any sort of memory. These are all possible
ways to expand the model in the future, but adding any one
such feature also comes at a cost; it introduces many more
assumptions, any of which can fail.

We explained our choice of power functions above: a
simple linear function and an unbounded S-shape. In the
real world, two states with equal wealth could have different
military strength, but we have abstracted away this detail.
As an example of our thought process, we do not believe
that adding an extra proportion of wealth used for military
parameter would add any new insights to the model. Instead,
we imagine that two such states would be represented in our
model as two states with different amounts of wealth.

The possible interactions were intended to fit into a 2 ×
2 payoff matrix (the simplest possible when two states both
make a choice), and reflect the basic idea that cooperation is
profitable and war is costly (but the victor might recoup the
cost). The remaining parameters were either varied experi-
mentally as we describe in the paper, or chosen arbitrarily
to be within a range where the behaviour is interesting (i.e.,
where the states do something other than grow/shrink with-
out bound, or have one state dominate everyone else forever).
With these constraints, most of the parameters are either
arbitrary (e.g., 𝑓, which sets the typical scale of the inter-
actions but does not affect their dynamics) or forced (e.g., the
ratio between cooperation gains and war costs, which must
be 1 on average to prevent unbounded growth).

C. Power Function Dynamics

Given a war between states 𝑎 and 𝑏, with 𝑤𝑎 > 𝑤𝑏 and ignor-
ing war costs, the expected value for state 𝑎 is

𝐸 (𝑎) = –𝐸 (𝑏) = 𝑝𝑎𝑤𝑏𝑠 − 𝑝𝑏𝑤𝑎𝑠
= ( 𝑠
(𝑝𝑎 + 𝑝𝑏)) × (𝑝𝑎𝑤𝑏 − 𝑝𝑏𝑤𝑎) .

(C.1)

The fraction is just a constant factor, but the𝑝𝑎𝑤𝑏−𝑝𝑏𝑤𝑎 term
is a very important driver of the dynamics of themodel. If this
term is positive, the wealthier state stands to gain from the
war on average, while if the term is negative, it stands to lose.
For a particular pair 𝑎 > 𝑏, a positive 𝐸(𝑎) tends to increase
the wealth disparity, while a negative term tends to decrease
it.

For a linear power function 𝑝(𝑎) = 𝑟𝑎, this term is always
zero. Hence, with linear wealth (in the absence of other
important effects), being wealthier gives no advantage or
disadvantage overall relative to poorer states. Other power
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Figure 14: 𝑘 = 25.

function shapes alter this behaviour. Specifically, the term is
positive if a line on a power-wealth graph drawn from the
origin to the point (𝑎, 𝑝(𝑎)) passes above the point (𝑏, 𝑝(𝑏))
and negative if it passes below. To illustrate this, consider, in
Figures 13 and 14, the logarithmic power function for two
different values of 𝑘.

Adding an exponent greater than 1 has the largest effect
near the origin, where it produces a concave up region.

Now suppose 𝑎 has wealth around 5.0. We plot a straight
line through that point and the origin. If 𝑏 has a wealth in the
red region below, 𝐸(𝑎) would be negative. In the blue region,
it would be positive. At the crossover point, 𝐸(𝑎) = 0. Note
that if the power function was linear, it would lie entirely on
that line, so 𝐸(𝑎) = 0 everywhere.

Effectively, concave up regions of the power function pro-
duce greater and greater advantages for increasing wealth,
while concave down regions penalize wealth. Note that a dis-
advantage for the wealthier state is equivalent to an advantage
for the poorer state. Also note that the crossover point will
shift as a’s wealth shifts, so the concavity of the function is
only a guide.

When the exponent is raised, the initial part of the graph
becomes concave up; as a result, for small wealth, growth be-
comes an advantage andwe seemore hegemonies forming. At
higher wealth, however, the advantage disappears, preventing
extreme breakaways.
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Figure 15: Linear power.

Because of the flat region in the linear power function
(see Figure 15), larger states always have an advantage over
smaller ones, though the advantage diminishes with increas-
ing wealth.

D. Measurement Technique

To produce the diagrams in this paper, we collected data
within Repast Simphony, using the File Sink mechanism to
write it to files. The resulting files were in an approximately
CSV (comma-separated values) format. We used a text edi-
tor’s search and replace function to clean up some artifacts
of the Repast output and produce a valid CSV file; then
Microsoft Excel was used to sort the data by the parameter of
interest. We have also provided a python script that replicates
our text editor andExcel workflow.Abatch run inRepast pro-
duces both an output file (where each row has a run number
and corresponds to a single run) and a parameter map, which
associates run numbers with parameter settings. We used
Excel to combine the two, which permitted sorting. Once a
sorted CSV file of the results was produced, we imported
it into Mathematica and used Mathematica functions to
process the data (including combining data from multiple
runs with the same parameters) and to produce the dia-
grams. The Mathematica 9 notebooks we used are available
at https://www.openabm.org/model/4600/ along with the
model code.

To produce the scatter diagrams of maximum wealth
against dwell time, we set up each state to start a timer when-
ever it went above MIN wealth. For the logarithmic power
function, we instead used the value 10−0.5, which was chosen
because it seemed to be a natural dividing line on the wealth
density plot. The resulting output file was a long list of time/
wealth pairs.We alsomade sure to forcibly stop the timers and
collect data from states that were above the threshold when
the model run ends. Otherwise, a state that stayed above the
threshold the entire time (a very significant event) would be
missed. The data collected this way was output separately, so
that we could judge whether it distorted the rest or not.

We measured wealth density by setting up a predefined
collection of buckets at the start of each run.The number and

https://www.openabm.org/model/4600/
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size of the buckets are determined within the code itself. Each
“bucket” is a single integer, storing howmany times a state has
had awealthwithin a certain range.During the run, each time
step, for each state, the bucket corresponding to that state’s
current wealth is incremented by one. At the end of a run,
the list of buckets is output. A batch run thus produces a list
of lists, which Mathematica can render as a ListDensityPlot.
The data from multiple runs with the same parameters (but
different random seeds) can be easily combined by averaging
as long as they used the same configuration of buckets.

We used buckets with a logarithmic size (wider at higher
wealth levels) because all the relevant actions in themodel are
multiplicative.Thus, besides the effects of the power function,
the behaviour of the model at higher wealth is a scaled-up
version of its behaviour at a lower wealth. Using a bucket size
that increases in proportion thusmore accurately captures the
model’s dynamics.

There cannot be an infinite number of buckets, and the
wealth of states can grow without bound under some choices
of parameter settings. To address this issue, we ran several
test runs at the extremes of the parameters we wanted to
investigate, to find out the highest and lowest wealth typically
reached by the states. The maximum and minimum buckets
were then set accordingly.
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