Skip to main content
Log in

Strong continuity implies uniform sequential continuity

  • Published:
Archive for Mathematical Logic Aims and scope Submit manuscript

Abstract

Uniform sequential continuity, a property classically equivalent to sequential continuity on compact sets, is shown, constructively, to be a consequence of strong continuity on a metric space. It is then shown that in the case of a separable metric space, uniform sequential continuity implies strong continuity if and only if one adopts a certain boundedness principle that, although valid in the classical, recursive and intuitionistic setting, is independent of Heyting arithmetic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Beeson, M. J.: `The nonderivability in intuitionistic formal systems of theorems on the continuity of effective operations'. J. Symb. Logic 40, 321–346 (1975)

    Google Scholar 

  2. Beeson, M. J.: Foundations of Constructive Mathematics. Springer–Verlag, Heidelberg, 1985

  3. Bishop, E.: Foundations of Constructive Analysis. McGraw–Hill, New York, 1967

  4. Bishop, E., Bridges, D.: Constructive Analysis. Grundlehren der Math. Wissenschaften 279, Springer–Verlag, Heidelberg, 1985

  5. Bridges, D., van Dalen, D., Ishihara, H.: `Ishihara's proof technique in constructive analysis'. Indag. Math. 13, 433–440 (2002)

    Article  Google Scholar 

  6. Bridges, D., Richman, F.: Varieties of Constructive Mathematics. London Math. Soc. Lecture Notes 97, Cambridge: Cambridge University Press, 1987

  7. Bridges, D., Mines, R.: `Sequentially continuous linear mappings in constructive analysis'. J. Symb. Logic 63, 579–583 (1998)

    Google Scholar 

  8. Bridges, D., Ishihara, H., Schuster, P.: `Sequential compactness in constructive analysis'. Österreich. Akad. Wiss. Math.-Natur. Kl. Sitzungsber. II 208, 159–63 (1999)

    Google Scholar 

  9. Bridges, D., Ishihara, H., Schuster, P.: `Compactness and continuity, constructively revisited'. In: Computer Science Logic (J. Bradfield, ed; Proceedings of 16th International Workshop CSL 2002, 11th Annual Conference of the EACSL, Edinburgh, Scotland, September 22–25), Lecture Notes in Computer Science 2471, 89–102, Springer–Verlag, Berlin and Heidelberg, 2002

  10. Bridges, D., Vîţă, L.: `Apartness spaces as a framework for constructive topology'. Ann. Pure Appl. Logic. 119 (1–3), 61–83 (2003)

    Google Scholar 

  11. Cameron, P., Hocking, J.G., Naimpally, S.A.: `Nearness, a better approach to continuity and limits, Part II'. Mathematics Report #18–73, Lakehead University, Ontario, Canada, 1973

  12. Dummett, M.: Intuitionism: An Introduction (2nd Edn). Oxford University Press, 2000

  13. Ishihara, H.: `Continuity and nondiscontinuity in constructive mathematics'. J. Symb. Logic 56, 1349–1354 (1991)

    Google Scholar 

  14. Ishihara, H.: `Continuity properties in constructive mathematics'. J. Symb. Logic 57, 557–565 (1992)

    Google Scholar 

  15. Ishihara, H.: `Markov's principle, Church's thesis and Lindelöf's theorem'. Indag. Mathem., N.S. 4, 321–325 (1993)

    Google Scholar 

  16. Ishihara, H.: `A constructive version of Banach's inverse mapping theorem'. New Zealand J. Math 23, 71–75 (1994)

    Google Scholar 

  17. Ishihara, H.: `Sequential continuity in constructive mathematics'. In: Combinatorics, Computability and Logic (Proceedings of DMTCS'01, Constanţa, Romania, 2–6 July 2001; Calude, C.S., Dinneen, M.J., Sburlan, S. (eds.)), 5–12, DMTCS Series 17, Springer–Verlag, London, 2001

  18. Ishihara, H., Schuster, P.: `A constructive uniform continuity theorem'. Quarterly J. Math. 53, 185–193 (2002)

    Article  Google Scholar 

  19. Ishihara, H., Yoshida, S.: `A constructive look at the completeness of J. Symb. Logic 67, 1511–1519 (2002)

    Google Scholar 

  20. Kushner, B. A.: Lectures on Constructive Mathematical Analysis. Amer. Math. Soc., Providence RI, 1985

  21. Schuster, P. M.: `Elementary choiceless constructive analysis'. In: Computer Science Logic (Proceedings of Conference in Fischbachau, August 2000; P. Clote, H. Schwichtenberg, eds), Lecture Notes in Computer Science 1862, 512–526, Springer–Verlag, Berlin, 2000

  22. Schuster, P., Vîţă, L., Bridges, D.: `Apartness as a relation between subsets'. In: Combinatorics, Computability and Logic (Proceedings of DMTCS'01, Constanţa, Romania, 2–6 July 2001; Calude, C.S., Dinneen, M.J., Sburlan, S. (eds.)), 203–214, DMTCS Series 17, Springer–Verlag, London, 2001

  23. Schuster, P. M.: `Unique existence, approximate solutions, and countable choice'. Theor. Comp. Sci. 305, 433–455 (2003)

    Article  Google Scholar 

  24. Troelstra, A. S., van Dalen, D.: Constructivism in Mathematics: An Introduction (two volumes). North Holland, Amsterdam, 1988

  25. Weihrauch, K.: `A foundation for computable analysis'. In: Combinatorics, Complexity, & Logic(Proceedings of Conference in Auckland, 9–13 December 1996; Bridges, D.S., Calude, C.S., Gibbons, J., Reeves, S., Witten, I.H. (eds)), Springer–Verlag, Singapore, 1996

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Douglas Bridges.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bridges, D., Ishihara, H., Schuster, P. et al. Strong continuity implies uniform sequential continuity. Arch. Math. Logic 44, 887–895 (2005). https://doi.org/10.1007/s00153-005-0291-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00153-005-0291-1

Keywords

Navigation