
Toward a Formal Philosophy of Hypercomputation∗

Selmer Bringsjord & Michael Zenzen
Dept. of Philosophy, Psychology & Cognitive Science

Department of Computer Science (S.B. only)

Rensselaer Polytechnic Institute (RPI)
Troy NY 12180 USA

selmer@rpi.edu • zenzem@rpi.edu
September 10, 2001

Abstract

Does what guides a pastry chef stand on par, from the standpoint of contemporary
computer science, with what guides a supercomputer? Did Betty Crocker, when telling
us how to bake a cake, provide an effective procedure, in the sense of ‘effective’ used
in computer science? According to Cleland, the answer in both cases is “Yes.” One
consequence of Cleland’s affirmative answer is supposed to be that hypercomputa-
tion is, to use her phrase, “theoretically viable.” Unfortunately, though we applaud
Cleland’s “gadfly philosophizing” (as, in fact, seminal), we believe that unless such a
modus operandi is married to formal philosophy, nothing conclusive will be produced
(as evidenced by the problems plaguing Cleland’s work that we uncover). Herein, we
attempt to pull off not the complete marriage for hypercomputation, but perhaps at
least the beginning of a courtship that others can subsequently help along.

Key words: hypercomputation, algorithms, effective procedures, computation-
alism, classical and constructivist mathematics

∗We’re greatly indebted to Carol Cleland, not only for the seminal publications we discuss herein, but
also for her gracious e-debate on an earlier draft of our paper. Thanks are also do to some of our colleagues
in the Rensselaer Reasoning Group (Yingrui Yang, Jim Fahey, Frank Lee, Bram van Heuveln), and to a
number of clever students.

1

Contents

1 Introduction 3

2 A Primer on Hypercomputation 3

3 Toward Identifying the Central Issues 6
3.1 Needed Operators and Predicates . 6
3.2 What About Cleland’s Operator? . 7
3.3 The Central Issues . 8
3.4 “Strong” AI, “Weak” AI, and the Supermind Doctrine 8

4 Some Problems With Cleland’s Schemes 10
4.1 On Cleland’s Account, the Halting Problem Appears Effectively Computable 10
4.2 Quotidian Procedures Are Hopelessly Imprecise 10

5 Arguments Against The Conscious Harnessability of Hypercomputation 11
5.1 The Argument From Infinity . 11
5.2 Three Arguments From Physics . 12

5.2.1 The Argument From Digital Physics 12
5.2.2 The Argument From the Absence of Candidates 13
5.2.3 The Argument From Turing Machines and Oracles as Strange Bedfellows 13

6 Dialectic — To a Point 14
6.1 More on Brainless Waffles . 14
6.2 Rock-Bottom Differences? . 15

6.2.1 Classical vs. Constructivist Mathematics 15

2

1 Introduction

First-rate philosophy can be profoundly irritating, especially to non-philosophers. Socrates
showed us that, and thereby inaugurated a tradition Cleland, perhaps unwittingly, follows
to the letter. She starts with innocent inquiry, pushes and probes, makes some seemingly
innocuous inferences . . . and boom! — suddenly she has shown that what scientists and
engineers take for granted shouldn’t be taken for granted. Does what guides a pastry chef
stand on par, from the standpoint of contemporary computer science, with what guides a
supercomputer? Did Betty Crocker, when telling us how to bake a cake, provide an effective
procedure, in the sense of ‘effective’ used in computer science? According to Cleland, the
answer in both cases is “Yes.” One consequence of Cleland’s affirmative answer is supposed
to be that hypercomputation is, to use her phrase, “theoretically viable.” Unfortunately,
though we applaud Cleland’s “gadfly philosophizing” (as, in fact, seminal), we believe that
unless such a modus operandi is married to formal philosophy, nothing conclusive will be
produced (as evidenced by problems we uncover). Herein, we attempt to pull off not the
complete marriage for hypercomputation, but perhaps at least the beginning of a courtship
that others can subsequently help along.

The plan of the paper is as follows. In the next section, 2, we provide a primer on hyper-
computation — without which, from our standpoint, philosophizing about this phenomenon
is guaranteed to be unproductive. In section 3 we introduce a simple scheme that allows the
key issues to be set out in clearer fashion than they are in Cleland’s work to this point. In
section 4 we share some of the worries we have about Cleland’s position from the perspective
of formal philosophy. In section 5, we present encapsulated arguments for our own positions
on one of the — arguably the — key issues identified in section 2. Finally, in section 6, we
discuss some of the points Cleland has made in personal communication about an earlier
draft of this paper. It will turn out that there are probably rock-bottom differences between
Cleland and us — differences that are rarely brought out in the open when computation and
the mind are discussed.

2 A Primer on Hypercomputation

The story (at least the contemporary version) begins with Turing, who in his dissertation
(Turing 1938 1939) pondered the possibility of so-called oracle machines. These machines
are architecturally identical to Turing machines, but are assumed to be augmented with an
oracle which, upon being consulted about a Turing machine m and input i, returns a correct
verdict as to whether m halts on i. Oracle machines are part of the canon of computer
science today.1 For example, here’s a quote from a recently updated classic textbook on
computability and uncomputability:

Once one gets used to the fact that there are explicit problems, such as the halting
problem, that have no algorithmic solution, one is led to consider questions such as the
following:

1We therefore find it exceedingly peculiar that at the outset of her “Effective Procedures and Causal
Processes” Cleland tells us that the “received view” is that hypercomputation is not possible. Hypercompu-
tation, as shown momentarily, is agreed to be, in many senses, “theoretically viable.”

3

Suppose we were given a “black box” or, as one says, an oracle, which can tell us
whether a given Turing machine with given input eventually halts. Then it is natural
to consider a kind of program that is allowed to ask questions of our oracle and to use
the answers in its further computation . . . (Davis, Sigal & Weyuker 1994, p. 197)

How do Davis et al. transform this figurative scheme into a mathematically respectable
one? To answer this question, note that instead of Turing machines, Davis et al. use an
equivalent programming language L, the programs of which are composed of lists of state-
ments with optional labels. L allows for three types of statements: adding one to a variable
V (V ← V +1), subtracting one from a variable V (V ← V −1), and moving by a conditional
to a line labeled with L in a program (IF V 6= 0 GOTO L). With just these three statements
it’s possible to write a program that computes every Turing-computable function. Tradi-
tionally, to make it easier to see this, “macros” V ← V ′ and GOTO L are allowed. The first
macro moves the contents of variable V ′ to variable V ; the second is an unconditional branch
that moves the active line to the one with label L; both macros can be easily decomposed
into a program written with only the three fundamental statements. (Readers new to this
material are encouraged to carry out the decomposition.) As an example of an excruciatingly
simple program in L, consider a program that computes the function f(x1, x2) = x1 + x2:

2

Y ← X1

Z ← X2

[B] IF Z 6= 0 GOTO A
GOTO E

[A] Z ← Z − 1
Y ← Y + 1
GOTO B

At this point we’re in position to see how Davis et al. formalize oracles. The trick is
simply to allow a new statement (an oracle statement) of the form

V ← O(V)

into the syntax of L: “We now let G be some partial function on N [the natural numbers]
with values in N, and we shall think of G as an oracle” (Davis et al. 1994, p. 198). So if the
value of variable V is m before an oracle statement is encountered, when the statement is then
reached, the value of V changes to G(m) (assuming that G is defined for this argument). As
should be plain, there is absolutely no sense in which G is computed. G is just a placeholder
for what at this point is nothing less than magic. In connection, specifically, with the halting
problem, where m1, m2, . . . enumerates all Turing machines, the function

h(m, n) =

{
1 if mm halts with input n
0 otherwise

can be “solved” by a program in L in which an encoding u of m and n is given as an argument
to G.

2Note that a conditional or unconditional branch that directs flow to a label not present in the program
causes halting. In the program here, then, the label E can be read as “exit.”

4

Unfortunately, this leaves the nature of oracles completely out of the picture. They
are, to say it again, simply magical; all that matters is that they return verdicts that can
be used by Turing machines (and their equivalents). The idea so far, logico-mathematically
speaking, is to set up a scheme for investigating relative computability; and in such a scheme,
how oracles do their thing is wholly irrelevant. For Cleland and the two of us, and other
philosophers interested in hypercomputation, this situation is unacceptable. What is an
oracle? How does it pull off these amazing feats? Fortunately, there are answers: A number
of logico-mathematical devices have been specified to explain how an oracle can accomplish
its amazing work. In fact, just as there are an infinite number of mathematical devices
equivalent to Turing machines (machines running programs from the language L visited
above, Register machines, the λ-calculus, abaci, . . .; these are all discussed in the context
of an attempt to define computation in Bringsjord 1994), there are an infinite number of
devices beyond the Turing Limit. As you might also guess, a small proper subset of these
devices dominate the literature. In fact, three kinds of hypercomputational devices — analog
chaotic neural nets, trial-and-error machines, and Zeus machines — are generally featured
in the literature. In the interests of reaching a wider audience, we discuss only the latter
two devices here.3

Trial-and-error machines have their roots in a paper by Hilary Putnam (1965), and one by
Mark Gold (1965); both appeared in the same rather famous volume and issue of the Journal
of Symbolic Logic. So what are trial-and-error machines? Well, they have the architecture
of Turing machines (read/write heads, tapes, a fixed and finite number of internal states),
but produce output “in the limit” rather than giving one particular output and then halting.
Here is a trial-and-error machine M that solves the halting problem. Take some arbitrary
Turing machine m with input u; let nm,u be the Gödel number of the pair m, u; place nm,u

on M’s tape. Now haveM print 0 immediately (recall the function h, defined above), and
then have it simulate the operation of m on u. If M halts during the simulation, have it
proceed to erase 0 in favor of 1, and then have it stop for good. It’s as easy as that.4

Zeus machines (or “Weyl Machines” from (Weyl 1949); see also Bertrand Russell’s (1936)
discussion of the possibility of his embodying such devices) are based on the character Zeus,
described by Boolos & Jeffrey (1989). Zeus is a superhuman creature who can enumerate N
in a finite amount of time, in one second, in fact. He pulls this off by giving the first entry,
0, in 1

2
second, the second entry, 1, in 1

4
second, the third entry in 1

8
second, the fourth in

1
16

second, . . ., so that, indeed, when a second is done he has completely enumerated the
natural numbers. Obviously, it’s easy to (formalize and then) adapt this scheme so as to
produce a Zeus machine that can solve the halting problem: just imagine a machine which,
when simulating an arbitrary Turing machine m operating on input u, does each step faster
and faster . . . (There are countably many Turing machines, and those that don’t halt are

3Analog chaotic neural nets are characterized by Siegelmann & Sontag (1994). For cognoscenti, analog
chaotic neural nets are allowed to have irrational numbers for coefficients. For the uninitiated, analog chaotic
neural nets are perhaps best explained by the “analog shift map,” explained in Siegelmann (1995), and
summarized in (Bringsjord 1998). Analog Turing machines with hypercomputational power are presented in
(Bringsjord 2001).

4For full exposition, along with arguments that human persons are trial-and-error machines, see (Kugel
1986), a seminal paper that situates trial-and-error machines nicely within both the formal context of the
Arithmetic Hierarchy and the philosophical context of whether minds are computing machines.

5

trapped in an unending sequence of the same cardinality as N.) If, during this simulation,
the Zeus machine finds that m halts on u, then a 1 is returned; otherwise 0 is given.

With this primer now digested, we’re ready to identify the central issues arising from
hypercomputation.

3 Toward Identifying the Central Issues

Cleland tells us that “Effective Procedures and Causal Processes” is “a defense of the theo-
retical viability of the concept of hypercomputation” (p. 1). She tells us in the next sentence
that the “received view” is that hypercomputation is not possible. But what does this
mean? What is Cleland’s objective, exactly? One (unlikely) possibility is that she means to
show that hypercomputation is logically possible. Another is that she intends to show that
hypercomputation is physically possible. Or perhaps she means to maintain that hypercom-
putation is somehow “humanly possible.” Yet another option, seemingly consistent with her
opening prose, is to understand her main thesis to be that hypercomputation is logically
physically possible. There are in fact any number of defensible construals that could be laid
on the table, and Cleland’s writings provide insufficient clues as to which to pick.5

3.1 Needed Operators and Predicates

In order to clarify the situation it’s necessary to have on hand at least the bulk of the
relevant operators and predicates. Accordingly, please see Table 1. The leftmost column
in that table lists the three main modal operators tacitly invoked by Cleland’s discussion
of hypercomputation. The column “Computation Predicates” is based on the fact that
computational information processing can be divided into three categories: processing that
can be carried out by machines having less power than Turing machines (designated by the
predicate F , which is intended to suggest finite state automata); processing that can be
carried out by machines with the power of Turing machines and their equivalents (T); and,
finally, processing that can be carried out by machines more powerful than Turing machines
(O), for example, trial-and-error machines.

Operators Computation Predicates Engineeringish Predicates Partitioned Domain

3: logically possibly F : FSA computation Hu: unconsciously harnessable m1,m2, . . .: mentations
3p: physically possibly T : Turing machine computation Hc: consciously harnessable c1, c2, . . .: computations
3h: humanly possibly O: “Oracle” computation A: actualizable p1, p2, . . .: persons

Table 1: Table 1: Relevant Operators and Predicates

The rightmost column, “Partitioned Domain,” simply presents the core of a sorted calcu-
lus allowing us to conveniently refer to mentations, computations, and persons. Alternatively,
we could introduce predicates to range over these sub-domains.

The column “Engineeringish Predicates” is a bit more tricky, and is at the heart of
things. Consider a finite state automaton F1 designed to process strings over the alphabet A
= {a1, a2}; specifically, F1 is designed to accept the language L1 composed of those strings

5But see section 3.2.

6

having three consecutive a1’s. Let c denote a computation carried out by F1. Obviously,
we could build a physical device to incarnate F1; this device could, say, be a toy railroad
system whose track is divided into squares upon which either of the characters a1 or a2 can
be written before F1 begins to operate. We thus say that F1 is actualizable; abbreviated:
AF1. What about the two other predicate letters in the column in question? Well, suppose
that we have actualized F1, and suppose as well that we would like to investigate whether
a1a1a2a2a1a1a1 ∈ L1. We say that F1 can be harnessed because we can use the automaton to
divine the answer (which is of course that the string is a member of L1). More specifically,
we say in this case that F1 can be consciously harnessed, because a human can formulate a
plan that he or she deliberately follows in order to secure the answer. On the other hand,
sometimes the solution to a problem just “pops into one’s head” through a process that
isn’t accessible to conscious thought. In this case we say that the process is unconsciously
harnessable. Overall, what we verified in the case of F1, where O1/O2/ . . . /On means that
any one Oi of the operators can be selected, is that

(1) 3h/3p/3∃c(Fc ∧Ac ∧Hcc).

3.2 What About Cleland’s Operator?

In personal communication, Cleland has informed us that we are right that something like
“logically physically possible” is her target. But only something like this operator: Cleland
says she has in mind a different operator:

My real target is causal possibility, which is to be distinguished from physical possibility
(which is traditionally construed in terms of the actual physical laws of our world).
A world in which objects (with real valued mass) travel faster than light is physically
impossible (assuming Einstein is right) but nonetheless causally possible (since Newton
might have been right and his laws represent bona fide causal laws too). Thus, although
the idea of “logically physically possible” is close, it is not quite right since some physical
laws (functional laws) are not causal laws. (Cleland, personal communication, May 28,
2001)

This leaves us quite puzzled. The examples Cleland gives here are perfectly at home under
“logically physically possible.” Let wα be the actual world. That which is logically possible
at wα is that which is true at worlds accessible from wα; that is, 3A at wα iff A is true at
some w such that wαRw. If we restrict the accessibility relation in some way based on the
laws of nature at wα, the standard route, then 3pA at wα iff A is true at some w such that
wαR′w. To say

33pA
′,

where A′ is some “Newtonian proposition,” then seems to capture Cleland’s Einstein/Newton
example very nicely. Intuitively put, a Newtonian proposition is true at some world physically
accessible from some world logically accessible from wα. We simply don’t understand in the
least Cleland’s distinction between physical, functional, and causal laws. The distinction
doesn’t seem to relate to the example she gives, which, as we point out, is easily handled by
standard logics. One would think that the notion of a causal law that is not a physical law
would require that her operator “causally possible” not be reducible as it apparently is, given

7

her example. The bottom line is that we doubt very much that the standard formalisms for
logical and physical possibility can’t be easily used to capture what Cleland has in mind.
And if we’re wrong, then, with all due respect, we doubt very much that what Cleland has
in mind is clear and rigorous enough to worry about (see the final section of this paper).

3.3 The Central Issues

There are myriad propositions of great interest that can be expressed on the basis of Table
1, all of which will need to be investigated in a truly mature formal philosophy of hypercom-
putation. From our standpoint, what is interesting, and ultimately profitable, is to reflect
upon patterns created by the various permutations of the machinery encapsulated in Table
1, and to then head to full-blown logics to capture these patterns, and their descendants.
These new logics would of course inherit patterns from established intensional logics. For
example, it’s because we know that 3hφ → 3pφ and 3pφ → 3φ that we can assert (1).
These new logics would also inherit much from physics, which is revealed by section 5.2.
Here’s a small fragment of the theses that would presumably be investigated in a mature
philosophy of hypercomputation:

(2) 3/3p∃cOc

(3) 3/3p/3h∃c(Ac ∧Oc)

(4) 3/3p/3h∃c(Hc/Huc ∧Oc)

(5) ∀c(Ac→Hc/Huc)

There are many other interesting propositions, but perhaps the most important question
is whether it’s humanly possible to build a consciously harnessable hypercomputer, that is,
whether this proposition is true:

(6) 3h/3p/3∃c(Oc ∧ Ac ∧Hcc).

3.4 “Strong” AI, “Weak” AI, and the Supermind Doctrine

The operators and predicates we’ve allowed ourselves also allow reference to mentations and
persons, and this allows propositions that serve to encapsulate “Weak” AI, “Strong” AI (=
computationalism), and the supermind view we subscribe to, and explain and defend in our
forthcoming book Superminds. “Strong” AI can identified with the proposition that

(SAI) ∀m∃c(Tc ∧m = c).

“Weak” AI can be be identified with the proposition that

(WAI) ∀m∃c(Tc ∧m ≈ c),

8

The Turing Limit
Turing machines

Linear Bounded Automata
Finite State Automata

Zeus Machines
Analog ChaoticNNs

Trial-&-Error Machines

computation

All forms of

Phenomena not

capturable in any

third-person scheme

= space covered by Superminds

Figure 1: Superminds Include Parts of Three Spaces

where ‘≈’ stands for the relation of simulation. Roughly put, the idea is that all mentations
can be perfectly simulated by Turing computation.6

Finally, as to our supermind view, it can be encapsulated by the following four proposi-
tions. The basic idea behind these propositions, as indicated by Figure 1 (wherein the circle
represents superminds) is that human persons comprise at least three “parts:” one part that
engages in information processing at and below the Turing Limit, one part that engages
in such processing above the Turing Limit, and one part that cannot be expressed in any
third-person scheme whatsoever. This last part includes such things as subjective awareness
and qualia.

(SUPER1) ∃m∃c(m = c ∧ Tc)

(SUPER2) ∃m∃c(m = c ∧ Fc)

(SUPER3) ∃m∃c(m = c ∧ Oc)

(SUPER4) ∃m¬∃cm = c

The kernel of the supermind view is based upon well-known material. Computation
at the level of Turing machines and below is in large part set out in every comprehensive
textbook on computability theory (e.g., Lewis & Papadimitriou 1981). The supermind view
says that human persons can perform feats at this level. Information processing above the
Turing Limit, as we’ve discussed, is also well-understood mathematically, and the supermind
view includes the proposition that human persons can perform feats at this level. Finally,
there are many well-known arguments for the position that human persons do things that
can’t be described in any symbolic scheme whatsoever (see e.g. Bringsjord 1992, Searle 1992,
Jacquette 1994).

6In personal communication, Cleland asks what “perfect simulation” amounts to. Ostensive definitions
have been provided elsewhere by one of us. For example, Bringsjord & Ferrucci (2000) provides a robust
example of a Turing machine-level simulation of the mentation involved in producing belletristic fiction.
Simulation in our sense piggybacks on the sense of simulation firmly in use in computability theory; see, e.g.,
(Lewis & Papadimitriou 1981).

9

4 Some Problems With Cleland’s Schemes

4.1 On Cleland’s Account, the Halting Problem Appears Effec-

tively Computable

Cleland (1995) defines a procedure to be effective if and only two conditions hold:

(i) it meets Minsky’s condition [that next step is determined by the present step] and
(ii) each of the action-kinds [the procedure] specifies invariably has (under normal
conditions) a certain kind of consequence (Cleland 1995, p. 13).

This definition can’t be right, as is easy to see. For suppose that this definition is correct, and
consider the trial-and-error machine M described in the primer we gave earlier. Obviously,
M satisfies the first condition, because each step is determined by a prior step in in exactly
the same manner that a step in an ordinary Turing machine is predetermined. Condition
(ii) is also clearly satisfied by M, because each of the action-kinds here has a consequence
in a way exactly similar to that seen in ordinary Turing machines. Since (i) and (ii) are
satisfied, it follows that M is an effective procedure for solving the halting problem. But if
we know anything rigorous about computability and uncomputability we know that there is
no effective procedure for solving the halting problem. By reductio, then, Cleland’s account
must be wrong.7 (We deal with Cleland’s objections to the argument just given in section
6.2.1.)

4.2 Quotidian Procedures Are Hopelessly Imprecise

By our lights, recipes are laughably vague, and don’t deserve to taken seriously from the
standpoint of formal philosophy, logic, or computer science. Cleland, in response to this
view, tells us that

[Recipes] consist of instructions. Each instruction-expression (e.g., “pat the mozzarella
balls dry with absorbent kitchen paper”) makes reference to an occurrence which is
to be brought about (done) as opposed to undergone or merely happen. That is,
each instruction designates an action, more specifically, since different chefs may apply
the same instruction, an action-type (vs. token). The instructions are expressed by
imperatives (e.g., “cut into slices . . .”), indicating that the follower is to perform the
designated action-types. (Cleland xxxxb, p. 5)

But it’s hard to take her seriously here. The account she gives is induced from just one
recipe (for mozzarella balls). There are many recipes that don’t “make reference to an

7In connection with this problem, it would no doubt be helpful for Cleland to carefully take account of the
felt need, on the part of logicians and computer scientists, to make clear that printing is far from non-trivial
when one is trying to be precise about information processing. For example, Ebbinghaus, Flum & Thomas
(1984), in their formal account of Register machines, insist on a print command appearing exactly once in
every Register machine program. Also, careful study of the importance of printing in such mathematical
contexts is discussed by Kugel (1986). It is generally agreed that Minsky, in the old book that Cleland cites,
had a rather immature grasp of some of these issues, and Minsky himself says that an entire chapter in his
book isn’t to be taken seriously as straight logic or mathematics.

10

occurrence which is to be brought about (done) as opposed to undergone or merely happen.”
For example, here is a recipe one of us follows for easy-to-make waffles; it has no “instructions
expressed by imperatives.”

Selmer’s Brainless Waffles

• Make sure that 5
2 cups of white flour along with 1

2 cup of whole wheat flour are
in a large bowl, along with 1

4 teaspoon of salt, 4 teaspoons of baking powder, and
2 teaspoons of sugar — and that these ingredients are mixed together.

• Egg yolks are not desired; 3 whites are needed. Along with 3 cups of fat-free
Lactaid 100 c© milk, these whites should be mixed by fork or whisk (etc.) into the
dry ingredients.

• The iron (preferably one with the capacity to sound a signal when pre-set tem-
perature settings are reached) works best when sprayed with non-stick oil, and
when it’s heated to the desired temperature your batter is ready to be received.

On Cleland’s account, this recipe isn’t a recipe, but it is a recipe; hence her account is
defective. If we use our imagination, we can see that recipes like this can be followed
without doing much. For example, suppose that when setting out to make some of Selmer’s
brainless waffles in my kitchen, you find that a container of white flour, suspended above
one of my counters, is leaking. And suppose that, as luck would have it, the falling flour is
being caught by a measuring cup. We’re sure you can continue the story in such a way that
some brainless waffles are serendipitously produced. When you serve them to someone who
comes down for breakfast, they might say that the waffles are delicious (esp. given than they
are fat- and cholesterol-free), and you might reply that “Well, in following the recipe I was
a bit lucky this morning.”

5 Arguments Against The Conscious Harnessability of

Hypercomputation

Due to space constraints, in this section we can only provide a prolegomenon to a fully de-
veloped case against the view that a hypercomputational device can be built and consciously
harnessed. But we believe that this prolegomenon suffices to point the way to future research
and development.8

5.1 The Argument From Infinity

Pessimism about physically realizing and harnessing hypercomputational devices is based,
first, upon the observation that to build a hypercomputational device would be to some-

8It’s important to note this this prolegomenon isn’t intended to be inconsistent with Cleland’s views.
In general, Cleland doesn’t see the issue of conscious harnessability to be the issue. For her the crucial
issue is whether hypercomputation is “causally possible.” For reasons explained herein, her issue seems
to us to be easily settled: hypercomputation is obviously causally possible, in no small part because it’s
logically physically possible. What we are concerned with is whether or not human persons can harness
hypercomputation. At least one of us (Bringsjord) believes he has established that human persons do
harness hypercomputation (e.g., see the argument against Church’s Thesis in Bringsjord & Ferrucci 2000),
but these arguments do not imply that human persons consciously harness hypercomputation.

11

how harness and compress the power of the infinite in a finitely bounded, physical artifact.
Hopefully our little primer on hypercomputation makes this plain. If you recall this primer,
the problem seems obvious in the case of trial-and-error and Zeus machines. In the former,
to build and use them we would need to be either able to see the future (in order to see the
in-the-limit verdict) or to compress an infinite period of symbol manipulation into a finite
interval. In the latter, once again, to build and use means to achieve such preternatural
compression. In the case of analog chaotic neural nets the same problem is there, but cam-
ouflaged. An analog chaotic neural net processes information by using irrational numbers
(Siegelmann & Sontag 1994). So think of the challenge in these terms: Suppose that you
can build a hypercomputational device as long as whenever your device reaches ordinary
computational state s, it carries out operation O on s and irrational real r ∈ [0, 1]. The
operation here has in fact been neatly formalized in the form of the analog shift map (see
note 3). How do you capture and manipulate r physically? There is of course a sense in
which every time you operate a physical artifact by in part using readings from an analog
dial (the speedometer on a car, e.g.), you are “using irrational numbers.” But this is a very
weak sense of ‘use.’ Your Volvo may get you to work in the morning, and there may be
a sense in which it or parts of it enter into into physical processes that are uncomputable
(which is what people like Pour-El and Richards 1981b, 1981a can be read as having probably
established). But to use the Volvo to attack the halting problem seems rather futile. And
it’s hard to imagine an antidote to this futility from any engineer, for any device.

5.2 Three Arguments From Physics

There are many powerful arguments from physics for the view that it’s humanly impossible to
build an artifact which engages in hypercomputation that is consciously harnessed. We give
only three here, in the interests of space, and in each case we provide only an encapsulated
version. A mature, formal philosophy of hypercomputation would need to come to grips with
the details in all such arguments (and hence a fully formal philosophy of hypercomputation
will include some rigorous physics and philosophy of physics).

5.2.1 The Argument From Digital Physics

Long before Cleland’s notion of a physics beyond ordinary (= Turing machine) computation,
Feynman (1982) envisioned physics as an exclusively Turing-computational enterprise fueled
by advancing computer technology (that enables sophisticated modeling and simulation) —
yet Cleland nowhere considers (let alone casts doubt upon) the strong program of “digital
physics” that Feynman inaugurated. And it isn’t just Feynman’s program Cleland needs
to confront: it’s this program and a pragmatic, positivistically inspired rejection of the real
numbers and the continuum as relevant to physics (Ford 1983).9

9For a good review of physics and computation see (Feltovich, Ford & Hayes 1983). The hypothesis that
there will be found a single cellular automaton rule that exactly models all of microscopic physics is explored
in (Fredkin 1990).

12

5.2.2 The Argument From the Absence of Candidates

Cleland doesn’t give us any candidates for physical processes that instantiate hypercompu-
tation. We are given only the remarks:

Some physical processes may only have a few points at which causal intervention is
physically possible, thus allowing one to specify an input and output relation but not
permitting a mechanistic account of what goes on between input and output. An
oracle would be such a process. It is important to keep in mind, however, that being
non-mechanistic is not sufficient for being an oracle. (Cleland xxxxa, p. 18; emphasis
ours)

Given what she says here, what would be a likely candidate? It seems that being “non-
mechanistic” is a necessary (but not sufficient) condition. Given this, and given the impres-
sionistic description of the the type of physical process that could function as an oracle, one
would think that quantum mechanical phenomena might work. Indeed, these phenomena
are quintessentially those where what goes on between input and output is unavailable (or
perhaps it’s better to say that causal intervention yields an output). If one has hopes of
finding some sort of physical process to function as an oracle, this seems to be a promising
place to look. At least given today’s science, one can hardly get more exotic.

But attempts to access and artifactually exploit these promising phenomena have not
taken us into hypercomputing. Theorists and experimentalist working on quantum comput-
ers have long recognized that this type of machine will only give us faster Turing computa-
tion.10 Now one could, of course, say that we haven’t exploited all the possibilities. This is
true — if one assumes that other candidates will arrive on the scene in the future. But the
issue is plausibility — today. Since quantum computing has proved to be a dead end, where
else should we look? If Cleland can’t present us with any other promising candidates, the
most reasonable position would seem to be the denial of 3p∃cOc and related propositions.

The situation is actually worse for Cleland than it appears to be. In order to see this,
let’s grant that physically instantiated oracles exist. We have seen that at present we have
no candidates for such things. So, we need to set off in search of candidates. But what
should our search procedure be? It’s of course vastly improbable that arbitrary searching
will prove successful, so we need help from our best (current and relevant) theories. But our
best theories offer no guidance for where to look for “causal openings.”

5.2.3 The Argument From Turing Machines and Oracles as Strange Bedfellows

As we saw earlier, Turing’s original speculation involves the concept of a Turing machine
and the concept, vague though it may be, or an oracle. Now for Turing the oracle is a
black box, but it’s supposed to accept digital input and yield digital output (as is reflected
in the primer we offered earlier: recall G). But what reasons do we have to believe that
such concepts can be instantiated as physical processes? For all we know, even if physically

10Quantum computers are discussed in (Feynman 1986). Brooks (1999) give a concise discussion of quan-
tum computation and the status of current research. Deutsch (1985) considers a universal quantum computer
and argues that it is compatible with the Church-Turing Principle. He shows that this computer wouldn’t
be able to compute non-recursive functions.

13

instantiated oracles exist, it may be that when harnessed and made to function in the service
of a Turing machine, they will simply yield to the Turing machine and march according to its
digital tune somewhat like a free spirited dancer who finds herself in the midst of a marching
platoon. Indeed, when one tries to apply the oracle description to quantum phenomena, it’s
evident why they are unable to serve as oracles for us: The very properties that we wish to
exploit (properties that devolve from the superposition principle and the capacity to sustain
“entangled states”) slip through our hands as soon as we try to exploit them. It’s as if the
delicate properties of quanta cannot survive the complexity and level of interaction of our
quotidian world. So, the question for Cleland is: What conceivable causal link could there
be between a Turing machine and oracle(s) that, once linked to the Turing machine, would
yield hypercomputation?11 What can it mean to hybridized some physical instantiation of
a Turing and a (minimally) non-mechanistic process?

6 Dialectic — To a Point

As you know by now, having having read to this point, Cleland has kindly provided objections
to an earlier draft of this paper; some of these objections have been rebutted above. But a
number of more serious objections remain; we treat them in this section. As will soon be
seen, this treatment quickly reveals that there are probably “rock-bottom” disagreements
between us and Cleland — disagreements so fundamental that it’s rather hard to see how
any further substantive dialectic is possible. This paralysis isn’t a bad thing; not at all. On
the contrary, it’s a good thing, because perhaps it’s about time philosophy faces up to the
brute fact that there are rock-bottom disputes lurking at the bottom of philosophy of mind
and computation.

6.1 More on Brainless Waffles

About Selmer’s Brainless Waffles Cleland writes:

I must confess I found the discussion in this section to be a gross distortion of my
account. First, no serious recipe book would express a recipe in the way that you have
expressed “Selmer’s Brainless Waffles.” Second, it is clear that the expressions that
you use (e.g., “make sure”) are non-standard ways of communicating instructions —
any competent speaker of the English language would interpret them this way. Third,
despite what you say, your recipe does designate physical consequences of action, e.g.,
that a bowl is to end up (after activity) containing a certain amount of white flour,
whole wheat flour (etc.). [Fourth] As for your claim that the recipe could be “followed”
without doing anything — produced by serendipity — this trades on an ambiguity
between interpreting your strangely worded “instructions” as bona fide instructions

11Three current models for QMS are spontaneous localization, pilot-waves, and consistent histories. Physi-
cists/philosophers agree that the principle of superposition is the basic construction rule for the formalism
of QMS; they also agree that this entails “entanglement” and that this entanglement has been empirically
corroborated.

Those concerned with ontology can’t agree on what counts as primitive in the theory. Indeed, some have
argued that QMS refutes a particularist ontology and hence as well the very basis of any “causal chain”
accounts. See, e.g., (Teller 1989).

14

and interpreting them merely as descriptions of what actually happens. (Cleland,
personal communication, May 28, 2001)

Unfortunately, this won’t do at all. On Cleland’s first point: So what? Nothing follows
from the fact that no serious (hmm, are there serious recipe books?) recipe book contains
recipes like SBW. No serious book on computer programming contains specifications of
Turing machines for carrying out anything substantive12 — but such specifications clearly
count as computer programs. Regarding the second point: Again, so what? The recipe in
question clearly lacks “instructions expressed as imperatives.” Competent speakers of English
will doubtless have all sorts of thoughts about what is going on here — especially if they come
upon the container of leaking white flour that we describe. The third point: Again, alas, so
what? Our claim is that recipes, compared with what we find in books on formal relative
computability,13 are intolerably vague, mired as they are (as we show) in the mud and fog
of natural language. Cleland’s fourth point, unlike the preceeding trio, is directly relevant.
Sure, we are trading on an ambiguity; that’s part of the point! Who really knows what
an instruction is? As we all know, distinguishing between actions and mere happenings is
notoriously difficult. We are not alone among philosophers in holding that in order to make
this distinction one must rely, at least in part, on the concept of intentionality, which is
bogged down in its own age-old mud and fog. Given this, it seems positively irrational to
turn to recipes in order to make sense of the operation of machines. After all, can a machine
have intentionality? Who knows? This question alone has given rise to fierce debates that
have produced not a shred of consensus. To turn away from the mathematical accounts of
information processing the underlie computer science (and therefore cognitive science and
AI) in favor of the documented disagreement and confusion swirling around the notion of a
recipe does not seem to us particularly wise.

6.2 Rock-Bottom Differences?

6.2.1 Classical vs. Constructivist Mathematics

Recall that we argued earlier via a particular type of hypercomputer (trial-and-error ma-
chines) that Cleland’s definition of ‘effective procedure’ implies that there is an effective
procedure for solving the halting problem, which is absurd. Cleland replies:

Your characterization of a trial & error machine as satisfying the second condition of
my definition trades on an ambiguity, as is revealed by your comment that each of its
action-kinds has a consequence “in a way exactly similar . . .”. . . . In order to solve the
halting problem, a t & e machine has to perform an utterly mysterious action, namely,
take the limit of an infinite number of “guesses” and get the correct answer without
actually making an infinite number of guesses. . . . But such “actions” are not “exactly
similar” to what a Turing machine (let alone, a concrete machine or person) does in
any significant way? How does one interpret them constructively? (Cleland, personal
communication, May 28, 2001)

12E.g., a specification of a TM that multiplies is rather complex (e.g., see Boolos & Jeffrey 1989), and
basic arithmetic is far from what we’re thinking about when we use the term ‘substantive.’

13Relative computability subsumes computability and uncomputability theory.

15

There are two objections here. The first is that the actions taken by trial-and-error
machines don’t really match those taken by ordinary Turing machines. The second objection,
which moves the three of us toward a rock-bottom clash, is that trial-and-error machines
cannot be interpreted on the basis of constructivist mathematics, and so are inadmissible.
There are fatal problems infecting both of these objections.

The problem with the first objection is that when we say that the actions of a Turing
machine are “exactly similar” to the operations of a trial-and-error machine, we are referring
not to some sort of vague, global actions of the sort Cleland seems to have in mind, but to
the individual, primitive actions of such a machine. At each step, a trial-and-error machine is
carrying out actions that are in fact not only exactly similar, but — and we should have used
this stronger language in the original — exactly the same as a Turing machine. This is even
clearer in the case of the aforementioned hypercomputing Zeus machines, which Copeland
(1998) has aptly called “accelerated Turing machines.” At each step, a Zeus machine (based
on the quadruple formalism for Turing machines) will scan a square, take a primitive action,
and enter a new state. Primitive actions include all and only: moving left or right one square,
and writing some symbol on the square that is being scanned (after erasing the symbol that
may already be there). These are exactly the possible actions a (quadruple) Turing machine
can take at each step. The only difference is that a Zeus machine can perform infinitely
many such actions in a finite amount of time, by (as we explained above) taking less and less
time for each action in a computation. The math needed to fully formalize such so-called
“supertasks” is trivial.

This math, however, is classical, and Cleland, in her second objection, says that bona
fide computation needs to be able to be understood constructively. (This is a point that Cle-
land made repeatedly in personal communication.) Buy why? Why should one presuppose
constructivist mathematics when looking at relative computability? From the standpoint of
classical mathematics, there are an infinite number of theoretically viable, logically physi-
cally possible (and perhaps physically possible, simpliciter) hypercomputers. What does it
matter that an idiosyncratic take on mathematics implies that the theoretical viability of
hypercomputation is not settled?

The notion of a limit, central to elementary calculus, presupposes the coherence of su-
pertasks by the lights of Salmon (1975) and others. Even children are frequently taught
that supertasks are perfectly coherent, because they are prepared early on, in mathematics,
for calculus down the road. (Perhaps the easiest way to see that constructivism is violently
idiosyncratic is to ponder what math education would be like if students learned math in
accordance with it. See (Schechter 2001).) For example, see Figure 2, which is taken from
page 268 of (Eicholz, O’Daffer, Charles, Young, Barnett, Clemens, Gilmer, Reeves, Renfro,
Thompson & Thornton 1995). Bringsjord’s son, Alexander, in the 6th grade, was asked
to determine the “percent pattern” of the outer square consumed by the ever-decreasing
shaded squares. The pattern, obviously, starts at 1

4
, and then continues as 1

16
, 1

64
, 1

256
,

When asked what percent “in the limit” the shaded square consumes of the original square,
Alexander was expected to say “Zero” — but the notion of a limit was a bit tricky for
him (perhaps understandably). When asked what percentage the shaded square would “get
down to” if someone could work faster and faster, and smaller and smaller, at drawing the
up-down and left-right lines that make each quartet of smaller squares, Alexander said zero.
It would be interesting to systematically poll students about these matters.

16

Figure 2: Picture of Supertask from Seventh Grade Math

Cleland will doubtless stick to her guns and maintain a constructivist stance. Perhaps she
would welcome a sea change in math education in order to clear the way for a thoroughgoing
constructivism that would banish now-standard hypercomputers. Of course, since we have no
plans to reject classical mathematics, further dialectic on this issue would seem to be otiose.
At bottom, the clash may revolve around radically different conceptions of time. Whereas
one of us (Bringsjord) routinely teaches supertasks as an innocent, obviously coherent, viable
part of relative computability, it may be that Cleland, in keeping with constructivism, thinks
we humans are immersed in time, that our thought processes are necessarily temporal, and
that we can have no meaningful, coherent, non-temporal experience. On this view, the very
infinitude of the natural numbers is understood in terms of pure temporal structure and any
supertask, because it involves the actual infinite, cannot be coherent. We leave it to the
reader to decide if this view is correct.14

14It may be that there is another rock-bottom disagreement between us and Cleland: namely, one over
the virtues of formal versus informal philosophy and science. We are deeply distrustful of accounts of
computation and causation which reject what we see as hard-won progress in computer science and physics
toward richer and richer formalization. Cleland, on the other hand, seems deeply distrustful of formal
accounts of computation and causation.

17

References

Boolos, G. S. & Jeffrey, R. C. (1989), Computability and Logic, Cambridge University Press,
Cambridge, UK.

Bringsjord, S. (1992), What Robots Can and Can’t Be, Kluwer, Dordrecht, The Netherlands.

Bringsjord, S. (1994), ‘Computation, among other things, is beneath us’, Minds and Ma-
chines 4.4, 469–488.

Bringsjord, S. (1998), Philosophy and ‘super’ computation, in J. Moor & T. Bynam, eds,
‘The Digital Phoenix: How Computers are Changing Philosophy’, Blackwell, Oxford,
UK, pp. 231–252.

Bringsjord, S. (2001), ‘In computation, parallel is nothing, physical everything’, Minds and
Machines 11, 95–99.

Bringsjord, S. & Ferrucci, D. (2000), Artificial Intelligence and Literary Creativity: Inside
the Mind of Brutus, a Storytelling Machine, Lawrence Erlbaum, Mahwah, NJ.

Brooks, M. (1999), Quantum Computing and Communications, Springer-Verlag, Berlin, Ger-
many.

Cleland, C. (1995), ‘Effective procedures and computable functions’, Minds and Machines
5, 9–23.

Cleland, C. (xxxxa), ‘Effective procedures and causal processes’, Minds and Machines
pp. xx–xx.

Cleland, C. (xxxxb), ‘Recipes, algorithms, and programs’, Minds and Machines pp. xx–xx.

Copeland, B. J. (1998), Even Turing machines can compute uncomputable functions, in
J. Casti, ed., ‘Unconventional Models of Computation’, Springer-Verlag, London, UK,
pp. 150–164.

Davis, M., Sigal, R. & Weyuker, E. (1994), Computability, Complexity, and Languages:
Fundamentals of Theoretical Computer Science, Academic Press, New York, NY.

Deutsch, D. (1985), ‘Quantum theory, the church-turing principle, and the universal quantum
computer’, Proceedings of the Royal Society of London, Series A 400, 87–117.

Ebbinghaus, H. D., Flum, J. & Thomas, W. (1984), Mathematical Logic, Springer-Verlag,
New York, NY.

Eicholz, R. E., O’Daffer, P. G., Charles, R. I., Young, S. I., Barnett, C. S., Clemens, S. R.,
Gilmer, G. F., Reeves, A., Renfro, F. L., Thompson, M. M. & Thornton, C. A. (1995),
Grade 7 Addison-Wesley Mathematics, Addison-Wesley, Reading, MA.

18

Feltovich, P., Ford, K. & Hayes, P., eds (1983), Proceedings of a Conference on Physics and
Computation, International Journal of Theoretical Physics 21(3/4), 21(6/7), 21(12),
xxxxxx, xxxxx, xx.

Feynman, R. (1986), ‘Quantum mechanical computers’, Foundations of Physics 16, 507–531.

Feynman, R. P. (1982), ‘Simulating physics with computers’, International Journal of The-
oretical Physics 21, 467–488.

Ford, J. (1983), ‘How random is a coin toss?’, Physics Today April, 40–47.

Fredkin, E. (1990), ‘Digital mechanics’, Physica D 45, xx–xx.

Gold, M. (1965), ‘Limiting recursion’, Journal of Symbolic Logic 30(1), 28–47.

Jacquette, D. (1994), Philosophy of Mind, Prentice Hall, Englewood Cliffs, NJ.

Kugel, P. (1986), ‘Thinking may be more than computing’, Cognition 18, 128–149.

Lewis, H. & Papadimitriou, C. (1981), Elements of the Theory of Computation, Prentice
Hall, Englewood Cliffs, NJ.

Pour-El, M. & Richards, I. (1981a), ‘A computable ordinary differential equation which
possesses no computable solution’, Annals of Mathematical Logic 17, 61–90.

Pour-El, M. & Richards, I. (1981b), ‘The wave equation with computable initial data such
that its unique solution is not computable’, Advances in Mathematics 39, 215–239.

Putnam, H. (1965), ‘Trial and error predicates and a solution to a problem of mostowski’,
Journal of Symbolic Logic 30(1), 49–57.

Russell, B. (1936), ‘The limits of empiricism’, Proceedings of the Aristotelian Society 36, 131–
150.

Salmon, W. C. (1975), Space, Time and Motion: A Philosophical Introduction, Dickenson,
Encino, CA.

Schechter, E. (2001), ‘Constructivism is difficult’, The Mathematical Association of America
Monthly 108, 50–54.

Searle, J. (1992), The Rediscovery of the Mind, MIT Press, Cambridge, MA.

Siegelmann, H. (1995), ‘Computation beyond the turing limit’, Science 268, 545–548.

Siegelmann, H. & Sontag, E. (1994), ‘Analog computation via neural nets’, Theoretical Com-
puter Science 131, 331–360.

Teller, P. (1989), Relativity, relational holism, and the bell inequalities, in J. Cushing &
E. McMullin, eds, ‘Philosophical Consequences of Quantum Theory’, University of
Notre Dame Press, Notre Dame, IN, pp. xx–xx.

19

Turing, A. (1938), Dissertation for the PhD: “Systems of Logic Based on Ordinals”, Prince-
ton University, Princeton, NJ.

Turing, A. (1939), ‘Systems of logic based on ordinals’, Proceedings of the London Mathe-
matical Society (series 2) 45, 161–228.

Weyl, H. (1949), Philosophy of Mathematics and Natural Science, Princeton University Press,
Princeton, NJ.

20

