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Abstract

We now know both that hypercomputation (or super-recursive computation) is mathemati-
cally well-understood, and that it provides a theory that according to some accounts for some
real-life computation (e.g., operating systems that, unlike Turing machines, never simply output
an answer and halt) better than the standard theory of computation at and below the “Turing
Limit.” But one of the things we do not know is whether the human mind hypercomputes, or
merely computes—this despite informal arguments from Gédel, Lucas, Penrose and others for
the view that, in light of incompleteness theorems, the human mind has powers exceeding those
of TMs and their equivalents. All these arguments fail; their fatal flaws have been repeatedly
exposed in the literature. However, we give herein a novel, formal modal argument showing that
since it’s mathematically possible that human minds are hypercomputers, such minds are in fact
hypercomputers. We take considerable pains to anticipate and rebut objections to this argument.
© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

Four decades ago, Lucas [50] expressed supreme confidence that Godel’s first in-
completeness theorem (= Godel I) entails the falsity of computationalism, the view
that human persons are computing machines (e.g., Turing machines). Put barbarically,
Lucas’ basic idea is that minds are more powerful than Turing machines. Today, given
our understanding of hypercomputation in theoretical computer science, and given the
absolute consensus reigning in cognitive science that the human mind is, at least in
large part, some sort of information-processing device, we know enough to infer that
if Lucas is right, the mind is a hypercomputer. However, Lucas’ arguments have
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not proved to be compelling (even when updated: [51]). Even the arguments given
by Lucas’ illustrious and indefatigable defender, the mathematician/physicist Roger
Penrose, have failed. Penrose’s first attempt to vindicate Lucas was a Godelian attack
on computationalism articulated in The Emperor’s New Mind [55]. Penrose has ad-
mitted that this first attempt fell short—and so he went back to the drawing board,
and soon thereafter came charging into the arena again, armed with a more elaborate
and more fastidious Gddelian case against computationalism, expressed in Chapters 2
and 3 of his Shadows of the Mind [56]. Yet once again there was failure, as re-
cent, sustained, painstakingly formal refutations apparently reveal [19,34,48,62,69].!

I There is no need here to recapitulate the fatal problems plaguing Penrose’s reasoning, but for sedulous
readers we offer a glimpse of some of these problems. Writing in response to critics (e.g., the philosopher
David Chalmers, the logician Solomon Feferman, and the computer scientist Drew McDermott) of his Shad-
ows of the Mind in the electronic journal Psyche, Penrose provided an encapsulated version of his Gédelian
case in SOTM. (The dialectic appeared in 1996 in volume 2 of Psyche, which can be accessed via enn
http://psyche.cs.monash.edu). Here is the encapsulation, verbatim:

We try to suppose that the totality of methods of (unassailable) mathematical reasoning that are in
principle humanly accessible can be encapsulated in some (not necessarily computational) sound formal
system F. A human mathematician, if presented with F, could argue as follows (bearing in mind that
the phrase “I am F” is merely a shorthand for “F encapsulates all the humanly accessible methods of
mathematical proof™):

(A) “Though I don’t know that I necessarily am F, I conclude that if I were, then the system F would
have to be sound and, more to the point, F/ would have to be sound, where F’ is F supplemented by
the further assertion “I am F.” | perceive that it follows from the assumption that I am F that the Godel
statement G(F”’) would have to be true and, furthermore, that it would not be a consequence of F’. But
I have just perceived that “If I happened to be F, then G(F’) would have to be true,” and perceptions
of this nature would be precisely what F’ is supposed to achieve. Since I am therefore capable of
perceiving something beyond the powers of F’, I deduce that I cannot be F after all. Moreover, this
applies to any other (Gddelizable) system, in place of F.” (Penrose [57] § 3.2)

Unfortunately, (A) is not a sound argument. In order to see this, let us follow Penrose directly and set

Y = “F encapsulates all the humanly accessible methods of mathematical proof™

and
F'=FuU{y}.

What the hypothetical human mathematician can now conclude, on the strength, as Penrose tells us, of
Godel’s work, is that on the assumption that v,

G(F') is true. 4]
F't/ G(F') and F' ¥ -G(F’). 2)

The idea is really quite simple. It is that there is a contradiction arising from the fact that the hypothetical
mathematician, i.e. F, can conclude that (1) G(F') is true on the one hand, and yet (2), which “says” that F/
cannot conclude G(F’), is true on the other. But wait a minute; look closer here. Where is the contradiction,
exactly? There is no contradiction. The reason is that (1) is a mera-mathematical assertion; it is a claim
about satisfaction. More precisely, where / is an interpretation of the relevant type, (1) is just

IE=G(F') is true. (1"

And for all we know, F can prove (1’) while being bound by (2)! So we see here one of the chief errors
dating back to (Lucas [50]): Penrose conflates proofs within a fixed system with meta-proofs (as explained
in detail in “Chapter VII: Godel” of Bringsjord [10]).
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The upshot is that as we pass into the new millennium, Lucas’ confidence is look-
ing more and more like an emotional quirk, and less and less like an attitude born
of careful ratiocination. On the other hand, Lucas and Penrose are not alone. Gaodel
[37] himself, in his Gibbs lecture [37], and in correspondence, made remarks revealing
that he believed his incompleteness results do imply that minds can exceed standard
computing machines.? This should give pause to those positive that Lucas and Pen-
rose are not only wrong, but irremediably so. Is it possible that there exists a for-
mal and fundamentally new technical Gédelian argument for the view that minds are
more than standard computing machines? The answer is: “Yes.” In what follows we
provide such an argument: a novel modal argument showing that since it is math-
ematically possible that human minds are hypercomputers, such minds are in fact
hypercomputers.

The plan in the remainder is as follows. In Section 2, after explaining that there
are two general avenues for constructing a sound Gédelian argument against compu-
tationalism, we fix some needed idealizations and take the second of these avenues,
which leads to a modalized Godelian refutation of computationalism that has its roots
in “Chapter VII: Gédel” of What Robots Can and Can’t Be [10], wherein the ker-
nel of a modal argument against computationalism is presented.> As we explain, an
immediate and obvious consequence of this argument is that minds hypercompute. In
Section 3 we defend the key premise in the modal argument. In Section 4 we consider
and rebut some objections to our modal argument.

2. The modal argument
2.1. The two avenues

In general, we see two avenues that are in principle viable as a way to pass from
mathematical results in the realm of incompleteness to a denial of computationalism,
and an affirmation of the view that minds hypercompute.

In the first avenue, taken elsewhere by Bringsjord [13,21], one first isolates and
exploits mathematical reasoning that seems to be explicitly and irreducibly infinitary.
The best example of such reasoning that we are aware of is found in infinitary math-
ematical logic. The key idea is to find mathematical cognition that is provably beyond
computation. Such cognition seems to be exhibited by logicians and mathematicians

2 Actually, Gédel believe that minds are more powerful than the likes of Turing machines for a number
of reasons. For a nice treatment of some of these additional reasons, see Wang [79].
3 The present paper is intended to give a formal argument for the following promissory note:

I should point out that my [just-given] Gédelian argument against the proposition that persons are
automata can apparently be modalized ... In this modal argument the central claim would be only that
Ralf is such that it is Jogically possible that he acts as I have described him acting above via the Fixed
Point Theorem, whereas no Turing machine is such that it is logically possible that it acts in this way.
(Bringsjord [10, p. 264].)



170 S. Bringsjord, K. Arkoudas/| Theoretical Computer Science 317 (2004) 167-190

who prove things in and about infinitary logics (which of course arose in no small
part as a way to “surmount” Godel I; see Barwise [5] for a readable discussion of this
point), such as the logic Ly,q. *

There is a second avenue available; it is the one we take herein. In broad strokes,
the route runs like this. First, suitable idealizations of the central concepts (minds,
machines, etc.) are made so as to allow for precision sufficient to enable intelligent
appeal to theorems, and a formally valid modal argument inspired by the Gédel-Lucas—
Penrose direction is constructed. Next, the key premise in this argument is defended by
looking more closely at an aspect of mathematical cognition which looks to be beyond
the reach of computation. This aspect is the ability of a mathematician to understand
through thought-experiments what’s it’s like to very rapidly experience some process or
operation—or, in other words, to understand a so-called “supertask.” We will explain
this aspect of mathematical thinking momentarily, in connection with Turing’s own
thinking about the machines that now bear his name. But first, as planned, we tumn
now to the needed idealizations, and then to the modal refutation of computationalism
itself.

2.2. Idealizing to make formal reasoning possible

We have referred repeatedly to the doctrine of computationalism, but gave only
a very intuitive definition of this doctrine at the start of the present paper. What
exactly is this doctrine? It is easy to find published material that one would expect
to be helpful in the attempt to answer this question, for propelled by the writings
of innumerable thinkers (this touches but the tip of a mammoth iceberg of relevant
writing: [4,10,30,35,40,42,46,54,58,63,68,71,72]), computationalism has reached every
comer of, and indeed energizes the bulk of, contemporary Al and cognitive science.
The view has also touched nearly every major college and university in the world; even
the popular media have, on a global scale, preached the computational conception of
mind. Despite all this, despite the fact that computationalism has achieved the status

4 The basic idea behind L, is straightforward. This system allows for infinite disjunctions and conjunc-
tions, and hence allows for infinitely long derivations, where these disjunctions, conjunctions, and proofs
are no longer than the size of the set of natural numbers. (We use w to denote the “size” of the set of
natural numbers: the niceties of cardinal numbers needn’t detain us here.) Here is one simple formula in
Ly, which is such that any interpretation that satisfies it is finite:

V I 3Vy(y=x1 V- Vy=ux)

n<w

It is a well-known fact that the proposition captured by this formula cannot be captured by a formula in
a system at or below Turing machines. Since the behavior of some logicians and mathematicians centers
around infinitary reasoning that can be accurately described only by formalisms that include such formulas
(i.e., formalisms like Lo, ), computationalism is threatened. Version 1 of the full argument (which makes
use of the theorem that TM computation can be perfectly recast as deduction in first-order logic) can be
found in Bringsjord [13]. A refined version of the argument can be found in Bringsjord and Zenzen [20].
For an example of irreducibly infinitary reasoning, see Bringsjord’s w-rule-based proof in Bringsjord and
van Heuveln [18].
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of a Kuhnian paradigm, the fact is that the doctrine is maddeningly vague. Myriad
one-sentence versions of this doctrine float about; e.g.,

e Thinking is computing.

e Cognition is computation (or is computable).

People are computers (perhaps with sensors and effectors).

People are Turing machines (perhaps with sensors and effectors).

People are finite automata (perhaps with sensors and effectors).

People are neural nets (perhaps with sensors and effectors).

Cognition is the computation of Turing-computable functions.

From the standpoint of symbolic logic and mathematics, the vagueness of com-
putationalism is unacceptable. As long as it remains vague, how can we rationally
hope to determine the truth-value of computationalism on the basis, at least in part,
of theorems in theoretical computer science? The only solution is that we must ide-
alize the concepts of minds and machines to provide, as Shapiro [69] puts it, an
“interface” between mathematical results and the doctrine of computationalism. With-
out such an idealization, we should probably simply close up shop and agree with
George Boolos’ pessimistic impressions of Godel’s original comments on the mat-
ter: “... it is certainly not obvious what it means to say that the human mind, or
even the mind of some human being, is a finite machine, e.g, a Turing
machine” [8].

Fortunately, the idealization is not hard to come by. In fact, it has already been
firmly established on the machine side. Theoretical computer science provides us with
a precise conceptual apparatus for making sense of ‘computer’ and ‘computation.” For
example, we can identify ‘computer’ with Turing machine (or, for that matter, with
register machine, abaci, etc.), and ‘computation’ with Turing machine computation.
(And, as we do below, we can turn to mathematics for models of ‘hypercomputer’
and ‘hypercomputation.”) This familiar identification allows us to rigorously refer to
machines that never run out of memory or working space, and that infallibly obey
instructions.

What about persons, or minds? What are we to take them to be? Here, of course,
there is no convenient formalism to appeal to. However, it is clear that we must assume,
for starters, that persons or minds can be quantified over along with Turing machines,
and that they can be viewed as entities capable of taking in inputs and returning outputs
that reflect decisions with respect to these inputs. It is also clear from contemporary
cognitive science that the mind is some sort kind of information-processing device.
Textbook after textbook and paper after paper in psychology, cognitive science, and
cognitive neuroscience makes this plain as day (e.g., see: [2,3,73]). This is at least
enough to proceed, but we will need to say more about the abstract structure of minds
later on.

Now to the modal argument itself.

2.3. The modal proof itself

Recall that Godel’s first incompleteness theorem can be expressed in “Turingish”
terms as the fact that this problem is algorithmically unsolvable: Given an arbitrary
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Turing machine m and input u, does m halt on u?> Here is how this theorem, and
a related one which in our experience many computer scientists tend to forget, are
expressed on page 278 of the classic text Elements of the Theory of Computation by
Lewis and Papadimitriou [49].°

Theorem 6.1.5.

(a) There is no algorithm that can determine, given a Turing machine m and an
input string w, whether m accepts w.

(b) For a certain fixed Turing machine my, there is no algorithm that can determine,
given an input string w, whether my accepts w.

Intuitively, (a) says that there is no Turing machine that can “crack” every Turing
machine (as to halting or non-halting); and (b) says that there is an impenetrable Turing
machine: a machine that no other machine can crack. Notice that the sense of ‘can’
here, given that we are dealing with mathematical theorems, is very strong. Specifically,
to say in this context that a Turing machine can’t @ is to say that it is mathematically
or logically impossible for the Turing machine to @.7 Accordingly, if we use the three-
place predicate Dmm’i for ‘Turing machine m determines whether Turing machine m’
halts on input i, and if we assume to ease exposition a sorted calculus for Turing
machines, inputs, and persons (or minds), we can draw upon quantified modal logic
(QML) and symbolize (b) as®:?®

VmIAi~ODmmi. 3)

5 Actually, as many forget, Turing [77] was concerned with computable numbers; the halting problem, in
the customary contemporary form we have just expressed it in, falls out as a consequence. A referee pointed
out that Godel I can be deduced from the unsolvability of the halting problems for TMs. But we leave aside
characterization of the relationship between Gédel I and Turing’s (more general) results.

6 Of course, this version of the theorem presupposes the Church-Turing Thesis. If we follow Burgin [23]
and accept that Inductive TMs (at least those of the first order) are algorithms, then the CTT-based version
of the theorem here isn’t true, because ITMs can solve the halting problem. See the next note.

7 Recall that algorithms and Turing machines are interchangeable by the Church-Turing Thesis. If you
happen to be one of the few people on the planet who are skeptical about this thesis, that is okay: simply start
with a version of Theorem 6.1.5 in which ‘algorithm’ is supplanted with ‘Turing machine.” For an argument
against the Church-Turing Thesis, see “Chapter 5: A Narrative-Based Refutation of Church’s Thesis” in
Bringsjord and Ferrucci [17].

8 Were we to make all the predicates explicit, with Mx for ‘x is a Turing machine,” Px for ‘x is a person,’
and Ix for ‘x is input for a Turing machine,” (3) would become either’

(3"
Mmg AVY(My — Ju(fu A =OD(y,mp,u)))

or

(3"
Ax(Mx AVY(My — Ju(fu A ~OD(y,x,u)))).

? We use the { of QML in a generic way: we mean broadly logical or mathematical possibility; i.e., ¢
if and only if it is logically/mathematically possible that ¢. There is no need for us to express our reasoning
within a particular system of QML (for reasons we explain below), but we could do so.
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Now suppose for reductio that computationalism is true, ie., that persons are
(physically realized) Turing machines, which, given our idealizations, can be sym-
bolized in such a way as to sweep away Boolos’ pessimism:

Vp3mp = m. (4)
It follows from (3) and (4) that

Y pFi=$D pmyi. (5)
However, given that there are persons, (5) is inconsistent with

V pVi&D pmygi (6)

so indirect proof yields —(3), that is, the theorem—Iet us call it Theorem 1—that com-
putationalism is false. However, since we know that persons are information processors
of some sort, they must be more powerful than Turing machines, which is to say that
they are hypercomputers. (This line of argument, we have come to learn, was pondered
a while back by Rapaport [64], a computationalist.) Note that we do not consider in
this paper where minds qua hypercomputers fall in any hierarchies covering informa-
tion processing above the Turing Limit. For discussion of this issue in connection with
the Arithmetic Hierarchy, see [21,47].

Three points should be made immediately about this argument (with others coming
when we rebut objections).

First, it is important to grasp that the underlying modal argument is not inseparably
linked to a particular formal derivation or a particular proof theory. We have presented
the derivation in a manner with which we happen to be particularly comfortable, but an
infinite number of variations on the core idea are possible. The point here is important
because the computationalist will not be able to dodge our modal argument by hiding
behind such claims as that the Barcan Formula in quantified modal logic (QML) is
controversial, 1® or that identity statements cannot, in general, be necessitated. While
there are formal versions of the argument that explicitly invoke BF and related aspects
of QML, we are in fact most strongly drawn to formal versions of the argument that
stay within first-order logic (FOL), on the strength of innocent readings of “... can
possibly determine whether ... .” For example, the following two equations, where
D®xyz abbreviates the merging of ¢ with D to make an FOL-representable predicate
meaning that x can (logically possibly) determine whether y halts on input z, are true,
as can be verified by hand or by supplying them as input to a standard theorem prover:

{Ix(Mx AVY(My — Ju(lu A —vDo(y,x, u)))), Vx(Px — VyVu((My A Iu)
— DO(x, y,u))),

Vx(Px — y(My Ay =x)),3xPx} F ¢ A ¢,

10 For the classic discussion see Hughes and Cresswell [45].
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{Mmg AVy(My — Ju(lu A —|D°(y, mg,u))), Vx(Px — YyWu((My A Iu)
— D(x, y,u))),

VYx(Px — Ay(My A y =x)),3xPx} F ¢ A =g,

The second point is that once one sees the essence of our modal proof, it is possi-
ble to return to the idealizations that underlie it and modify them in various ways.
For example, some may desire to interpret the ‘are’ in ‘People are (standard) TMs’
not as the ‘are’ of ‘=,” but rather as some concept of “instantiation,” so that people
instantiate TMs. This will simply lead to a new version of our argument.'' This is
so in light of the fact that, for all instantiated standard TMs, it is impossible that they
hypercompute. (After all, theorems establishing that abstract, mathematically defined
information-processing devices are unable to @ entail that when these devices are built
(i.e., instantiated), they cannot &. For example, we know that no instantiated standard
Turing machine can solve the halting problem.)

Here is the third point. Clearly, our underlying modal argument can be based on any
number of related problems. Obviously, it can be based on Theorem 6.1.5(a). But it
just as obviously can be based on many other problems. For example, we know that no
Turing machine can determine whether an arbitrary arithmetical formula is true on the
standard interpretation of arithmetic; and, again, this implies that no Turing machine
can (mathematically or logically speaking) possibly make this determination. Yet it
certainly seems logically possible for a person to make this determination. (Remember:
we momentarily provide an argument for this proposition.) The same can be said for
trying to determine, in general, whether or not a first-order formula is a validity. And
so on. However, we have for certain specific reasons based the above instantiation
of the underlying modal argument on Theorem 6.1.5(b). These reasons pertain to the
apparent fact that many logicians and mathematicians have a hard time accepting that
particular problems are such that it is logically impossible for humanity to solve them.
An impressionistic but seminal treatment of this matter is carried out by Minsky, who
points out that while many are willing to accept that humanity cannot possibly find
a uniform procedure for solving an infinite class of problems, “Some mathematicians
accept these uniform unsolvability results but prefer to believe that there can be no
analogue for single problems” [51]. G6del was an example of such a thinker. Though
this may make a difference only to some readers, we point out that we herein chose
a particular instantiation of our modal argument that appeals to a particular machine,
mg. There are any number of other ways to “particularize” our modal argument.

3. Why the key premise is true

At first glance, the modal proof is likely to look like a piece of legerdemain. After
all, why is (6), the key premise, true? Well, actually, the truth of (6) can be seen via

'We might even allow for computationalism to consist in the view that each person, at each time,
instantiates some standard TM. Again, no damage is done to our modal argument.
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two steps: by attending to the mathematics of information processing (understood to
include both the recursive and super-recursive realms), and by unflinchingly attending
to the underlying cognition that has produced this mathematics.

For the start of step one, note that we now understand well that there are information-
processing machines that can exceed the Turing Limit (e.g., they can solve the halting
problem), such machines just are not standard TMs and the like. There are in fact
now many such machines. Indeed, just as there are an infinite number of mathematical
devices equivalent to Turing machines (first-order theorem provers, register machines,
the A-calculus, abaci, ...; many of these are discussed in the context of an attempt to
define standard computation in [11]), there are an infinite number of devices beyond
the Turing Limit. While Burgin [23] is correct that the first fleshed-out account of such
a machine (trial-and-error machines, as Kugel [47] aptly calls them) appears to have
been provided at the same time by Putnam [61] and Gold [38], and while we agree
with his claim [23] that his own more powerful inductive TMs (ITMs), introduced in
1983, have the distinct advantage of giving results in finite time, today’s infinite time
TMs (ITTMs) [39], as we will shortly see, can trace their lineage back to seminal
theoreticians working well before 1965.!2 ITTMs result from extending the operation
of TMs to infinite ordinal time, and produce a “supertask theory of computability
and decidability” [39]. This should come as no surprise, because supertasks have long
been discussed in theoretical treatments of computation. For the present paper, it is
sufficient to save time space and by referring not to ITTMs, but only to intuitive
supertask machines called Zeus machines (ZMs) by Boolos and Jeffrey [9]. 13

Zeus machines are based on the character Zeus, described by Boolos and Jeffrey [9].
Zeus is a superhuman creature who can enumerate N, the natural numbers, in a finite
amount of time, in 1s, in fact. He pulls this off by giving the first entry, 0, in 1/2s,
the second entry, 1, in 1/4 s, the third entry in 1/8s, the fourth in 1/16s,..., so that,
indeed, when a second is done he has completely enumerated the natural numbers.
Obviously, it is easy to adapt this scheme so as to produce a Zeus machine that can
solve the halting problem: just imagine a machine which, when simulating an arbitrary
Turing machine m operating on input u, does each step faster and faster ... (There
are countably many Turing machines, and those that do not halt are trapped in an
unending sequence of the same cardinality as N.) If, during this simulation, the Zeus
machine finds that m halts on u, then a 1 is returned; otherwise O is given. Put in the
abbreviatory first-order terms we availed ourselves of above, where z,z’,... range over
Zeus machines, we have

VzVidDzmyi. 7

121t is interesting to note that introducing a relevant topology in the set of strings of symbols, we obtain
that ITTMs are special cases of Burgin’s [22,24] limit TMs, a formal model that appeared at least ten years
earlier than ITTMs.

13 We thus leave aside discussion of other hypercomputational machines, such as: analog chaetic neu-
ral nets [70], artificial neural nets allowed to have irrational numbers for coeflicients; and dial machines
[16], etc.
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Now for step two in the case for (6), in which we will find that the mathematical
cognition underlying the likes of (7) supports (6). How will this support be generated,
exactly? From the logical point of view, we will see that the mathematical reasoning
in question implies this conditional:

(7) — (6). (8)

Proposition (6) will thus follow by modus ponens from (7) and (8).

To isolate the mathematical cognition we have in mind, return to certain aspects
of Turing’s original cognition when he was laying down the foundational concept
of a Turing machine. Turing did not start with some mathematical description of a
machine of some sort; he started with the concept of a person—or, to use his term, a
‘computist’—carrying out primitive operations. 4

Turing himself wrote about the cognitive processes that took him from intuitions
about computists to specified Turing machines. In his dissertation at Princeton Univer-
sity [74, later published as 75] Turing distinguished between “intuition” and “ingenuity”
in logic and mathematics. He wrote: !°

Mathematical reasoning may be regarded rather schematically as the exercise of a

combination of two faculties, which we may call intuition and ingenuity. The ac-

tivity of the intuition consists in making spontaneous judgments which are not the
result of conscious trains of reasoning ... The exercise of ingenuity in mathemat-
ics consists in aiding the intuition through suitable arrangements of propositions,

and perhaps geometrical figures or drawings {75, pp. 214-215].

As Copeland, no doubt the thinker who knows the mind and history of Turing best,
explains, Turing’s intuition was of “a human mathematician who is unaided by any
machinery save paper and pencil, and who is working in accordance with ‘mechanical’
methods, which is to say, methods set out in the form of a finite number of exact in-
structions that call for no insight ... on the part of the person carrying them out” [28].
As Turing himself explicitly said: “A man provided with paper, pencil, and rubber,
and subject to discipline, is in effect a universal [Turing] machine” [76].'® In light

14 1n his inaugural writings on isomorphic points (independent, by the way, of Turing’s), Post [60] spoke
of mindless “workers,” humans whose sole job was to slavishly follow explicit, excruciatingly simple in-
structions. Likewise, Charles Babbage modeled the calculating cogs in his Difference Engine (and, for that
matter, in the never-built-by-him Analytical Engine) on an army of hairdressers hired by Baron Gaspard
Riche de Prony, director of the Ecole des Pont et Chaussées, to transform data tables into decimal form
when France went decimal in 1799: see [44].

15 We do not mean to suggest that for Turing (who was as much of a computationalist as Gédel was not)
“intuition” involved hypercomputational thought. Nor do we mean to suggest that Turing’s distinction con-
stitutes an argument for the view that some mathematical thinking is hypercomputational. Rather, “intuition,”
as a spontaneous non-inferential judgment, supports the possibility of hypercomputational thought. Turing’s
distinction is an accurate “surface level” description of mathematical cognition—whether or not the intuitive
part of that thinking is hypercomputational.

16 As Jack Copeland recently explained to Bringsjord in conversation at a conference on Turing, Turing
practiced what he preached here: Long before IBM’s Kasparov-beating Deep Blue came on the scene, there
was Turing operating qua chess-playing machine! Before there was a computer to run programs on, Turing
wrote a program for playing chess, and slavishly followed the program to play chess against a “normal”
human opponent. The match was broadcast on the radio in England.
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of the intuition/ingenuity distinction, and in light, specifically, of the mathematician’s
process of moving from the former to the latter by moving from what an imaginary
person can do to what a corresponding machine can do, it would seem that we can
safely infer from such facts as that a Turing machine, given a natural number n, can
determine whether n is even, that it is logically possible for a person to make the
same determination. Likewise, it would seem that we can safely infer from the fact
that a Zeus machine can determine whether a Turing machine m will halt on input
i, that it is logically possible for a person unaided by but (enough) paper and pencil
to make the same determination—the person just has to work faster and faster. We
strongly suspect that Hamkins and Lewis [39] started with strong intuitive concep-
tions of the infinitary capability of ITTMs before producing the formal notation used
to specify them in third-person terms.'” In fact, we would be willing to wager that
you apprehend the truth of (7), in the absence of all the mathematical details, pre-
cisely because you started to imagine the person Zeus described above doing what we
said he does: he lists 1, then lists 2, then 3, and so on, moving faster at each step.
Some of our readers, we are even willing to bet, imagined themselves operating in
this way. '8
It is important to realize that many other thinkers have independently affirmed
proposition (6) on the strength of the technique of gedanken-experiment, in which
they imagine what it is like for a person to behave in the relevant manner; this
is why we say that precursors to ITTMs were introduced long ago. It is the logi-
cian Bertrand Russell who seems to be have been the first to grasp the essence of
Zeus machines. In a lecture in Boston in 1914 he said about Zeno’s paradox in-
volving the race-course: “If half the course takes half a minute, and the next quar-
ter takes a quarter of a minute, and so on, the whole course will take a minute”
[65]. And later, when lampooning finitism as championed by Ambrose, Russell
wrote: 1°
Ambrose says it is logically impossible [for a man] to run through the whole
expansion of n. I should have said it was medically impossible. ... The opin-
ion that the phrase ‘after an infinite number of operations’ is self-contradictory,
seems scarcely correct. Might not a man’s skill increase so fast that he per-
formed each operation in half the time required for its predecessor? In that case,
the whole infinite series would take only twice as long as the first operation
[65, pp. 143—144].

7 In fact, there is even textual evidence for this on p. 568 of Hamkins and Lewis [39].

181t is interesting to note that Turing initially (in 1936) did not think it was physically possible for a Turing
machine to be built (see Copeland [28, p. 130]). It would be a mistake to infer from the mathematical fact
that a Turing machine can determine whether an arbitrary natural number is even that it is physically possible
for a person to make this determination on an arbitrary number.

19 The chief point of this quote is to show that Russell would have affirmed (6). The point is not that
there is an argument given here for (6), on which we are foolishly pinning our hopes. However, there can
be no denying that Russell’s distinction is one computationalists have tended not to made. They have in
mind what is humanly possible now (medical), not what is logically possible. (For a good recent example,
see Anderson and Lebiere [1].)



178 S. Bringsjord, K. Arkoudas! Theoretical Computer Science 317 (2004) 167190

A number of other thinkers have conceived of that which our proposition (6) encapsu-
lates. For example, Ralf Blake conceived this scenario quite a while ago,?® and more
recently Salmon [67] and Copeland [26,27] have imagined (and formalized) related
“Zeusian” scenarios in the direction of ITTMs. Actually, the less colorful but more
historically accurate name for the machines in question is “Weyl Machine,” for in
1927 Hermann Weyl considered a machine able to complete

an infinite sequence of distinct acts of decision within a finite time; say, by sup-

plying the first result after 1/2 min, the second after another 1/4 min, the third

1/8 min later than the second, etc. In this way it would be possible ... to achieve

a traversal of all natural numbers and thereby a sure yes-or-no decision regarding

any existential question about natural numbers [80, p. 42].

Other names for Zeus machines and their ITTM-like counterparts are in the literature.
For example, Copeland [26,27] has recently referred to Zeus machines as ‘accelerated
Turing machines’ and ‘super Turing machines.’

What about Gddel himself? And what about Turing? Gddel seems to have been of
the opinion that the human mind in fact enters an infinite number of distinct states.
Turing explicitly argued for the view that the human mind is capable of only a finite
number of distinct states [79], and though Godel rejected this argument because it
presupposed a materialist conception of mind (Turing assumed that the mind equals
brain; Gédel wrote and said on many occasions that the mind includes non-physical
powers and parts), he also specifically wrote that “there is no reason why the number
of states of the mind should not converge to infinity in the course of its development”
[79]. It is safe to say that Godel, at least during certain stages of his life, would have
regarded our (6) as obviously true.

Now, finally, to Turing. As we have just indicated, he believed that the mind was
“capable” of only a finite number of states. But ‘capable,” modally speaking, is slip-
pery. Did Turing believe that it is not even logically possible for a person to perform
as Zeus? Would he have rejected (6), if this proposition were presented to him in-
dependent of the argument in which we have situated it? Apparently not. In fact, it
seems likely that Turing would have affirmed (6). The reason is bound up with the
apparent fact that contemporary computer science embraces a now-familiar mathemat-
ical scheme that would seem to entail (6), and with the fact that this scheme is due
to none other than Turing himself. In his dissertation [74,75], Turing pondered the
possibility of so-called oracle machines. These machines are architecturally identical
to Turing machines, but are assumed to be augmented with an oracle which, upon
being consulted about a Turing machine m and input J, returns a correct verdict as to

20E g, Blake wrote:

A process is perfectly conceivable, for example, such that at each stage of the process the addition
of the next increment in the series %, %, %, etc., should take just half as long as the addition of the
previous increment. But ... then the addition of all the increments each to each shows no sign whatever
of taking forever. On the contrary, it becomes evident that it will all be accomplished within a certain
definitely limited duration. ... If, e.g., the first act ... takes % second, the next % second, etc., the

[process] will ... be accomplished in precisely one second. (Blake [7, pp. 650-651].)
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whether m halts on i. Oracle machines, part of the mathematical canon of computer
science today, are typically the door through which students pass to enter into the
study of hypercomputation. For example, here is how a recently updated textbook on
computability and uncomputability introduces oracles:
Once one gets used to the fact that there are explicit problems, such as the halting
problem, that have no algorithmic solution, one is led to consider questions such
as the following:

Suppose we were given a “black box™ or, as one says, an oracle, which can
tell us whether a given Turing machine with given input eventually halts. Then it
is natural to consider a kind of program that is allowed to ask questions of our
oracle and to use the answers in its further computation [29, p. 197].

More important than that Turing would probably have affirmed the likes of (6) is the
fact that computer science itself commits to this proposition. As the quote from Davis
et al. indicates, first oracles are imagined, not as mathematized, mechanical devices,
but rather as intuitive objects. After this, oracles can be cashed out (as we have said)
via Zeus machines, trial-and-error machines, analog chaotic neural nets, and so on. And
of course since hypercomputation can itself be studied from the standpoint of relative
computability, once (e.g.) ITTMs are given as a way to specify oracles of the type
that Davis et al. [29] introduce, one can consider halting problems for ITTMs, etc.; see
[39]. So here we see the same sequence that supports our argument for (6): human
imagination and intuition first, followed by formal ingenuity.

4. Objections
4.1. Objection 1: “You're Begging the Question”

The first objection is simply: “It strikes me that your modal proof is unnecessary. |
say this because the final premise therein—(6)—is just a denial of computationalism.
You are begging the question.”

First, some points of logic in reply. Computationalism is expressed in the modal proof
as proposition (4), which says that persons are Turing machines. The denial of (4) does
not follow from (6); this can be certified by an easy proof showing the consistency
of (4) and (6).2! Perhaps Objection 1 presupposes a version of computationalism not
captured by our (4). To quickly make explicit this possibility, we can for the sake of
analysis legislate that computationalism includes the claim that no person can solve
a problem that no Turing machine cannot. However, this kind of claim is invariably
a non-modal one. At best, the claim is a naive one, with ‘can’ and ‘cannot’ within
it left ambiguous. Computationalists just never have claimed that their view includes
the proposition that it is logically impossible that a person solve a Turing-unsolvable

21 A disproof of the purely extensional first-order version of the proof can be done with in standard fashion,
i.e., build a model satisfying (6) and (4). The modal version requires use of possible worlds in standard
ways.
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problem. Our modal proof therefore doesn’t beg the question. Rather, the proof reveals
and exploits a key distinction that has hitherto gone unnoticed.

4.2. Objection 2: *You're Misrepresenting Computationalism”

The second objection runs as follows: “You identify computationalism with the claim
that people are Turing machines, but computationalists needn’t maintain any such thing.
It suffices for the computationalist to claim that people can be simulated by computa-
tional systems (e.g., by Turing machines). After all, Turing’s test for machine mentality,
now known simply as the ‘Turing Test,” requires for a ‘passing grade’ that the com-
puter in question be conversationally indistinguishable from a person; the test does not
insist that a computer be a person, a bearer of such things as subjective awareness.”

This objection conflates “Strong” and “Weak™ versions of computationalism and Al,
and thus flies in the face of a fundamental distinction in Al and the philosophy of AL
The view that computing machines can simulate the behavior of persons is known as
“Weak” Al; the view that people quite literally are computing machines, and hence
that Al can eventually replicate, not just simulate, persons, is known as “Strong” AL
We aren’t attacking Weak Al Doing so, for formal reasons one of us has explained
elsewhere, would be foolish: Weak Al is almost certainly true.?> We seek to refute
the kind of position nicely described by John Haugeland:

What are minds? What is thinking? What sets people apart, in all the known

universe? Such questions have tantalized philosophers for millennia, but ... scant

progress could be claimed ... until recently. For the current generation has seen

a sudden and brilliant flowering in the philosophy/science of the mind; by now

not only psychology but also a host of related disciplines are in the throes of

a great intellectual revolution. And the epitome of the entire drama is Artificial

Intelligence, the exciting new effort to make computers think. The fundamental

goal of this research is not merely to mimic intelligence or produce some clever

fake. Not at all. Al wants only the genuine article: machines with minds, in the

full and literal sense. This is not science fiction, but real science, based on a

theoretical conception as deep as it is daring: namely, we are, at root, computers

ourselves [41, p. 2].

As the reader will recall, we gave above an extensive list of propositions offered by
thinkers as encapsulations of Strong Al. An even longer list of candidate propositions
for expressing the core of the Strong computational conception of mind is presented
in (Bringsjord and Zenzen [20]), with the “People are Turing machines” distillation
chosen in the end there as well, as accurate and fair.

Nonetheless, perhaps Objection 2 can be sustained as follows: “Very well, I agree
to talk not just of simulation, but replication; point well-taken. But I do think it makes
a vast difference whether we say that persons are Turing machines or ‘real life’ em-
bodied computers. Specifically, computationalism as the claim that people are physical
computers is insulated from your modal argument; in fact, your argument is a non-
starter once talk of Turing machines is supplanted with talk of such computers. To see

22 An explicit argument for the “obviousness” of Weak Al is given by Bringsjord [15].
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this, note first that computationalism, encapsulated by your (4), now becomes, where
c ranges over embodied computers,

VpIep =c. (4")

Now, in order for there to be a parallel modal argument here, (3) must be replaced
with

Vedi~ODemyi. 3"

But this proposition is false! Take a particular “real life” computer, say the Power-
book G4 on which you are working at present; let us dub it W. Obviously, it is
logically possible for W to crack mg: you have showed us how above. What W needs
to do is simply work in Zeusian fashion on mg and some input i. The scenario is easy
to imagine—just as easy as it is to imagine that some person works in this fashion.
Since (3') is false, the modal argument fails.”

The reply to this objection is straightforward. Computationalism is the view that peo-
ple are standard computers—that is to say, computers that instantiate a formal scheme
equivalent to that defined by Turing machines. Computationalism is not the view that
people are hypercomputers, that is, information-processing devices capable of feats be-
yond the Turing Limit. After all, the holy grail for those thinkers seeking to overthrow
computationalism—Gaodel, Lucas, Penrose, ...—has long been some cognition that ex-
ceeds the Turing Limit. Penrose, in this regard, is right on key: his is a search for
mathematical cognition that involves information processing beyond the Turing Limit.
In sum, then, the modal argument, as the previous objection makes plain, does not the
slightest harm to the view that the mind is (at least in part) a hypercomputer. 23

4.3. Objection 3. “But Then Computers Aren’t Computers!”

“Your argument can’t possibly be right. For if we know anything about computation,
we know that Macintosh Powerbooks are physically instantiated Turing machines.?*
But observe what happens when we replace reference to persons in your modal argu-
ment with reference to Powerbooks, a class we can assume b to range over. Proposition
(4) becomes the fact that Powerbooks are Turing machines, that is,

Vb3mb = m. @)
It now follows from (3) and (4”) that
Vb3~ Dbmy. (5")
But this proposition, given that there are Powerbooks, is inconsistent with
VBYiDbmyi. (6")
23 Indeed, one of us offers a book-length defense of this view [20].
24 Actually, since Turing machines do not have random access memory, this is not really true. It would be

more accurate to say, ¢.g., that Powerbooks are physically instantiated register machines. A nice presentation
of register machines can be found in [32].
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It thus follows by indirect proof that Powerbooks are not computers, which is patently
absurd!”

This objection surreptitiously conflates two different senses in which Powerbooks
(and indeed any class of physical computers) can be said to be Turing machines (or
some other idealized type of machine). The first sense is an architectural sense only,
while the second is an architectural sense and a temporal sense. For a physical machine
to be a Turing machine (or some other idealized machine) merely architecturally means
that the structures of the two correspond. Turing machines, for example, have read/write
heads that move over tapes divided into squares, so it is possible to take a model
railroad set and build a physical computer that “is” a Turing machine, by allowing the
model railroad track to function as a tape, and so on. But this leaves the temporal issues
completely open. The fact of the matter is that a (standard) Turing machine not only
has a certain structure; it also has an inherent temporal limitation: viz., it can take only a
finite number of steps in any finite time (as can be verified by looking at any relevant
formalization; e.g., see again [49]). The entire area of computational complexity in
theoretical computer science is based upon this limitation. The problem is that (6’) is
true only if it construes Powerbooks as devices allowed to carry out an infinite number
of operations in a finite time (in which case they are not standard Turing machines, i.e.,
architecturally and temporally standard Turing machines), while (4”) is true only when
Powerbooks are interpreted as both architecturally and temporally an instantiation of the
Turing machine scheme. One traditional way to begin to mathematize those devices
beyond the Turing Limit, by starting with Turing machines, is to drop the inherent
temporal limitations on Turing machines: this is exactly the seminal move Putnam
[61] and Gold [38] made. %’

At this point someone might object that our criticism of Objection 3 applies to our
own modal argument: “Proposition (4) should be interpreted to say that persons are,
temporally and architecturally speaking, Turing machines. However, in proposition (6),
you secretly drop the temporal restriction. So, the very distinction you introduced in
response to Objection 3 serves to derail your modal argument.”

There is a simple reason why this objection fails. Standard Turing machines, in all (to
use the terminology of the standard formal semantics of modal logic) possible worlds,
are temporally bound. What it means to be a (standard) Turing machine, among other
things, is that processing happens one discrete step at a time, and that a computation is
a finite sequence of such steps. Personhood is rather different. Every standard account
of personhood is quite consistent with a person, in some possible world, carrying out
a Zeusian task (e.g., see the account provided in Bringsjord [12]). Personhood (of
the human variety) is traditionally taken to consist in capacities to communicate in a
language, reason, form n-order beliefs, set long-term goals, and so on. None of these
attributes block the logical possibility of Zeusian activity. To assume such blockage is
to beg the question against us.

23 Note that Burgin [23] provides empirical evidence for the view that modern physical computers are not
(standard) TMs.
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4.4. Objection 4: “Zeus Merely Seems Coherent”

The fourth objection is inevitable: “You have said that the logical possibility of a
Zeus machine solving the halting problem, which I agree to be a mathematical fact,
commiits one to the view that it is logically or mathematically possible for a person to
solve this problem by working faster and faster. But at most you have shown that it
is apparently coherent that a person perform in this way.”

For rebuttal we rely on a familiar point, one made recently by David Chalmers [25],
namely, when some state of affairs i/ seems, by all accounts, to be perfectly coherent,
the burden of proof is on those who would resist the claim that y is logically or
mathematically possible.?® Specifically, those who would resist us need to expose
some contradiction or incoherence in the activity of Zeus, or the activity of persons as
described by Russell, Weyl, Blake, Copeland, and so on. No such thing has ever been
exposed. 7

4.5. Objection 5: “As a Matter of Fact, Zeus is Not Coherent!”

The fifth objection: “As a matter of fact, some thinkers have argued that Zeus’
behavior is incoherent. These are people who don’t seem to share the attitude of
Russell, Weyl, Blake, Copeland, and others you have conveniently listed. For example,
Moore’s attitude about expanding #, expressed in connection with a form of Zeno’s
paradox, runs rather counter to Russell’s:

Suppose that Achilles runs for half a minute, then pauses for half a minute, then

runs for a quarter of a minute, then pauses for a quarter of a minute, and so on

ad infinitum. At the end of two minutes he will have stopped and started in this
way infinitely many times. Yet there is something repugnant about admitting this
possibility, even as a conceptual—let alone a physical—possibility. For example,
suppose that each time he pauses he performs a task of some kind, there being no
limit to how quickly he can do this. Then at the end of two minutes he will have
performed infinitely many of these tasks. He might, say, have written down the
complete decimal expansion of 7 (3.141592...), for which he needs only a finite
sheet of paper and the ability to write down digits that get smaller without limit

(see [Fig. 1]). We are loath to admit this as a conceptual possibility, though we

seem bound to do so [53, p. 4].

Moreover, such an expansion of m has been called in the literature a ‘supertask,’
and Moore [53] has provided a rather famous argument for the view that supertasks
are incoherent.”

Moore’s statement that “We are loath to admit this as a conceptual possibility” is
mystifying. Who does the ‘we’ refer to? Not to the authors: Moore wrote The Infinite
by himself. The idea must be that thinkers in general are reluctant to admit this
conceptual possibility—but this just isn’t the case. In our experience, most thinkers

26 Chalmers gives the case of a mile-high unicycle, which certainly seems logically possible. The burden
of proof would surely fall on the person claiming that such a thing is logically impossible.
27 For more on these issues in connection with the computational conception of mind, see Bringsjord [14].
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Fig. 1. Expanding 7 as a supertask.

rendering a verdict on whether the expansion is a conceptual possibility, believe, with
Russell and all the others, that it is.

Indeed, it now seems clear that supertask computation is not only logically/mathemat-
ically possible, but physically possible as well, as shown by certain general relativistic
models [31,43,59].

We should probably mention that even the simple notion of a limit, central to ele-
mentary calculus, according to many (e.g., Salmon [67]), presupposes the mathematical
coherence of supertasks.?® Even children are frequently taught that supertasks are per-
fectly coherent, because they are prepared early on, in mathematics, for calculus down
the road. For example, see Fig. 2, which is taken from page 268 of Eicholz et al.
[33). A typical case recently involved Bringsjord’s son, Alexander, who in the 7th
grade was asked to determine the “percent pattern” of the outer square consumed by
the ever-decreasing shaded squares. The pattern, obviously, starts at 1/4, and then con-
tinues as 1/16, 1/64, 1/256, ... . When asked what percent “in the limit” the shaded
square consumes of the original square, Alexander was expected to say “Zero”—but
the notion of a limit was a bit tricky for him (perhaps understandably). When asked
what percentage the shaded square would “get down to” if someone could work faster
and faster, and smaller and smaller, at drawing the up-down and left—right lines that
make each quartet of smaller squares, Alexander said zero. This is anecdotal, yes, but
what it indicates is something in keeping with the process we discussed earlier: some
humans may start with an intuitive picture of a supertask, and move from there to the
formalisms in question (i.e., those seen in elementary calculus). It would be interesting
to systematically poll students about these matters.

28 please note that the coherence of supertasks simpliciter most certainly does not imply that there is always
a “final step” in a supertask. There can be a result in the limit without there being a last step. For a crisp,
recent demonstration of this point, see the pair: [6,36).
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Fig. 2. Picture of supertask from seventh grade math.

Though Moore would seem to be singular in his belief that supertasks are not math-
ematically or logically possible, as the end of Objection 4 intimates, his ammunition
includes more than a suspicious straw poll, against which we could certainly pit our
own: He does have one argument for the incoherence of supertasks; this argument is
part of a larger case for finitism (a view which denies even the existence of N, a
set we have of course explicity invoked). Needless to say, we do not have the space
to present and resolve one of the most profound issues in philosophy of mathemat-
ics, and if it takes an affirmation of finitism to ward off our modal argument, then
our argument has all the force we could ever hope it to have (after all, if finitism is
true, most of theoretical computer science is incoherent). But we can focus specifically
on Moore’s argument for the incoherence of what the two of us, following Russell,
Weyl, Blake, Copeland, and others, find transparently coherent. Here, then, is Moore’s
argument:

If it did make sense to say that I had just constructed all of the natural numbers in

a minute, by the Zenonian procedure, then it would also make sense to say this:

while 1 was constructing them, my constantly increasing speed of performance

meant that time seemed to be going more and more slowly to me; it seemed that

[ was constructing them at a steady rate. Yet there is nothing that could count for

me as a retrospective grasp of such an experience, in its apparent endlessness. (I

could not have an apparently endless experience, apparently followed by further

experience.) I must, subsequently, have forgotten all but an initial segment of it.

How can this be? Surely what we have here is symptomatic of the fact that nothing

could ever count, for anyone, as a grasp of an infinite reality. The grammar of

‘infinity’ is not geared to this. The special problems that arise when we envisage

time seeming to go more slowly merely serve to make graphic an incoherence

that is there to be acknowledged anyway—an incoherence that crept in at the very
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beginning of the story. It does not make sense to say that I have just performed
infinitely many tasks of any kind, nor to say that anything is infinite in any respect
[53, p. 213].

Put in a more explicit form that can be evaluated, and ignoring the grandiose claim
that finitism is vindicated, the argument runs like this:

If supertasks are coherent, then it could seem to someone who (conceptually
speaking) performs such a task that each action along the way took the
same amount of time (say n seconds). (9)

If it could seem to someone who performs a supertask that each action along
the way took n seconds, then someone could retrospectively experience, or
relive, each action for n seconds—and then proceed to have other,

normal life experiences. (10)

No one could retrospectively experience, or relive, each action in a supertask
for n seconds—and then proceed to have other, normal life experiences. (11)

Supertasks are incoherent [(9), (10), (11)]. (12)

Is this argument any good? Well, the argument appears to be formally valid, an in-
stance of hypothetical syllogism and modus tollens; at any rate, we are prepared to
concede that the argument is valid. Premise (11) certainly seems to be true. After all,
n+n+n+--- will eventually exceed the amount of time a human has to operate
with, whereas a supertask is based on some such sequence as (1/2"), n = 1,2,... .
Premise (9) seems extremely plausible. For suppose that Jones is a sprinter who runs
100 m races in 9s. Could not it nonetheless seem to Jones that he runs the race in
15 s? Could not it in fact seem to Jones that he runs the race in 30 s? And why not
a minute? After all, we are talking here about Jones’ subjective perspective. He could
hallucinate during his sprint, or go into some kind of wild dream that seems to span
10 years. In general, then, when a human performs an action having property F, it
may not seem to the human that action has F; the human may perceive the action to
have a radically different property G.

So where does this leave the argument? It leaves it hinging on premise (10). But this
premise is at best controversial; at worst, the premise begs the question against us. The
problem is that it does not follow from the fact that a series of actions can seem to have
certain properties to someone, that that person can in any way genuinely experience
actions having these properties. It may seem to me that a moment ago I jumped a
tall building in a single bound (perhaps I had a dream), but it does not follow from
this that I can experience jumping a tall building in a single bound. I may rthink 1 am
superman, but I am not. Likewise, it may seem to someone that they just squared the
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circle, but they cannot experience squaring the circle.? (If one experiences squaring
the circle, squaring the circle can be pulled off—but it cannot be pulled off.)

Finally, why do we say that premise (10) may make the argument in question
circular? We imagine that once one has (conceptually) performed a supertask, the
only way to retrospectively experience this task is for the retrospective experience to
itself be a supertask. To the extent that premise (10) rules out by fiat this method of
retrospective experience, it preemptively rules on precisely what’s at issue: Moore’s
argument becomes a petitio.
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