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Abstract

We propose a natural definition of what it means in a constructive context for a
Banach space to be reflexive, and then prove a constructive counterpart of the Milman-
Pettis theorem that uniformly convex Banach spaces are reflexive.

Our aim in this note is to present a fully constructive1 analysis of the Milman-Pettis
theorem [11, 12, 9, 13]: a uniformly convex Banach space is reflexive. First, though, we
need to outline the constructive context of the statement and proof of this theorem, and to
clarify the terms we will use.

The context of our work is that of a quasinormed space: that is, a linear space X
equipped with a family (‖ ‖i)i∈I of seminorms on X such that the subset {‖x‖i : i ∈ I} of
R is bounded; that family is called the quasinorm on X. For all x, x′ in the quasinormed
space X we define the inequality and equality relations by:

• (x 66= x′) ≡ ∃i∈I (‖x− x′‖i > 0); and

• (x = x′) ≡ ∀i∈I (‖x− x′‖i = 0) .

Quasinorms were introduced by Johns and Gibson2 [8] in their study of Orlicz spaces
(such as L∞), and are important in the constructive analysis of duality; see [4] (Chapter 7,
Section 5).

An element x of the quasinormed space X is normable, or normed, if its norm,

‖x‖ ≡ sup
i∈I
‖x‖i , (1)

exists. The unit ball of a quasinormed space
(
X, (‖ ‖i)i∈I

)
is the set

BX ≡ {x ∈ X : ∀i∈I (‖x‖i 6 1)} .

If every element of a quasinormed space
(
X, (‖ ‖i)i∈I

)
is normable, then we can regard

X as a normed space relative to the norm defined at (1).

1Our view of constructive mathematics is that of Bishop [3, 4, 5]: namely and roughly, it is mathematics
with intuitionistic logic together with some appropropriate foundation such as Aczel’s constructive (ZF) set
theory [1, 2]. Note, for the record, that we accept the axiom of dependent choice.

2Those authors used the name ‘pseudonorm’, rather than our ’quasinorm’.
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If
(
Y, ‖ ‖j

)
j∈J

is also a quasinormed space, then a linear mapping u : X → Y is said to

be bounded if there exists c > 0 (a bound for u) such that for each x ∈ X,

∀j∈J∀ε>0∃i∈I
[
c ‖x‖i > ‖u(x)‖j − ε

]
For a normable element x of X, this last condition holds if and only if c ‖x‖ > ‖u(x)‖j for
each j ∈ J . In particular, if X,Y are normed spaces, then our definition of ‘bounded linear
mapping’, given above, is equivalent to the usual one in the functional analytic literature.

Let X be a quasinormed space and let Y be a normed space. We define the natural
quasinorm on the set L(X,Y ) of bounded linear mappings from X into Y as follows:

‖u‖x ≡ ‖u(x)‖ (x ∈ BX) .

When we regard L(X,Y ) as a quasinormed space, it is this quasinorm that we have in mind.
The particular situation that interests us in the present paper involves a quasinormed

linear space
(
X, (‖ ‖i)i∈I

)
, the quasinormed dual space X∗ ≡ L(X,R), and the quasinormed

second dual X∗∗ ≡ (X∗)
∗

of X. For each x ∈ X we denote by x̂ the mapping f  f(x),

which is an element of X∗∗; also, for each S ⊂ X, we denote by Ŝ the image of S under the
natural embedding x x̂ of X into X∗∗. Since each element of BX∗ has bound 1, we see
that

∀x∈X∀f∈BX∗∀ε>0∃i∈I
(
‖x‖i > ‖x̂‖f − ε

)
.

So if ‖x‖i 6 c for all i, then c is a bound for x̂; in particular, if x is normable, then ‖x‖ is a
bound for x̂. We say that the natural mapping is norm-preserving if for each normable
element x of X, the image x̂ is normable and ‖x̂‖ = ‖x‖.

We call a quasinormed space
(
X, (‖ ‖i)i∈I

)
• uniformly convex if for each ε > 0, there exists δ ∈ (0, 1) such that if x, y ∈ BX

and there exists i ∈ I such that ‖x− y‖i > ε, then
∥∥ 1
2 (x+ y)

∥∥
i
< 1− δ for all i ∈ I;

• reflexive3 if for each normable element F of X∗∗, there exists a (perforce unique)
element x of X such that F = x̂;

• pliant4 if for each x ∈ X, each i ∈ I, and each ε > 0, there exists f ∈ BX∗ such that
f(x) > ‖x‖i − ε.

The pliancy condition is equivalent to:

∀x∈X∀i∈I∀ε>0∃f∈BX∗

(
‖x̂‖f > ‖x‖i − ε

)
(2)

—that is, the boundedness of the identity mapping i between the quasinormed spaces(
X,
(
‖ ‖f

)
f∈BX∗

)
and

(
X, (‖ ‖i)i∈I

)
; since i−1 is bounded (by the definition of bounded

linear mapping), pliancy is actually equivalent to the bicontinuity of i.

3Our notion of ‘reflexive’ differs from that originally given by Bishop, who also posed in a different way
the problem addressed by our main result (Theorem 3 below): he conjectured that the normable linear
functionals on a uniformly convex Banach space X form a linear space, and that the normable elements of
the dual of the latter space had the form f  f(x) with x ∈ X; see [3] (page 295, Problem 8). Ishihara [6]
has shown that the second part of Bishop’s conjecture is provable if the first part is.

4Pliancy is a new notion, not found in the earlier literature.
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It is easy to show that every Hilbert space is pliant. Classically, every normed space is
pliant. Constructively, a normed space is pliant if it is either separable (this is a special case
of Proposition 1 below) or else has Gâteaux differentiable norm ([7], Lemma 1; [5], Prop.
5.3.6).

We define a quasinormed space
(
X, (‖ ‖i)i∈I

)
to be

• separable if it contains a sequence (xn)n>1 that is dense , in the sense that

∀x∈X∀ε>0∃n∀i∈I (‖x− xn‖i < ε) ;

and

• quasi-separable if for each i ∈ I there exists a sequence (xn)n>1 in X such that

∀x∈X∀ε>0∃n (‖x− xn‖i < ε) . (3)

Of course, separable implies quasi-separable.

Proposition 1. Every quasi-separable quasinormed space is pliant.

Proof. Given a quasi-separable quasinormed space
(
X, (‖ ‖i)i∈I

)
, fix i ∈ I and choose a

sequence (xn)n>1 in X such that (3) holds. Let Xi denote the space X taken with the
seminorm ‖ ‖i, and with the equality and inequality defined by

x =i y ⇔ ‖x− y‖i = 0,

x 6=i y ⇔ ‖x− y‖i > 0.

These data turn Xi into a separable normed linear space. Given a ∈ Xi and ε > 0, we apply
[5] (Prop. 5.3.1), to obtain a normable linear functional f on Xi with

‖f‖i ≡ sup {|f(x)| : x ∈ X, ‖x‖i 6 1} = 1

such that f(a) > ‖a‖i− ε. If x = y in the quasinormed space X, then ‖x− y‖i = 0; whence
x = y in the normed space Xi, and therefore f(x) = f(y). Thus f is a linear functional on X.
Moreover, since ‖f‖i = 1, for each x ∈ X and each α > 0 we have |f(x)|−α < |f(x)| 6 ‖x‖i;
hence f ∈ BX∗ . Moreover, â(f) = f(a) > ‖a‖i − ε.

Inspection of the proof of Theorem (4.6), the Hahn-Banach theorem for separable spaces,
on page 342 of [4] shows that the only place where separability is used is in the application
of Corollary (4.5) preceding it, which asserts the pliancy of the space. On the other hand,
a well-known application of the Hahn-Banach theorem to the functional λx  λ ‖x‖ on
the space Rx shows that if that theorem holds, then the space is pliant. Thus we see that
the pliancy of arbitrary normed spaces is (constructively) equivalent to the Hahn-Banach
theorem holding without the assumption of separability. The status of that version of the
Hahn-Banach theorem remains open, as therefore does the pliancy of arbitrary normed
spaces.

Lemma 2. Let
(
X, (‖ ‖i)i∈I

)
be a pliant quasinormed space, and x an element of X. Then

x is normable if and only if x̂ is normable, in which case ‖x‖ = ‖x̂‖.
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Proof. The desired result readily follows from the statement

∀f∈BX∗∀ε>0∃i∈I
(
‖x‖i > ‖x̂‖f − ε

)
together with (2).

A sequence (xn)n>1 in a quasinormed space
(
X, (‖ ‖i)i∈I

)
B converges to the limit x ∈ X if

∀ε>0∃N∀n>N∀i∈I (‖x− xn‖i < ε) ;

B is a Cauchy sequence if

∀ε>0∃N∀m,n>N∀i∈I (‖xm − xn‖i < ε) .

Naturally, if every Cauchy sequence inX converges to a limit inX, then we callX complete.
We now state our constructive version of the Milman-Pettis theorem:

Theorem 3. Every complete, pliant, uniformly convex quasinormed space is reflexive, and
the natural embedding into its second dual is a norm-preserving bijection of the set of
normable elements of X onto the set of normable elements of X∗∗.

Our proof of Theorem 3 (in particular, Lemma 5), is based on ideas of Ringrose [13].
We have the following preliminary lemmas.

Lemma 4. Let X be a quasinormed space, F an element of BX∗∗ with ‖F‖ = 1, and δ > 0.
Then there exist x ∈ BX and f ∈ BX∗ such that |F (f) + f(x)| > 2− δ.

Proof. Choose f ∈ BX∗ such that F (f) > 1 − δ/3. Since 1 is a bound for F , there exists
x ∈ BX such that F (f)− δ/3 < ‖f‖x = f(x). Then

|F (f) + f(x)| > F (f) + f(x)

> 2F (f)− (F (f)− f(x))

> 2

(
1− δ

3

)
− δ

3
= 2− δ.

Lemma 5. If X is a uniformly convex quasinormed space, then the quasinormed space X∗∗

is uniformly convex.

Proof. Let 0 < ε < 1, and pick t ∈ (0, 1) such that if x, y ∈ BX and there exists i ∈ I
such that ‖x− y‖i > ε/4, then

∥∥ 1
2 (x+ y)

∥∥
i
< 1 − 2t for all i ∈ I. Let δ ≡ tε/4. Consider

F,G ∈ BX∗∗ and u ∈ BX∗ such that F (u)−G(u) > ε. Given f in BX∗ , we have

F (f) +G(f) = F (f + tu) +G (f − tu)− t (F (u)−G(u)) .

Since F and G have bound 1, given α > 0, we can pick x, y ∈ BX such that F (f + tu)−α <
(f + tu) (x) and G(f − tu)− α < (f − tu) (y). Then

F (f) +G(f) < (f + tu) (x) + α+ (f − tu) (y) + α− tε
= f(x+ y) + tu(x− y)− tε+ 2α. (4)
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Either 3ε/8 < u(x− y) or u(x− y) < ε/2. In the first case, pick j ∈ I such that ‖x− y‖j >
u(x− y)− ε/8 > ε/4. Then for each i ∈ I we have

∥∥ 1
2 (x+ y)

∥∥
i
< 1− 2t. Choosing i such

that ‖x+ y‖i > |f(x+ y)| − α, and referring to (4), we now obtain

F (f) +G(f) < (‖x+ y‖i + α) + 2t− tε+ 2α

< 2 (1− 2t) + 2t− 0 + 3α = 2(1− t) + 3α

and therefore
F (f) +G(f) < 2 (1− δ) + 3α. (5)

In the case u(x− y) < ε/2 we have, by (4),

F (f) +G(f) < 2 +
tε

2
− tε+ 2α = 2− tε

2
+ 2α,

which, since tε/2 = 2δ, implies that (5) holds. Since α > 0 is arbitrary, we now see that
|F (f) +G(f)| 6 2(1− δ) for all f ∈ BX∗ .

This brings us to the (constructive) proof of Theorem 3:

Proof. Let
(
X, (‖ ‖i)i∈I

)
be a complete, pliant, uniformly convex quasinormed space, and

F a normed element of X∗∗; we may assume that ‖F‖ = 1. Given ε > 0, and using Lemma
5, compute δ ∈ (0, 1) such that if F,G ∈ BX∗∗ , u ∈ BX∗ , and F (u) − G(u) > ε, then∣∣ 1
2 (F (f) +G(f))

∣∣ 6 1− δ for all f ∈ BX∗ . By Lemma 4, there exist x ∈ BX and f ∈ BX∗

such that |F (f) + f(x)| > 2 (1− δ); whence |F (g)− x̂(g)| 6 ε for each g ∈ BX∗ . Since
ε > 0 is arbitrary, we can construct a sequence (xn)n>1 in BX such that

∀n∀g∈BX∗

(
|(F − x̂n) (g)| < 2−n−3

)
.

Then for m > n and all g ∈ BX∗ we have

|g (xm − xn)| = |x̂m(g)− x̂n(g)| < 2−m−3 + 2−n−3 6 2−n−2.

But X is pliant, so for each i ∈ I we can pick g ∈ BX∗ such that g (xm − xn) > ‖xm − xn‖i−
2−n−2. Hence

‖xm − xn‖i < 2−n−1 (m > n) . (6)

Since this holds for each i ∈ I, we see that (xn)n>1 is a Cauchy sequence in BX and therefore
converges to a limit x in our complete quasinormed space X. For each n, letting m → ∞
in (6), we see that ‖x− xn‖i 6 2−n−1 for all i. Given g ∈ BX∗ , we can find i such that
‖x− xn‖i > |g (x− xn)| − 2−n−3; whence

|(F − x̂) (g)| 6 |(F − x̂n) (g)|+ |g(x− xn)|
6 2−n−3 + ‖x− xn‖i + 2−n−3

< 2−n−2 + 2−n−1 < 2−n.

Since g and n are arbitrary, we conclude that F = x̂. It follows from Lemma 2 that x is
normable, with ‖x‖ = ‖F‖. This leads almost immediately to the second conclusion of the
statement of our theorem.

Since, as we observed earlier, a normed space is pliant if either it is separable or else it
has a Gâteaux differentiable norm, we have the following special cases of Theorem 3.
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Corollary 6. A separable, uniformly convex Banach space is reflexive.

Corollary 7. A uniformly convex Banach space with Gâteaux differentiable norm is reflex-
ive.
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