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Inferential Quantification and the ω-rule 

      Constantin C. Brîncuş1 

Abstract. Logical inferentialism maintains that the formal rules of inference fix the 

meanings of the logical terms. The categoricity problem points out to the fact that the 

standard formalizations of classical logic do not uniquely determine the intended 

meanings of its logical terms, i.e., these formalizations are not categorical. This means 

that there are different interpretations of the logical terms that are consistent with the 

relation of logical derivability in a logical calculus. In the case of the quantificational 

logic, the categoricity problem is generated by the finite nature of the standard calculi 

and one direction in which it can be solved is to strengthen the deductive systems by 

adding infinite rules (such as the ω-rule), i.e., to construct a full formalization. 

Another main direction is to provide a natural semantics for the standard rules of 

inference, i.e., a semantics for which these rules are categorical. My aim in this paper 

is to analyze some recent approaches for solving the categoricity problem and to argue 

that a logical inferentialist should accept the infinite rules of inference for the first 

order quantifiers, since our use of the expressions “all” and “there is” leads us beyond 

the concrete and finite reasoning, and human beings do sometimes employ infinite 

rules of inference in their reasoning.  

Keywords: quantification, logical inferentialism, categoricity, natural semantics, 

infinitary rules. 

 

I. Full Formalization, Natural Semantics, and MT-Inferentialism 

To fully formalize a logical theory, that is already defined on the basis of a semantical 

system, by a formal calculus means to show that i) every logical truth is a theorem in the 

calculus, ii) every relation of logical consequence is represented by a relation of logical 

derivability in the calculus, and iii) all logical terms have the intended semantical meanings 

in all the permissible interpretations of the calculus. 

 To provide a natural semantics for a logical theory that is already defined by a formal 

calculus means to uniquely read off the semantical meanings of the logical terms from the 

deduction rules or axioms that govern their use in the calculus.  

 (Carnap 1943) aimed to provide a full formalization of classical logic while (Garson 

2013) aimed to determine the natural semantics for the axiomatic, natural deduction, and 

multiple-conclusions calculi of classical logic. Both of them formally converge in the results 

that i) the multiple conclusions calculi are full formalizations of propositional logic, as 

defined by the normal truth-tables, and that this semantics is their natural semantics, and ii) 

that the transfinite multiple conclusions calculi of first-order logic are full formalizations for 
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the substitutional semantics of the first order quantifiers and that it is their natural semantics. 

Still, Garson shows that the natural semantics for the standard single conclusion natural 

deduction formalizations of classical logic is the intuitionistic one, in the case of 

propositional logic, and the sentential one (as he defines it), in the case of first order 

quantificational logic. 

 Model-theoretic logical inferentialism maintains that the meanings of the logical 

terms are determined by the rules of inference that govern their use and that these meanings 

can be characterized in model-theoretic terms (reference, truth, validity etc).2 In the case of 

the first-order quantifiers, the root of the categoricity problem was initially identified by 

(Carnap 1937, 1943) in the finite nature of the standard calculi and one direction in which 

this problem can be solved is to construct a full formalization by strengthening the deductive 

systems, for instance by adding infinite rules (such as the ω-rule). Another main direction for 

solving this problem is to provide a natural semantics for the standard rules of inference, i.e., 

a semantics for which these rules are categorical. My aim in this paper is to analyze some 

recent approaches for solving the categoricity problem and to argue that a model-theoretic 

logical inferentialist should accept the infinite rules of inference for the first order quantifiers. 

Briefly, my argument is that since logical inferentialism maintains that our use of the logical 

expressions in inferences is what determines their meanings, our use of the expressions “all” 

and “there is” in ordinary mathematical reasoning leads us beyond the intuitive and finite 

reasoning, and human beings do sometimes employ infinite rules in their reasoning, then a 

logical inferentialist should accept the infinite rules for the quantifiers. 

The paper is structured as follows: I shall introduce in the second section (Carnap 1937, 

1943)’s approach for providing a full formalization of classical logic and in the third section I 

shall present (Garson 2001, 2013)’s approach for finding out the natural semantics for 

classical propositional and first-order logical calculi. In the fourth section I shall critically 

discuss some other recent approaches for obtaining categoricity ((McGee 2000, 2006, 2015), 

(Bonnay and Westerståhl 2016), (Warren 2020), and (Murzi and Topey 2021)), and in the 

fifth section I shall explore Carnap’s view on the legitimacy of using infinite rules of 

inference in a logical calculus, arguing at the same time that a logical inferentialist should 

accept the infinite rules of inference for the first order quantifiers in his logical framework.  

 

                                                             
2 Proof-theoretic logical inferentialism accepts the idea that the meanings of the logical terms are 

given by their proof theoretic roles, but maintains that these meanings should be characterized only by 

using proof-theoretic concepts. 
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II. Carnap’s Full Formalization of Classical Logic 

In Logical Syntax of Language, Rudolf Carnap suggested a new standpoint, called by 

him the principle of tolerance, which has a constitutive inferentialist flavour:  

Let any postulates and any rules of inference be chosen arbitrarily; then this choice, 

whatever it may be, will determine what meaning is to be assigned to the fundamental 

logical symbols. (Carnap 1937: xv) 

Later on, once he was acquainted with the developments in semantics, Carnap became 

interested in the relation between logical syntax and semantics and, at this point, the principle 

of tolerance encountered a first restriction:  

While in constructing a calculus we may choose the rules arbitrarily, in constructing a 

calculus K in accordance with a given semantical system S we are not entirely free. In 

some essential respects the features of S determine those of K, although, on the other 

hand, there is still a freedom of choice left with respect to some features. Thus logic -

if taken as a system of formal deduction, in other words, a calculus –is in one way 

conventional, in another not. (Carnap 1942: 218-19)  

For describing the process of constructing a calculus for a system of logic which is previously 

semantically defined, (Carnap 1943: viii, 95-96) introduced the concept of full formalization. 

As we mentioned above, to fully formalize a logical theory by a formal calculus means to 

show that every logical truth is a theorem in the calculus, every relation of logical 

consequence is represented by a relation of logical derivability in the calculus, and all logical 

terms have the intended semantical meanings in all the permissible interpretations of the 

calculus. 

 (Carnap 1943) wanted to see whether the standard formalizations of logic are indeed 

full formalizations. His discoveries were negative, since he found out that the standard (i.e., 

single conclusion and finite) formalizations of propositional and first-order logic allow for 

what he called non-normal interpretations, i.e., interpretations or valuations for which the 

logical calculi preserve their soundness, but in which most of the logical signs have different 

meanings than the standard ones, as provided by their standard semantics (the normal truth 

tables and the substitutional semantics).3  

For the propositional calculus, Carnap discovered two kinds on non-normal 

interpretations: one in which all the sentences are true (and thus both a sentence and its 

negation are true) and one in which a sentence and its negation are both false (and thus their 

disjunction is true). These non-normal interpretations arise because the semantic principles of 

                                                             
3 (Carnap 1943) reads off the meanings of the logical terms from the formal calculi by using, what 

(Garson 2013: 13) calls, a deductive model, i.e., a set of valuations V such that every provable 

sequent in the calculi is satisfied by every valuation in V (see section III below).  
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excluded middle and of non-contradiction are not syntactically represented by the standard 

single-conclusion propositional calculi. More precisely, the semantical concepts of L-

exclusive (i.e., a sentence and its negation cannot both be true) and L-disjunct (i.e., a sentence 

and its negation cannot both be false) are not formalized by these propositional calculi.  

To eliminate these non-normal interpretations, Carnap introduced new syntactical 

concepts based on the notion of junctive. A junctive is a potentially infinite sentential class 

that can be constructed either conjunctively (as it is usually done when we consider the class 

of premises of an argument) or disjunctively (when we consider the class of conclusions of an 

argument). For obtaining a fully formalized propositional logic, Carnap introduced two new 

rules of deduction: 

1)  Ai v Aj ⊢ { Ai, Aj}
v 

2)   V& ⊢ Λv  

The first rule fixes the fourth line of the normal truth table for disjunction by requiring that at 

least one disjunct is true when the disjunction is true, and thus eliminates the second kind of 

non-normal interpretations.4 The second rule is a rule of refutation that forbids having all the 

sentences true in a logical system. ˹V&˺ is the universal conjunctive, which is semantically 

defined as being true when all sentences are true, and ˹∧v˺ is the null disjunctive, which is 

semantically by definition false.5 Thus, if we consider an interpretation in which all sentences 

are true, then rule 2) becomes unsound, since this interpretation will make the premise of the 

rule true and the conclusion is by definition always false. Consequently, this interpretation 

will not count as a permissible one. 

The possibility of non-normal interpretations in predicate logic arises because, in the 

standard formalizations of first-order logic, a universally quantified sentence is not 

deductively equivalent (C-equivalent, in Carnap’s terms) with the class formed by the 

conjunction of all the instances of the operand and an existentially quantified sentence is not 

C-equivalent with the disjunctive class of all the instances of the operand. The deductive 

implication from the universal sentence to the whole conjunction of its instances is 

                                                             
4 For a recent criticism of using multiple conclusions in a proof-theoretic framework see (Steinberger 

2011) and for a recent defence see (Dicher 2020).   
5 When sentential classes are considered, (Carnap 1942: 38-39, 1943: 107-108) introduced the 

following special cases: the universal class that comprises all sentences could be constructed either 

conjunctively (˹V&˺ is the universal conjunctive, which is true if all sentences are true) or 
disjunctively (˹Vv˺ is the universal disjunctive, which is true if at least one sentence is true), and the 

null class that comprises no sentence could also be taken either conjunctively (˹Λ&˺ is the null 

conjunctive, which by definition is true, since it contains no false statement) or disjunctively (˹Λv˺ is 

the null disjunctive, which by definition is false, since it contains no true statement).   
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guaranteed by the universal instantiation rule and conjunction introduction, but the other 

standard rules or axioms do not guarantee the converse. It should be noted, however, that this 

is not only a limitation of the substitutional semantics6, since Carnap worked with a 

denumerable domain in which every object is named by an individual constant from the 

language, but rather is a consequence of the finite nature of the calculus, since we have no 

rule in the standard formalizations which licences the deductive transition from an infinite 

number of premises to a conclusion (when the conclusion does not already follow from a 

finite subset of the initial set of premises). 

Carnap introduces the interpretations for quantificational logic in terms of 

translations. He provides two translations for the language of predicate logic such that all 

atomic sentences, all molecular sentences, and all sentential junctions are correlated with 

themselves by the translations, but one translation correlates ˹(∀x)Fx˺ with a proper universal 

quantifier, i.e., the universal quantifier with its standard meaning (˹every object is F˺), while 

the other correlates it with an improper one that is richer in content, i.e., with ˹every object is 

F, and b is G˺. Of course, the two translations are not equipollent, i.e., they do not have the 

same content, but they are still consistent with the relation of logical derivability. This means 

that the formal deductive system remains sound under these interpretations.    

Let us consider a model with a denumerable domain of objects whose elements are all 

named by individual constants from the language. We can interpret, i.e., assign truth-

conditions to, the sentence ˹(∀x)Fx˺ in the standard way and the calculus will be sound, but 

we can also interpret it as having the same truth-conditions as the sentence ˹every object is F, 

and b is G˺ has and the calculus will also remain sound. In the latter case, whatever is 

derivable from ˹(∀x)Fx˺ when it is standardly interpreted, will also be derivable from it when 

it is interpreted as ˹every object is F, and b is G˺, and thus the universal elimination rule 

remains valid. In addition, if ˹Fa˺ follows from Г for an arbitrary a, and we take ˹Gb˺ to be 

true, then the universal introduction rule will also preserve its validity. In order to preserve 

the duality of the quantifiers, i.e., (∀x)Fx⟛~(∃x)~Fx, in this non-normal interpretation the 

existential quantifier will be interpreted as ˹at least one individual is F, or b is not G˺.7  

                                                             
6 In addition, non-normal interpretations are possible even if we consider the objectual interpretation 

of the quantifiers (see Garson’s Theorem 14.3 below).  
7 These interpretations are discussed from a broader perspective in (Carnap 1937: 231-32). See also 

(Carnap 1943: 140, 148-150). 
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  In order to block the possibility of these non-normal interpretations, Carnap 

introduced two new rules of inference8: 

 1)   {Ai (
i
k)}

& ⊢ Ai 

 2)    (∃ik)Ai   ⊢  {Ai (
i
k)}

v, where ik is the only free variable in Ai.  

The first rule stipulates that a sentence Ai containing a free variable ik is directly derivable 

from the infinite conjunctive set of all its instances. In the next step, the rules of 

(Carnap1943)’s formalism (T28-4b) license the derivation of the sentence ˹(∀ik)Ai˺ from Ai, 

where ik is the only free variable in Ai (T30-2 in (Carnap 1943: 146)). In this way, by 

transitivity, we can derive a universal sentence from the potentially infinite class of all its 

instances and, thus, the deductive equivalence between a universal sentence and the class of 

all its instances is established. Due to the fact that a universal sentence is derived from an 

infinite number of premises, we have an implicit use of the ω-rule, i.e., the rule that licences 

the transition from Fa, Fb, Fc … (for all individual constants in a denumerable language) to 

(∀x)Fx. The second rule stipulates that we can pass from an existentially quantified sentence 

to the disjunctive class of all its instances. By adding at least one of these two rules to the 

standard formalizations, the deductive equivalence between the universal (and existential) 

sentences and all their conjunctive (disjunctive, respectively) instances is obtained, and thus 

the possibility of non-normal interpretations for the quantifiers disappears. Being 

syntactically equivalent, the quantified sentences and their classes of instances will also be 

semantically equivalent. 

 Certainly, since it allows the transition from an infinite set of sentences to a new 

sentence, this full formalization of logic employs non-effective syntactical rules. Both 

(Church 1944: 498) and (Fitch 1944: 454) raised scepticism regarding the use of transfinite 

rules in the construction of a logical calculus and Church argued that these rules should be 

excluded from elementary syntax, i.e. from that part of syntax that must be known at least 

implicitly by a speaker in order to use the language correctly, since “it is clearly not possible 

for the users of a language to systematically follow a non-effective rule in practice”. He 

agreed however that these rules are important in theoretical syntax, i.e., the mathematical 

theory of the object language.9 Anticipating Church’s criticism, (Carnap 1943: 113-114) 

                                                             
8 Since the existential quantifier can be defined as ˹~∀~˺, one rule of inference is sufficient. This 
remark applies to all the approaches for obtaining categoricity discussed below. 
9 Likewise, at that time (Tarski 1933/1983: 295) believed that the use of infinite rules like the ω-rule 

“cannot easily be brought into harmony with the current view of the deductive method, and finally 

that the possibility of its practical application in the construction of deductive systems seems to be 
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maintained, however, that there is no fundamental change in method, since the metalanguage 

is necessary even in the standard construction of calculi when we state a rule of inference (a 

rule being basically a meta-sentence which states that a sentence of a certain form is 

derivable from sentences of other given forms). We shall return to the possibility of following 

infinite rules of inference in the last section of this paper, when Carnap’s view on the 

legitimacy of using infinite rules of inference will be analyzed.     

III. Garson’s Natural Semantics 

Natural semantics is defined by (Garson 2001:114-15, 2013: 49-50) as a method of 

providing possible semantic values and reading off the semantic properties of the logical 

terms from the deductive rules that govern their uses –his investigations being in the spirit of 

a model-theoretic inferentialism. More precisely, the natural semantics is that semantics for 

which the deductive rules are categorical, i.e., the rules are sound and complete for that 

semantics and the logical terms are provided with unique meanings.  

The usual axiomatic and natural deduction calculi for propositional and first-order 

logic are sound and complete with respect to the normal truth tables and, respectively, to the 

substitutional and objectual interpretations, but most of the propositional operators and both 

the first order quantifiers are provided by these semantics also with non-normal meanings. As 

we mentioned above, (Carnap 1943) saw this problem as an asymmetry between syntax and 

semantics and since he took the standard semantics as unproblematic, his interest was to 

strengthen the calculi by introducing new syntactical concepts. Garson modifies the standard 

semantics of the classical logical terms in order to make the classical natural deduction 

calculi categorical. More precisely, his interest is in finding out what the natural deduction 

rules actually say about the meanings of the logical terms whose use is govern by them. 

To read off the meanings of the logical terms from the logical calculi, (Garson 2013) 

distinguishes between three kinds of models, i.e., sets of valuations, in which the expressive 

power of a set of rules can be formulated, namely, deductive, local, and global models: 

Deductive Model: V is a deductive model of a set of rules S iff all the provable 

sequents of S are all V-valid.  

Local Model: V is a local model of a rule R iff R preserves V-satisfaction; where a 

rule R preserves V-satisfaction iff for each member v of V, v satisfies R. A valuation 

v satisfies R iff whenever v satisfies the inputs of R, it also satisfies the output of R. 

                                                                                                                                                                                             
problematic in the highest degree”. Later on, however, Tarski became more flexible on this matter and 

even investigated calculi with infinite long expressions; see (Scott & Tarski 1958) and (Tarski 1958).  
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Global Model: V is a global model of a set of rules S iff each rule of S preserves V-

validity; where a rule R preserves V-validity iff whenever all inputs of R are V-valid, 

then so is R’s output. 

The trouble with the deductive models is that they are insensitive to the way in which 

a logical calculus is formulated. For instance, if negation has a normal meaning, then all the 

other propositional operators also have only normal meanings.10 But in this way we know 

almost nothing about what the rules for each connective say about the meaning of that 

connective. The local models are more adequate for expressing what a set of rules actually 

say about the operators whose use is governed by them because they can be used relative to a 

certain set of rules. Garson argues that the classical natural deduction rules for the 

propositional operators indeed uniquely determine the standard meanings of these terms if the 

local models are used, but he identifies two main problems with these models11, and this is 

why his option is for using the global models.  

By adopting the global models, Garson is committed to the assumption that the rules 

of inference are validity preserving relative to a given semantics, i.e., if the premises are 

semantically valid (V-valid), then the conclusions obtained from them should also be 

semantically valid.12  

The general idea of Garson’s approach is that every system of rules S expresses a 

condition [S] on the model V. This condition [S] determines the canonical model for S, i.e., 

the set of all valuations that satisfy S, and (Garson 2013: 53) proves that each system of rules 

S is adequate (sound and complete) with respect to its canonical model [S]: 

   [S] Adequacy Theorem. H ⊢S C iff H ⊨[ S] C 

If the condition [S] is equivalent to the intended semantics of the logical terms (  ⃦S  ⃦), then [S] 

is a natural semantics for S, i.e., [S]=   ⃦S  ⃦.  

                                                             
10 If negation is normal, then disjunction is also normal, otherwise the Disjunctive Syllogism Rule 

(AvB, ~ A ˫ B) would become unsound (i.e., if both “A” and “B” are false and negation is normal 
(thus, “~A” is true), then “AvB” cannot be true). However, since negation and disjunction form a 

functionally complete set of connectives, then all the other connectives will be normal. 
11 The problems with the local models that (Garson 2013: 42-43) identifies are that of incompleteness 

in the case of classical propositional logic and that the local models do not generalize properly at the 
quantificational level. We shall discuss these problems in section IV iv) below when the approach of 

obtaining categoricity by convention will be explored.  
12 Certainly, a rule of inference in the sequential format says that if a sequent is provable, then another 
sequent is also provable. Thus, if a proved sequent is taken to be valid, then the requirement of 

validity preserving seems reasonable. Some authors, as (Bonnay and Westerståhl 2016: 724), consider 

it to be too strong since it involves a complex grasp of logical consequence, in particular that it 

requires an understanding of validity preserving mechanisms.   
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In the case of propositional logic, Garson acknowledges the fact that if we use the 

global models, then the standard natural deduction rules for the classical propositional 

operators do not uniquely determine their standard meanings and he shows that the natural 

semantics for the classical propositional natural deductive rules is the intuitionistic one.13   

For the first order quantifiers, (Garson 2013: 237) proves that neither the 

substitutional (  ⃦s∀  ⃦), nor the objectual (  ⃦d∀  ⃦) semantics are uniquely determined by the 

standard natural deduction rules for the quantifiers  and he introduces a new semantics that is 

supposed to count as their natural semantics. His system of natural deduction for the 

universal quantifier, i.e. (S∀), consists of three rules that make no use of individual constants: 

the introduction and elimination rules, and a structural rule that allows the substitution of a 

variable with another. His proof of non-categoricity consists in providing a classical valuation 

v* that satisfies the rules, but violates both these semantics: 

Theorem 14.3: S∀ does not express   ⃦s∀  ⃦, nor does it express   ⃦d∀  ⃦. 

Proof: Consider [S∀] the canonical model for S∀, i.e. the set of all valuations over 

wffs of a language L that satisfy S∀. By the [S] Adequacy Theorem, [S∀] is a model 

of S∀. The set {Ay/x: y is a variable of L} ∪ {~∀xA} is consistent in S∀, and the set e 

of all wffs B such that {Ay/x: y is a variable of L} ∪ {~∀xA} ⊢ B is deductively 

closed and so a member of [S∀]. The set e however, although it contains Ay/x for each 

variable y, it does not contain ∀xA on pain of inconsistency. The representing 

function for set e is the classical valuation v*, which is a member of [S∀], but violates   

⃦s∀  ⃦. Likewise an objectual model <D,V> that violates   ⃦d∀  ⃦ is obtained by taking D 

as the set of all variables of L and v* will deliver the same result. 

The idea that the set ˹{Ay/x: y is a variable of L} ∪ {~∀xA}˺ is consistent in the natural 

deduction system S∀ is analogous with (Carnap 1943: 149)’s observation that there is no 

axiom or rule in the standard formalizations of predicate logic that legitimates the deductive 

equivalence between a universal sentence and the class of all its instances. Garson’s proof 

strategy is to show that   ⃦s∀  ⃦ is not forced by S∀. To show   ⃦s∀  ⃦ from left to right (i.e. if 

v(∀xA) is true, then for all variables y of L, v(Ay/x) is true), we assume that v(∀xA) is true, 

and by the soundness of ∀-elimination rule, each instance will be true. The problem is to 

show   ⃦s∀  ⃦ from right to left. By contraposition, if we assume that v(∀xA) is false, it should 

                                                             
13 More generally, Garson shows that: 1) if we consider the axiomatic formalizations of propositional 

logic, then they fail to uniquely determine the standard meanings of the propositional operators no 

matter what kind of models (deductive, local, global) we use; 2) the multiple conclusions sequent 
formalizations determine the classical meanings no matter what models of the three we use; 3) if we 

consider the natural deduction format and the global models, then the meanings of the operators is the 

intuitionistic one. If we use the local models however, then the meanings of the operators are the 

classical ones.  
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follow that v( Ay/x) is false. However, this is precisely what v* shows, that v*(∀xA) is false, 

although v*(Ay/x) is true for each variable y.14   

(Garson 2014: 217) introduces a new semantics which is supposed to be the natural 

semantics for his natural deduction rules for the universal quantifier. This semantics provides, 

what Garson calls, the sentential interpretation of the quantifiers and has an intensional 

flavor:  

      ⃦∀  ⃦   v(∀xA)=t iff every v’ in V, if v≤x v’, then v’(A) = t, where v≤x v’ holds exactly when 

v’ is an extension of v save for the formulas containing x free. 

      ⃦≤x   ⃦  v≤x v’ iff for every wffs A which does not contain x free, if  v(A)=t,  then v’ (A)=t. 

According to this sentential interpretation, in order to calculate the value of v(∀xA), one has 

to check all the extensions v’ of v from V. (Garson 2014: 238, Theorem 14.4.1) proves that 

the system S∀-, i.e. the introduction and elimination rules for the quantifiers without the 

structural rule for substituting variables, expresses   ⃦∀  ⃦. However, S∀- does not preserve 

preserve   ⃦∀  ⃦-validity, because there are models V which contain a single valuation v such 

that v(Ax)=true, v(Ay)=false, and in this case the only valuation v’ such that v≤x v’ is v itself, 

which will make v(∀xAx) true. Thus, the structural rule of S∀, which allows the substitution 

of a variable with another (Sub), does not preserve   ⃦∀  ⃦-validity. If the condition   ⃦Sub  ⃦ 

defined by the structural rule Sub is added to the condition   ⃦∀  ⃦ previously defined, then the 

system S∀ expresses   ⃦S∀  ⃦, i.e., the conjunction of   ⃦∀  ⃦ and   ⃦Sub  ⃦.   ⃦Sub  ⃦ guarantees the fact 

that if v(Ay/x) is false, then for some extension v’ in V, v≤x v’ and  v’(A) is false. 

Consequently,   ⃦S∀  ⃦ is the natural semantics for S∀.    

As Garson remarks, however, the semantical definition   ⃦∀  ⃦ works as a condition for a 

modal operator, where ≤x plays the role of the accessibility relation. More precisely, ≤ is an 

analogue of the accessibility relation ⊆ from Kripke’s models for intuitionistic logic. This is 

why the sentential interpretation has an intensional character. For this reason, a classical 

logical inferentialist, who is interested in determining the classical meanings of the 

                                                             
14 If we consider the ∀-introduction rule and the set Г, which does not contain x free, the validity of 

this rule tells us that: if Г⊨[S∀] A, then Г ⊨[S∀] (∀xA). Since v*(Ay/x) is true for each variable y, and 

v*(∀xA) is false, for preserving the validity of the rule, v*(Г) has to be false. Hence, the global 

validity of the rules from S∀ is consistent with this valuation v*, but v* provides the universal 

quantifiers with a different meaning than those defined by the standard substitutional ( ⃦s∀  ⃦) or 

objectual ( ⃦d∀  ⃦) semantics. Therefore, these semantics cannot be the natural semantics for S∀. 

Moreover, for the same reason, this valuation v* seems to do the same thing even if we consider the 

local validity of S∀. The valuation v* preserves the sequent satisfaction of the (meta)rule of ∀-

introduction (provided that v*(Г) is false), and thus the rule is locally valid, while the universal 

quantifier is false even though its instances are true.  
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quantifiers, should be reluctant in accepting an intensional semantics for what is taken to be 

the benchmark of extensionality, i.e., first order logic.  

 (Garson 2013: section 14.9)’s results converge with Carnap’s in the idea that if we 

add the ω-rule in the deductive systems of first-order logic, then the substitutional semantics 

is their natural semantics.  Moreover, the ω-rule can be formulated in an axiomatic manner, 

i.e.{Ay/x: y is a variable of L} ⊢ ∀xA, and, thus, its use does not seem to be so problematic, 

since it can be introduced in a sequent proof in a single line. One immediate consequence of 

having the ω-rule is that the relation of logical consequence will no longer be compact and, 

thus, the notions of inference and proof will go beyond what is finite. However, as I will 

argue in section V below, if the meanings of the quantifiers lead us beyond what is intuitive 

and finite, then a logical inferentialist should develop and accept formal logical tools that are 

able to represent all the semantical properties of the quantifiers. Hence, I think that a fully 

fledged logical inferentialist should be disposed to renounce to compactness, as (Carnap 

1943) did, if the symmetry between syntactical and semantical methods is to be attained.    

IV. Some Recent Logico-Philosophical Approaches for obtaining Categoricity 

            In this section I shall discuss four recent approaches for obtaining categoricity, 

namely, i) the open-endedness approach, ii) the topic-neutrality approach, iii) the open-ended 

unrestricted inferentialism, and iv) the categoricity by convention approach. The main idea 

that this section will argue for is that these four approaches succeed in showing that the 

universal quantifier ranges over the entire domain or that it has an unrestricted interpretation, 

but they let untouched the non-normal interpretation that Carnap pointed out to, namely, an 

interpretation in which the universal quantifier ranges over the entire domain, but it is 

provided by this interpretation with an improper meaning.     

i. McGee’s Open-Endedness Approach 

Vann McGee argued in a couple of papers (2000, 2006, 2015) that if we take the 

natural deduction rules for the propositional operators and for the first-order quantifiers to be 

open-ended, i.e. if they are sound not only within a certain language, but they remain sound 

in any mathematically possible extension of that language, then they uniquely determine the 

‘semantic role’ of these logical terms.  

In the case of the propositional logic, McGee assumes that at least one sentence is 

false, and thus excludes by a semantic assumption the first kind of non-normal 

interpretations. In order to exclude the second type of non-normal interpretations, he 

introduces the semantic assumption that for any class o models there is a sentence in a 
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mathematically possible language such that that sentence is true only in these models. 

However, strictly taken, this assumption is false, because if we consider the non-normal class 

of models in which a sentence and its negation are both false, only the theorems of 

propositional logic will be true in these models. But these theorems are also true in the 

normal models. Therefore, since there is no sentence which is true only in the class of non-

normal models, it follows, contrary to McGee’s assumption, that there is a class of models 

such that there is no sentence true only in them.15  

In the case of the first order quantifiers, (McGee 2000:71) introduces a particular form 

of the semantic assumption mentioned above in order to show that the natural deduction rules 

for the quantifiers uniquely determine their meanings:  

 If the constant c does not occur in , then the class of models in which  is true is 

closed under c-variants, and, conversely, that, if a class of models is closed under c-

variants, then there is, in some mathematically permissible language, a sentence not 

containing c that is true in all and only the members of the class.  

The semantics for the quantifiers is formulated in (Mates 1972: 60)’s manner, without 

using the notion of satisfaction. The central notion in this semantics is that of c-variant 

interpretation. Two interpretations I and I’ are c-variants if and only if they are the same or 

differ only in what they assign to c. The truth conditions for the universal quantifier in terms 

of c-variant interpretations are the following:   

˹(x)x˺ is true under the interpretation I if and only if c is true under every c-variant of I.  

McGee’s arguments meant to show that the rules for the universal quantifier do indeed fix its 

standard truth-conditions go as follows:  

Sufficiency:  

(1)   If c does not occur in ˹(x)x˺, and ˹(x)x˺ is true, then it is true in every c-variant of I.  

(2)   {(x)x}⊢  c. 

(3)    Therefore, c is true in every c-variant of I.  

The sufficiency direction in McGee’s argument is unproblematic, since the validity of 

the E-rule guarantees that each instance is true in all the models in which the universal 

sentence is true. Since the rule is taken to be open-ended, then for every new individual 

constant from an extension of the initial language, the instance formed with it will be a 

consequence of the universal sentence and, thus, true in every c-variant of I.  

Necessity: 

(1) Let c be true in every c-variant of I and let  be a sentence, in which c does not occur, that is 

true in all and only the c-variants of I. 

                                                             
15 See (Brîncuș 2021) for a discussion of this second assumption of McGee’s approach.  
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(2) Thus, c is true in all the models of  and, consequently, {} ⊨ c. 

(3) From (2), by the I-rule, {} ⊢ (x)x.  

(4) Thus, since  is true in all the c-variants of I, ˹(x)x˺ is also true in the c-variants of I.  

The necessity direction, however, is problematic. If we accept in step (1) the 

assumption formulated above, and c is true in all c-variants of I, then there is no model in 

which  is true but c is false, i.e. {} ⊨ c. Step (3) of McGee’s argument assumes, 

however, that if {} ⊨ c, then {} ⊢ c. Since the argument talks about domains or classes 

of models, it involves higher-order logic and, therefore, completeness should not be taken for 

granted. Nevertheless, if we assume completeness, the ∀I-rule and transitivity allow us next 

to derive ˹(x)x˺ from  , and the validity of these derivations guarantees that ˹(x)x˺ is 

true in every c-variant of I, i.e., in the class of models in which   is true. However, does the 

conclusion of this argument guarantee that the universal quantifier is provided by the formal 

deductive rules with a unique meaning? 

Let us take a look at the universal introduction rule. If the domain of quantification is 

finite and every object is named by an individual constant, a universal sentence is equivalent 

with the finite conjunction of its instances and we can easily infer a universal sentence from 

the conjunction of all its instances. However, when we have an infinite domain and there are 

objects in that domain which are not named in the language, a universal sentence is not a 

logical consequence of, and it is not logically derivable from, any finite conjunction of its 

instances.  

Someone may think that Gentzen’s formulation of the (∀I)-rule solves this problem. 

The problem of the universal introduction is how to derive a universal sentence ˹(x)x˺ 

from a collection of premises Γ about a domain of individuals D. Gentzen’s rules provide an 

answer to this problem  through an analogy to a problem about sentential reasoning. If  is a 

formula with one free variable, then we may label by D& the -conjunction over D, i.e., the 

conjunction formed such that for each object α in D there is a conjunct a in D&. At this 

point, a universal sentence can be introduced if we succeed to derive all its instances from the 

set of premises Γ and then apply the conjunction introduction rule. Certainly, as we may have 

an infinite domain, the reduction of the universal to conjunction cannot be fruitfully 

conducted. Gentzen’s formulation of the rules, however, solves this problem by suggesting 

that, instead of deriving all the instances, it is enough to derive only one instance, but “in a 

way which would allow for the derivation in the same way of any other conjunct” (Forbes 

1993: 24). The conditions imposed on the instantial individual constant in the formulation of 
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the introduction rule for the universal quantifies guarantee this instance-invariant derivation 

of one conjunct instead of any other. 

We should immediately note, however, that the I-rule does not establish the 

deductive implication from D& to ˹(x)x˺. The rule simply says that if ˹Γ ⊢ D&˺, then ˹Γ 

⊢ (x)x˺. But this does not imply that ˹D& ⊢ (x)x˺. For instance, we may interpret Γ as 

being the universally quantified sentence when its meaning is provided by a non-normal 

interpretation, namely, ˹D& & ψb˺. In this case, ˹(D& & ψb) ⊢ D&˺, and , ˹(D& & ψb) ⊢ 

(x)x˺, but D& does not imply ˹(x)x˺, i.e. ˹D& & ψb˺.  

Hence, since the introduction rule for the universal quantifier fails to establish the 

deductive implication from D& to the universal sentence ˹(x)x˺, the meaning of the 

universal quantifier is not uniquely determined by the rules. McGee’s arguments for the 

necessity and sufficiency of the rules in uniquely determining the meaning of the universal 

quantifier (in terms of truth-conditions) remain insensitive in regard to a normal interpretation 

of ˹(x)x˺ as ˹a1 & a2 & …˺ (where a1, a2, …  are all the individual constants of the 

language that completely denote all the objects in the domain) and a non-normal 

interpretation of  ˹(x)x˺ as ˹a1 & a2 & … & ψb˺. The validity of the ∀I-rule is consistent 

with both types of interpretations. The open-endedness requirement seems to establish that 

the interpretation of the universal quantifier is unrestricted (provided that everything is 

nameable and assuming the truth of his semantic assumption, which is already problematic 

for the propositional case), but it fails to eliminate the non-normal interpretations that Carnap 

pointed out. We shall return to the adequacy of open-endedness for solving Carnap’s Problem 

in sections IV.iii) and IV.iv) below. 16    

ii. Bonnay and Westerståhl’s Semantic Strategy 

As we mentioned din section II above, (Church 1944) raised scepticism regarding the 

possibility of a full formalization of classical logic, criticizing Carnap’s formalizations as 

embedding “a concealed use of semantics”, and argued that no purely syntactic solution 

would work. (Bonnay and Westerståhl 2016) followed Church’s suggestion and adopted a 

‘semantic strategy’ for solving the categoricity problem, by imposing some general semantic 

constrains on the permissible class of interpretations.  

                                                             
16 (McGee 2015:179) suggests a very interesting new approach for obtaining categoricity at the 
quantificational level through an open-ended application of Hilbert’s rule for the ε-operator. (Carnap 

1937: 197) referred to Hilbert’s version of the omega rule as being sufficient for eliminating the non-

normal interpretations, but made no remarks in this respect on the rules for the epsilon operator. For 

some brief remarks on the epsilon operator see section V below.  
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In the case of propositional logic, they show that if we impose the principles of non-

triviality, i.e., at least one sentence is false, and that of compositionality on the class of 

interpretations, then both the first kind and the second kind of non-normal interpretations are 

blocked. The problem with these two assumptions from an inferential perspective is that, as 

(Murzi and Topey 2021: section 2.2) remarked, it is not so clear whether they can be justified 

only by appeal to inferential practice –although compositionality seems to be a very 

reasonable assumption if we think to the way in which we learn and extend our languages. 

In the case of quantificational logic, the semantic principle invoked is that of topic-

neutrality, in the specific form of the invariance under permutations. It is important to note 

that Bonnay and Westerståhl take the quantifiers as instances of generalized quantifiers, i.e. 

properties of sets of objects, and Carnap’s problem becomes whether the rules of deduction 

allow any other generalized quantifiers beside the standard ones (∀,∃). Carnap’s treatment of 

the quantifiers as infinite conjunctions and disjunctions and his use of infinite rules are 

considered by them as a procrustean strategy, because the quantificational case in basically 

reduced to the propositional one. Let us briefly see how their approach goes for the 

quantificational case.   

 When L is a language of FOL interpreted over a domain D, ⊢ is the deducibility 

relation in FOL, and an interpretation I is a pair of the form (M, Q), where M is an L-

structure based on D, which interprets the non-logical terms of L, and Q is the set of subsets 

of D, which interprets the quantifiers, then the truth conditions for the universal quantifier are 

the following:  

(M, Q) ⊨ (∀x)φ σ if and only if Ext(M,Q) φ ∊ Q   

The interpretation (M, Q) is standard if and only if Q = {D}. However, the authors prove that 

if Q is a principal filter closed under the interpretation of terms in M, then the interpretation 

(M,Q) will be consistent with ⊢, but the standard interpretation for ∀ in which Q= {D} is 

only one among many other possible interpretations. For instance, if Q is generated by a 

subset A ⊆ D, then the interpretation will be non-standard. In a non-standard interpretation, 

the objects from the domain are not treated on the same par, but only the objects from the 

subset A generating the principal filter, and named in L, are in the range of the quantifiers. 

Bonnay and Westerståhl’s solution is to impose the model-theoretic requirement of 

invariance under permutations on the principal filter Q. As they prove, a principal filter Q on 

D is invariant under permutation if and only if Q = {D}. With this semantic assumption at 

work, the non-standard interpretations, as they define them, are excluded. 



16 
 

Although this analysis of the non-standard interpretations that are consistent with the 

relation of logical derivability in FOL is very interesting and illuminating, we should 

immediately note that the non-standard interpretations described by them are in fact different 

from the non-normal interpretations of the quantifiers that Carnap referred to –and, thus, their 

solution does not directly solve Carnap’s original problem and, ipso facto, the categoricity 

problem for logical inferentialism. In the non-standard interpretations described by Bonnay 

and Westerståhl, what differs essentially from one interpretation to another is the range of the 

quantifiers, while in the non-normal interpretations described by Carnap the quantifiers range 

over the entire domain (due to the fact that (Carnap 1943: 136) works with a denumerable 

domain and each object from this domain is named by an individual constant in the 

language), but they still have different meanings provided by different interpretations for 

which the formal deductive system remains sound. In Carnap’s non-normal interpretations, 

the universal quantifier has an improper meaning, i.e., although it ranges over the entire 

domain, its content is richer. The interpretation of the universal quantifier as “every object is 

F, and b is G” is an interpretation in which the range of the universal quantifier is the entire 

domain, but its meaning is richer, since it says in addition that the object denoted by b, and 

which is also F, has the property G.    

In addition, I think that a full-fledged logical inferentialist should not be entirely 

satisfied with this solution due to the fact that categoricity is obtained by imposing semantic 

constraints that are not justified only on the basis of the inferential practice. We shall discuss 

in section IV iv. below an inferential justification of the invariance-permutation assumption.    

iii. Warren’s Open-ended Unrestricted Inferentialism 

(Warren 2020) proposed a revitalization of conventionalism about logic and 

mathematics, i.e., of the idea that logical and mathematical properties in any given language 

are fully explained by its linguistic conventions, and argued that if the linguistic conventions 

are taken to be meaning determining rules of inference, then logical conventionalism follows 

from logical inferentialism. (Warren 2020: 63-64) is committed to a particular form of logical 

inferentialism, i.e., unrestricted logical inferentialism, according to which any set of rules of 

inference that can be used for an expression can be meaning constituting for it.  

For solving the categoricity problem in the case of propositional logic, (Warren 2020 

78-84) moves to a natural deduction bilateralist formalization which has two force indicators 

as primitive signs (“+” for acceptance and “-” for rejection) and a structural rule for reductio 

(If Г, α ⊢ β and Г, α ⊢ β*, then Г ⊢ α*, where the ‘*’ reverses the primitive signs ‘+’ and ‘-
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’, i.e., if α= -φ, then α*=+φ). The notion of validity generalizes as follows: an inference is 

valid if and only if every valuation which makes all the plus-signed premises true and all the 

minus-signed premises false also make the conclusion true if it is plus signed, and false if it is 

minus-signed. In this bilateralist system, the elimination rule for negation instructs us to 

reject φ if not-φ is accepted, i.e.  +~φ ⊢ -φ. Thus, a valuation which makes both φ and not-

φ true will make the elimination of negation rule invalid. Likewise, a valuation which 

makes both φ and not-φ false will make the bilateralist introduction rule for negation 

invalid, i.e.,  -φ ⊢ +~φ. (Warren 2020: 81) considers that the use of the force indicators is 

acceptable from an inferential perspective, although he notes that the most important 

advantage of bilateralism is “the ability to cleanly solve Carnap’s problem”.17  

In the case of quantificational logic, (Warren 2020: 85-86) appeals to open-endedness 

for solving (a version) of Carnap’s categoricity problem. He argues that if we take the 

standard natural deduction rules to be open-ended, then the standard semantic values of the 

first order quantifiers are forced by the standard natural deduction rules. In the line of 

(Bonnay and Westerståhl 2016), Warren considers the generalized version of the quantifiers, 

i.e., as properties of properties, and the problem is to show that the open-endedness of the 

natural deduction rules guarantees that the meanings of the quantifiers are the standard ones. 

If we consider a non-empty domain D and take “ext(x)” denote the extension A of “x” in D, 

by standard Warren means that the extension of the universal quantifier is the entire domain 

(A=D iff A∊ ext(∀)) and that the extension of the existential quantifier is a non-empty subset 

of the domain (A is a non-empty subset of D iff A∊ ext(∃)). Let us consider (Warren 2020: 

85-86)’s proof for the universal quantifier: 

Theorem: A=D iff A∊ ext(∀) 

(Necessity): Let us assume that A∊ ext(∀). We add a monadic predicate ‘F’ to our initial language L 
such that ext(F)=A and let us assume for reductio that A≠ D. Since A≠ D, it follows that there is an 

object o in D∖A. Open-endedness allows us to add an individual constant c such that ext(c)=o. Now 

we are in the expanded language where “(∀x)Fx” is true, but “Fc” is false.  This contradicts the open-

ended validity of the ∀-elimination rule. Thus, our assumption that A≠ D is false. 

 (Sufficiency):  Let us assume that A=D and for reductio that A∉ ext(∀). We add the predicate ‘F’ to 

our language such that ext(F)=A. Let c be an individual constant such that ext(c)=o, for some member 

o of D. We are now in an expanded language where “Fc” is true for some arbitrary ‘c’, but “(∀x)Fx” 

is false. This contradicts the validity of open-ended validity of the ∀-introduction rule. Hence, A∊ 

ext(∀).  

                                                             
17 The original bilateralist proposal to solve Carnap’s problem for propositional logic is due to 

(Smiley 1996). For a discussion of the adequacy of the bilateralist framework for solving the 

categoricity problem see for instance (Murzi and Hjortland 2009) and (Incurvati and Smith 2010).  
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Indeed, as we discussed Vann McGee’s proofs in section IV.i., the open-endedness of 

the ∀-elimination rule assures us that from a universally quantified sentence we can derive 

each of its instances and, thus, under the assumption that each individual constant denotes an 

object from the domain, the extension of the universal quantifier is the entire domain. The 

open-endedness of the ∀-introduction rule in Warren’s proof, however, seems to do 

essentially the same thing. Conceptually, it would be strange to see how the extension of the 

quantifier in the sentence “(∀x)Fx”  would be different from the entire domain since, by 

assumption, the extension of the predicate “F” is D itself. Thus, if we accept that the 

meanings of the quantifiers are exhausted by specifying their extensions, the open-endedness 

requirement seems to do its job. However, Carnap’s original categoricity problem requires 

more than specifying the extension of the quantifiers. It requires from rules to force a unique 

interpretation of the quantifiers such that alternative interpretations in which ˹(∀x)Fx˺ is 

interpreted as “all objects are F and b is G” and ˹(∃x)Fx˺ is interpreted as “at least one object 

is F or b is not G” are excluded.  

Although Warren does not explicitly acknowledge Carnap’s original categoricity 

problem for the quantifiers18, it seems to me that he might be sympathetic to Carnap’s 

solution for solving it. (Warren 2020: 263-79, 2021) argued in favour of the possibility of 

inferring according to the omega rule when its premises are, in principle, recursively 

enumerable.  

Consider for instance Goldbach conjecture (GB) which asserts that every even 

number greater than 2 is the sum of two prime numbers. Warren invites us to ideally consider 

a supertask computer (SC) that is able to perform a countably infinite number of 

computations in a finite time. The SC is set to verify GB and it checks 0 in half a minute, one 

in half of half a minute, and n in 1/2n+1 minutes and, thus, the computation will finish in one 

minute. The SC either sends a halt signal, if a counterexample is found before one minute, or 

no counterexample is found and, thus, we receive no signal. If the SC fails to halt, then we 

accept as observers GB(0), GB(1), GB(2) … by using as evidence the computations. Then we 

conclude (∀x)GBx. Therefore, on the basis of the computation, we accept each of the 

infinitely many premises and infer from them, by using the omega rule, the truth of GB. 

                                                             
18 For instance, (Warren 2020:85) wonders whether “a version of Carnap’s problem” appears for the 

standard quantifier rules. Still, as we discussed above, (Carnap 1943) had a unitary treatment of the 

non-normal interpretations both for the propositional connectives and for the first-order quantifiers.  
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Thus, this would count as a situation in which we, human beings, perform an infinite 

reasoning, by using infinite inferences.19  

I think that Carnap’s full formalization of quantificational logic by using infinite rules 

could be easily accepted by Warren if, in addition, we require for the premise-instances of the 

quantified sentences to be, in principle, recursively enumerable by the users of the 

quantificational language. If we consider Carnap’s problem as a problem for logical 

inferentialism, which is very sensible to our ordinary inferential practices, Warren’s condition 

of recursive enumerability seems reasonable. However, if we see Carnap’s problem as a 

mathematical problem, which regards the connection between abstract syntax and semantics, 

then the condition of the enumerability of the instances is sufficient, because the problem gets 

solved once the deductive equivalence between a quantified sentence and its conjunctive or 

disjunctive class of instances is obtained. In a denumerable domain in which every object is 

named, the transfinite rules of inference will establish this equivalence. 

iv. Categoricity by Convention  

(Murzi and Topey 2021) adopted a moderate model-theoretic inferentialist stance, 

according to which our open-ended syntactical dispositions for inferring with basic rules of 

inference uniquely determine the meanings of the logical terms. Their account follows with 

some emendations (Garson 2013)’s path of reading off the meanings of the logical terms 

from the rules of inference with the help of the local models and combines McGee’s open-

endedness constraint with  Bonnay and Westerståhl’s permutation invariance assumption.  

In the case of propositional logic, the main problem with the local models that 

(Garson 2013: 42-43) indicated was that of incompleteness. The incompleteness problem 

refers to the fact that the rules for the material implication fix the classical meaning of this 

operator, while its introduction and elimination rules cannot prove by themselves all the 

logical truths formulated only in terms of it (e.g. Peirce’s Law needs the rules for negation). 

This problem is solved in (Murzi 2020) by developing a calculus in which classical reductio 

ad absurdum is taken as a structural metarule. His system has the proof-theoretic feature of 

                                                             
19 (Warren 2021) approaches the possibility of infinite reasoning from a naturalist view on human 

cognition and on this view inferences are seen as “causal processes realized by our brains”, although 

they are not exhausted by these processes. The possibility of accepting infinite many premises 
becomes plausible, he argues, once we accept a dispositionalist account on acceptance and believing. 

We can have some behavioural dispositions for accepting a sentence without considering it in 

advance. Hence, as long as the premises of the omega rule are recursively enumerable, we can have 

the behavioural dispositions to accept them without considering each of them individually in advance.  
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embedding negation in nice clothes at the level of the structural rules, case in which Peirce’s 

law can be proven only by using the operational rules for the material implication. 

In the case of quantificational logic, Garson’s problem with the local models was that 

if the meanings of the quantifiers are to be given by using local models, then the introduction 

rules for the universal quantifier will be unsound, since a valuation may satisfy the premise 

˹Г⊢Ft˺  without satisfying ipso facto the conclusion ˹Г⊢(∀x)Fx˺, even if t does not occur in Г 

or (∀x)Fx. (Murzi and Topey 2021) argue that the local models could be used, with some 

emendations of the formalism, even for the quantifiers. They introduce a form of the ∀I-rule 

with open sentences, in which φ has at most the variable x free in the premise of the metarule:  

Г⊢φ 

Г⊢∀xφ , where x does not appear free in Г.       

By using this new formulation of the rule and a definition of satisfaction relative to variable 

assignments,20 Garson’s counterexample to the local validity of ∀I-rule vanishes, since if 

every assignment satisfies ˹Г⊢φ˺, then it also satisfies ˹Г⊢∀xφ˺.21   

 What the authors have to establish next is that the natural deduction rules, in this 

specific form for the ∀I-rule, are categorical when validity is defined by using the local 

models. Roughly, what they need to establish is that the universal quantifier ranges over the 

entire domain. This idea is labelled by the authors the first order thesis:  

First Order Thesis. The rules of FOL are locally valid with respect to a class of 

valuations V only if all v ∊ V obey the standard interpretation of ∀ -i.e. are such that, 

for any φ with at most x free, ∀xφ is true in v iff every object in the domain is in the 

extension of φ in v (or, more briefly, iff Extv (φ) = M, where M is v՚s domain). 

 (Murzi and Topey 2021) justify this thesis by proving a weakened version of it and 

then enforcing this weakened thesis by using (Bonnay and Westerståhl 2016)’s lemma which 

shows that if the universal quantifier is permutation invariant, then it ranges over the entire 

domain. The weakened thesis is the following:  

                                                             
20 A valuation v satisfiess ˹Г⊢ φ˺, where s is a variable assignment, iff, in v, either s fails to make true 

some δ∊Г or s makes true φ. A sequent ˹Г⊢ φ˺ will be thus satisfied by a valuation v iff v satisfiess 

˹Г⊢φ˺ for every variable assignment s.  
21 Garson suggests that a valuation may satisfy ˹Г⊢Ft˺ without satisfying ˹Г⊢(∀x)Fx˺, but the 

inference from ˹Г⊢Ft˺  to ˹Г⊢(∀x)Fx˺ is not an instance of the ∀I-rule, as Murzi and Topey formulate 
it, since there is no free variable in the premise. An instance of it would be rather the inference from 

˹Г⊢ Ft˺ to ˹Г⊢(∀x)Ft˺, in which the use of ∀ is vacuous. Murzi and Topey do not consider, however, 

Garson’s valuation v* discussed in section III which, as I suggested in footnote 14 above, may also be 

used against the determinacy of the ∀-rules when local validity is used.  
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Weakened First Order Thesis. The rules of FOL are locally valid with respect to a 

class of valuations V only if all v ∊ V are such that, for any φ, ∀xφ is true in v iff Mx 

⊆ Extv(φ), where Mx is the range of x in v.  

This thesis establishes that the range of the universal quantifier is a subset of the domain of 

objects. In other words, by assuming that the introduction and elimination rules for the 

universal quantifier are satisfaction preserving, we achieve the result that the range of the 

variable x is included in the set defined by the formula φ, which has at most x free.22 The step 

from this result to the first order thesis is justified by the invariance under permutation 

lemma, which guarantees that, under the assumption that ∀ is permutation invariant, if its 

range is a subset of the domain, then that range is the domain itself.  The assumption of 

permutation invariance is justified inferentially by (Murzi and Topey 2021) by assuming that 

we inherit some syntactic dispositions to follow a logical rule in an open-ended way23 and 

then using McGee’s reasoning for the sufficiency of the rules in determining the meaning of 

∀ (see section IV.i. above). In other words, if ∀E-rule is open-ended, then its interpretation is 

permutation invariant in any model of FOL, i.e., it ranges over the entire domain.   

 This approach is very nicely conducted, and combines in an elegant manner the ideas 

of local models, open-endedness and invariance under permutations, but as we have seen in 

section IVi above, what McGee’s approach succeeds in establishing is that the open-ended 

deductive rules for the universal quantifier provide it with an unrestricted interpretation 

(under the assumption that every-thing is nameable). Nevertheless, this result is perfectly 

compatible with the existence of the non-normal interpretations of the quantifiers that Carnap 

pointed out. We can have a non-normal interpretation in which the universal quantifier ranges 

over the entire domain, but still provides it with a non-normal meaning. The criticism raised 

against McGee’s approach remains valid against Bonnay and Westerståhl’s, Warren’s, as 

well as against the approach discussed in this section.  

                                                             
22 It should be noted that (Murzi and Topey 2021: 3407) prove this weakened thesis by using a 

restricted formulation of the ∀-introduction rule: if ⊢φ, then ⊢∀xφ. If we consider the rule in its 

general form ‘if Г⊢φ, then Г⊢∀xφ’, then Garson’s valuation v* could be used to show that the ∀-

introduction rule is locally valid, but ∀xφ is not satisfied, although φ is satisfied (see also footnote 14 

above). If Г is taken to be empty, then if φ is a theorem, its logical closure will also be a theorem. 

However, it seems to me that the problem which remains in this case is to describe the relation 
between φ and its instances, since the logical inferentialist needs individual constants in his language. 

If φ follows from the set of all its potentially infinite set of sentences, without following from a finite 

subset of it, then a transfinite rule of inference, as that of Carnap’s above, seems to be needed.  
23 (Murzi and Topey 2021) embrace a naturalist standpoint and assume that we have some general 

dispositions to infer in accordance to logical rules. These dispositions are supposed to have a syntactic 

nature and they allow us to infer in an open-ended way, i.e. we can accept instances of the logical 

rules formed with expressions that are in some extensions of the original language that we use.   
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In addition, inferentialists like (Murzi and Topey 2021: section 2.4.4) agree that we 

have the dispositions “to accept all of the infinitely many instances of our logical rules”. But 

if we have dispositions for accepting the infinitely many instances of a logical rule, this 

already opens the way for embracing the infinitely many premises involved in a logical rule, 

as the ω-rule. Certainly, this is big step forward, but the empirical research on dispositions 

may validate it in the future.24 In addition, once we accept the omega rule, we obtain the 

deductive equivalence between a universal sentence and the class of all its instances, and the 

possibility of assigning to the universal quantifier an improper meaning is thus blocked. My 

aim in the next section is to explore Carnap’s view on the use of infinite rules and to argue 

for the idea that a logical inferentialist should in principle accept the infinitary rules of 

inference for the first order quantifiers. 

V. The ω-rule Again 

Kurt Gödel showed that most mathematical theories that are formal, in the sense that 

all reasoning in them can be completely replaced by finite mechanical devices, are 

incomplete, i.e., there is a sentence in the language of such a theory that is neither 

demonstrable nor refutable in its formal system. This understanding of formality is an 

important assumption for the applicability of his theorems, and it requires that all the logical 

rules of deduction used in the formal system should be finite (or effective).25  

To overcome the limitations revealed by Gödel’s results, (Carnap 1937) envisaged a 

new method of deduction that makes essential use of transfinite rules, i.e., non-effective ones 

(as the ω-rule), and used it to obtain a complete formal criterion of validity for classical 

mathematics, i.e., to state necessary and sufficient conditions for what counts for a sentence 

to be true in classical mathematics. The peculiarity of this new method of deduction, i.e., the 

method of consequence (c-method), is that it operates not with sentences, but with sentential 

classes, which may be infinite. Both the languages I and II of Logical Syntax of Language 

contain transfinite rules for these sentential classes (§14, §34b):  

In order to attain completeness for our criterion we are thus forced to renounce 

definiteness, not only for the criterion itself but also for the individual steps of the 

                                                             
24 The idea is that, as long as we do not have a generally accepted theory of dispositions, we cannot 
convincingly argue for or against the idea that human beings have dispositions for following infinitary 

rules. If we have the dispositions to accept a class of sentences without considering individually each 

of them in advance, as (Warren 2021) argue, then it is plausible to accept that we can follow infinitary 

rules. Beside this, since we can prove that Peano Arithmetic closed under the ω-rule is deductively 

complete, it is clear that in a certain sense we can fruitfully use infinitary rules (see also footnote 30).    
25 Some logicians, as (Curry 1968: 261), even took recursive effectiveness as a necessary condition 

for logical formalization. 
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deduction. A method of deduction which depends upon indefinite individual steps, 

and in which the number of the premises need not be finite, we call a method of 

consequence or a c-method. In the case of a method of this kind, we operate, not with 

sentences but with sentential classes, which may also be infinite. (Carnap 1937: 98-

99) 

Concerning the transfinite rules, (Carnap 1937:173) believed that “there is nothing to 

prevent the practical application of such a rule”. Later on, after his semantic turn, (Carnap 

1942: 247) amended this method of consequence, by taking the transfinite rules as being part 

of It and IIt, two related systems obtained from the finite rules of Language I and Language II 

by adding the transfinite ones. It and IIt define ‘provable in It,’ and ‘provable in IIt’. 

Moreover, ‘analytic in I’ becomes ‘provable in It,’ and ‘analytic in II,’ becomes ‘provable in 

IIt’. Thus, the distinction between d-terms and c-terms and between derivation and 

consequence series is abandoned, as (Carnap 1942: 248) explicitly recognizes. The main 

reason for abandoning this distinction is that he acknowledged that the same procedure of 

constructing a sequence of sentences can be applied with both finite and transfinite rules. 

 From a more general philosophical perspective, the use of indefinite rules seems to be 

justified on pragmatic grounds. As (Carnap 1943: 143) emphasized, “indefinite calculi seem 

to be admissible and convenient and even necessary for certain purposes”. By this he referred 

to the fact that the transfinite rules of inference are necessary for the purpose of constructing 

an L-exhaustive calculus26 for arithmetic and a full formalization of logic. In addition to this 

general motivation, (Carnap 1942: 160-161) believes that the transfinite proofs and 

derivations are legitimate for the reason mentioned above, namely, that the same procedure of 

constructing a sequence of sentences can be applied also to transfinite proofs: 

“Till recently, all rules applied in systems of modern logic have been finite, Ri usually 

contains one or two sentences. In recent years, however, it has been found that 

transfinite rules can be applied, and that they are useful and even necessary for certain 

purposes. […] It will, however, be shown that the application of transfinite rules can 

also be made in the form of transfinite proofs or derivations. The definitions DA1 to 4 

given above are then sufficient to cover the use of transfinite rules also, by a (finite or 

transfinite) sequence we understand a one-many correlation of sentences with the 

ordinal numbers of a (finite or transfinite) initial segment of the series of ordinal 

numbers. Hence a proof or derivation in which no repetition of sentences occurs may be 

regarded as a well-ordered series of sentences. ” (Carnap 1942: 160-161) 

                                                             
26 If S is a semantical system and there is a sentence S2 and a infinitely class of sentences C1 in S such 

that S2 is a logical consequence of C1 without being a logical consequence of any finite subclass of C1, 

then an L-exhaustive   calculus C for S can be constructed only if transfinite rules are admitted. See 

(Carnap 1939: 23).  
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The last part of this passage simply points out to the difference between series and sequences. 

(Carnap 1942:18-19) describes two different ways of ordering objects in a linear order, 

namely, by series or by sequences. A series of objects is a transitive, irreflexive and 

connected relation, while a sequence is simply an enumeration of objects. We can have 

repetitions in sequences, but not in a series, being irreflexive. Thus, an infinite proof in which 

there is no repetition of sentences can be represented, in the sense of a one to one correlation, 

by a series of natural numbers. If there are repetitions, then we will have a sequence, and 

there will be a correlation one-many, i.e., the same sentence will be associated with different 

numbers.  Consequently, at least from a theoretical perspective, there seems to be no problem 

in representing an infinite proof by an infinite series of sentences. This representation would 

still count as a purely formal one.27 

 The argument that I want to briefly put forward here for the idea that the logical 

inferentialists should accept the infinite rules for the first order quantifiers can be formulated 

as follows: 

As.1 Logical inferentialism maintains that our use of the logical expressions in inferences is 

what determines their meanings. 

As.2 Our use of the expressions “all” and “there is” in mathematical inferences leads us 

beyond the intuitive and finite reasoning. 

 P1.  If human beings do sometimes use infinite rules of inference in their reasoning, then a 

logical inferentialist should in principle accept the infinite rules for the quantifiers.    

 P2.  Human beings do sometimes use infinite rules of inference in their reasoning.  

 C.  Therefore, a logical inferentialist should in principle accept the infinite rules for the 

quantifiers. 

The assumptions are not needed for the validity of the argument, but they rather shape 

the background in which the argument is formulated. From the assumptions it follows that the 

logical inferentialist implicitly accepts that the full use of the expressions “all” and “there is” 

goes beyond what is finite, and the premises simply add the information that the infinite rules 

which govern the performance of infinite inferences are the needed tools for expressing this 

use. The first assumption is simply the definition of logical inferentialism, so it cannot be 

disputed in this context. Some remarks on the second assumption, however, are necessary.  

The infinite has always been a challenge for human mind and (Hilbert 1925: 371) 

even remarked that the clarification of the nature of infinity is necessary “for the honor of the 

                                                             
27 As (Tennant 2008: 103) points out, if the finite serial structures are to be likened to geometrical 

points, then an infinite sequence of premises involved in an application of the ω-rule may be likened 

to a geometrical line, being an infinite sequence of such points. Thus, ‘simply being infinitary does 

not count against being purely formal’. 
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human understanding itself”. (Hilbert 1923: 1139) emphasized that the first point where we 

go beyond the concrete, intuitive, and the finite is the application of the concepts `all` and 

`there is`. We can deal very easily with these two concepts if we work with a finite domain of 

objects, case in which the universal and existential quantifications are reducible to finite 

conjunctions and disjunctions, and their duality is justified by using the DeMorgan rules. 

Still, this duality is usually assumed in mathematical reasoning to also hold when we deal 

with an infinite domain of objects.28  

In order to secure the duality of the quantifiers in an infinite domain, Hilbert 

introduced a transfinite axiom that implicitly defines the logical choice function ε, a function 

that assigns a definite object ε(F) to each predicate F. The transfinite axiom F(εF) → F(a)  

says that if a predicate F applies to the object εF, then it applies to all objects a. “ε(F)” stands 

for an arbitrary object for which the proposition Fa certainly holds if it holds of any object at 

all. The definitions of the quantifiers based on this axiom are the following:   

(∀):   F(εF) ↔ (∀x)Fx   (∃):   F(ε~F) ↔ (∃x)Fx. 

(Weyl 1929: 259) criticized this axiom on the ground that in order to construct the 

representative object, εF, for the property F, “we must imagine that we have a divine 

automaton which accomplishes this task”. This automaton should produce for every property 

that we insert in it the representative of that property, i.e., an object such that, if it instantiates 

the property, then any object instantiates it.29 

I think that it should be clear at this point that the full uses of the expressions “all” and 

“there is” lead us beyond the finite reasoning. The transfinite axioms and rules, as epsilon or 

omega, manage to help us in fully operating with the quantifiers, but their use raises 

difficulties. As (Weyl 1929: 259) emphasized:  

If we had a automaton like this at our disposal we would be free from the troubles 

caused by “all” and “any”; but of course the belief in its existence is pure nonsense. 

Mathematics, however, behaves as though it did exist.   

Of course, we do not have such an automaton, as we do not have a real machine that could 

check in a finite time all the premises of the omega rule. But, nevertheless, as Weyl 

remarked, classical mathematicians behave as if this automaton would exist. This suggests 

                                                             
28 (Lewis 1918: 236), for instance, makes the assumption that “any law of the algebra which holds 

whatever finite number of elements be involved holds for any number of elements whatever.” This 

assumption is taken by him to be true and is grounded by the convention that the quantifiers are 
equivalent with (possibly infinite) conjunctions and, respectively, disjunctions.  
29 (Carnap 1961) also acknowledged the indeterminate character of the ε-operator, but, nevertheless, 

he found it useful not only for logic and mathematics, but also for defining the theoretical concepts of 

scientific theories.     
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that at least some classical mathematicians are disposed to accept and even to engage in 

inferences that go beyond the intuitive and finite reasoning. In other words, the use of the 

quantifiers by the classical mathematicians, the very quantifiers that generate Carnap’s 

original problem, is also governed in inferential practices by infinite rules. If this is so, 

however, then I think that logical inferentialists should accept the infinite rules of inference 

for the quantifiers.30  

 The approach of a logical inferentialist, it seems to me, should be similar to the one of 

a linguistic anthropologist. In order to recover and formulate the formal grammar that 

governs the use of a language in a community, the anthropologist has to carefully study the 

everyday linguistic behaviour of the members of the community. Likewise, in order to 

recover and formulate the proof-theoretical framework of quantificational human inferences, 

a logical inferentialist should take into account all the uses of the quantifiers from the 

reasoning practice. Since the full use of the quantifiers in classical mathematics involves the 

implicit reference to infinite totalities and this use is better reconstructed as being governed 

by infinite rules, then a logical inferentialist should accept these rules in his proof-theoretical 

framework.    

Certainly, (Church 1944: 498)՚s criticism that it is not possible to systematically 

follow a non-effective rule in practice remains valid, but I do not think that it should be 

considered an insurmountable obstacle. For instance, as (Warren 2021) argued, if we consider 

an infinite inference with recursively enumerable premises, then the possibility of performing 

infinite inferences is at least plausible from a naturalist perspective. An actual example of 

performance of an infinite inference is difficult (if not impossible) to be found, but if we 

abandon our reluctance for accepting these rules, then our dispositions for inferring in 

accordance with them may get a more substantial shape. As we have seen above, Carnap was 

even more optimistic on this matter and held the belief that not only infinite inferences are 

possible, but also infinite derivations and proofs.  

One further philosophical remark that I want to make regards the notions of 

categoricity and infinite rules of inference as normative ideas or ideals to be followed. It can 

be seen as a step back, but I think that the symmetry between the proof-theoretic methods and 

                                                             
30 For a very interesting and elaborate discussion on the ability of human beings to perform infinite 

inferences see (Warren 2021). For a criticism, see (Marschall 2021). Marschall assumes, however, 

that we do not have dispositions for following infinite rules and, thus, he concludes that only 
languages with recursive rules are permissible. His conclusion is a radical one, since he also applies 

this constrain to meta-languages. As we have seen in section II above, even (Church 1944) admitted 

the fruitfulness of the infinitary rules in the meta-theory. After all, we can prove new theorems 

precisely by using these rules (see also footnote 25).  
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the model-theoretic ones can be fruitfully seen as an ideal to be attained. Certainly, model-

theoretic inferentialism requires categoricity, but from a more general perspective, 

categoricity could be seen as an ideal to be attained. Likewise, we can think of the idea of 

following an infinite rule of inference as an ideal, a norm for our reasoning. We do not 

systematically follow in practice an infinite rule of inference, but following such rules is as 

idea that guides our reasoning. The idea of following an infinite rule could be seen, to quote 

(Hilbert 1925: 392), as “a concept of reason that transcends all experience and through which 

the concrete is completed so as to form a totality”.  

Regarding the use of infinite rules in constructing a logical calculus, I totally agree 

with (Carnap 1937: 52) that “everyone is at liberty to build up his own logic”. The methods 

for using transfinite calculi are clearly stated and the syntactical rules are precisely 

formulated. However, since the semantic meanings of the quantifiers involve infinity, then 

the construction of a logical calculus for them, as (Carnap 1942: 219) emphasized, is not 

entirely conventional. We need a logical instrument, i.e., a calculus, which can help us to 

exhaustively deal with its semantic counterpart. Certainly, this calculus can be seen as a 

normative instrument. After all, logic is not entirely concerned with the way in which people 

actually think and infer, but rather with the way in which they ought to think and infer if truth 

is to be attained. If we abandon our reluctance towards the infinite rules and exercise our 

dispositions for performing inferences that go beyond finite reasoning, logic may even gain a 

better understanding of mathematical practice, where infinity plays a major role.31 

VI. Final remarks 

My aim in this paper was to analyze the importance of the infinitary rules of inference 

for the first order quantifiers by discussing the main approaches to the categoricity problem 

for the classical logical inferentialism. Although there are various solutions to this problem, 

depending on the way in which the rules of inference are formulated and the semantics is 

specified, I tried to emphasize Carnap’s original idea that this problem for the quantifiers 

originates in the finite nature of the standard formalizations of classical logic. The meanings 

of the first order quantifiers go beyond what is finite and thus the standard formalizations that 

use only finite rules of inference, i.e., rules with a finite number of premises (and 

conclusions), have problems in fully capturing their meanings.  

                                                             
31 See (Barwise 1981) and (Moore 1990) for a discussion of the development of infinitary logics and 

its relation with mathematical practice.   
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As we have seen in the fourth section, McGee, Bonnay and Westerståhl, Warren, as 

well as Murzi and Topey, are interested in finding constraints that force the universal 

quantifier to range over the entire domain of objects. However, the non-normal 

interpretations pointed out by Carnap are also interpretations in which the universal quantifier 

ranges over the entire domain (since the domain is denumerable and all the objects are named 

by individual constants). The main difference is that its meaning in a non-normal 

interpretation is richer that in a normal one. This is a consequence of the fact that the standard 

finite rules of inference do not establish the deductive equivalence between a universally 

quantified sentence and the class of all its instances.    

At the same time, the main idea that I argued for is that a model-theoretic logical 

inferentialist should in principle accept the infinite rules of inference for the first order 

quantifiers since our use of the quantifiers, and thus their meanings, go beyond the intuitive 

and finite reasoning, and human beings do sometimes employ infinite rules of inference in 

their reasoning. Certainly, by accepting the infinite rules of inference we obtain the symmetry 

between logical syntax and semantics and, thus, the categoricity problem gets solved.  

 

Acknowledgements 

I would like to thank my audiences in Salzburg (2019), Prague (2019), and Vienna (2022), 

where parts of my work on this paper have been presented. I also want to thank Mircea 

Dumitru, Julien Murzi, Gabriel Sandu, Iulian Toader and Brett Topey for helpful discussions. 

Special thanks to the reviewers for their very useful feedback. This work was supported by a 

grant of the Romanian Ministry of Education and Research, CNCS - UEFISCDI, project 

number PN-III-P1-1.1-PD-2019-0901, within PNCDI III. 

 

References 

Barwise, Jon. 1981. ‘Infinitary Logics’. In Agazzi, Evandro (ed.) Modern Logic - A Survey, 

Synthese Library 149, D. Reidel Publishing Company, pp. 93-112.  

Bonnay, Denis & Westerståhl, Dag. 2016. ‘Compositionality solves Carnap’s problem’, 

Erkenntnis, 81(4), 721–739.  

Brîncuș, Constantin C.. 2021. ‘Are the open-ended rules for negation categorical?’. Synthese 

198, 7249–7256. 

Carnap, Rudolf. 1937. Logical Syntax of Language, London: K. Paul, Trench, Trubner & Co 

Ltd.  

Carnap, Rudolf. 1939. Foundations of Logic and Mathematics, Chicago: University of 

Chicago Press. 

Carnap, Rudolf. 1942. Introduction to Semantics, Cambridge, Mass., Harvard University 

Press. 



29 
 

Carnap, Rudolf. 1943. Formalization of Logic, Cambridge, Mass., Harvard University Press.   

Carnap, Rudolf. 1961. ‘On the Use of Hilbert’s ε-Operator in Scientific Theories’, in Essays 

on the Foundations of Mathematics, Y. Bar-Hillel et al. (eds.), Jerusalem: Magnes Press, pp. 

154–64. 

Church, A. 1944. ‘Review of Carnap 1943’ The Philosophical Review 53.5, pp. 493–8.  

Curry, Haskell B.. 1968. ‘The Purposes of Logical Formalization’. Logique et Analyse, 11:43, 

pp. 357–366.  

Dicher, Bogdan. 2020. ‘Hopeful Monsters: A Note on Multiple Conclusions’ Erkenn 85, 77–

98.  

Fitch, Frederic B.. 1944. ‘Review of Introduction to Semantics and Formalization of Logic’ 

Philosophy and Phenomenological Research 4:3, pp. 450-5 

Forbes, Graeme. 1993. ‘But a Was Arbitrary...’ Philosophical Topics 21 (2), pp. 21-34.  

Garson, James. 2001. ‘Natural semantics: why natural deduction is intuitionistic’. Theoria, 

67(2), 114–137 

Garson, James. 2013. What Logics Mean: From Proof-Theory to Model-Theoretic Semantics. 

Cambridge, Cambridge University Press. 

Hilbert, David. 1923, “Die logischen Grundlagen der Mathematik”, Mathematische Annalen, 

88: 151–165. English translation in Ewald, William Bragg (ed.). 1996. From Kant to Hilbert. 

A Source Book in the Foundations of Mathematics, vol. 2, Oxford: Oxford University Press. 

Hilbert, David. 1926. ‘Über das Unendliche’, Mathematische Annalen, 95: 161–190. English 

translation in van Heijenoort, J. 1967. From Frege to Gödel, Cambridge, MA: Harvard 

University Press.   

Incurvati, Luca & Smith, Peter. 2010. ‘Rejection and valuations’, Analysis 70 (1):3 – 10. 

Lewis, Clarence Irving. 1918. A Survey of Symbolic Logic, Berkeley: University of California 

Press. 

Marschall, Benjamin. 2021. ‘Carnap and Beth on the Limits of Tolerance’, Canadian Journal 

of Philosophy, 51:4, 282-300.  

Mates, Benson. 1972. Elementary logic. New York: Oxford University Press. 

McGee, Vann. 2000. ‘Everything’. In: G. Sher and R. Tieszen (eds.), Between Logic and 

Intuition, Cambridge: Cambridge University Press.  

McGee, Vann. 2006. ‘There's a Rule for Everything’. In A. Rayo & G. Uzquiano (eds.), 

Absolute Generality. Oxford University Press, pp. 179-202.  

McGee, Vann. 2015. ‘The Categoricity of Logic’. In: C. R. Caret and O. T. Hjortland (eds.), 

Foundations of Logical Consequence, Oxford University Press.  

Moore, Gregory H.. 1990. ‘Proof and the infinite’. Interchange 21, pp. 46–60. 



30 
 

Murzi, Julien & Hjortland, Ole Thomassen. 2009. ‘Inferentialism and the categoricity 

problem: Reply to Raatikainen’ Analysis 69 (3):480-488. 

Murzi, Julien. 2020. ‘Classical Harmony and Separability’. Erkenntnis 85, 391–415. 

Murzi, Julien & Topey, Brett. 2021. ‘Categoricity by convention’. Philosophical Studies 178: 

pp. 3391–3420 

Smiley, Timothy. 1996. ‘Rejection’. Analysis, vol. 56, no. 1, pp. 1–9.  

Scott, Dana, and Tarski, Alfred. 1958, ‘The sentential calculus with infinitely long 

expressions’, Colloquium Mathematicum, 16: 166–170. 

Steinberger, Florian. 2011. ‘Why Conclusions Should Remain Single’. J Philos 

Logic 40, 333–355. 

Tarski, Alfred. 1933. ‘Some observations on the concepts of ω-consistency and ω-

completeness’. In A. Tarski, Logic, Semantics, Metamathematics, Hackett, Indianopolis, 

1983, pp. 279-295. 

Tarski, Alfred. 1958, ‘Remarks on predicate logic with infinitely long expressions’, 

Colloquium Mathematicum, 16: 171–176. 

Tennant, Neil. 2008. ‘Carnap, Gӧdel, and the Analyticity of Arithmetic’, Philosophia 

Mathematica, (III) 16: 100-112. 

Warren, Jared. 2020. Shadows of Syntax. Revitalizing Logical and Mathematical 

Conventionalism, OUP.  

Warren, Jared. 2021. ‘Infinite Reasoning’ Philosophy and Phenomenological Research, 

(103)2: 385-407 

Weyl, Hermann. 1929. ‘Consistency in mathematics’. The Rice Institute Pamphlet, 16: 245–

265.  


	Acknowledgements

