Skip to main content
Log in

A Modified Lorentz-Transformation–Based Gravity Model Confirming Basic GRT Experiments

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

Implementing Poincaré’s geometric conventionalism a scalar Lorentz-covariant gravity model is obtained based on gravitationally modified Lorentz transformations (or GMLT). The modification essentially consists of an appropriate space-time and momentum-energy scaling (“normalization”) relative to a nondynamical flat background geometry according to an isotropic, nonsingular gravitational affecting function Φ(r). Elimination of the gravitationally unaffected S0 perspective by local composition of space–time GMLT recovers the local Minkowskian metric and thus preserves the invariance of the locally observed velocity of light. The associated energy-momentum GMLT provides a covariant Hamiltonian description for test particles and photons which, in a static gravitational field configuration, endorses the four ‘basic’ experiments for testing General Relativity Theory: gravitational (i) deflection of light, (ii) precession of perihelia, (iii) delay of radar echo, (iv) shift of spectral lines. The model recovers the Lagrangian of the Lorentz–Poincaré gravity model by Torgny Sjödin and integrates elements of the precursor gravitational theories, with spatially Variable Speed of Light (VSL) by Einstein and Abraham, and gravitationally variable mass by Nordström.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. G. Kalman (1961) Phys. Rev. 123 384 Occurrence Handle10.1103/PhysRev.123.384

    Article  Google Scholar 

  2. G. Cavalleri G. Spinelli (1974) Lett Nuovo. Cimento 9 325

    Google Scholar 

  3. M. Laue (1917) Jahrb Radioakt. Electronik 14 263

    Google Scholar 

  4. G.J. Whitrow G.E. Morduch (1965) “Relativistic theories of gravitation” A. Beer (Eds) Vistas in Astronomy Pergamon Press New York

    Google Scholar 

  5. M. Fierz (1939) Helv. Phys. Act. 12 3 Occurrence Handle10.1002/hlca.19390220102

    Article  Google Scholar 

  6. See S. Deser and B. E. Laurent, Ann. Phys (N.Y.) 50, 76 (1968) and references herein.

  7. S. Deser (1970) Gen. Relativ. Gravit. 1 9 Occurrence Handle10.1007/BF00759198

    Article  Google Scholar 

  8. G. Cavalleri and G. Spinelli, Phys. Rev. D 12, 2200 and 2203; 15, 3065 (1975).

  9. J. Broekaert, “A spatially-VSL scalar gravity model with 1-PN limit of GRT”, (GR17 conf., Dublin, 2004), gr-qc:0405015.

  10. J. Broekaert, “A spatially-VSL scalar gravity model: Gyroscopic dynamics”, in PIRT IX proceedings, M. C. Duffy, ed. (PD, Liverpool, 2004).

  11. J. Broekaert, in PIRT VIII proceedings 1, M. C. Duffy, ed. 37 (PD, Liverpool 2002).

  12. The problem of geometrical conventionalism is developed in H. Poincaré, La Science et l’hypothèse (Flammarion, Paris, 1902); H. Reichenbach, The Philosophy of Space and Time (Dover Publication, New York, 1957/1927); A. Einstein, “Geometry and experience”, in Sidelights on Relativity, 20–46 (Dover Publication, New York, 1983/1921); P. Duhem, The aim and structure of physical theory (Princeton UP, New Jersey, 1954/1906); R. Carnap, Philosophical Foundations of Physics. An Introduction to the Philosophy of Science (Basic Books, New York, 1966); A. Grünbaum, The philosophical problems of space and time, Boston Studies Vol. Xii (D. Reidel, Dordrecht, 1973).

  13. G. Pocci T. Sjödin (1980) Nuovo Cimento B 63 601

    Google Scholar 

  14. M. Arminjon, “Relativistic world ether,” in “Ether theory of gravitation: why and how?”, M. C. Duffy and L. Kostro, eds. (to be published), gr-qc/0401021

  15. W. E. Thirring (1961) Ann. Phys. (N.Y.) 16 96 Occurrence Handle10.1016/0003-4916(61)90182-8

    Article  Google Scholar 

  16. J. W. Moffat (1993) Int. J. Mod. Phys. D 2 351 Occurrence Handle10.1142/S0218271893000246

    Article  Google Scholar 

  17. A. Albrecht J. Magueijo (1999) Phys. Rev. D 59 043516 Occurrence Handle10.1103/PhysRevD.59.043516

    Article  Google Scholar 

  18. A. Einstein, Jahrb. Radioakt. Elektronik IV, 411(1907); V, 98 (1908); Ann. Phys. (Leipzig) 35, 898 (1911); 38, 355, 443 and 1059 (1912); 39, 704 (1912).

  19. M. Abraham, Phys. Z. 13 1, 4, 310, 311 and 793 (1912); Archiv Math. Phys. 3, 193 (1912); Ann. Phys. (Leipzig) 38, 444 and 1056 (1912).

  20. G. Nordström Ann. Phys. (Leipzig) 40, 856; 42, 533 (1913).

    Google Scholar 

  21. J. D. Norton (1992) Arch. Hist. Ex. Sci. 45 17 Occurrence Handle10.1007/BF00375886

    Article  Google Scholar 

  22. T. Sjödin (1982) Z. Naturforsch. A 37 401

    Google Scholar 

  23. T. Sjödin (1990) Found. Phys. Lett. 3 543 Occurrence Handle10.1007/BF00666023

    Article  Google Scholar 

  24. M. F. Podlaha T. Sjödin (1984) Nuovo Cimento B 79 85

    Google Scholar 

  25. J. Magueijo, Rep. Prog. Phys. 66, 2025 (2003); G. Yu. Bogoslovsky and H. F. Goenner, Phys. Lett. A 323, 40 (2004); R. I. Sutherland and J. R. Shepanski, Phys. Rev. D 33, 2869 (1986); J. A. Bullinaria, Phys. Rev. D 33, 376 (1986).

  26. G. Cavalleri G. Spinelli (1983) Nuovo Cimento B 75 50

    Google Scholar 

  27. J. Magueijo (2003) Rep. Prog. Phys. 66 2025 Occurrence Handle10.1088/0034-4885/66/11/R04

    Article  Google Scholar 

  28. H. E. Puthoff (2002) Found Phys. 32 927 Occurrence Handle10.1023/A:1016011413407

    Article  Google Scholar 

  29. M. Arminjon; Rev. Roum. Sci. Techn.- Méc. Appl. 43, 135 (1998), gr-qc/9912041; Found. Phys. to appear (2005), gr-qc/9912041; J. C. Evans (et al.), Am. J. Phys. 69, 1103 (2001); K. K. Nandi and Yuan-Zhong Zhang, Phys. Rev. D 66, 063005 (2002), gr-qc/0208050.

  30. G. Cavalleri E. Tonni (1997) Hadronic J. 20 173

    Google Scholar 

  31. S. Weinberg (1965) Phys. Rev. B 138 988 Occurrence Handle10.1103/PhysRev.138.B988

    Article  Google Scholar 

  32. G. Cavalleri and G. Spinelli, Riv. Nuovo Cimento, 3 (8) (1980).

  33. J. Brian Pitts W. C. Schieve (2004) Found. Phys. 34 211 Occurrence Handle10.1023/B:FOOP.0000019582.44548.6a

    Article  Google Scholar 

  34. R. Mansouri R. U. Sexl (1977) ArticleTitleGen. Relativ Gravit. 8 497 Occurrence Handle10.1007/BF00762634

    Article  Google Scholar 

  35. T. Sjödin (1979) Nuovo Cimento B 51 229

    Google Scholar 

  36. G. Cavalleri G. Spinelli (1983) Found. Phys. 13 1221 Occurrence Handle10.1007/BF00727994

    Article  Google Scholar 

  37. G. Cavalleri C. Bernasconi (1989) Nuovo Cimento B 104 545

    Google Scholar 

  38. W. Rindler (1979) Essential Relativity. Special, General, and Cosmological (Revised Second Edition) Springer Berlin Heidelberg

    Google Scholar 

  39. S. Weinberg (1972) Gravitation and Cosmology. Principles and applications of the General Theory of Relativity Wiley London

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Broekaert.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Broekaert, J. A Modified Lorentz-Transformation–Based Gravity Model Confirming Basic GRT Experiments. Found Phys 35, 839–864 (2005). https://doi.org/10.1007/s10701-005-4567-4

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10701-005-4567-4

Keywords

Navigation